20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Active Filter Design Techniques<br />

Band-Pass Filter Design<br />

In accordance with Equations 16–14 and 16–15, <strong>the</strong> mid frequencies for <strong>the</strong> partial filters<br />

are:<br />

fmi <br />

<strong>10</strong> kHz<br />

1.036 9.653 kHz f and<br />

m2 <strong>10</strong> kHz·1.036 <strong>10</strong>.36 kHz<br />

<strong>The</strong> overall Q is def<strong>in</strong>ed as Q f mB , and for this example results <strong>in</strong> Q = <strong>10</strong>.<br />

Us<strong>in</strong>g Equation 16–16, <strong>the</strong> Q i of both filters is:<br />

Q i <strong>10</strong>· 1 1.036 2·1<br />

1.036·1.4142<br />

14.15<br />

With Equation 16–17, <strong>the</strong> passband ga<strong>in</strong> of <strong>the</strong> partial filters at fm1 and fm2 calculates to:<br />

Ami 14.15<br />

<strong>10</strong> · 1 1.415<br />

1<br />

<strong>The</strong> Equations 16–16 and 16–17 show that Q i and A mi of <strong>the</strong> partial filters need to be <strong>in</strong>dependently<br />

adjusted. <strong>The</strong> only circuit that accomplishes this task is <strong>the</strong> MFB band-pass filter<br />

<strong>in</strong> Paragraph 16.5.1.2.<br />

To design <strong>the</strong> <strong>in</strong>dividual second-order band-pass filters, specify C = <strong>10</strong> nF, and <strong>in</strong>sert <strong>the</strong><br />

previously determ<strong>in</strong>ed quantities for <strong>the</strong> partial filters <strong>in</strong>to <strong>the</strong> resistor equations of <strong>the</strong><br />

MFB band-pass filter. <strong>The</strong> resistor values for both partial filters are calculated below.<br />

Filter 1: Filter 2:<br />

R 21 Q i<br />

f m1C <br />

R11 R21 <br />

2Ami R31 AmiR11 2<br />

2Qi Ami<br />

14.15<br />

·9.653 kHz·<strong>10</strong> nF 46.7 k R 22 Q i<br />

f m2C <br />

46.7 k<br />

2· 1.415 16.5 k R12 R22 <br />

2Ami 1.415·16.5 k<br />

2·14.15 2 1.415 58.1 R 32 A miR 12<br />

2Q i<br />

2 Ami<br />

14.15<br />

43.5 k<br />

·<strong>10</strong>.36 kHz·<strong>10</strong> nF<br />

43.5 k<br />

15.4 k<br />

2· 1.415<br />

<br />

1.415·15.4 k<br />

2·14.152 54.2 <br />

1.415<br />

Figure 16–35 compares <strong>the</strong> ga<strong>in</strong> response of a fourth-order Butterworth band-pass filter<br />

with Q = 1 and its partial filters to <strong>the</strong> fourth-order ga<strong>in</strong> of Example 16–4 with Q = <strong>10</strong>.<br />

16-35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!