20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> Differential Amplifier<br />

3.5 <strong>The</strong> Differential Amplifier<br />

3-6<br />

<strong>The</strong> differential amplifier circuit amplifies <strong>the</strong> difference between signals applied to <strong>the</strong> <strong>in</strong>puts<br />

(Figure 3–5). Superposition is used to calculate <strong>the</strong> output voltage result<strong>in</strong>g from<br />

each <strong>in</strong>put voltage, and <strong>the</strong>n <strong>the</strong> two output voltages are added to arrive at <strong>the</strong> f<strong>in</strong>al output<br />

voltage.<br />

V1<br />

V2<br />

Figure 3–5. <strong>The</strong> Differential Amplifier<br />

R1<br />

R3<br />

R2<br />

V+<br />

V–<br />

+<br />

_<br />

R4<br />

VOUT<br />

<strong>The</strong> op amp <strong>in</strong>put voltage result<strong>in</strong>g from <strong>the</strong> <strong>in</strong>put source, V 1, is calculated <strong>in</strong> Equations<br />

3–<strong>10</strong> and 3–11. <strong>The</strong> voltage divider rule is used to calculate <strong>the</strong> voltage, V +, and <strong>the</strong><br />

non<strong>in</strong>vert<strong>in</strong>g ga<strong>in</strong> equation (Equation 3–2) is used to calculate <strong>the</strong> non<strong>in</strong>vert<strong>in</strong>g output<br />

voltage, V OUT1.<br />

V V 1<br />

R 2<br />

R 1 R 2<br />

V OUT1 V (G ) V 1<br />

R 2<br />

R 1 R 2 R 3 R 4<br />

R 3<br />

<br />

(3–<strong>10</strong>)<br />

(3–11)<br />

<strong>The</strong> <strong>in</strong>vert<strong>in</strong>g ga<strong>in</strong> equation (Equation 3–5) is used to calculate <strong>the</strong> stage ga<strong>in</strong> for VOUT2 <strong>in</strong> Equation 3–12. <strong>The</strong>se <strong>in</strong>vert<strong>in</strong>g and non<strong>in</strong>vert<strong>in</strong>g ga<strong>in</strong>s are added <strong>in</strong> Equation 3–13.<br />

V (3–12)<br />

OUT2 V2 R4 R3 V OUT V 1<br />

R 2<br />

R 1 R 2 R 3 R 4<br />

R 3<br />

V 2<br />

R4 R3 When R 2 = R 4 and R 1 = R 3, Equation 3–13 reduces to Equation 3–14.<br />

V OUT V 1 V 2 R 4<br />

R 3<br />

(3–13)<br />

(3–14)<br />

It is now obvious that <strong>the</strong> differential signal, (V 1–V 2), is multiplied by <strong>the</strong> stage ga<strong>in</strong>, so<br />

<strong>the</strong> name differential amplifier suits <strong>the</strong> circuit. Because it only amplifies <strong>the</strong> differential

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!