20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Anti-Alias<strong>in</strong>g Filters<br />

<strong>The</strong> op amp dynamic parameters <strong>in</strong> Table 13–2 represent <strong>the</strong> range of values to achieve<br />

low noise, good SFDR, high slew rate, good bandwidth, etc.<br />

Table 13–2. High-Speed <strong>Op</strong> Amp Requirements<br />

PARAMETER VALUE<br />

Noise voltage 2.7 nV Hz to 8 nV Hz<br />

Noise current 1pA Hz to 30 pA Hz<br />

THD 70 dBc to 95 dBc<br />

Slew rate 260 V/µV to 3500 V/µV<br />

Small signal bandwidth 200 MHz to 600 MHz<br />

Large signal bandwidth ≥ <strong>10</strong>0 MHz<br />

Common-mode <strong>in</strong>put voltage 3 V<br />

Supply voltage ± 5 V<br />

Settl<strong>in</strong>g time 8 ns to 20 ns<br />

Output current 40 mA to <strong>10</strong>0 mA<br />

Output impedance ≤ 20 Ω<br />

PSRR – 60 dB<br />

CMRR –70 dB<br />

Input offset voltage <strong>10</strong> mV (typical)<br />

<strong>Op</strong> amps operat<strong>in</strong>g from ± 5-V supplies typically have 6 V to 8 V of common-mode range.<br />

S<strong>in</strong>gle-supply op amps often handle much smaller voltage ranges, and <strong>in</strong> some communication<br />

applications, could exhibit limited l<strong>in</strong>ear operation over a wide signal sw<strong>in</strong>g. With<br />

<strong>the</strong> exception of rail-to-rail op amps, most op amps can sw<strong>in</strong>g to with<strong>in</strong> 1 V to 1.5 V of <strong>the</strong><br />

positive rail. Typically signal-to-noise ratio, slew rate, and bandwidth suffer for devices operat<strong>in</strong>g<br />

from low supply voltages.<br />

When select<strong>in</strong>g current-feedback op amps, <strong>the</strong> ga<strong>in</strong>-bandwidth plots are essential. <strong>The</strong>y<br />

are needed because with current feedback ord<strong>in</strong>ary loop-ga<strong>in</strong>-proportional bandwidth<br />

relationships do not hold.<br />

13.5 Anti-Alias<strong>in</strong>g Filters<br />

Spurious effects <strong>in</strong> <strong>the</strong> receiver channel (Figure 13–1) appear as high frequency noise <strong>in</strong><br />

<strong>the</strong> baseband signal present at <strong>the</strong> ADC. <strong>The</strong> spurious signals (> ƒ s/ 2) must be blocked<br />

from gett<strong>in</strong>g to <strong>the</strong> ADC (sampl<strong>in</strong>g at Nyquist rate, ƒ s) where <strong>the</strong>y will cause alias<strong>in</strong>g errors<br />

<strong>in</strong> <strong>the</strong> ADC output.<br />

A suitable anti-alias<strong>in</strong>g low-pass analog filter placed immediately before <strong>the</strong> ADC can<br />

block all frequency components capable of caus<strong>in</strong>g alias<strong>in</strong>g from reach<strong>in</strong>g <strong>the</strong> ADC. <strong>The</strong><br />

Wireless Communication: Signal Condition<strong>in</strong>g for IF Sampl<strong>in</strong>g<br />

13-11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!