20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Op</strong>erational Amplifier Parameter Glossary<br />

11-4<br />

PARAMETER ABBV UNITS DEFINITION INFO<br />

Input capacitance ci pF<br />

Input offset current IIO µA<br />

Input offset voltage<br />

Input offset voltage longterm<br />

drift<br />

VIO,<br />

VOS<br />

mV<br />

V<br />

month<br />

Input resistance ri MΩ<br />

Input voltage range VI V<br />

Large-signal voltage amplification<br />

Lead temperature for <strong>10</strong> or<br />

60 seconds<br />

<strong>The</strong> capacitance between <strong>the</strong> <strong>in</strong>put term<strong>in</strong>als with ei<strong>the</strong>r <strong>in</strong>put<br />

grounded.<br />

<strong>The</strong> difference between <strong>the</strong> currents <strong>in</strong>to <strong>the</strong> two <strong>in</strong>put term<strong>in</strong>als<br />

with <strong>the</strong> output at <strong>the</strong> specified level.<br />

<strong>The</strong> dc voltage that must be applied between <strong>the</strong> <strong>in</strong>put term<strong>in</strong>als<br />

to cancel dc offsets with<strong>in</strong> <strong>the</strong> op amp.<br />

<strong>The</strong> ratio of <strong>the</strong> change <strong>in</strong> <strong>in</strong>put offset voltage to <strong>the</strong> change<br />

time. It is <strong>the</strong> average value for <strong>the</strong> month.<br />

<strong>The</strong> dc resistance between <strong>the</strong> <strong>in</strong>put term<strong>in</strong>als with ei<strong>the</strong>r<br />

<strong>in</strong>put grounded.<br />

<strong>The</strong> range of <strong>in</strong>put voltages that may be applied to ei<strong>the</strong>r <strong>the</strong><br />

IN+ or IN– <strong>in</strong>puts<br />

AV dB (see open loop voltage ga<strong>in</strong>)<br />

°C<br />

Low-level output current IOL mA<br />

Low-level output voltage VOL V<br />

Maximum peak output voltage<br />

sw<strong>in</strong>g<br />

Maximum peak-to-peak output<br />

voltage sw<strong>in</strong>g<br />

Maximum-output-sw<strong>in</strong>g<br />

bandwidth<br />

VOM±<br />

VO(PP)<br />

BOM<br />

V<br />

V<br />

MHz<br />

Noise figure NF dB<br />

<strong>Op</strong>en-loop transimpedance Zt MΩ<br />

<strong>Op</strong>en-loop transresistance Rt MΩ<br />

<strong>Op</strong>en -loop voltage ga<strong>in</strong> AOL dB<br />

<strong>Op</strong>erat<strong>in</strong>g temperature TA °C<br />

Usually specified as an absolute maximum. It is meant to be<br />

used as guide for automated and hand solder<strong>in</strong>g processes.<br />

<strong>The</strong> current <strong>in</strong>to an output with <strong>in</strong>put conditions applied that<br />

accord<strong>in</strong>g to <strong>the</strong> product parameter will establish a low level<br />

at <strong>the</strong> output.<br />

<strong>The</strong> smallest positive op amp output voltage for <strong>the</strong> bias conditions<br />

applied to <strong>the</strong> power p<strong>in</strong>s.<br />

<strong>The</strong> maximum peak-to-peak output voltage that can be obta<strong>in</strong>ed<br />

without clipp<strong>in</strong>g when <strong>the</strong> op amp is operated from a<br />

bipolar supply.<br />

<strong>The</strong> maximum peak-to-peak voltage that can be obta<strong>in</strong>ed<br />

without waveform clipp<strong>in</strong>g when <strong>the</strong> dc output voltage is zero.<br />

<strong>The</strong> range of frequencies with<strong>in</strong> which <strong>the</strong> maximum output<br />

voltage sw<strong>in</strong>g is above a specified value or <strong>the</strong> maximum<br />

frequency of an amplifier <strong>in</strong> which <strong>the</strong> output amplitude is at<br />

<strong>the</strong> extents of it’s l<strong>in</strong>ear range. Also called full power bandwidth.<br />

<strong>The</strong> ratio of <strong>the</strong> total noise power at <strong>the</strong> output of an amplifier,<br />

referred to <strong>the</strong> <strong>in</strong>put, to <strong>the</strong> noise power of <strong>the</strong> signal source.<br />

In a transimpedance or current feedback amplifier, it is <strong>the</strong><br />

frequency dependent ratio of change <strong>in</strong> output voltage to <strong>the</strong><br />

frequency dependent change <strong>in</strong> current at <strong>the</strong> <strong>in</strong>vert<strong>in</strong>g <strong>in</strong>put.<br />

In a transimpedance or current feedback amplifier, it is <strong>the</strong><br />

ratio of change <strong>in</strong> dc output voltage to <strong>the</strong> change <strong>in</strong> dc current<br />

at <strong>the</strong> <strong>in</strong>vert<strong>in</strong>g <strong>in</strong>put.<br />

<strong>The</strong> ratio of change <strong>in</strong> output voltage to <strong>the</strong> change <strong>in</strong> voltage<br />

across <strong>the</strong> <strong>in</strong>put term<strong>in</strong>als. Usually <strong>the</strong> dc value and a graph<br />

show<strong>in</strong>g <strong>the</strong> frequency dependence are shown <strong>in</strong> <strong>the</strong> data<br />

sheet.<br />

Temperature over which <strong>the</strong> op amp may be operated. Some<br />

of <strong>the</strong> o<strong>the</strong>r parameters may change with temperature, lead<strong>in</strong>g<br />

to degraded operation at temperature extremes.<br />

11.3.7.1<br />

11.3.2<br />

11.3.1<br />

11.3.1<br />

11.3.7.1<br />

11.3.15<br />

11.3.5<br />

11.3.5<br />

11.3.15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!