20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Op</strong>erational Amplifier Parameter Glossary<br />

PARAMETER ABBV UNITS DEFINITION INFO<br />

Cont<strong>in</strong>uous total dissipation mW<br />

Crosstalk XT dBc<br />

Differential ga<strong>in</strong> error AD %<br />

Differential <strong>in</strong>put capacitance<br />

Differential <strong>in</strong>put resistance rid Ω<br />

Differential <strong>in</strong>put voltage VID V<br />

Differential phase error ΦD °<br />

Differential voltage amplification<br />

Fall time tf ns<br />

Duration of short-circuit current<br />

Input common-mode voltage<br />

range<br />

Usually specified as an absolute maximum. It is <strong>the</strong> power<br />

that can be dissipated by <strong>the</strong> op amp package, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

load power. This parameter may be broken down by ambient<br />

temperature and package style <strong>in</strong> a table.<br />

<strong>The</strong> ratio of <strong>the</strong> change <strong>in</strong> output voltage of a driven channel<br />

to <strong>the</strong> result<strong>in</strong>g change <strong>in</strong> output voltage from ano<strong>the</strong>r channel<br />

that is not driven.<br />

<strong>The</strong> change <strong>in</strong> ac ga<strong>in</strong> with change <strong>in</strong> dc level. <strong>The</strong> ac signal<br />

is 40 IRE (0.28 VPK) and <strong>the</strong> dc level change is ±<strong>10</strong>0 IRE<br />

(±0.7 V). Typically tested at 3.58 MHz (NTSC) or 4.43 MHz<br />

(PAL) carrier frequencies.<br />

Cic pF (see common mode <strong>in</strong>put capacitance) 11.3.7.1<br />

<strong>The</strong> small-signal resistance between two ungrounded <strong>in</strong>put<br />

term<strong>in</strong>als.<br />

<strong>The</strong> voltage at <strong>the</strong> non<strong>in</strong>vert<strong>in</strong>g <strong>in</strong>put with respect to <strong>the</strong> <strong>in</strong>vert<strong>in</strong>g<br />

<strong>in</strong>put.<br />

<strong>The</strong> change <strong>in</strong> ac phase with change <strong>in</strong> dc level. <strong>The</strong> ac signal<br />

is 40 IRE (0.28 VPK) and <strong>the</strong> dc level change is ±<strong>10</strong>0 IRE<br />

(±0.7 V). Typically tested at 3.58 MHz (NTSC) or 4.43 MHz<br />

(PAL) carrier frequencies.<br />

AVD dB (see open loop voltage ga<strong>in</strong>) 11.3.6<br />

VICR<br />

Input current II mA<br />

Input noise current In<br />

Input noise voltage Vn<br />

V<br />

pA<br />

<br />

Hz<br />

nV<br />

<br />

Hz<br />

Ga<strong>in</strong> bandwidth product GBW MHz<br />

Ga<strong>in</strong> marg<strong>in</strong> Am dB<br />

High-level output voltage VOH V<br />

Input bias current IIB µA<br />

<strong>The</strong> time required for an output voltage step to change from<br />

90% to <strong>10</strong>% of its f<strong>in</strong>al value.<br />

Amount of time that <strong>the</strong> output can be shorted to network<br />

ground — usually specified as an absolute maximum.<br />

<strong>The</strong> range of common-mode <strong>in</strong>put voltage that, if exceeded,<br />

may cause <strong>the</strong> operational amplifier to cease function<strong>in</strong>g<br />

properly. This is sometimes is taken as <strong>the</strong> voltage range over<br />

which <strong>the</strong> <strong>in</strong>put offset voltage rema<strong>in</strong>s with<strong>in</strong> a set limit.<br />

<strong>The</strong> amount of current that can be sourced or s<strong>in</strong>ked by <strong>the</strong><br />

op amp <strong>in</strong>put — usually specified as an absolute maximum<br />

rat<strong>in</strong>g.<br />

<strong>The</strong> <strong>in</strong>ternal noise current reflected back to an ideal current<br />

source <strong>in</strong> parallel with <strong>the</strong> <strong>in</strong>put p<strong>in</strong>s.<br />

<strong>The</strong> <strong>in</strong>ternal noise voltage reflected back to an ideal voltage<br />

source <strong>in</strong> parallel with <strong>the</strong> <strong>in</strong>put p<strong>in</strong>s.<br />

<strong>The</strong> product of <strong>the</strong> open-loop voltage ga<strong>in</strong> and <strong>the</strong> frequency<br />

at which it is measured.<br />

<strong>The</strong> reciprocal of <strong>the</strong> open-loop voltage ga<strong>in</strong> at <strong>the</strong> frequency<br />

where <strong>the</strong> open-loop phase shift first reaches –180°.<br />

<strong>The</strong> highest positive op amp output voltage for <strong>the</strong> bias conditions<br />

applied to <strong>the</strong> power p<strong>in</strong>s.<br />

<strong>The</strong> average of <strong>the</strong> currents <strong>in</strong>to <strong>the</strong> two <strong>in</strong>put term<strong>in</strong>als with<br />

<strong>the</strong> output at a specified level.<br />

Understand<strong>in</strong>g <strong>Op</strong> Amp Parameters<br />

11.3.3<br />

11.3.13<br />

11.3.13<br />

11.3.13<br />

11.3.5<br />

11.3.2<br />

11-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!