20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Op</strong> Amp Noise<br />

<strong>10</strong>-14<br />

E n <br />

Square it.<br />

Subtract <strong>the</strong> white noise voltage squared (subtract<strong>in</strong>g noise with root-meansquares<br />

is just as valid as add<strong>in</strong>g).<br />

Multiply by <strong>the</strong> frequency. This will give <strong>the</strong> noise contribution from <strong>the</strong> 1/f noise.<br />

<strong>The</strong>n divide by <strong>the</strong> white noise specification squared. <strong>The</strong> answer is fnc. For example:<br />

<strong>The</strong> TLV2772 has a typical noise voltage of 130 nV Hz at <strong>10</strong> Hz (from 5-V plot on data<br />

sheet).<br />

<strong>The</strong> typical white noise specification for <strong>the</strong> TLV2772 is 12 nV Hz (from data sheet)<br />

1 f noise 2 @<strong>10</strong>Hz <br />

<br />

130<br />

nV<br />

Hz<br />

2<br />

<br />

f nc 1 f noise2 @<strong>10</strong>Hz<br />

white noise 2<br />

<br />

12 nV<br />

Hz<br />

2<br />

<br />

<br />

<br />

<br />

12 nV<br />

Hz<br />

<br />

167560(nV) 2<br />

<br />

<strong>10</strong> Hz 167560(nV)2<br />

2<br />

1164 Hz<br />

(<strong>10</strong>–15)<br />

(<strong>10</strong>–16)<br />

Once <strong>the</strong> corner frequency is known, <strong>the</strong> <strong>in</strong>dividual noise components can be added toge<strong>the</strong>r<br />

as shown <strong>in</strong> Paragraph <strong>10</strong>.2.2. Cont<strong>in</strong>u<strong>in</strong>g <strong>the</strong> example above for a frequency<br />

range of <strong>10</strong> Hz to <strong>10</strong> kHz:<br />

12 nV<br />

Hz<br />

E n E whitenoise<br />

<br />

fnc 1n fmax (fmax fm<strong>in</strong> )<br />

1164 Hz 1n <strong>10</strong>4<br />

<strong>10</strong> <strong>10</strong>4 Hz <strong>10</strong> Hz 1.611 V –116 dBV<br />

f m<strong>in</strong><br />

(<strong>10</strong>–17)<br />

(<strong>10</strong>–18)<br />

<strong>The</strong> example above presupposed that <strong>the</strong> bandwidth <strong>in</strong>cludes f nc. If it does not, all of <strong>the</strong><br />

contribution will be from ei<strong>the</strong>r <strong>the</strong> 1/f noise or <strong>the</strong> white noise. Similarly, if <strong>the</strong> bandwidth<br />

is very large, and extends to three decades or so above f nc, <strong>the</strong> contribution of <strong>the</strong> 1/f noise<br />

can be ignored.<br />

<strong>10</strong>.5.3 <strong>Op</strong> Amp Circuit Noise Model<br />

Texas Instruments measures <strong>the</strong> noise characteristics of a large sampl<strong>in</strong>g of devices. This<br />

<strong>in</strong>formation is compiled and used to determ<strong>in</strong>e <strong>the</strong> typical noise performance of <strong>the</strong> device.<br />

<strong>The</strong>se noise specifications refer <strong>the</strong> <strong>in</strong>put noise of <strong>the</strong> op amp. Some noise portions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!