20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Stability<br />

9.4 Stability<br />

9-6<br />

Substitut<strong>in</strong>g this value <strong>in</strong>to Equation 9–6 yields Equation 9–7, and Equation 9–7 is almost<br />

identical to Equation 9–6. R B does cause some <strong>in</strong>teraction between <strong>the</strong> loop ga<strong>in</strong> and <strong>the</strong><br />

transimpedance, but because <strong>the</strong> <strong>in</strong>teraction is secondary <strong>the</strong> CFA ga<strong>in</strong> falls off with a<br />

faster slope.<br />

A Z<br />

1.1 R F<br />

(9–7)<br />

<strong>The</strong> direct ga<strong>in</strong> of a VFA starts fall<strong>in</strong>g off early, often at <strong>10</strong> Hz or <strong>10</strong>0 Hz, but <strong>the</strong> transimpedance<br />

of a CFA does not start fall<strong>in</strong>g off until much higher frequencies. <strong>The</strong> VFA is<br />

constra<strong>in</strong>ed by <strong>the</strong> ga<strong>in</strong>-bandwidth limitation imposed by <strong>the</strong> closed loop ga<strong>in</strong> be<strong>in</strong>g <strong>in</strong>corporated<br />

with<strong>in</strong> <strong>the</strong> loop ga<strong>in</strong>. <strong>The</strong> CFA, with <strong>the</strong> exception of <strong>the</strong> effects of R B, does not<br />

have this constra<strong>in</strong>t. This adds up to <strong>the</strong> CFA be<strong>in</strong>g <strong>the</strong> superior high frequency amplifier.<br />

Stability <strong>in</strong> a feedback system is def<strong>in</strong>ed by <strong>the</strong> loop ga<strong>in</strong>, and no o<strong>the</strong>r factor, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>puts or type of <strong>in</strong>puts, affects stability. <strong>The</strong> loop ga<strong>in</strong> for a VFA is given <strong>in</strong> Equation<br />

9–2. Exam<strong>in</strong><strong>in</strong>g Equation 9–2 we see that <strong>the</strong> stability of a VFA is depends on two items;<br />

<strong>the</strong> op amp transfer function, a, and <strong>the</strong> ga<strong>in</strong> sett<strong>in</strong>g components, Z F/Z G.<br />

<strong>The</strong> op amp conta<strong>in</strong>s many poles, and if it is not <strong>in</strong>ternally compensated, it requires external<br />

compensation. <strong>The</strong> op amp always has at least one dom<strong>in</strong>ant pole, and <strong>the</strong> most<br />

phase marg<strong>in</strong> that an op amp has is 45°. Phase marg<strong>in</strong>s beyond 60° are a waste of op<br />

amp bandwidth. When poles and zeros are conta<strong>in</strong>ed <strong>in</strong> Z F and Z G, <strong>the</strong>y can compensate<br />

for <strong>the</strong> op amp phase shift or add to its <strong>in</strong>stability. In any case, <strong>the</strong> ga<strong>in</strong> sett<strong>in</strong>g components<br />

always affect stability. When <strong>the</strong> closed-loop ga<strong>in</strong> is high, <strong>the</strong> loop ga<strong>in</strong> is low, and low loop<br />

ga<strong>in</strong> circuits are more stable than high loop ga<strong>in</strong> circuits.<br />

Wir<strong>in</strong>g <strong>the</strong> op amp to a pr<strong>in</strong>ted circuit board always <strong>in</strong>troduces components formed from<br />

stray capacitance and <strong>in</strong>ductance. Stray <strong>in</strong>ductance becomes dom<strong>in</strong>ant at very high frequencies,<br />

hence, <strong>in</strong> VFAs, it does not <strong>in</strong>terfere with stability as much as it does with signal<br />

handl<strong>in</strong>g properties. Stray capacitance causes stability to <strong>in</strong>crease or decrease depend<strong>in</strong>g<br />

on its location. Stray capacitance from <strong>the</strong> <strong>in</strong>put or output lead to ground <strong>in</strong>duces <strong>in</strong>stability,<br />

while <strong>the</strong> same stray capacitance <strong>in</strong> parallel with <strong>the</strong> feedback resistor <strong>in</strong>creases<br />

stability.<br />

<strong>The</strong> loop ga<strong>in</strong> for a CFA with no <strong>in</strong>put buffer output impedance, R B, is given <strong>in</strong> Equation<br />

9–6. Exam<strong>in</strong><strong>in</strong>g Equation 9–6 we see that <strong>the</strong> stability of a CFA depends on two items:<br />

<strong>the</strong> op amp transfer function, Z, and <strong>the</strong> ga<strong>in</strong> sett<strong>in</strong>g component, Z F. <strong>The</strong> op amp conta<strong>in</strong>s<br />

many poles, thus <strong>the</strong>y require external compensation. Fortunately, <strong>the</strong> external compensation<br />

for a CFA is done with Z F. <strong>The</strong> factory applications eng<strong>in</strong>eer does extensive<br />

test<strong>in</strong>g to determ<strong>in</strong>e <strong>the</strong> optimum value of R F for a given ga<strong>in</strong>. This value should be used<br />

<strong>in</strong> all applications at that ga<strong>in</strong>, but <strong>in</strong>creased stability and less peak<strong>in</strong>g can be obta<strong>in</strong>ed<br />

by <strong>in</strong>creas<strong>in</strong>g R F. Essentially this is sacrific<strong>in</strong>g bandwidth for lower frequency performance,<br />

but <strong>in</strong> applications not requir<strong>in</strong>g <strong>the</strong> full bandwidth, it is a wise tradeoff.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!