20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bandwidth<br />

9-4<br />

A aR G<br />

R F R G<br />

(9–2)<br />

Equation 9–2 is rewritten below as Equations 9–3 and 9–4 for <strong>the</strong> non<strong>in</strong>vert<strong>in</strong>g and <strong>in</strong>vert<strong>in</strong>g<br />

circuits respectively. In each case, <strong>the</strong> symbol G CLNI and G CLI represent <strong>the</strong> closed<br />

loop ga<strong>in</strong> for <strong>the</strong> non<strong>in</strong>vert<strong>in</strong>g and <strong>in</strong>vert<strong>in</strong>g circuits respectively.<br />

A <br />

A <br />

a<br />

<br />

RFRG RG a<br />

GCLNI a<br />

<br />

RFRG RG a<br />

GCLI 1<br />

(9–3)<br />

(9–4)<br />

In both cases <strong>the</strong> loop ga<strong>in</strong> decreases as <strong>the</strong> closed loop ga<strong>in</strong> <strong>in</strong>creases, thus all VFA errors<br />

<strong>in</strong>crease as <strong>the</strong> closed loop ga<strong>in</strong> <strong>in</strong>creases. <strong>The</strong> error <strong>in</strong>crease is ma<strong>the</strong>matically<br />

coupled to <strong>the</strong> closed loop ga<strong>in</strong> equation, so <strong>the</strong>re is no work<strong>in</strong>g around this fact. For <strong>the</strong><br />

VFA, effective bandwidth decreases as <strong>the</strong> closed loop ga<strong>in</strong> <strong>in</strong>creases because <strong>the</strong> loop<br />

ga<strong>in</strong> decreases as <strong>the</strong> closed loop ga<strong>in</strong> <strong>in</strong>creases.<br />

A plot of <strong>the</strong> VFA loop ga<strong>in</strong>, closed loop ga<strong>in</strong>, and error is given <strong>in</strong> Figure 9–3. Referr<strong>in</strong>g<br />

to Figure 9–3, <strong>the</strong> direct ga<strong>in</strong>, A, is <strong>the</strong> op amp open loop ga<strong>in</strong>, a, for a non<strong>in</strong>vert<strong>in</strong>g op<br />

amp. <strong>The</strong> direct ga<strong>in</strong> for an <strong>in</strong>vert<strong>in</strong>g op amp is (a(Z F/(Z G + Z F))). <strong>The</strong> Miller effect causes<br />

<strong>the</strong> direct ga<strong>in</strong> to fall off at high frequencies, thus error <strong>in</strong>creases as frequency <strong>in</strong>creases<br />

because <strong>the</strong> effective loop ga<strong>in</strong> decreases. At a given frequency, <strong>the</strong> error also <strong>in</strong>creases<br />

when <strong>the</strong> closed loop ga<strong>in</strong> is <strong>in</strong>creased.<br />

20 LOG A<br />

Ga<strong>in</strong> <strong>in</strong> dB<br />

20 LOG(GCL)<br />

Figure 9–3. VFA Ga<strong>in</strong> versus Frequency<br />

20 LOG (1 + Aβ)<br />

CLOSED LOOP GAIN<br />

Direct Ga<strong>in</strong><br />

LOG f

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!