20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Development of <strong>the</strong> Stability Equation<br />

8-2<br />

NONINVERTING INPUT<br />

INVERTING INPUT<br />

Figure 8–1. Current-Feedback Amplifier Model<br />

+<br />

–<br />

I<br />

GB<br />

ZB<br />

Z(I)<br />

ZOUT<br />

GOUT<br />

VOUT<br />

<strong>The</strong> output buffer provides low output impedance for <strong>the</strong> amplifier. Aga<strong>in</strong>, <strong>the</strong> output buffer<br />

ga<strong>in</strong>, G OUT, is very close to one, so it is neglected <strong>in</strong> <strong>the</strong> analysis. <strong>The</strong> output impedance<br />

of <strong>the</strong> output buffer is ignored dur<strong>in</strong>g <strong>the</strong> calculations. This parameter may <strong>in</strong>fluence <strong>the</strong><br />

circuit performance when driv<strong>in</strong>g very low impedance or capacitive loads, but this is usually<br />

not <strong>the</strong> case. <strong>The</strong> <strong>in</strong>put buffer’s output impedance can’t be ignored because affects stability<br />

at high frequencies.<br />

<strong>The</strong> current-controlled current source, Z, is a transimpedance. <strong>The</strong> transimpedance <strong>in</strong> a<br />

CFA serves <strong>the</strong> same function as ga<strong>in</strong> <strong>in</strong> a VFA; it is <strong>the</strong> parameter that makes <strong>the</strong> performance<br />

of <strong>the</strong> op amp dependent only on <strong>the</strong> passive parameter values. Usually <strong>the</strong> transimpedance<br />

is very high, <strong>in</strong> <strong>the</strong> MΩ range, so <strong>the</strong> CFA ga<strong>in</strong>s accuracy by clos<strong>in</strong>g a feedback<br />

loop <strong>in</strong> <strong>the</strong> same manner that <strong>the</strong> VFA does.<br />

8.3 Development of <strong>the</strong> Stability Equation<br />

<strong>The</strong> stability equation is developed with <strong>the</strong> aid of Figure 8–2. Remember, stability is <strong>in</strong>dependent<br />

of <strong>the</strong> <strong>in</strong>put, and stability depends solely on <strong>the</strong> loop ga<strong>in</strong>, Aβ. Break<strong>in</strong>g <strong>the</strong> loop<br />

at po<strong>in</strong>t X, <strong>in</strong>sert<strong>in</strong>g a test signal, V TI, and calculat<strong>in</strong>g <strong>the</strong> return signal V TO develops <strong>the</strong><br />

stability equation.<br />

ZG<br />

+<br />

_CFA<br />

ZF<br />

Figure 8–2. Stability Analysis Circuit<br />

VOUT Becomes VTO; <strong>The</strong> Test Signal Output<br />

Break Loop Here<br />

Apply Test Signal (VTI) Here<br />

<strong>The</strong> circuit used for stability calculations is shown <strong>in</strong> Figure 8–3 where <strong>the</strong> model of Figure<br />

8–1 is substituted for <strong>the</strong> CFA symbol. <strong>The</strong> <strong>in</strong>put and output buffer ga<strong>in</strong>, and output buffer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!