20.07.2013 Views

Norm 3

Norm 3

Norm 3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Worst Case Paradigm<br />

System Gain<br />

Remarks<br />

<strong>Norm</strong>s of Linear Systems: Method II<br />

Hgain := sup<br />

w(t)=Θ<br />

H = sup<br />

w(t)∈W<br />

Hw.<br />

Hw<br />

w<br />

• The following are equivalent definitions:<br />

Hgain = sup<br />

w(t)=Θ<br />

⇒ W := {w(t) : w < ∞} .<br />

Hw<br />

w<br />

= sup Hw<br />

w≤1<br />

= sup Hw<br />

w=1<br />

• For any ¯w(t) such that ¯w < ∞, H ¯w ≤ Hgain ¯w.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 1


Definition (SISO system)<br />

Definition (MIMO system)<br />

L2 − L2 Gain<br />

H∞ := sup<br />

ω<br />

H∞ <strong>Norm</strong><br />

H∞ := sup<br />

ω<br />

|H(jω)|.<br />

H(jω), H(jω) 2 = λmaxH(jω) ∗ H(jω).<br />

HL2−L2 := sup<br />

w(t)=Θ<br />

Hw2<br />

.<br />

w2<br />

Proposition For an asymptotically stable linear system HL2−L2 = H∞.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 2


On the Frequency Domain:<br />

Compute<br />

On the Time Domain:<br />

Compute<br />

Computing the H∞ <strong>Norm</strong><br />

H 2<br />

∞<br />

= sup<br />

ω<br />

H(jω).<br />

H∞ = Hwwc2, wwc := arg sup<br />

w2=1<br />

Hw2.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 3


Bounded Real Lemma<br />

Computing the H∞ <strong>Norm</strong><br />

Consider the asymptotically stable CTLTI system with minimal realization<br />

H(s) = C (sI − A) −1 B + D and null initial conditions. There exists P ∈ Sn such that<br />

⎡<br />

⎤<br />

if, and only if, H∞ < µ.<br />

P ≻ Θ,<br />

⎢<br />

⎣<br />

A T P + P A P B C T<br />

⎥<br />

⎦ ≺ Θ<br />

C D −µI<br />

B T P −µI D T<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 4


Computing the H∞ <strong>Norm</strong><br />

Proof (Sufficiency) Define the quadratic Lyapunov function V (x) := xT P x, P ∈ Sn and<br />

its time-derivative<br />

˙V (x) = 2x T P Ax + x T ⎛<br />

P Bw = ⎝ x<br />

⎞T<br />

⎡<br />

⎠ ⎣<br />

w<br />

AT P + P A P B<br />

BT ⎤ ⎛<br />

⎦ ⎝<br />

P Θ<br />

x<br />

⎞<br />

⎠ .<br />

w<br />

Assume that the BRL holds and apply Schur complement to obtain<br />

⎡<br />

⎣ AT P + P A + µ −1 C T C P B + µ −1 C T D<br />

B T P + µ −1 D T C −µI + µ −1 D T D<br />

⎤<br />

⎦ ≺ Θ.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 5


Notice that for all w(t) ∈ L2<br />

⎡<br />

⎡<br />

Computing the H∞ <strong>Norm</strong><br />

⎣ AT P + P A + µ −1C T C P B + µ −1C T D<br />

BT P + µ −1DT C −µI + µ −1DT D<br />

⎣ AT P + P A P B<br />

B T P Θ<br />

⎤<br />

⎦ ≺ µ<br />

⎛<br />

⎝<br />

⇓<br />

x<br />

⎞T<br />

⎡<br />

⎠ ⎣<br />

w<br />

AT P + P A<br />

B<br />

P B<br />

T P<br />

⎤ ⎛<br />

⎦ ⎝<br />

Θ<br />

x<br />

⎞ ⎛<br />

⎠ < µ ⎝<br />

w<br />

<br />

˙V (x)<br />

<br />

x<br />

⎞<br />

⎠<br />

w<br />

⎡<br />

⇕<br />

⎤<br />

⎦ ≺ Θ,<br />

⎣ −µ−2C T C −µ −2C T D<br />

−µ −2DT C I − µ −2DT D<br />

T ⎡<br />

⎤<br />

⎦ ,<br />

⎣ −µ−2C T C −µ −2C T D<br />

−µ −2DT C I − µ −2DT D<br />

⎤ ⎛<br />

⎦ ⎝ x<br />

⎞<br />

⎠ .<br />

w<br />

<br />

w T w−µ −2 z T z<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 6


Integrating<br />

on both sides<br />

Computing the H∞ <strong>Norm</strong><br />

∞<br />

0<br />

˙V (x) < µ w T w − µ −2 z T z <br />

˙V (x) dt < µ<br />

V (x(∞)) − V (x(Θ)) < µ<br />

∞<br />

0<br />

∞<br />

0<br />

w T w − µ −2 z T z dt,<br />

w T w − µ −2 z T z dt.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 7


Computing the H∞ <strong>Norm</strong><br />

Since the system is asymptotically stable, the output z(t) ∈ L2 for all w(t) ∈ L2. Using the<br />

minimality of the realization<br />

z(t) ∈ L2 ⇔ x(t) ∈ L2 ⇒ x(∞) = Θ ⇒ V (x(∞)) = 0.<br />

From the null initial conditions V (0) = 0. Hence<br />

∞<br />

0<br />

Consequently<br />

w T w − µ −2 z T z dt > 0 ⇒<br />

∞<br />

w<br />

0<br />

T w dt > µ −2<br />

∞<br />

0<br />

z2 < µw2, ∀w(t) ∈ L2 ⇒ µ > H∞<br />

since z2 = Hw2 ≤ H∞w2 for all w(t) ∈ L2.<br />

z T z dt.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 8


Theorem<br />

Small Gain Theorem<br />

PSfrag replacements<br />

If G∞ < 1 the unity feedback connection is asymptotically stable.<br />

e w z<br />

That is, z(t), w(t) ∈ L2 for all e(t) ∈ L2.<br />

H(s) G(s)<br />

Proof<br />

Hence<br />

z = Gw = G(z + e), ⇒ z2 ≤ G∞z + e2 ≤ G∞(z2 + e2)<br />

(1 − G∞)z2 ≤ G∞e2 ⇒ z2 ≤<br />

Finally, e(t), z(t) ∈ L2 ⇒ w(t) ∈ L2.<br />

G∞<br />

(1 − G∞) e2 < ∞ ⇒ z(t) ∈ L2<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 9


Theorem<br />

Small Gain Theorem<br />

PSfrag replacements<br />

If G∞ < µ and H∞ < µ −1 the feedback<br />

connection is asymptotically stable. That is,<br />

z1(t), w1(t), z2(t), w2(t) ∈ L2 for all e1(t), e2(t) ∈ L2.<br />

Remark If H(s) = ∆ then Small Gain ⇒ Robust Stability.<br />

z2 H(s)<br />

w2<br />

e1 w1 z1<br />

G(s)<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 10<br />

e2


Proof<br />

acements<br />

Introduce scalings<br />

PSfrag replacements<br />

e1<br />

and work with the modified connection<br />

µe1<br />

z2<br />

w1<br />

µ<br />

G(s)<br />

H(s)<br />

Small Gain Theorem<br />

H(s)<br />

µ µ −1<br />

PSfrag<br />

G(s)<br />

replacements<br />

µ −1<br />

w2<br />

z1<br />

e2<br />

⇔<br />

e2<br />

z2 µH(s)<br />

w2<br />

µe1 w1 z1<br />

µ −1 G(s)<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 11<br />

e2


⎛<br />

⎝ z1<br />

z2<br />

Small Gain Theorem<br />

⎞ ⎡<br />

⎠ = ⎣ µ−1 ⎤ ⎛<br />

G Θ<br />

⎦ ⎝<br />

Θ µH<br />

w1<br />

⎞ ⎡<br />

⎠ = ⎣<br />

w2<br />

µ−1 ⎤ ⎛⎛<br />

G Θ<br />

⎦ ⎝⎝<br />

Θ µH<br />

µe1<br />

⎞ ⎛<br />

⎠ + ⎝<br />

e2<br />

z2<br />

⎞⎞<br />

⎠⎠<br />

,<br />

z1<br />

⎡<br />

<br />

z1<br />

<br />

⇒ <br />

≤ ⎣<br />

<br />

z2<br />

<br />

2<br />

µ−1 ⎤<br />

⎛<br />

⎞<br />

<br />

G Θ µe1<br />

z2<br />

⎦<br />

⎝<br />

<br />

+ ⎠<br />

,<br />

Θ µH e2 z1<br />

∞<br />

2<br />

2<br />

<br />

<br />

z1<br />

⇒ <br />

≤ max{µ<br />

z2<br />

2<br />

−1 ⎛<br />

⎞<br />

<br />

µe1<br />

z1<br />

G∞, µH∞} ⎝<br />

<br />

+ ⎠<br />

,<br />

e2 z2<br />

2<br />

2<br />

<br />

<br />

z1<br />

⇒ <br />

≤<br />

<br />

max{µ−1G∞, µH∞}<br />

1 − max{µ −1 <br />

<br />

µe1<br />

<br />

G∞, µH∞}<br />

< ∞,<br />

<br />

z2<br />

2<br />

⇒ z1(t), z2(t) ∈ L2.<br />

Finally, e1(t), e2(t), z1(t), z2(t) ∈ L2 ⇒ w1(t), w2(t) ∈ L2.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 12<br />

e2<br />

2


Hp Spaces<br />

The set of (rational) matrix functionals H(s) : C → C m×n analytic in the open left semiplane<br />

of the complex plane and equipped with the norm Hp, p = 2, ∞, is a normed vector space.<br />

This space is denoted by the symbol Hp (RHp). If Hp < ∞ then H(s) ∈ Hp (RHp).<br />

Remarks<br />

• Analytic in the left part of the complex plane ⇒ continuous-time stability.<br />

• If H(s) ∈ RHp, analytic in the left part of the complex plane ⇒ no “unstable”<br />

continuous-time poles.<br />

• H(s) ∈ RH2 ⇒ H(s) is asymptotically stable and strictly proper.<br />

• H(s) ∈ RH∞ ⇒ H(s) is asymptotically stable.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 13


Hp Spaces<br />

The set of (rational) matrix functionals H(z) : C → C m×n analytic in the open unity circle and<br />

equipped with the norm Hp, p = 2, ∞, is a normed vector space. This space is denoted by<br />

the symbol Hp (RHp). If Hp < ∞ then H(z) ∈ Hp (RHp).<br />

Remarks<br />

• Analytic in the ⇒ discrete-time stability.<br />

• If H(s) ∈ RHp, analytic in the plane ⇒ no “unstable” discrete-time poles.<br />

• H(z) ∈ RH2 ⇒ H(z) is asymptotically stable.<br />

• H(z) ∈ RH∞ ⇒ H(z) is asymptotically stable.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!