20.07.2013 Views

Central Valley Aquifer, Chapters A and B - MAE Class Websites

Central Valley Aquifer, Chapters A and B - MAE Class Websites

Central Valley Aquifer, Chapters A and B - MAE Class Websites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GROUNDWATER RESOURCES PROGRAM<br />

Groundwater Availability of the<br />

<strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Professional Paper 1766<br />

U.S. Department of the Interior<br />

U.S. Geological Survey<br />

Sacramento <strong>Valley</strong><br />

San Joaquin <strong>Valley</strong>


Generalized block diagrams showing post-development hydrologeology of the Sacramento <strong>and</strong> San Joaquin <strong>Valley</strong>s, California.


Groundwater Availability of the<br />

<strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Edited by Claudia C. Faunt<br />

Chapter A<br />

Introduction, Overview of Hydrogeology, <strong>and</strong> Textural Model of<br />

California’s <strong>Central</strong> <strong>Valley</strong><br />

By Claudia C. Faunt, R<strong>and</strong>all T. Hanson, <strong>and</strong> Kenneth Belitz<br />

Chapter B<br />

Groundwater Availability in California’s <strong>Central</strong> <strong>Valley</strong><br />

By Claudia C. Faunt, Kenneth Belitz, <strong>and</strong> R<strong>and</strong>all T. Hanson<br />

Chapter C<br />

Numerical Model of the Hydrologic L<strong>and</strong>scape <strong>and</strong> Groundwater<br />

Flow in California’s <strong>Central</strong> <strong>Valley</strong><br />

By Claudia C. Faunt, R<strong>and</strong>all T. Hanson, Kenneth Belitz, Wolfgang Schmid,<br />

Steven P. Predmore, Diane L. Rewis, <strong>and</strong> Kelly McPherson<br />

Appendix 1<br />

Supplemental Information—Modifications to<br />

Modflow-2000 Packages <strong>and</strong> Processes<br />

By Wolfgang Schmid <strong>and</strong> R.T. Hanson<br />

Groundwater Resources Program<br />

Professional Paper 1766<br />

U.S. Department of the Interior<br />

U.S. Geological Survey


U.S. Department of the Interior<br />

KEN SALAZAR, Secretary<br />

U.S. Geological Survey<br />

Suzette M. Kimball, Acting Director<br />

U.S. Geological Survey, Reston, Virginia: 2009<br />

For more information on the USGS—the Federal source for science about the Earth, its natural <strong>and</strong> living resources,<br />

natural hazards, <strong>and</strong> the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS<br />

For an overview of USGS information products, including maps, imagery, <strong>and</strong> publications,<br />

visit http://www.usgs.gov/pubprod<br />

To order this <strong>and</strong> other USGS information products, visit http://store.usgs.gov<br />

Any use of trade, product, or firm names is for descriptive purposes only <strong>and</strong> does not imply endorsement by the U.S.<br />

Government.<br />

Although this report is in the public domain, permission must be secured from the individual copyright owners to<br />

reproduce any copyrighted materials contained within this report.<br />

Suggested citation:<br />

Faunt, C.C., ed., 2009, Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California: U.S. Geological Survey<br />

Professional Paper 1766, 225 p.<br />

ISBN 978-1-4113-2515-9


Foreword<br />

An adequate supply of groundwater is essential for the Nation’s health <strong>and</strong> economic well<br />

being. Increased use of groundwater resources <strong>and</strong> the effects of drought have led to concerns<br />

about the future availability of groundwater to meet domestic, agricultural, industrial, <strong>and</strong> environmental<br />

needs. The resulting effects of competition for groundwater from human <strong>and</strong> environmental<br />

uses need to be better understood to respond to the following basic questions that are<br />

being asked about the Nation’s ability to meet current <strong>and</strong> future dem<strong>and</strong>s for groundwater. Do<br />

we have enough groundwater to meet the needs of the Nation? Where are these groundwater<br />

resources? Is groundwater available where it is needed? To help answer these questions, the<br />

U.S. Geological Survey’s (USGS) Groundwater Resources Program is conducting large-scale<br />

multidisciplinary regional studies of groundwater availability, such as this study of the <strong>Central</strong><br />

<strong>Valley</strong> <strong>Aquifer</strong> System, California.<br />

Regional groundwater availability studies quantify current groundwater resources, evaluate how<br />

those resources have changed through time, <strong>and</strong> provide tools that decision makers can use<br />

to forecast system responses to future development <strong>and</strong> climate variability <strong>and</strong> change. These<br />

quantitative studies are, by design, large in scope, can include multiple aquifers, <strong>and</strong> address<br />

critical groundwater issues. The USGS has previously identified the Nation’s principal aquifers<br />

<strong>and</strong> they will be used as a framework to classify <strong>and</strong> study regional groundwater systems.<br />

The groundwater availability studies being conducted for each regional groundwater flow system<br />

emphasize the use of long-term groundwater monitoring data, in conjunction with groundwater<br />

models, to improve underst<strong>and</strong>ing of the flow systems <strong>and</strong> assess the status <strong>and</strong> trends<br />

in groundwater resources in the context of a changing water budget for the aquifer system. The<br />

results of these individual groundwater availability studies will be used collectively as building<br />

blocks towards a national assessment of groundwater availability. In addition, these studies will<br />

provide the foundational information <strong>and</strong> modeling tools needed to help State <strong>and</strong> local resource<br />

managers make water availability decisions based on the latest comprehensive quantitative<br />

assessment given their regional water-management constraints <strong>and</strong> goals.<br />

Matthew C. Larsen, Associate Director for Water<br />

U.S. Geological Survey<br />

iii


iv<br />

This page intentionally left blank.


Contents<br />

Chapter A<br />

Introduction, Overview of Hydrogeology, <strong>and</strong> Textural Model of California’s <strong>Central</strong> <strong>Valley</strong><br />

Executive Summary .......................................................................................................................................1<br />

Geographic Information System (GIS) ..............................................................................................1<br />

Texture Modeling ..................................................................................................................................2<br />

Hydrologic System Modeling ..............................................................................................................2<br />

Introduction.....................................................................................................................................................3<br />

Purpose <strong>and</strong> Scope ..............................................................................................................................4<br />

Methods of Analyses............................................................................................................................6<br />

Data Compilation ..........................................................................................................................6<br />

Numerical Model .........................................................................................................................6<br />

Previous Investigations........................................................................................................................7<br />

Recent Regional Groundwater Models ....................................................................................7<br />

<strong>Central</strong> <strong>Valley</strong> Regional <strong>Aquifer</strong>-System Analysis (CV-RASA) ....................................7<br />

California <strong>Central</strong> <strong>Valley</strong> Groundwater-Surface-Water Simulation Model<br />

(C2VSIM) ..............................................................................................................10<br />

Study Area.....................................................................................................................................................10<br />

Climate .................................................................................................................................................10<br />

Sacramento <strong>Valley</strong> .............................................................................................................................10<br />

Delta <strong>and</strong> Eastside Streams ..............................................................................................................15<br />

San Joaquin Basin of the San Joaquin <strong>Valley</strong> ...............................................................................15<br />

Tulare Basin of the San Joaquin <strong>Valley</strong> ..........................................................................................17<br />

Water-Balance Subregions...............................................................................................................18<br />

Geologic History <strong>and</strong> Setting .....................................................................................................................18<br />

Hydrogeology................................................................................................................................................20<br />

<strong>Aquifer</strong> Characteristics ......................................................................................................................20<br />

Textural Analysis .................................................................................................................................23<br />

Selection <strong>and</strong> Compilation of Existing Well Data .................................................................25<br />

<strong>Class</strong>ification of Texture from Drillers’ Logs <strong>and</strong> Regularization of Well Data ................26<br />

Geostatistical Modeling Approach .........................................................................................26<br />

Regions <strong>and</strong> Domains ......................................................................................................26<br />

Geostatistical Model of Coarse-Grained Texture ........................................................27<br />

3-D Model of Percentage of Coarse-Grained Texture ................................................29<br />

Results of Texture Model ..........................................................................................................30<br />

Sacramento <strong>Valley</strong> ............................................................................................................30<br />

San Joaquin <strong>Valley</strong> ...........................................................................................................39<br />

Hydrologic System ..............................................................................................................................40<br />

Climate ........................................................................................................................................41<br />

Surface Water ............................................................................................................................46<br />

v


vi<br />

Groundwater ..............................................................................................................................47<br />

Predevelopment Recharge, Discharge, Water Levels, <strong>and</strong> Flows ...........................48<br />

Groundwater/Surface-Water Interaction .....................................................................48<br />

<strong>Aquifer</strong>-System Storage ..................................................................................................48<br />

Water Budget ....................................................................................................................53<br />

Acknowledgments .......................................................................................................................................53<br />

References Cited..........................................................................................................................................54<br />

Chapter B<br />

Groundwater Availability in California’s <strong>Central</strong> <strong>Valley</strong><br />

Introduction ..................................................................................................................................................59<br />

Development <strong>and</strong> the Hydrologic System ...............................................................................................59<br />

Surface-Water <strong>and</strong> Groundwater Development History .............................................................59<br />

L<strong>and</strong> Use ...............................................................................................................................................60<br />

Agricultural L<strong>and</strong> Use ...............................................................................................................61<br />

Urban L<strong>and</strong> Use ..........................................................................................................................61<br />

Development <strong>and</strong> Changes to the Hydrologic Budget ..........................................................................62<br />

Hydrologic Budget Components ......................................................................................................62<br />

Recharge <strong>and</strong> Discharge ..........................................................................................................66<br />

<strong>Aquifer</strong>-System Storage ...........................................................................................................67<br />

Intra-Annual Variations in Typical, Dry, <strong>and</strong> Wet Years .......................................................70<br />

Temporal Variation in the Hydrologic Budget ...............................................................................72<br />

Spatial Variation in the Hydrologic Budget ....................................................................................79<br />

Water Levels <strong>and</strong> Groundwater Flow .............................................................................................79<br />

L<strong>and</strong> Subsidence.................................................................................................................................98<br />

Surface Water <strong>and</strong> the Environment .............................................................................................101<br />

Global Climate Change <strong>and</strong> Variability ...................................................................................................102<br />

Past Climates .....................................................................................................................................102<br />

Future Climate Projections ..............................................................................................................102<br />

Groundwater Sustainability <strong>and</strong> Management ....................................................................................103<br />

Groundwater Sustainability ............................................................................................................103<br />

Groundwater Management ............................................................................................................104<br />

Conjunctive Use .......................................................................................................................106<br />

Water Banking ..........................................................................................................................107<br />

Other Management Strategies ..............................................................................................108<br />

Monitoring the Hydrologic System .........................................................................................................109<br />

Groundwater ......................................................................................................................................110<br />

Surface Water ...................................................................................................................................111<br />

Subsidence ........................................................................................................................................112<br />

Water Quality .....................................................................................................................................112<br />

L<strong>and</strong> Use <strong>and</strong> Climate.......................................................................................................................114<br />

Summary......................................................................................................................................................114<br />

References Cited........................................................................................................................................116


Chapter C<br />

Numerical Model of the Hydrologic L<strong>and</strong>scape <strong>and</strong> Groundwater Flow in<br />

California’s <strong>Central</strong> <strong>Valley</strong><br />

Introduction ................................................................................................................................................121<br />

Model Development ..................................................................................................................................121<br />

Discretization ....................................................................................................................................123<br />

Spatial Discretization <strong>and</strong> Layering ......................................................................................123<br />

Temporal Discretization .........................................................................................................126<br />

Boundary Conditions .......................................................................................................................126<br />

Specified-Flow Boundaries ....................................................................................................128<br />

Pumpage ...................................................................................................................................128<br />

Agricultural Pumpage ....................................................................................................128<br />

Urban Pumpage ..............................................................................................................130<br />

Recharge from <strong>and</strong> Discharge to the Delta .........................................................................131<br />

Recharge from <strong>and</strong> Discharge to Canals <strong>and</strong> Streams .....................................................132<br />

Water-Table Simulation ...................................................................................................................132<br />

Farm Process (FMP) .........................................................................................................................132<br />

Delivery Requirement ..............................................................................................................134<br />

Soils ..............................................................................................................................135<br />

L<strong>and</strong> Use ...........................................................................................................................135<br />

Virtual Crop Maps ..................................................................................................139<br />

Crop-Type Data .......................................................................................................143<br />

Climate Data ....................................................................................................................151<br />

Reference Evapotranspiration (ETo) ...................................................................151<br />

Precipitation ...........................................................................................................152<br />

Surface-Water Supply ............................................................................................................152<br />

Groundwater Supply ...............................................................................................................152<br />

Net Recharge ...........................................................................................................................154<br />

Hydraulic Properties.........................................................................................................................154<br />

Hydraulic Conductivity ............................................................................................................156<br />

Storage Properties ..................................................................................................................158<br />

Hydrogeologic Units ...............................................................................................................160<br />

Hydrogeologic Structures .....................................................................................................160<br />

Initial Conditions................................................................................................................................160<br />

Model Calibration <strong>and</strong> Sensitivity ...........................................................................................................161<br />

Observations Used in Model Calibration ......................................................................................161<br />

Water-Level Altitudes, Water-Level Altitude Changes, <strong>and</strong><br />

Water-Level Altitude Maps .......................................................................................163<br />

Water-Table <strong>and</strong> Potentiometric-Surface Maps .......................................................167<br />

Sacramento <strong>Valley</strong> .................................................................................................167<br />

Delta .....................................................................................................................167<br />

San Joaquin <strong>Valley</strong> ...............................................................................................170<br />

Tulare Basin ............................................................................................................170<br />

Streamflow Observations .......................................................................................................170<br />

Boundary Flow Observations .................................................................................................173<br />

vii


viii<br />

Subsidence Observations ......................................................................................................173<br />

Pumpage Observations ...........................................................................................................179<br />

Water-Use Observations ........................................................................................................179<br />

Water-Delivery Observations.................................................................................................181<br />

Model Parameters ...........................................................................................................................181<br />

Sensitivity Analysis ..........................................................................................................................191<br />

Simulation Results <strong>and</strong> Budget ...............................................................................................................191<br />

Recharge <strong>and</strong> Discharge .................................................................................................................192<br />

<strong>Aquifer</strong>-System Storage ..................................................................................................................197<br />

Model Uncertainty <strong>and</strong> Limitations ........................................................................................................203<br />

Future Work ................................................................................................................................................205<br />

References Cited........................................................................................................................................207<br />

Appendix 1<br />

Supplemental Information—Modifications to Modflow-2000 Packages <strong>and</strong> Processes<br />

Introduction.................................................................................................................................................213<br />

Layer-Property Flow Package (LPF) .......................................................................................................213<br />

Multiplier Package (MULT).......................................................................................................................213<br />

Time-Series Package (HYDMOD) ............................................................................................................213<br />

Streamflow Routing Package (SFR1) ......................................................................................................214<br />

The Farm Process (FMP1) ........................................................................................................................214<br />

Concepts <strong>and</strong> Input Instructions for New FMP1 Features ........................................................214<br />

Data for each Simulation ........................................................................................................215<br />

Data for each Stress Period ...................................................................................................216<br />

Root Uptake Under Variably Saturated Conditions (PSI specified in Item 14) ........................217<br />

Current Concept of Root Uptake from Unsaturated Conditions .......................................217<br />

Exp<strong>and</strong>ed Concept of Root Uptake from Variably Saturated Conditions ........................217<br />

Input Instructions .....................................................................................................................221<br />

Matrix of On-Farm Efficiencies (OFE specified in Items 7 or 24) ...............................................221<br />

Input Requirements .................................................................................................................221<br />

Data Output ...............................................................................................................................221<br />

Non-Irrigation Crops (NONIRR Specified in Items 15 or 27) ......................................................222<br />

Consumptive Use Options (ICUFL Specified in Item 2; ETR Specified as New Item) ............222<br />

Semi-Routed Delivery (ISRDFL in Item 2; REACH in Items 20 or 34) .........................................222<br />

Semi-Routed Surface-Water Runoff-Return Flow (ISRRFL in Item 2 <strong>and</strong> ROW COLUMN<br />

SEGMENT REACH Specified as New Item) ....................................................................223<br />

Farm-Related Data List for Semi-Routed Runoff-Return Flow Locations<br />

(New Item Added After Items 20 or 34): ........................................................223<br />

Additional Auxiliary Variable (AUX NOCIRNOQ Specified in Item 2) .......................................224<br />

Farm Budget Output Options (IFBPFL Specified in Item 2) ........................................................224<br />

References Cited........................................................................................................................................225


Figures<br />

Chapter A<br />

Figure A1. Map of <strong>Central</strong> <strong>Valley</strong> major geomorphic provinces, alluvial fans of the<br />

San Joaquin Basin, <strong>and</strong> extent <strong>and</strong> thickness of Corcoran Clay ....................................5<br />

Figure A2. Diagram showing the relation <strong>and</strong> flow of information used in analyzing the<br />

<strong>Central</strong> <strong>Valley</strong> Hydrogeologic system .................................................................................7<br />

Figure A3. Diagram showing the diversity of data types <strong>and</strong> categories included in the<br />

centralized geospatial database ..........................................................................................8<br />

Figure A4. Diagram showing an example of the detail for compilation, integration, <strong>and</strong><br />

analysis for one data type (water-level nformation) .........................................................9<br />

Figure A5. A, Map of surface-water inflows <strong>and</strong> average annual precipitation for<br />

September 1961 through September 2003 throughout the <strong>Central</strong> <strong>Valley</strong>,<br />

California. B, Map showing average annual reference evapotranspiration (ETo)<br />

for September 1961 through September 2003 throughout the <strong>Central</strong> <strong>Valley</strong>,<br />

California ................................................................................................................................12<br />

Figure A6. Graph of average monthly precipitation for Redding, Davis, <strong>and</strong><br />

Bakersfield, California ..........................................................................................................14<br />

Figure A7. Map of general features of the surface-water system in the <strong>Central</strong><br />

<strong>Valley</strong>, California ....................................................................................................................16<br />

Figure A8. Map of distribution of water-balance subregions (WBSs) used for<br />

surface-water delivery <strong>and</strong> estimation of groundwater pumpage ...............................19<br />

Figure A9. Generalized cross-sections showing pre- <strong>and</strong> post-development of the<br />

A, Sacramento <strong>Valley</strong>. B, <strong>Central</strong> part of the San Joaquin <strong>Valley</strong>,<br />

California .................................................................................................................................21<br />

Figure A10. A, Map of <strong>Central</strong> <strong>Valley</strong> showing groundwater basins <strong>and</strong> subbasins,<br />

groupings of basins <strong>and</strong> subbasins into spatial provinces <strong>and</strong> domains for<br />

textural analysis. B, Map showing distribution of wells used for mapping texture.<br />

C, Graph showing count of wells for each depth increment by domains<br />

through 1,200 feet .................................................................................................................24<br />

Figure A11. Generalized hydrogeologic section (A–A’) indicating the vertical discretization<br />

of the numerical model of the groundwater-flow system in the <strong>Central</strong> <strong>Valley</strong>,<br />

California ................................................................................................................................29<br />

Figure A12. Maps showing kriged distribution of coarse-grained deposits for layers 1, 3,<br />

Corcoran Clay, 6, <strong>and</strong> 9 of the groundwater-flow model. A, Layer 1. B, Layer 3.<br />

C, Corcoran Clay. D, Layer 6. E, Layer 9 .............................................................................31<br />

Figure A13. Block diagram of kriged texture within groundwater-flow model ..............................36<br />

Figure A14. Map showing distribution of coarse-grained deposits for the upper 50 feet<br />

for part of the <strong>Central</strong> <strong>Valley</strong>...............................................................................................37<br />

Figure A15. Graph of cumulative distributions of kriged sediment textures for model<br />

layers in the A, Sacramento <strong>Valley</strong>. B, San Joaquin <strong>Valley</strong> <strong>and</strong> Tulare Basin ...........38<br />

Figure A16. A, Bar chart of total inflow from 44 gaged streams flowing into the<br />

<strong>Central</strong> <strong>Valley</strong>, California, water years 1962–2003. B, Graph of average annual<br />

precipitation in the <strong>Central</strong> <strong>Valley</strong>, California, water years 1962–2003.<br />

C, Pie chart of total surface-water flow into the <strong>Central</strong> <strong>Valley</strong>, California,<br />

water years 1962–2003 .......................................................................................................42<br />

ix


x<br />

Figure A17. Graph of cumulative departure from average annual precipitation at<br />

Redding, Davis, Fresno, <strong>and</strong> Bakersfield, California ......................................................44<br />

Figure A18. Graph of cumulative departure of monthly precipitation (Parameter-<br />

elevation Regressions on Independent Slopes Model (PRISM) data from Davis,<br />

California), cumulative departure of the Pacific Decadal Oscillation (PDO)<br />

index, <strong>and</strong> cumulative departure of the monthly reference evapotranspiration<br />

(ETo) values (gridded values of California Irrigation Management Information<br />

System’s (CIMIS) stations from Redding, Davis, <strong>and</strong> Bakersfield, 1960–2004) .........45<br />

Figure A19. Graph of cumulative departure of streamflow diversions from the<br />

Bear River by South Sutter Water District, California; cumulative annual<br />

temperature from California Irrigation Management Information System’s<br />

(CIMIS) stations at Davis <strong>and</strong> the Pacific Decadal Oscillation (PDO) index,<br />

1960–2004 ..............................................................................................................................47<br />

Figure A20. Map of pre-development groundwater map ....................................................................49<br />

Figure A21. Maps of distribution of A, Pre-1900 l<strong>and</strong>-use patterns. B, L<strong>and</strong>-use<br />

patterns in 2000 for the <strong>Central</strong> <strong>Valley</strong>, California ...........................................................50<br />

Figure A22. Map of distribution of selected streams <strong>and</strong> canals, <strong>and</strong> average<br />

estimated gains <strong>and</strong> losses for selected segments .......................................................52<br />

Figure A23. Diagrams of pre-development water budget <strong>and</strong> post-development<br />

water budget .........................................................................................................................53<br />

Chapter B<br />

Figure B1. Diagram showing average water budget for water years 1962–2003 .........................63<br />

Figure B2. Pie charts <strong>and</strong> histograms showing simulated l<strong>and</strong>scape budget for the<br />

<strong>Central</strong> <strong>Valley</strong> for typical (1975), dry (1990), <strong>and</strong> wet (1998) years ...............................64<br />

Figure B3. Pie charts <strong>and</strong> histograms showing simulated groundwater budget for the<br />

<strong>Central</strong> <strong>Valley</strong> for typical (1975), dry (1990), <strong>and</strong> wet (1998) years ...............................65<br />

Figure B4. Maps of A, Estimated change in hydraulic head in upper part of the<br />

aquifer system from 1860 to 1961. B, Simulated change in hydraulic head in<br />

lower part of the aquifer system from spring 1962 to spring 2003 ...............................68<br />

Figure B5. Graphs showing monthly groundwater budget for the <strong>Central</strong> <strong>Valley</strong> for a<br />

dry year (1990), typical year (1975), <strong>and</strong> wet year (1998) ...............................................71<br />

Figure B6. Graphs of annual A, Delivery requirement, l<strong>and</strong>scape recharge,<br />

surface-water deliveries, <strong>and</strong> agricultural pumpage. B, Groundwater<br />

withdrawals for agricultural <strong>and</strong> urban use for the entire <strong>Central</strong> <strong>Valley</strong><br />

between 1962 <strong>and</strong> 2003 .......................................................................................................73<br />

Figure B7. Stacked bar chart showing simulated groundwater budget changes between<br />

water years 1962 <strong>and</strong> 2003 for the <strong>Central</strong> <strong>Valley</strong>, California ........................................75<br />

Figure B8. Stacked bar chart showing simulated annual changes in aquifer-system<br />

storage between water years 1962 <strong>and</strong> 2003 for the <strong>Central</strong> <strong>Valley</strong>, California .......76<br />

Figure B9. Graph showing simulated cumulative annual changes in aquifer-system storage<br />

between water years 1962 <strong>and</strong> 2003 for the <strong>Central</strong> <strong>Valley</strong>, California ......................77<br />

Figure B10. Pie charts <strong>and</strong> histograms of average annual groundwater budget for the<br />

A, Sacramento <strong>Valley</strong>. B, Delta <strong>and</strong> Eastside Streams. C, San Joaquin <strong>Valley</strong>.<br />

D, Tulare Basin .....................................................................................................................80<br />

Figure B11. Stacked bar chart of simulated flow through multi-zone wells ...................................84


Figure B12. Map of altitude of the A, Water table in the unconfined part of the aquifer<br />

system. B, Potentiometric surface of the confined part of the aquifer system for<br />

1961. C, Unconfined part of the aquifer system. D, Potentiometric surface of<br />

the confined part of the aquifer system for 1976. E, Unconfined part of<br />

the aquifer system. F, Potentiometric surface of the confined part of the<br />

aquifer system, for 2000 .....................................................................................................86<br />

Figure B13. Map showing hydrographs for representative wells in the <strong>Central</strong> <strong>Valley</strong>,<br />

California ................................................................................................................................92<br />

Figure B14. Map of estimated depth to water table in spring 2000 ...................................................96<br />

Figure B15. A, Map of areal extent of l<strong>and</strong> subsidence in the <strong>Central</strong> <strong>Valley</strong> <strong>and</strong><br />

locations of extensometers. B, Graph of compaction data from selected<br />

extensometers <strong>and</strong> total simulated pumpage in the <strong>Central</strong> <strong>Valley</strong> ............................99<br />

Figure B16. Graph of measured compaction in relation to head decline in the<br />

San Joaquin <strong>Valley</strong> .............................................................................................................101<br />

Figure B17. Graph showing streamflow gains <strong>and</strong> losses in the <strong>Central</strong> <strong>Valley</strong><br />

between 1962 <strong>and</strong> 2003 .....................................................................................................105<br />

Figure B18. Diagram of relationship of water-level changes <strong>and</strong> critical heads to<br />

subsidence <strong>and</strong> inelastic compaction ...........................................................................109<br />

Chapter C<br />

Figure C1. Map of <strong>Central</strong> <strong>Valley</strong> Hydrologic Model grid: A, Extent of San Joaquin<br />

Formation, Corcoran Member of the Tulare Formation, crystalline bedrock,<br />

<strong>and</strong> horizontal flow barriers. B, Upper-most active layer............................................124<br />

Figure C2. Map of distribution of general-head boundary cells <strong>and</strong> major streams<br />

<strong>and</strong> canals with streamflow-routing cells (including location of inflows <strong>and</strong><br />

diversions) ...........................................................................................................................127<br />

Figure C3. Map of distribution of urban <strong>and</strong> agricultural wells simulated in the<br />

<strong>Central</strong> <strong>Valley</strong> Hydrologic Model ....................................................................................129<br />

Figure C4. Graph of urban pumpage from U.S. Geological Survey <strong>and</strong> California<br />

Department of Water Resources data ............................................................................131<br />

Figure C5. Flow chart of water inflows to <strong>and</strong> outflows from a “farm” as simulated<br />

by the Farm Process (FMP) .............................................................................................133<br />

Figure C6. Map of agricultural soils for the <strong>Central</strong> <strong>Valley</strong>, California, derived from<br />

STATSGO data ....................................................................................................................136<br />

Figure C7. Graph showing cumulative departure of precipitation, Pacific Decadal<br />

Oscillation (PDO) Index, climate windows, <strong>and</strong> time frame l<strong>and</strong>-use maps<br />

were applied .......................................................................................................................137<br />

Figure C8. Map showing virtual crops for 1960 (modified with 2000 data), including<br />

pie chart of percentage of different virtual crops ........................................................140<br />

Figure C9. Map showing virtual crops for 1973, including pie chart of percentage of<br />

different virtual crops ........................................................................................................141<br />

Figure C10. Map showing virtual crops for 1992, including pie chart of percentage of<br />

different virtual crops .......................................................................................................142<br />

Figure C11. Map showing virtual crops for 1998, including pie chart of percentage of<br />

different virtual crops .......................................................................................................144<br />

xi


xii<br />

Figure C12. Map showing virtual crops for 2000, including a pie chart of percentage of<br />

different virtual crops .......................................................................................................145<br />

Figure C13. Graphs showing monthly crop coefficients for virtual crops in the<br />

<strong>Central</strong> <strong>Valley</strong>, California ..................................................................................................147<br />

Figure C14. Graph showing relation between hydraulic conductivity <strong>and</strong> percentage<br />

coarse-grained deposits based on hydraulic conductivity end members <strong>and</strong><br />

exponent of the power mean ..........................................................................................155<br />

Figure C15. Map of distribution of calibration data (groundwater levels, gains <strong>and</strong><br />

losses of streamflow, <strong>and</strong> subsidence observations)................................................162<br />

Figure C16. Map of distribution of wells with water-level-altitude data for the<br />

simulation period 1961–2003, <strong>and</strong> location of wells selected for model<br />

calibration ..........................................................................................................................164<br />

Figure C17. Graph of plots of simulated water-level altitude values compared with the<br />

measured water-level altitudes for the A, Entire modeled area (<strong>and</strong> with inset<br />

with histogram of residuals). B, Sacramento <strong>Valley</strong>. C, Delta <strong>and</strong> Eastside.<br />

D, San Joaquin Basin. E, Tulare Basin ..........................................................................165<br />

Figure C18. Maps of the simulated A, Water-table altitude in spring 1976.<br />

B, Potentiometric-surface altitude in spring 1976 for the calibrated transient<br />

groundwater-flow model of the <strong>Central</strong> <strong>Valley</strong> ............................................................168<br />

Figure C19. Map showing distribution of stream gain/loss segments used for model<br />

calibration A, Measured gaining <strong>and</strong> losing reaches for selected stream<br />

reaches for 1961–1977. B, Simulated gaining <strong>and</strong> losing reaches for<br />

selected stream reaches for 1961–1977 for the <strong>Central</strong> <strong>Valley</strong>, California ..............171<br />

Figure C20. Map of distribution of historical subsidence, estimated from 1961 to<br />

1977 extensometer data, <strong>Central</strong> <strong>Valley</strong>, California .....................................................174<br />

Figure C21. A, Map of distribution of total simulated subsidence for water years<br />

1962 through 2003, <strong>and</strong> locations of subsidence measurements. B, Graph<br />

of aggregate compaction measured at, <strong>and</strong> simulated subsidence for,<br />

selected extensometer locations, <strong>Central</strong> <strong>Valley</strong>, California .....................................175<br />

Figure C22. Graph of agricultural pumpage from 1961–77 estimated from power<br />

records compared to <strong>Central</strong> <strong>Valley</strong> Hydrologic Model simulated agricultural<br />

pumpage for the <strong>Central</strong> <strong>Valley</strong>, California ...................................................................180<br />

Figure C23. Graph showing A, Annual water deliveries. B, Monthly water deliveries<br />

from the mid 1970s to mid 1980s for water-balance subregion 14 ............................182<br />

Figure C24. Graph showing single <strong>and</strong> double cropped crop coefficient values for<br />

truck crops .........................................................................................................................183<br />

Figure C25. Graph showing original <strong>and</strong> adjusted crop coefficient values for truck <strong>and</strong><br />

cotton crops .......................................................................................................................184<br />

Figure C26. Map showing distribution of cells used for streams, colored by streambed<br />

hydraulic conductivity values for cells estimated during calibration ......................190<br />

Figure C27. Graph showing relative composite sensitivity of computed water-level<br />

altitudes, flows, <strong>and</strong> subsidence information at calibration points to changes<br />

in parameters .....................................................................................................................192


Figure C28. Pie chart <strong>and</strong> histograms showing average annual components of farm<br />

budget for water years 1962–2003 .................................................................................193<br />

Figure C29. Stacked bar chart showing farm budget changes through time for the<br />

<strong>Central</strong> <strong>Valley</strong>, California ..................................................................................................194<br />

Figure C30. Graphs showing farm budget changes through time for water-balance<br />

subregion 13, western San Joaquin <strong>Valley</strong>, <strong>Central</strong> <strong>Valley</strong>, California.<br />

A, Water years 1962–2003. B, Water years 1977–1985 ...............................................195<br />

Figure C31. Stacked bar chart showing groundwater budget changes through time<br />

for the <strong>Central</strong> <strong>Valley</strong>. A, All values. B, Net values ......................................................197<br />

Appendix<br />

Figure 1-1. Diagram of evaluation of active <strong>and</strong> inactive parts of a variably<br />

saturated root zone in FMP .............................................................................................218<br />

Figure 1-2. Diagram of conceptualization to the change of transpiration uptake<br />

from a saturated root zone with varying water level ..................................................220<br />

xiii


xiv<br />

Tables<br />

Chapter A<br />

Table A1. Water-balance subregions within the <strong>Central</strong> <strong>Valley</strong>, California ...................................11<br />

Table A2. Distribution of statistical properties for the percentage of coarse-grained<br />

deposits for the <strong>Central</strong> <strong>Valley</strong>, Calfornia, by domain, including variogram <strong>and</strong><br />

variogram models ....................................................................................................................28<br />

Table A3. <strong>Central</strong> <strong>Valley</strong>, California, groundwater flow model layer thicknesses <strong>and</strong> depths ....29<br />

Chapter B<br />

Table B1. Summary of the simulated l<strong>and</strong>scape budget for average (water years<br />

1962-2003), typical (1975), dry (1990), <strong>and</strong> wet (1998) years for the <strong>Central</strong> <strong>Valley</strong>,<br />

California ..................................................................................................................................66<br />

Table B2. Summary of the simulated groundwater budget for average (water years<br />

1962-2003), typical (1975), dry (1990), <strong>and</strong> wet (1998) years for the <strong>Central</strong> <strong>Valley</strong>,<br />

California ..................................................................................................................................66<br />

Table B3. Selected average annual hydrologic budget components for water years<br />

1962–2003 for each of the 21 water balance areas in the <strong>Central</strong> <strong>Valley</strong>,<br />

California ..................................................................................................................................78<br />

Chapter C<br />

Table C1. MODFLOW-2000 packages <strong>and</strong> processes used with the hydrologic flow<br />

model of the <strong>Central</strong> <strong>Valley</strong>, California ...............................................................................122<br />

Table C2. Coordinates of the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model grid ..............................................126<br />

Table C3. L<strong>and</strong>-use periods with acreage in square miles <strong>and</strong> percentage of<br />

different virtual crop categories .........................................................................................138<br />

Table C4. Summary of <strong>Central</strong> <strong>Valley</strong>, California, virtual crop categories <strong>and</strong> properties .........146<br />

Table C5. Summary of fractions of transpiration <strong>and</strong> evaporation by month for<br />

<strong>Central</strong> <strong>Valley</strong>, California, virtual crops .............................................................................150<br />

Table C6. Average area-weighted composite efficiency for each water-balance<br />

subregion of the <strong>Central</strong> <strong>Valley</strong>, California, through the simulation period .................151<br />

Table C7. Average reference evapotranspiration (ETo) by month for the <strong>Central</strong> <strong>Valley</strong>,<br />

California, for 1961–2003 based on temperature data using the Hargreaves–<br />

Samani equation ....................................................................................................................153<br />

Table C8. Measured <strong>and</strong> simulated hydraulic properties ................................................................157<br />

Table C9. Estimated <strong>and</strong> <strong>Central</strong> <strong>Valley</strong> Hydrologic Model-simulated average <strong>and</strong> unit<br />

evapotranspiration of applied water (ETaw) for the <strong>Central</strong> <strong>Valley</strong>, California ..........180<br />

Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model ........................185<br />

Table C11. Simulated farm budget for the <strong>Central</strong> <strong>Valley</strong>, California, in acre-feet per year ........199<br />

Table C12. Simulated groundwater budget for the <strong>Central</strong> <strong>Valley</strong>, California,<br />

in acre-feet per year ............................................................................................................200


Conversion Factors<br />

Inch/Pound to SI<br />

Multiply By To obtain<br />

Length<br />

inch (in.) 2.54 centimeter (cm)<br />

inch (in.) 25.4 millimeter (mm)<br />

foot (ft) 0.3048 meter (m)<br />

mile (mi) 1.609 kilometer (km)<br />

mile, (mi) 1.609 kilometer (km)<br />

Area<br />

acre 4,047 square meter (m 2 )<br />

acre 0.4047 hectare (ha)<br />

acre 0.4047 square hectometer (hm 2 )<br />

acre 0.004047 square kilometer (km 2 )<br />

square foot (ft 2 ) 929.0 square centimeter (cm 2 )<br />

square foot (ft 2 ) 0.09290 square meter (m 2 )<br />

square inch (in 2 ) 6.452 square centimeter (cm 2 )<br />

section (640 acres or 1 square mile) 259.0 square hectometer (hm 2 )<br />

square mile (mi 2 ) 259.0 hectare (ha)<br />

square mile (mi 2 ) 2.590 square kilometer (km 2 )<br />

Volume<br />

acre-foot (acre-ft) 1,233 cubic meter (m 3 )<br />

acre-foot (acre-ft) 0.001233 cubic hectometer (hm 3 )<br />

Flow rate<br />

acre-foot per day (acre-ft/d) 0.01427 cubic meter per second (m 3 /s)<br />

acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m 3 /yr)<br />

acre-foot per year (acre-ft/yr) 0.001233 cubic hectometer per year (hm 3 /yr)<br />

Hydraulic conductivity<br />

foot per day (ft/d) 0.3048 meter per day (m/d)<br />

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:<br />

°F=(1.8×°C)+32<br />

Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929<br />

(NGVD 29).<br />

Altitude, as used in this report, refers to distance above or below the NGVD 29.<br />

NGVD 29 can be converted to the North American Vertical Datum of 1988 (NAVD 88) by using the<br />

National Geodetic Survey conversion utility available at URL http://www.ngs.noaa.gov/TOOLS/<br />

xv


xvi<br />

Well-Numbering System<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

TOWNSHIP<br />

T13N<br />

T12N<br />

T11N<br />

T10N<br />

T9N<br />

R2W<br />

RANGE<br />

R1W R1E<br />

Mt. Diablo Meridian<br />

R2E R3E<br />

T11N<br />

R1E<br />

6 5 4 3 2<br />

7 8 9 10 11<br />

18 17 16 15 14 13<br />

19 20 21 22 23<br />

30 29 28 27 26 25<br />

31 32 33 34 35 36<br />

D C B A<br />

E F G H<br />

M<br />

SECTION 24<br />

L<br />

K<br />

J<br />

N P Q R<br />

11N/1E-24Q8<br />

Well-numbering diagram (Note: maps in this report use abbreviated well numbers such as "24Q8")<br />

1<br />

12<br />

24


Chapter A. Introduction, Overview of Hydrogeology, <strong>and</strong> Textural<br />

Model of California’s <strong>Central</strong> <strong>Valley</strong><br />

By Claudia C. Faunt, R<strong>and</strong>all T. Hanson, <strong>and</strong> Kenneth Belitz<br />

Executive Summary<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

its aquifers.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Geographic Information System (GIS)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

resampled to produce spatial <strong>and</strong> temporal data sets needed for


2 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Texture Modeling<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

Hydrologic System Modeling<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

20,000 model cells of 1-mi 2 <br />

<br />

<br />

<br />

-<br />

<br />

-


-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

precipitation.<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Introduction 3<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

also could be used as a platform to connect the simulation<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Introduction<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

to continue.


4 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

ties,<br />

industries, <strong>and</strong> ecosystems that depend directly or indi-<br />

<br />

<br />

<br />

<br />

nia<br />

(<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

source of supply is a function of many factors—both natural<br />

<strong>and</strong> human—that control its use. Natural factors include<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

Purpose <strong>and</strong> Scope<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

report. Included in are descriptions of the effects of<br />

<br />

<br />

<br />

-<br />

<br />

.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1. <br />

<br />

<br />

2. <br />

<br />

<br />

<br />

3. <br />

<br />

<br />

<br />

<br />

<br />

“<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

in <br />

<br />

<br />

<br />

model that is described in . describes the<br />

-


40°<br />

39°<br />

38°<br />

37°<br />

36°<br />

35°<br />

Klamath Mts<br />

Carquinez<br />

Straits<br />

C o a s t<br />

San Francisco<br />

Bay<br />

Selected faults<br />

A A'<br />

Line of section (figure A11)<br />

Extent of San Joaquin Basin<br />

fluvial fans<br />

Major streams <strong>and</strong> selected<br />

canals<br />

Davis Population centers<br />

0<br />

124°<br />

123°<br />

122°<br />

S a c r a m e n t o V a l l e y<br />

Pacific Ocean<br />

EXPLANATION<br />

Geomorphic province—<br />

Basin<br />

Delta<br />

Dissected upl<strong>and</strong>s<br />

Sacramento River flood plains<br />

Sutter Buttes<br />

Younger fan deposits<br />

Historical lakes<br />

Extent of Corcoran Clay<br />

Redding<br />

Red Bluff<br />

Sacramento River<br />

Davis<br />

Cascade Range<br />

0 100 200 Kilometers<br />

Shaded relief derived from U.S. Geological Survey National Elevation Dataset, 2006.<br />

Albers Equal Area Conic Projection<br />

Sutter<br />

Buttes<br />

121°<br />

Sacramento<br />

Stockton<br />

Modesto<br />

San Joaquin River<br />

R a n g e s<br />

S i e r r a N e v a d a<br />

Stockton<br />

Fault<br />

S a n J o a q u i n V a l l e y<br />

San Joaquin Basin<br />

Kettleman<br />

Hills<br />

Tulare<br />

Lake bed<br />

100 200 Miles<br />

120°<br />

San<br />

Francisco<br />

<strong>Central</strong><br />

<strong>Valley</strong><br />

A<br />

C A L I<br />

Pacific Ocean<br />

F O R N I A<br />

Fresno<br />

Kings River<br />

Tulare<br />

Basin<br />

119°<br />

NEVADA<br />

CALIFORNIA<br />

Visalia<br />

A'<br />

Introduction 5<br />

Bakersfield<br />

Tehachapi Mts<br />

Figure A1. <strong>Central</strong> <strong>Valley</strong> major geomorphic provinces (modified from Davis <strong>and</strong> others, 1959; Olmstead <strong>and</strong> Davis, 1961; <strong>and</strong><br />

Jennings,1977), alluvial fans of the San Joaquin Basin (Weissmann <strong>and</strong> others, 2005), <strong>and</strong> extent <strong>and</strong> thickness of Corcoran Clay<br />

(modified from Page,1986 <strong>and</strong> Burow <strong>and</strong> others, 2004).


6 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Methods of Analyses<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

ity.<br />

The results, conclusions, <strong>and</strong> limitations discussed in this<br />

<br />

Data Compilation<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

of this report.<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

<br />

in <br />

compilation, <strong>and</strong> analysis of information for the hydraulic<br />

properties database is described in the “”<br />

section of this chapter.<br />

<br />

-<br />

-<br />

<br />

(<strong>and</strong> <br />

-<br />

-<br />

<br />

processed, <strong>and</strong> (or) re-sampled to produce spatial <strong>and</strong> temporal<br />

-<br />

<br />

).<br />

Numerical Model<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

of this report.<br />

<br />

in a s<strong>and</strong>-silt-clay aquifer system. The system has been


Texture<br />

Model<br />

DATA<br />

<strong>Central</strong>ized<br />

Geospatial<br />

Database<br />

VISUALIZATION<br />

Groundwater<br />

Levels<br />

<strong>and</strong> Flows<br />

Hydrogeologic<br />

Properties<br />

Introduction 7<br />

Flow Model<br />

CVHM<br />

Figure A2. The relation <strong>and</strong> flow of information used in analyzing the <strong>Central</strong> <strong>Valley</strong> Hydrogeologic system. Both interpretive <strong>and</strong><br />

modeling data flow in <strong>and</strong> out of the centralized geospatial database. The texture model, data in the geospatial database, <strong>and</strong> modeling<br />

results are visualized throughout the data gathering, analysis, <strong>and</strong> modeling stages of the project.<br />

Previous Investigations<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

Recent Regional Groundwater Models<br />

<strong>Central</strong> <strong>Valley</strong> Regional <strong>Aquifer</strong>-System Analysis<br />

(CV-RASA)<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 , <strong>and</strong> the<br />

<br />

<br />

<br />

about 500 mi 2 <br />

<br />

often are smaller than 500 mi 2


8 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Soils Topography Remote Sensing<br />

Soil Surveys (STATSGO)<br />

Soil Properties Data<br />

Digital Elevation Models<br />

Topographic Maps<br />

Geology Vegetation & L<strong>and</strong> Use<br />

Geologic Maps<br />

Geologic Cross Sections<br />

Drillers Logs<br />

<strong>Central</strong>ized<br />

Geospatial<br />

Database<br />

Satellite Imagery<br />

MoDIS<br />

L<strong>and</strong> Use/L<strong>and</strong> Cover Maps (DWR)<br />

Agricultural Data<br />

Crop Data<br />

Original Data Types<br />

Climate Geophysics<br />

Precipitation Data<br />

Temperature Data<br />

Humidity<br />

Evapotranspiration<br />

Hydrology Chemistry Anthropogenic Controls<br />

Water Well Information<br />

<strong>Aquifer</strong> Tests<br />

<strong>Aquifer</strong> Properites<br />

Surface Water Data<br />

<strong>Aquifer</strong> Chemistry<br />

Spring Chemistry<br />

SU Chemistry<br />

Redox Chemistry<br />

Gravity<br />

Seismic/Earthquake<br />

Magnetics/Resistivity<br />

Surface Water Delivery<br />

Surface Water Diversions<br />

Environmental Requirements<br />

Figure A3. The diversity of data types <strong>and</strong> categories included in the centralized geospatial database. Data types in bold were used<br />

specifically in this study.<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-


Hydrology<br />

Water Well Information<br />

<strong>Aquifer</strong> Tests<br />

<strong>Aquifer</strong> Properites<br />

Surface Water Data<br />

DWR USGS<br />

Water Levels<br />

Locations<br />

Construction<br />

Hydrographs<br />

Combined<br />

Water-Level<br />

Database<br />

21,417 wells<br />

873,073 water levels<br />

Data<br />

Analysis<br />

CVHM<br />

Subset<br />

206 wells<br />

19,725 water levels<br />

Water Levels<br />

Locations<br />

Construction<br />

Overlapping records<br />

Missing information<br />

Location discrepancies<br />

Construction<br />

Measurement discrepancies<br />

Temporal distribution<br />

Specific time periods<br />

Climate control<br />

Continuous record<br />

Spatial distribution<br />

Water balance areas<br />

Basin to foothills<br />

Calibration<br />

Observations<br />

Water levels<br />

Water-level gradients<br />

Change in water levels<br />

Figure A4. An example of the detail for compilation, integration, <strong>and</strong> analysis for one data type (water-level nformation).<br />

Introduction 9


10 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

California <strong>Central</strong> <strong>Valley</strong> Groundwater-Surface-Water<br />

Simulation Model (C2VSIM)<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

2 .<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

system <strong>and</strong> calculate stream accretions <strong>and</strong> depletions for use<br />

<br />

<br />

<br />

<br />

<br />

<br />

2006).<br />

Study Area<br />

<br />

2 <strong>and</strong> is one of the more<br />

-<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

is about 1,700 ft.<br />

<br />

<br />

<br />

<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Climate<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Sacramento <strong>Valley</strong><br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

).


Table A1. Water-balance subregions within the <strong>Central</strong> <strong>Valley</strong>, California.<br />

Regions<br />

Site<br />

identifier<br />

General<br />

description<br />

DWR DSA<br />

number<br />

Total<br />

area<br />

(mi 2 )<br />

Routed<br />

surface-<br />

water<br />

deliveries<br />

Study Area 11<br />

-<br />

<br />

<br />

2 ,<br />

square mile]<br />

Non-routed<br />

surface-<br />

water<br />

deliveries<br />

1 611 2 None<br />

2 <br />

<br />

<br />

1,163 3 None<br />

3 <br />

<br />

1,112 4 None<br />

4 <br />

<br />

560 1 None<br />

5 <br />

<br />

<br />

957 2 6<br />

6 <br />

<br />

1,044 4 None<br />

7 <br />

<br />

534 4 4<br />

8 <br />

<br />

1,362 6 None<br />

9 <br />

<br />

1,026 1 None<br />

10 1,083 1 7<br />

11 664 6 None<br />

12 540 5 None<br />

13 1,648 6 2<br />

14 1,071 None 3<br />

15 1,423 4 5<br />

16 478 2 1<br />

17 569 2 1<br />

18 1,358 4 4<br />

19 <br />

<br />

1,365 2 3<br />

20 705 2 3<br />

21 <br />

area)<br />

1,105 3 2<br />

— — — 20,378 64 41<br />

-


12 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

Average annual<br />

precipitation,<br />

in inches per year—<br />

6 to 8<br />

9 to 10<br />

11 to 12<br />

13 to 14<br />

15 to 16<br />

17 to 18<br />

19 to 20<br />

21 to 22<br />

23 to 24<br />

25 to 26<br />

27 to 28<br />

29 to 30<br />

31 to 32<br />

33 to 34<br />

35 to 36<br />

37 to 38<br />

39 to 40<br />

41 to 42<br />

43 to 44<br />

45 to 46<br />

Red Bluff<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Sacramento River<br />

Davis<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

San Joaquin River<br />

Los Gatos<br />

Creek<br />

Feather<br />

River<br />

Yuba<br />

River<br />

Bear<br />

River<br />

American<br />

River<br />

Cosumnes<br />

River<br />

Mokelumne<br />

River<br />

Calaveras<br />

River<br />

Stanislaus<br />

River<br />

Fresno<br />

Slough<br />

Davis<br />

EXPLANATION<br />

Average annual inflow,<br />

in thous<strong>and</strong>s of acre-feet per year—<br />

Tuolumne<br />

River<br />

Merced<br />

River<br />

Less than 100<br />

100.1 to 500<br />

500.1 to 1,000<br />

1,000.1 to 2,000<br />

2,000.1 to 3,000<br />

3,000.1 to 4,000<br />

4,000.1 to 5,000<br />

Greater than 5,000<br />

Selected streams<br />

<strong>and</strong> rivers<br />

Precipitation station<br />

<strong>and</strong> identifier<br />

San Joaquin<br />

River<br />

Kings<br />

River<br />

Kaweah<br />

River<br />

Tule<br />

River<br />

White<br />

River<br />

Kern<br />

River<br />

Bakersfield<br />

Figure A5. A, Surface-water inflows <strong>and</strong> average annual precipitation for September 1961 through September 2003 throughout the <strong>Central</strong> <strong>Valley</strong>,<br />

California. B, Average annual reference evapotranspiration (ETo) for September 1961 through September 2003 throughout the <strong>Central</strong> <strong>Valley</strong>, California.<br />

ETo data were calculated from PRISM temperature data (Climate Source, 2006). The surface-water inflows are from U.S. Geological Survey files <strong>and</strong><br />

California Department of Water Resources (C. Brush, written commun., February 21, 2007). Precipitation data are from Parameter-Elevation Regressions<br />

on Independent Slopes Model (PRISM) data (Climate Source, 2006).


B<br />

Red Bluff<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Davis<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure A5. Continued.<br />

Davis<br />

EXPLANATION<br />

Selected streams<br />

<strong>and</strong> rivers<br />

Precipitation station<br />

<strong>and</strong> identifier<br />

Bakersfield<br />

Study Area 13<br />

Average annual reference evapotranspiration,<br />

in inches per year—<br />

45.5 to 46<br />

46.1 to 47<br />

47.1 to 48<br />

48.1 to 49<br />

49.1 to 50<br />

50.1 to 51<br />

51.1 to 52<br />

52.1 to 53<br />

53.1 to 54<br />

54.1 to 55<br />

55.1 to 56


14 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

AVERAGE PRECIPITATION, IN INCHES<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

MONTH<br />

EXPLANATION<br />

Monthly average precipitation (1961 to 2003) at—<br />

Red Bluff<br />

Davis<br />

Bakersfield<br />

Figure A6. Average monthly precipitation for Redding, Davis, <strong>and</strong> Bakersfield, California (Climate Source, 2006).<br />

<br />

<br />

<br />

ecosystem protection <strong>and</strong> restoration efforts are needed<br />

<br />

<br />

<br />

<br />

purposes.


Delta <strong>and</strong> Eastside Streams<br />

<br />

<br />

<br />

).<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 of estuary.<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

times<br />

are curtailed. This focus on ecosystem restoration often<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

Study Area 15<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

San Joaquin Basin of the San Joaquin <strong>Valley</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

the summers are particularly hot <strong>and</strong> dry, the area has been<br />

<br />

-<br />

<br />

<br />

rapid shift to other crops, particularly almond orchards. On the<br />

nated<br />

by deciduous fruit <strong>and</strong> nut orchards. The remainder of


16 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Shasta Lake<br />

Corning<br />

Canal<br />

Red Bluff<br />

Tehama<br />

Co<br />

Glenn<br />

Co<br />

Colusa<br />

Co<br />

Napa<br />

Co<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shasta<br />

Co<br />

Yolo<br />

Co<br />

Davis<br />

Solano<br />

Co<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Tehama-Colusa<br />

Canal<br />

Glenn-Colusa<br />

Canal<br />

Lake Oroville<br />

Folsom Lake<br />

Folsom South Canal<br />

Camanche Reservoir<br />

Pardee Lake<br />

California<br />

Mokelumne<br />

Aqueduct<br />

Kern<br />

Water Bank<br />

Figure A7. General features of the surface-water system in the <strong>Central</strong> <strong>Valley</strong>, California.<br />

Butte<br />

Co<br />

Sutter<br />

Co<br />

Yuba<br />

Co<br />

Sacramento<br />

Co<br />

Nevada<br />

Co<br />

Placer<br />

Co<br />

San Joaquin<br />

Co<br />

Stanislaus<br />

Co<br />

El Dorado Co<br />

Amador Co<br />

Calaveras<br />

Co<br />

Merced<br />

Co<br />

Tuolumne<br />

Co<br />

Mariposa<br />

Co<br />

Hetch Hetchy<br />

Aqueduct<br />

Madera<br />

Co<br />

Fresno<br />

Co<br />

Aqueduct<br />

Kings<br />

Co<br />

EXPLANATION<br />

Historic lakes<br />

Reservoir<br />

State Water Project<br />

Federal Water Project<br />

Davis<br />

Tulare<br />

Co<br />

Local Canal/<br />

Aqueduct Projects<br />

Selected streams<br />

<strong>and</strong> rivers<br />

County boundary<br />

Precipitation station<br />

<strong>and</strong> identifier<br />

Kern<br />

Co<br />

Friant-Kern<br />

Canal<br />

Cross <strong>Valley</strong><br />

Canal<br />

Bakersfield


for about 30 percent of the annual supply of both types of<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

Tulare Basin of the San Joaquin <strong>Valley</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Study Area 17<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

ter<br />

often is used to replace much of the shortfall in surface-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

as for recreation.


18 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Water-Balance Subregions<br />

<br />

-<br />

<strong>and</strong> ).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

Geologic History <strong>and</strong> Setting<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

(last 10 million years). The only prominent non-sedimentary<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

materials—mostly clay <strong>and</strong> silt—compose as much as<br />

<br />

<strong>and</strong> Williams, 1995).<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

). The


0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

1<br />

2<br />

3<br />

6<br />

4<br />

5<br />

9<br />

7<br />

8<br />

11<br />

12<br />

10<br />

12<br />

14<br />

13<br />

EXPLANATION<br />

16<br />

15<br />

19<br />

17<br />

Geologic History <strong>and</strong> Setting 19<br />

California Department of Water Resources<br />

water-balance subregion <strong>and</strong> identifier. Water-<br />

balance subregion identifier with red highlight<br />

indicates subregion receiving deliveries not<br />

shown by arrows<br />

Major streams <strong>and</strong> canals<br />

Diversion locations<br />

Direction of water movement<br />

from diversion location, <strong>and</strong><br />

water-balance subregion affected.<br />

Length of arrow does not relate<br />

to volume of diversion<br />

Figure A8. Distribution of water-balance subregions (WBSs) used for surface-water delivery <strong>and</strong> estimation of groundwater<br />

pumpage. These areas are based on areas defined by the California Department of Water Resources <strong>and</strong> are used as “virtual farms”<br />

for accounting by the Farm Process in the simulation of the hydrologic system of the <strong>Central</strong> <strong>Valley</strong> with MODFLOW-2000. WBSs 5, 7, 10,<br />

<strong>and</strong> 13-21 receive surface-water that is not shown in the stream network (non-routed deliveries).<br />

18<br />

20<br />

21


20 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

). They determined that the character<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

turn, resulted in thinner depositional sequences <strong>and</strong> no incised<br />

<br />

” section<br />

<br />

model in more detail.<br />

Hydrogeology<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<strong>Aquifer</strong> Characteristics<br />

<br />

<br />

-<br />

<br />

). The chief source of<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

thick, marine sedimentary rocks (-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

others, 1993) (<br />

<br />

<br />

<br />

<br />

-


A<br />

Coast Ranges<br />

Clayey<br />

lenses<br />

Fault<br />

Marine<br />

deposits<br />

River<br />

Potentiometric surface for the<br />

lower part of the aquifer system<br />

Old saline water<br />

Pumping wells<br />

Slough<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

constitute more than 50 percent of the total thickness of the<br />

<br />

-<br />

2 <br />

<br />

Water<br />

movement<br />

Sierra Nevada<br />

Fresh-water<br />

recharge<br />

Lower part<br />

of the aquifer<br />

system<br />

Upper part<br />

of the aquifer<br />

system<br />

Bedrock<br />

Hydrogeology 21<br />

Figure A9. Pre- <strong>and</strong> post-development of the A, Sacramento <strong>Valley</strong>. B, <strong>Central</strong> part of the San Joaquin <strong>Valley</strong>, California. (Modified<br />

from Belitz <strong>and</strong> Heimes, 1990; <strong>and</strong> Galloway <strong>and</strong> others, 1999).<br />

Water<br />

table<br />

<br />

<br />

<br />

lacustrine deposit (Johnson <strong>and</strong> others, 1968) as much as 200<br />

). This


22 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

B<br />

Coast Ranges<br />

Clayey<br />

lenses<br />

Corcoran Clay<br />

(confining layer)<br />

Marine<br />

deposits<br />

Figure A9. Continued.<br />

River<br />

Potentiometric surface of the<br />

lower part of the aquifer system<br />

Old saline water<br />

Pumping wells<br />

Slough<br />

Subsidence area<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Water<br />

table<br />

Water<br />

movement<br />

Lower part<br />

of the aquifer<br />

system<br />

Sierra Nevada<br />

Fresh-water<br />

recharge<br />

Upper part<br />

of the aquifer<br />

system<br />

(Sierran<br />

deposits)<br />

Bedrock


-<br />

<br />

<br />

<br />

<br />

the distribution of these properties are more important than are<br />

<br />

1991).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ments<br />

of hydraulic properties of the aquifer system are scarce,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

” section.<br />

Textural Analysis<br />

<br />

nitude<br />

<strong>and</strong> distribution of aquifer-system compaction, mani-<br />

<br />

-<br />

<br />

Hydrogeology 23<br />

<br />

<br />

-<br />

-<br />

<br />

-<br />

<br />

2 <br />

<br />

-<br />

<br />

<br />

<br />

500 to 1,000 mi 2 <br />

<br />

<br />

<br />

<br />

a 1,000-mi 2 <br />

<br />

<br />

2 <br />

<br />

<br />

<br />

<br />

tribution<br />

of sedimentary hydrofacies in a nearly 6.5-mi 2 study<br />

area <br />

(cies<br />

model in a 19-mi 2 <br />

<br />

of the 64-mi 2 <br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

().


24 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A B<br />

10<br />

S a c r a m e n t o V a l l e y<br />

11<br />

Sacramento River<br />

12<br />

EXPLANATION<br />

Textural analysis spatial<br />

provinces <strong>and</strong> domains<br />

Number Name<br />

10<br />

11<br />

12<br />

20<br />

21<br />

22<br />

23<br />

24<br />

30<br />

Redding<br />

Western Sacramento<br />

Eastern Sacramento<br />

Tracy/Delta-Mendota<br />

Westside<br />

Northern San Joaquin<br />

Chowchilla-Madera<br />

Kings<br />

Tulare/Kern<br />

Stream or river<br />

Orestimba<br />

Creek<br />

S a n J o a q u i n V a l l e y<br />

San Joaquin River<br />

20<br />

22<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Merced River<br />

Bear<br />

Creek<br />

21<br />

23<br />

24<br />

Kings River<br />

30<br />

10<br />

11<br />

12<br />

20<br />

21<br />

22<br />

23<br />

24<br />

30<br />

0 50<br />

EXPLANATION<br />

Textural analysis spatial<br />

provinces <strong>and</strong> domains<br />

Number Name<br />

Redding<br />

Western Sacramento<br />

Eastern Sacramento<br />

Tracy/Delta-Mendota<br />

Westside<br />

Northern San Joaquin<br />

Chowchilla-Madera<br />

Kings<br />

Tulare/Kern<br />

Well used for<br />

texture analysis<br />

0 50 100 Kilometers<br />

100 Miles<br />

Figure A10. A, <strong>Central</strong> <strong>Valley</strong> showing groundwater basins <strong>and</strong> subbasins, groupings of basins <strong>and</strong> subbasins into spatial provinces<br />

<strong>and</strong> domains for textural analysis. B, Distribution of wells used for mapping texture. C, Count of wells for each depth increment by<br />

domains through 1,200 feet. Because less than 1 percent of the logs extend past 1,200 feet, increments below 1,200 feet were not shown.<br />

Detailed description of the spatial provinces <strong>and</strong> domains are in .


C<br />

DEPTH TO MIDPOINT OF INCREMENT, IN FEET BELOW LAND SURFACE<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

400<br />

450<br />

500<br />

550<br />

600<br />

650<br />

700<br />

750<br />

800<br />

850<br />

900<br />

950<br />

1,000<br />

1,050<br />

1,100<br />

1,150<br />

Selection <strong>and</strong> Compilation of Existing Well Data<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

ated<br />

on the basis of the amount of detail in the descriptions<br />

-<br />

<br />

NUMBER OF WELLS USED FOR TEXTURE ANALYSIS<br />

EXPLANATION<br />

Number of wells,<br />

colored by basin<br />

Number Name<br />

10 Redding<br />

Hydrogeology 25<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

11<br />

12<br />

20<br />

21<br />

22<br />

23<br />

24<br />

30<br />

Western Sacramento<br />

Eastern Sacramento<br />

Tracy/Delta-Mendota<br />

Westside<br />

Northern San Joaquin<br />

Chowchilla-Madera<br />

Kings<br />

Tulare/Kern<br />

1,200<br />

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500<br />

Figure A10. Continued.


26 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>Class</strong>ification of Texture from Drillers’ Logs <strong>and</strong><br />

Regularization of Well Data<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

surface to the bottom of the borehole. Thus, none of the depth<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Geostatistical Modeling Approach<br />

<br />

tistics<br />

is a set of applications <strong>and</strong> statistical techniques used<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

methods are based on an assumed spatial correlation structure.<br />

<br />

<br />

<br />

models.<br />

Regions <strong>and</strong> Domains<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

south (<br />

<br />

-


). The southern part, referred<br />

, includes the<br />

<br />

<br />

2003).<br />

cally<br />

(<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> ).<br />

Geostatistical Model of Coarse-Grained Texture<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

165 to 820 ft (<br />

<br />

<br />

<br />

<br />

directions.<br />

<br />

<br />

<br />

<br />

<br />

Hydrogeology 27<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

points, rather than by the spatial dimensions of the search<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

used is a function of both distance <strong>and</strong> direction.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


28 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table A2. Distribution of statistical properties for the percentage of coarse-grained deposits for the <strong>Central</strong> <strong>Valley</strong>, Calfornia, by domain, including variogram <strong>and</strong> variogram<br />

models.<br />

-<br />

<br />

Spatial<br />

Spatial<br />

<strong>Valley</strong><br />

province<br />

province<br />

number2 Variogram Variogram models<br />

Area<br />

Domain (square<br />

miles)<br />

3<br />

Model 1 - Exponential Model 2 - Gaussian<br />

Num-<br />

Anisotropy/<br />

ber of Mean Variance rotation Nugget<br />

Directional scales<br />

Directional scales<br />

Sill<br />

Sill<br />

samples<br />

(degrees)<br />

1 2 3 1 2 3<br />

10 597 1,010 39 1,348 0 1,300 2,400 5,000 15,000 500 800 98,000 328,000 700<br />

Western 11 3,524 6,423 25 820 10 1,100 1,200 16,000 21,000 400 300 131,000 656,000 2,300<br />

<br />

<br />

12 2,588 4,632 32 1,069 15 1,300 1,600 20,000 28,000 400 500 164,000 492,000 500<br />

<br />

<br />

20 1,198 1,466 45 1,029 20 1,000 2,300 16,000 59,000 800<br />

<br />

<br />

508 433 29 820 20 0 2,700 16,000 8,000 200<br />

<br />

Westside 21 - 844 1,343 30 982 47 1,000 2,200 20,000 30,000 500<br />

<br />

384 481 33 1,012 47 1,300 2,000 17,000 39,000 500<br />

absent<br />

22 865 4,470 51 876 31 1,600 1,200 459,000 33,000 600<br />

Joaquin<br />

<br />

2,373 8,931 34 936 31 300 2,100 3,000 4,000 200 600 66,000 164,000 300<br />

<br />

375 330 37 691 35 0 2,200 30,000 20,000 200<br />

488 1,119 36 878 35 1,100 1,500 21,000 21,000 600<br />

498 1,157 46 577 30 1,000 900 26,000 39,000 200<br />

1,027 1,560 47 837 30 1,000 1,600 39,000 30,000 500<br />

2,788 2,562 43 1,042 28 500 2,100 11,000 8,000 300 900 164,000 295,000 2,000<br />

2,500 2,775 41 1,314 28 1,200 2,000 16,000 25,000 700<br />

6,568 374 26 874 33 0 2,900 20,000 20,000 0 9,800 197,000 656,00 197,000<br />

6,568 4,685 35 1,138 33 900 1,400 6,000 4,000 400 1,400 180,000 558,000 400<br />

23 <br />

<br />

<br />

<br />

<br />

24 <br />

<br />

<br />

absent<br />

30 <br />

<br />

<br />

<br />

-<br />

<br />

-


3-D Model of Percentage of Coarse-Grained Texture<br />

<br />

<br />

<br />

<br />

<br />

1 mi 2 <br />

<br />

<br />

).<br />

<br />

<br />

layers 4 <strong>and</strong> 5 (). In order to complete this representa-<br />

<br />

<br />

<br />

<br />

ALTITUDE, IN FEET<br />

1,000<br />

500<br />

NGVD 29<br />

-500<br />

-1,000<br />

-1,500<br />

-2,000<br />

Layer<br />

Thickness<br />

(feet)<br />

Depth to<br />

base outside<br />

Corcoran Clay<br />

(feet)<br />

Hydrogeology 29<br />

Table A3. <strong>Central</strong> <strong>Valley</strong>, California, groundwater flow model<br />

layer thicknesses <strong>and</strong> depths.<br />

<br />

<br />

Texture<br />

figure<br />

1 50 50 <br />

2 100 150 —<br />

3 150 300 <br />

4 301 <br />

5 302 <br />

6 198 500 <br />

7 250 750 —<br />

8 300 1,050 —<br />

9 350 1,400 <br />

10 400 1,800 —<br />

A Cross section along row 355<br />

A'<br />

Layer 1<br />

Layer 2<br />

Layer 3<br />

L<strong>and</strong> surface<br />

Corcoran Clay<br />

Layer 6<br />

Layer 7<br />

Layer 8<br />

Layer 9<br />

Layer 10<br />

Not in model<br />

-2,500<br />

0 30,000 60,000 90,000 120,000 150,000 180,000 210,000 240,000 270,000 300,000<br />

DISTANCE ALONG SECTION, IN FEET<br />

Figure A11. Generalized hydrogeologic section (A–A’) indicating the vertical discretization of the numerical model of the groundwaterflow<br />

system in the <strong>Central</strong> <strong>Valley</strong>, California. Line of section shown on (altitudes are along row 355; layer numbers indicate<br />

model layer).


30 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

Results of Texture Model<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

model (<br />

<br />

<strong>and</strong><br />

<br />

<br />

<strong>and</strong> <br />

because of the data density, is the most detailed layer in the<br />

model (<br />

<br />

the l<strong>and</strong> surface ( <strong>and</strong> -<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<strong>and</strong> ).<br />

<br />

<br />

sediments ( <strong>and</strong> <br />

<br />

<br />

<br />

( <strong>and</strong> <br />

. It also can be related to<br />

<br />

<br />

<br />

domains.<br />

Sacramento <strong>Valley</strong><br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<strong>and</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<strong>and</strong> <br />

-<br />

<br />

<br />

<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong>).<br />

<br />

<br />

-<br />

<br />

<br />

in


A<br />

Layer 1<br />

EXPLANATION<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Percentage of coarse-grained<br />

material > is greater than.<br />

0 to 10<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

7,263 wells have logged data<br />

Wells having logged data<br />

11<br />

Western<br />

Sacramento<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Layer 1<br />

L<strong>and</strong> surface<br />

Not in model<br />

10<br />

Redding<br />

20<br />

Tracy/Delta-<br />

Mendota<br />

Enlarged area<br />

shown<br />

on figure 14<br />

12<br />

Eastern<br />

Sacramento<br />

21<br />

Westside<br />

22<br />

Northern<br />

San Joaquin<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

23<br />

Chowchilla-<br />

Madera<br />

Well locations<br />

24<br />

Kings<br />

Hydrogeology 31<br />

30<br />

Tulare/Kern<br />

Enlarged area<br />

shown<br />

on figure 14<br />

Figure A12. Kriged distribution of coarse-grained deposits for layers 1, 3, Corcoran Clay, 6, <strong>and</strong> 9 of the groundwater-flow model. Inset<br />

shows distribution of wells used in that depth interval.


32 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

B<br />

Layer 3<br />

EXPLANATION<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Percentage of coarse-grained material<br />

> is greater than.<br />

0 to 10<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

5,952 wells have logged data<br />

13,235 depth increments intercepted<br />

Wells having logged data<br />

11<br />

Western<br />

Sacramento<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

L<strong>and</strong> surface<br />

Layer 3<br />

Figure A12. Continued.<br />

Not in model<br />

10<br />

Redding<br />

20<br />

Tracy/Delta-<br />

Mendota<br />

12<br />

Eastern<br />

Sacramento<br />

21<br />

Westside<br />

22<br />

Northern<br />

San Joaquin<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

23<br />

Chowchilla-<br />

Madera<br />

Well locations<br />

24<br />

Kings<br />

30<br />

Tulare/Kern


C<br />

Layer Corcoran Clay<br />

EXPLANATION<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Percentage of coarse-grained material<br />

> is greater than.<br />

0 to 10<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

1,306 wells have logged data<br />

1,534 depth increments intercepted<br />

Wells having logged data<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Corcoran Clay<br />

L<strong>and</strong> surface<br />

Figure A12. Continued.<br />

11<br />

Western<br />

Sacramento<br />

Not in model<br />

10<br />

Redding<br />

20<br />

Tracy/Delta-<br />

Mendota<br />

12<br />

Eastern<br />

Sacramento<br />

21<br />

Westside<br />

22<br />

Northern<br />

San Joaquin<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

23<br />

Chowchilla-<br />

Madera<br />

24<br />

Kings<br />

Hydrogeology 33<br />

Well locations<br />

30<br />

Tulare/Kern


34 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

D<br />

Layer 6 10<br />

EXPLANATION<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Percentage of coarse-grained material<br />

> is greater than.<br />

0 to 10<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

2,007 wells have logged data<br />

8,312 depth increments intercepted<br />

Wells having logged data<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

L<strong>and</strong> surface<br />

Figure A12. Continued.<br />

11<br />

Western<br />

Sacramento<br />

Layer 6<br />

Not in model<br />

Redding<br />

20<br />

Tracy/Delta-<br />

Mendota<br />

12<br />

Eastern<br />

Sacramento<br />

21<br />

Westside<br />

22<br />

Northern<br />

San Joaquin<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

23<br />

Chowchilla-<br />

Madera<br />

Well locations<br />

24<br />

Kings<br />

30<br />

Tulare/Kern


E<br />

Layer 9<br />

EXPLANATION<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Percentage of coarse-grained material<br />

> is greater than.<br />

0 to 10<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

79 wells have logged data<br />

309 depth increments intercepted<br />

Wells having logged data<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

L<strong>and</strong> surface<br />

Figure A12. Continued.<br />

11<br />

Western<br />

Sacramento<br />

Layer 9<br />

Not in model<br />

10<br />

Redding<br />

20<br />

Tracy/Delta-<br />

Mendota<br />

12<br />

Eastern<br />

Sacramento<br />

21<br />

Westside<br />

22<br />

Northern<br />

San Joaquin<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

23<br />

Chowchilla-<br />

Madera<br />

Well locations<br />

24<br />

Kings<br />

Hydrogeology 35<br />

30<br />

Tulare/Kern


36 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Corcoran<br />

Clay<br />

Figure A13. Kriged texture within groundwater-flow model.<br />

EXPLANATION<br />

Percent coarse-grained material—<br />

> is greater than.<br />

0 to 10<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

Approximate extent<br />

of Tulare Lake bed<br />

Inactive in model<br />

Box encompassing<br />

extent of model<br />

Line of cross section<br />

shown on figure 11<br />

(Row 355)


Geomorphic province—<br />

Basin<br />

Delta<br />

Dissected upl<strong>and</strong>s<br />

Sacramento River<br />

flood plains<br />

Fan deposits<br />

Orestimba<br />

Creek<br />

EXPLANATION<br />

Percent coarse-grained<br />

material—<br />

> is greater than.<br />

San Joaquin River<br />

0 to 10<br />

0 50 Miles<br />

0 50 Kilometers<br />

>10 to 20<br />

>20 to 30<br />

>30 to 40<br />

>40 to 50<br />

>50 to 60<br />

>60 to 70<br />

>70 to 80<br />

>80 to 90<br />

>90 to 100<br />

Mokelumne<br />

River<br />

Calaveras<br />

River<br />

Stanislaus River<br />

Major stream<br />

or canal<br />

San Joaquin Basin<br />

fluvial-fan boundaries<br />

Tuolumne River<br />

Merced River<br />

Bear Creek<br />

Chowchilla River<br />

Fresno River<br />

Sacramento River<br />

Kings<br />

River<br />

Kaweah<br />

River<br />

Hydrogeology 37<br />

Sacramento River<br />

flood plains<br />

Figure A14. Distribution of coarse-grained deposits for the upper 50 feet for part of the <strong>Central</strong> <strong>Valley</strong>. The map is overlain with the<br />

major geomorphic provinces of the <strong>Central</strong> <strong>Valley</strong> <strong>and</strong> the fluvial fans of the San Joaquin Basin (modified from Davis <strong>and</strong> others, 1959;<br />

Olmstead <strong>and</strong> Davis, 1961; Jennings, 1977; <strong>and</strong> Weissmann <strong>and</strong> others, 2005).


38 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

COARSE-GRAINED MATERIAL, IN PERCENT<br />

B<br />

COARSE-GRAINED MATERIAL, IN PERCENT<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

San Joaquin <strong>Valley</strong><br />

Sacramento <strong>Valley</strong><br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

CUMULATIVE PROBABILITY<br />

Layer 1<br />

Layer 2<br />

Layer 3<br />

Corcoran Clay<br />

EXPLANATION<br />

Layer 6<br />

Layer 7<br />

Layer 8<br />

Layer 9<br />

Layer 10<br />

Figure A15. Cumulative distributions of kriged sediment textures for model layers in the A, Sacramento <strong>Valley</strong>. B, San Joaquin <strong>Valley</strong><br />

<strong>and</strong> Tulare Basin.


San Joaquin <strong>Valley</strong><br />

<br />

<br />

),<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<strong>and</strong> ). In this<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

the mountain front.<br />

<br />

<strong>and</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> -<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> <br />

<br />

Hydrogeology 39<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

from north to south because of the differences in tectonic basin<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

outlet ( <strong>and</strong> ) is not<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

-


40 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

<strong>and</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

<br />

<strong>and</strong> <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

, , <strong>and</strong> <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(, <strong>and</strong> -<br />

<br />

<strong>and</strong> ).<br />

<br />

<br />

). This is especially true in comparison to<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Hydrologic System<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

). These dams capture


-<br />

<br />

<br />

<br />

<br />

Water supplied from aquifers is a less formal <strong>and</strong> less<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

.<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Climate<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Hydrogeology 41<br />

<br />

(<br />

<br />

months.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

(<br />

<strong>and</strong> -<br />

<br />

<br />

<br />

<br />

). Under the current climatic<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

). Wet periods represent<br />

<br />

<br />

<br />

<br />

median periods <strong>and</strong> drier-than-median periods since the<br />

<br />

-<br />

<br />

(<br />

<br />

<br />

).<br />

<br />

<br />

departure is less in the south ( <strong>and</strong> <br />

<br />

) also


42 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

FLOW RATE, IN THOUSANDS OF ACRE-FEET PER YEAR<br />

B<br />

MEAN PRECIPITATION, IN INCHES PER YEAR<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

"Normal"<br />

to<br />

Dry<br />

"Normal"<br />

to<br />

Dry<br />

Representative Water Year<br />

"Variable"<br />

to<br />

Wet<br />

"Variable"<br />

to<br />

Wet<br />

Dry Wet Dry<br />

Wet<br />

WATER YEAR<br />

EXPLANATION<br />

75 th percentile<br />

(38,200)<br />

Median<br />

(26,300)<br />

Dry Wet Dry<br />

Wet<br />

WATER YEAR<br />

"Variable"<br />

to<br />

Dry<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Sacramento River<br />

Feather River<br />

American River<br />

Representative Water Year<br />

Typical<br />

1975<br />

Yuba River<br />

Cottonwood Creek<br />

Other Sacramento <strong>Valley</strong> streams<br />

Typical<br />

1975<br />

25 th percentile<br />

(18,800)<br />

Kings River<br />

Tuolumne River<br />

Stanislaus River<br />

75 th percentile<br />

(16.8)<br />

Median<br />

(13.0)<br />

Merced River<br />

Kern River<br />

Other San Joaquin <strong>Valley</strong> streams<br />

25 th percentile<br />

(11.0)<br />

"Variable"<br />

to<br />

Dry<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Figure A16. A, Total inflow from 44 gaged streams flowing into the <strong>Central</strong> <strong>Valley</strong>, California, water years 1962–2003.<br />

B, Average annual precipitation in the <strong>Central</strong> <strong>Valley</strong>, California, water years 1962–2003. C, Total surface-water flow into the <strong>Central</strong><br />

<strong>Valley</strong>, California, water years 1962–2003.<br />

Dry<br />

1990<br />

Dry<br />

1990<br />

Wet<br />

1998<br />

Wet<br />

1998


C<br />

Figure A16. Continued.<br />

3.54%<br />

5.45%<br />

S a n J o a q u i n V a l l e y R i v e r s<br />

6.00%<br />

3.24%<br />

2.42%<br />

Sacramento River<br />

Feather River<br />

American River<br />

Yuba River<br />

16.54%<br />

Cottonwood Creek<br />

7.85%<br />

2.17%<br />

6.12%<br />

EXPLANATION<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

20 th <br />

<br />

24.03%<br />

8.95%<br />

S a c r a m e n t o V a l l e y R i v e r s<br />

Kings River<br />

Tuolumne River<br />

Stanislaus River<br />

Merced River<br />

Kern River<br />

13.69%<br />

Other Sacramento <strong>Valley</strong> streams Other San Joaquin <strong>Valley</strong> streams<br />

Hydrogeology 43<br />

<br />

.<br />

There are some notable spatial differences in the cumula-<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

precipitation.


44 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

CUMULATIVE DEPARTURE OF PRECIPITATION, IN INCHES PER YEAR<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

"Variable"<br />

"Variable" "Variable"<br />

Dry Wet to<br />

Wet Dry Wet Dry Wet Dry<br />

to to Dry Wet Dry Wet<br />

Dry<br />

Dry Wet<br />

1875 1885 1895 1905 1915 1925 1935 1945 1955 1965 1975 1985 1995 2005<br />

Red Bluff<br />

Davis<br />

Fresno<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

<br />

TIME, IN YEARS<br />

EXPLANATION<br />

Annual cumulative departure of precipition—<br />

Bakersfield<br />

Pacific Decadal Oscillation (PDO) Index-24 month moving average<br />

Figure A17. Cumulative departure from average annual precipitation at Redding, Davis, Fresno, <strong>and</strong> Bakersfield, California. For<br />

reference, a 24-month moving average of the Pacific Decadal Oscillation Index is also plotted.<br />

"Variable"<br />

to<br />

Dry<br />

-1.0<br />

-2.0<br />

-3.0<br />

<br />

<br />

<strong>and</strong> ).<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

PACIFIC DECADAL OSCILLATION (PDO) INDEX, UNITLESS


CUMULATIVE DEPARTURE OF PRECIPITATION AND<br />

REFERENCE EVAPOTRANSPIRATION, IN INCHES PER YEAR<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

"Variable"<br />

to<br />

Dry<br />

"Variable"<br />

to<br />

Wet<br />

<br />

) <strong>and</strong> is directly dependent on a combina-<br />

<br />

<br />

-<br />

<br />

<br />

).<br />

Dry Wet Dry<br />

Wet<br />

TIME, IN YEARS<br />

Hydrogeology 45<br />

-50<br />

-1.5<br />

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005<br />

EXPLANATION<br />

Annual cumulative departure of<br />

reference evapotranspiration (ETo)—<br />

Red Bluff<br />

Davis<br />

Bakersfield<br />

Annual cumulative departure of precipitation<br />

from PRISM data<br />

Davis<br />

Pacific Decadal Oscillation (PDO) average annual value<br />

"Variable"<br />

to<br />

Dry<br />

Figure A18. Cumulative departure of monthly precipitation (Parameter-elevation Regressions on Independent Slopes Model (PRISM)<br />

data from Davis, California), cumulative departure of the Pacific Decadal Oscillation (PDO) index, <strong>and</strong> cumulative departure of the<br />

monthly reference evapotranspiration (ETo) values (gridded values of California Irrigation Management Information System’s (CIMIS)<br />

stations from Redding, Davis, <strong>and</strong> Bakersfield, 1960–2004).<br />

-0.5<br />

-1.0<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

PACIFIC DECADAL OSCILLATION (PDO) INDEX, UNITLESS


46 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

Surface Water<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

(<br />

<br />

-<br />

). North<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

much smaller (<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

acre-ft/yr (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

).<br />

<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

but also is controlled by other factors. These factors may


CUMULATIVE DEPARTURE OF STREAMFLOW DIVERSION, IN ACRE-FEET PER YEAR<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

Cool (Negative) Warm (Positive)<br />

Cool<br />

(Negative)<br />

"Variable"<br />

to<br />

Dry<br />

"Variable"<br />

to<br />

Wet<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

). In addition,<br />

<br />

<br />

Dry Wet<br />

Dry<br />

TIME, IN YEARS<br />

Groundwater<br />

Hydrogeology 47<br />

"Variable"<br />

to<br />

Dry<br />

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005<br />

Cool<br />

(Negative)<br />

EXPLANATION<br />

Periods of Pacific Decadal Oscillation [PDO]<br />

(Mantua, 2006)<br />

Bear River Diversion cumulative departure average<br />

Cumulative annual temperature difference, 1964-2003<br />

Pacific Decadal Oscillation (PDO) average annual value<br />

Figure A19. Cumulative departure of streamflow diversions from the Bear River by South Sutter Water District, California; cumulative<br />

annual temperature from California Irrigation Management Information System’s (CIMIS) stations at Davis <strong>and</strong> the Pacific Decadal<br />

Oscillation (PDO) index, 1960–2004.<br />

Wet<br />

-2.0<br />

-4.0<br />

-6.0<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

CUMULATIVE ANNUAL TEMPERATURE DIFFERENCE, IN DEGREES FAHRENHEIT<br />

PDO-INDEX, UNITLESS


48 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Predevelopment Recharge, Discharge,<br />

Water Levels, <strong>and</strong> Flows<br />

<br />

<br />

-<br />

<br />

<br />

<strong>and</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

basin.<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

). Other<br />

<br />

<br />

(<br />

<br />

Groundwater/Surface-Water Interaction<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<strong>Aquifer</strong>-System Storage<br />

-<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

-<br />

<br />

-<br />

<br />

serious consequences. Therefore, this type of calculation of


700<br />

500<br />

600<br />

400<br />

200<br />

160<br />

0 50 100 Miles<br />

240<br />

360<br />

320<br />

120<br />

280<br />

40<br />

240<br />

160<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

0<br />

40<br />

40<br />

160<br />

80<br />

200<br />

200<br />

160<br />

160<br />

240<br />

160<br />

120<br />

240<br />

280<br />

400<br />

200<br />

240<br />

320<br />

400<br />

500<br />

700<br />

320<br />

200<br />

360<br />

EXPLANATION<br />

Predevelopment water levels<br />

Water-level altitude,<br />

in feet above NGVD 29<br />

Figure A20. Pre-development groundwater map (modified from Williamson <strong>and</strong> others, 1989).<br />

360<br />

360<br />

280<br />

360<br />

360<br />

0<br />

1 to 50<br />

51 to 100<br />

101 to 200<br />

201 to 400<br />

401 to 800<br />

Historical lakes<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

320<br />

360<br />

400<br />

400<br />

400<br />

500<br />

Hydrogeology 49


50 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

EXPLANATION<br />

Vegetation types—<br />

Alkali desert scrub<br />

Major streams<br />

Figure A21. Distribution of A, Pre-1900 l<strong>and</strong>-use patterns (modified from California State University, Chico, 2003), B, l<strong>and</strong>-use patterns<br />

in 2000 (California Department of Water Resources, 2000) for the <strong>Central</strong> <strong>Valley</strong>, California.<br />

Aquatic<br />

Grassl<strong>and</strong><br />

Other floodplain habitat<br />

Riparian<br />

<strong>Valley</strong>/Foothill hardwood<br />

Wetl<strong>and</strong><br />

<strong>Central</strong> <strong>Valley</strong> boundary


B<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure A21. Continued.<br />

Alfalfa<br />

Almond <strong>and</strong> pistachio<br />

Corn<br />

Cotton<br />

Cucurbits<br />

Dry beans<br />

Fallow <strong>and</strong> idle<br />

Grain<br />

EXPLANATION<br />

L<strong>and</strong> use or vegetation types—<br />

Native classes<br />

Not surveyed<br />

Onions <strong>and</strong> garlic<br />

Other decidious<br />

Major streams<br />

Hydrogeology 51<br />

Other field<br />

Other truck<br />

Pasture<br />

Potatoes<br />

Rice<br />

Safflower<br />

Subtropical<br />

Sugar beets<br />

Tomatoes<br />

Urban<br />

Vineyard<br />

Water<br />

<strong>Central</strong> <strong>Valley</strong> boundary


52 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Stony Creek<br />

Sacramento<br />

Cache Creek<br />

Putah Cr ek<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

1<br />

2<br />

3<br />

6<br />

4<br />

5<br />

Feather<br />

9<br />

American<br />

Mokelumne<br />

Calaveras<br />

Stanislaus<br />

Tuolumne<br />

San Joaquin<br />

San Joaquin<br />

Kaweah River<br />

Figure A22. Distribution of selected streams <strong>and</strong> canals, <strong>and</strong> average estimated gains <strong>and</strong> losses for selected segments (Mullen <strong>and</strong><br />

Nady, 1985).<br />

Merced<br />

STREAMFLOW<br />

7 7<br />

8<br />

11<br />

12<br />

10<br />

Deadman's Creek<br />

14<br />

13<br />

GAIN<br />

LOSS<br />

Fresno<br />

Fresno Slough<br />

EXPLANATION<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Selected streams <strong>and</strong> canals<br />

Groundwater/surface-water interaction,<br />

in acre-feet per year<br />

16<br />

-54.97 to -44.42<br />

-44.39 to -14.81<br />

-14.78 to -1.48<br />

-1.45 to 0<br />

0.03 to 1.48<br />

1.51 to 14.81<br />

14.84 to 44.42<br />

44.45 to 113.07<br />

Kings River<br />

15<br />

19<br />

17<br />

18<br />

20<br />

Kern River<br />

21<br />

Out of groundwater<br />

system<br />

Into groundwater<br />

system<br />

California Department of Water Resources<br />

water-balance subregion <strong>and</strong> identifier.


Water Budget<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

per year (<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

pired<br />

by plants (<br />

Precipitation<br />

(12.4)<br />

(1.5)<br />

(10.9)<br />

<strong>Central</strong> <strong>Valley</strong><br />

Surface Processes<br />

Evapotranspiration<br />

(12.6)<br />

<strong>Central</strong> <strong>Valley</strong><br />

<strong>Aquifer</strong><br />

(1.7)<br />

Acknowledgments 53<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

Acknowledgments<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

others.<br />

Surface-Water<br />

Gain (0.3)<br />

[sw out]<br />

Surface-Water<br />

Loss (0.5)<br />

[sw in]<br />

Figure A23. Pre-development water budget <strong>and</strong> post-development water budget. Values are in millions of acre-feet per year.


54 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

References Cited<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

44 p.<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

16, 2009, at <br />

<br />

<br />

<br />

<br />

<br />

<br />

2009, at <br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


References Cited 55<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

http://<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

at <br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-


56 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

561 p.<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

-<br />

<br />

974 p.<br />

<br />

<br />

<br />

<br />

<br />

<br />

1497, 287 p.<br />

<br />

<br />

-<br />

-<br />

<br />

24 p.<br />

<br />

-<br />

<br />

54 p.


References Cited 57<br />

-<br />

<br />

<br />

-<br />

<br />

2009, at <br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-


Chapter B. Groundwater Availability in<br />

California’s <strong>Central</strong> <strong>Valley</strong><br />

By Claudia C. Faunt, Kenneth Belitz, <strong>and</strong> R<strong>and</strong>all T. Hanson<br />

Introduction<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

, this report). The<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Development <strong>and</strong> the<br />

Hydrologic System<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

in. in places (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

help rectify the imbalance.<br />

Surface-Water <strong>and</strong> Groundwater<br />

Development History<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


60 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

basins (<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

season.<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

-<br />

<br />

<br />

).<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

L<strong>and</strong> Use<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


Agricultural L<strong>and</strong> Use<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

19 th <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

tomatoes, melons, squash <strong>and</strong> lettuce) crops. The tomato<br />

<br />

<br />

Water, soils, microclimate, pests, economic <strong>and</strong> historical<br />

<br />

<br />

ley<br />

(<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Development <strong>and</strong> the Hydrologic System 61<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Urban L<strong>and</strong> Use<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

threefold from about 0.6 to nearly 2 million acre-ft/yr, despite


62 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

Development <strong>and</strong> Changes to the<br />

Hydrologic Budget<br />

<br />

<br />

<strong>and</strong> ). <br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

system.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

paction<br />

<strong>and</strong> associated l<strong>and</strong> subsidence.<br />

<br />

-<br />

<br />

system (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

study (). Where necessary, the results of simulations<br />

<br />

<br />

Hydrologic Budget Components<br />

-<br />

<br />

<strong>and</strong> <strong>and</strong> tabulated in <strong>and</strong> <br />

<br />

components pertain to both systems (). The l<strong>and</strong>scape<br />

<br />

( <strong>and</strong> <strong>and</strong> <strong>and</strong> <br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


Groundwater<br />

Pumpage<br />

(9.3)<br />

Agricultural<br />

(8.6)<br />

Municipal<br />

(1.1)<br />

Flow through<br />

Boreholes<br />

(0.4)<br />

Precipitation<br />

(15.8)<br />

<strong>Central</strong> <strong>Valley</strong><br />

Surface Processes<br />

Groundwater Recharge from<br />

Irrigation <strong>and</strong> Precipitation<br />

(7.8)<br />

<strong>Central</strong> <strong>Valley</strong><br />

<strong>Aquifer</strong><br />

Change in Storage<br />

(including Subsidence)<br />

(1.4)<br />

—Indicates loss of storage in aquifer system<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 63<br />

Evapotranspiration<br />

(25.6)<br />

INFLOW<br />

(26.3)<br />

Surface-Water<br />

Deliveries (10.2)<br />

Runoff<br />

(1.1)<br />

Surface-Water<br />

System<br />

Groundwater<br />

Flow to Delta (0.1)<br />

Surface-Water<br />

Gain from<br />

Groundwater<br />

System (2.2)<br />

Surface-Water<br />

Loss from<br />

Groundwater<br />

System (2.5)<br />

OUTFLOW<br />

to DELTA<br />

(27.2)<br />

Figure B1. Average water budget for water years 1962–2003. This budget includes the l<strong>and</strong>scape <strong>and</strong> groundwater components <strong>and</strong><br />

their linkages. Values in millions of acre-ft/yr. A diagram showing the pre-development water budget is shown in .


64 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

21%<br />

10%<br />

30%<br />

39%<br />

Simulated l<strong>and</strong>scape water budget<br />

INPUT OUTPUT<br />

Typical Year 1975<br />

Dry Year 1990<br />

35%<br />

10%<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

14.53<br />

11.28<br />

7.93<br />

3.93<br />

30 30<br />

Wet Year 1998<br />

7%<br />

10%<br />

19%<br />

25%<br />

30%<br />

64%<br />

Precipitation<br />

Surface-water<br />

deliveries<br />

MILLIONS OF ACRE-FEET<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

10.12<br />

30.18<br />

8.36<br />

8.95<br />

Groundwater<br />

pumpage<br />

11.69<br />

4.54<br />

Evapotranspiration<br />

from ground water<br />

3.19<br />

1%<br />

EXPLANATION<br />

3%<br />

29%<br />

21%<br />

40%<br />

5%<br />

68%<br />

78%<br />

55%<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Evapotranspiration Runoff<br />

Deep percolation<br />

Figure B2. Simulated l<strong>and</strong>scape budget for the <strong>Central</strong> <strong>Valley</strong> for typical (1975), dry (1990), <strong>and</strong> wet (1998) years.<br />

3.33<br />

25.52<br />

25.99<br />

25.85<br />

1.02<br />

0.49<br />

2.14<br />

10.99<br />

6.92<br />

18.65


Simulated groundwater budget<br />

INPUT OUTPUT<br />

EXPLANATION<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 65<br />

Typical Year 1975<br />

51%<br />

2%<br />

32%<br />

6% 0%<br />

9%<br />

Dry Year 1990<br />

55%<br />

Wet Year 20.86<br />

1998<br />

0%<br />

38%<br />

4%<br />

15%<br />

25%<br />

43%<br />

3%<br />

10%<br />

1%<br />

5%<br />

0%<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

20<br />

16<br />

12<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

8<br />

4<br />

0<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

6.50<br />

2.78<br />

0.03<br />

0.06<br />

0.01<br />

1.13<br />

0.58<br />

1.47<br />

1.90<br />

1.11<br />

7.46<br />

10.19<br />

6.29<br />

18.14<br />

Surface-water loss to<br />

groundwater system<br />

Recharge from<br />

l<strong>and</strong>scape system<br />

Intra-borehole flow<br />

0.44<br />

0.39<br />

37%<br />

43%<br />

27%<br />

11%<br />

13%<br />

9%<br />

18%<br />

33%<br />

7% 0%<br />

10%<br />

6%<br />

32%<br />

10%<br />

38%<br />

4% 2%<br />

0%<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

7.67<br />

9.43<br />

0.11<br />

0.03<br />

Groundwater lost<br />

to streams<br />

Evapotranspiration from<br />

groundwater<br />

Pumpage<br />

Figure B3. Simulated groundwater budget for the <strong>Central</strong> <strong>Valley</strong> for typical (1975), dry (1990), <strong>and</strong> wet (1998) years.<br />

0.31<br />

MILLIONS OF ACRE-FEET<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

8.83<br />

0.45<br />

1.66<br />

2.99<br />

1.00<br />

2.36<br />

1.64<br />

4.12<br />

3.05<br />

2.00<br />

2.65<br />

8.72<br />

12.60<br />

6.18


66 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table B1. Summary of the simulated l<strong>and</strong>scape budget for average (water years 1962-2003), typical (1975), dry (1990), <strong>and</strong> wet (1998)<br />

years for the <strong>Central</strong> <strong>Valley</strong>, California.<br />

<br />

<br />

Precip-<br />

itation<br />

Input to l<strong>and</strong>scape system Output from l<strong>and</strong>scape system<br />

Surface<br />

surface-water<br />

deliveries<br />

Groundwater<br />

pumpage<br />

Evapotranspiration<br />

from<br />

groundwater<br />

Evapotranspiration<br />

Runoff<br />

Deep percolation<br />

Ground-<br />

water<br />

recharge<br />

15.8 10.2 8.6 3.7 25.6 1.1 11.4 7.7<br />

Typical 14.5 11.3 7.9 3.9 25.5 1 11 7.0<br />

10.1 8.4 11.7 3.3 26 0.5 6.9 3.6<br />

Wet 30.2 8.9 4.5 3.2 25.8 2.1 18.6 15.4<br />

Table B2. Summary of the simulated groundwater budget for average (water years 1962-2003), typical (1975), dry (1990), <strong>and</strong> wet (1998)<br />

years for the <strong>Central</strong> <strong>Valley</strong>, California.<br />

-<br />

]<br />

Storage from<br />

specific yield <strong>and</strong><br />

compressibility of<br />

water<br />

Elastic <strong>and</strong> inelastic<br />

storage<br />

Input to the groundwater system<br />

Stream leakage to<br />

groundwater<br />

Recharge from<br />

l<strong>and</strong>scape process<br />

Intra-borehole<br />

flow<br />

General head<br />

boundaries<br />

8.1 1 2.6 10.7 0.4 0.0<br />

Typical 6.5 1.1 1.9 10.2 0.4 0.0<br />

2.8 0.6 1.1 6.3 0.4 0.1<br />

Wet 20.9 1.5 7.5 18.1 0.3 0.0<br />

Output from the groundwater system<br />

Storage<br />

(specific yield <strong>and</strong><br />

compressibility<br />

of water)<br />

Storage<br />

(elastic <strong>and</strong><br />

inelastic<br />

compaction)<br />

Groundwater<br />

inflow to<br />

streams<br />

Discharge<br />

from l<strong>and</strong>scape<br />

process<br />

Pumpage<br />

General head<br />

boundaries<br />

8.5 2 2.2 3. 9.7 0.1<br />

Typical 7.7 1.7 2.4 3.1 8.7 0.1<br />

8.8 3 1.6 2.6 12.6 0<br />

Wet 18.9 1 4.1 2.6 6.2 0.5<br />

Net in relation to groundwater availability<br />

Storage from<br />

specific yield <strong>and</strong><br />

compressibility of<br />

water<br />

Elastic <strong>and</strong> inelastic<br />

storage<br />

Stream<br />

interaction<br />

Recharge<br />

from l<strong>and</strong>scape<br />

process<br />

Pumpage<br />

General head<br />

boundaries<br />

0.3 7.8 <br />

Typical 7.1 <br />

3.7 0<br />

Wet 12 0.5 3.3 15.5 <br />

Recharge <strong>and</strong> Discharge<br />

<br />

<br />

<br />

-<br />

<br />

times (Williamson <strong>and</strong> others, 1989).<br />

<br />

<br />

<br />

(


<strong>and</strong> <br />

<br />

<br />

-<br />

<br />

mechanisms.<br />

-<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<strong>and</strong> -<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<strong>and</strong> .<br />

<br />

<br />

<br />

10.2 million acre-ft/yr ( <strong>and</strong> <br />

<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 67<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

proportion increases.<br />

<strong>Aquifer</strong>-System Storage<br />

<br />

-<br />

<br />

system ( <strong>and</strong> <strong>and</strong> <br />

-<br />

<br />

). The principal areas of historical<br />

<br />

. <br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


68 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

S a c r a m e n t o V a l l e y<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Delta<br />

S a n J o a q u i n V a l l e y<br />

EXPLANATION<br />

Estimated change in hydraulic head,<br />

predevelopment to 1961, in feet—<br />

Rise of 0 to 40<br />

Decline from 0 to 40<br />

Decline from 40 to 80<br />

Decline from 80 to 120<br />

Decline from 120 to 200<br />

Decline from 200 to 300<br />

Decline from 300 to 400<br />

Decline of more than 400<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Water-balance subregion<br />

Tulare<br />

Basin<br />

Figure B4. A, Estimated change in hydraulic head in upper part of the aquifer system from 1860 to 1961 (modified from Williamson <strong>and</strong><br />

others, 1989; Bertoldi <strong>and</strong> others, 1991). B, Simulated change in hydraulic head in lower part of the aquifer system from spring 1962 to<br />

spring 2003.


B<br />

01_01645<br />

03b06329<br />

02_05172<br />

04_07807<br />

06b12975<br />

06_14809<br />

Delta<br />

07_13870<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure B4. Continued.<br />

05_10854<br />

08_14958<br />

09_19824<br />

11_21412<br />

10_25517<br />

12_22972<br />

14_28350<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 69<br />

13_25144<br />

14_30806<br />

15_29737<br />

Simulated change in hydraulic head,<br />

1961 to 2003, in feet—<br />

11_21412<br />

16_30057<br />

15_34255<br />

18_33084<br />

19_37289<br />

19_38742<br />

EXPLANATION<br />

Tulare<br />

Basin<br />

Rise of greater than 400<br />

Rise of 300 to 400<br />

Rise of 200 to 300<br />

Rise of 120 to 200<br />

Rise of 80 to 120<br />

Rise of 40 to 80<br />

Rise of 0 to 40<br />

Decline from 0 to 40<br />

Decline from 40 to 80<br />

Decline from 80 to 120<br />

Decline from 120 to 200<br />

Decline from 200 to 300<br />

Decline from 300 to 400<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Water-balance subregion<br />

Hydrograph well <strong>and</strong> identifier<br />

See figure 13 for hydrographs<br />

20_37212


70 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

aquifer system.<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

permanent compaction <strong>and</strong> l<strong>and</strong> subsidence, can accompany<br />

<br />

<br />

<br />

-<br />

<br />

<br />

This is discussed in more detail in the section of this report<br />

entitled “.”<br />

<br />

<br />

<strong>and</strong><br />

<strong>and</strong> <br />

).<br />

<br />

1.4 million acre-ft. In dry years, about 9.0 million acre-ft of<br />

<br />

).<br />

<br />

<br />

<br />

Intra-Annual Variations in Typical, Dry, <strong>and</strong> Wet<br />

Years<br />

<br />

<br />

-<br />

-<br />

),<br />

<br />

<br />

<br />

<br />

().<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

-<br />

<br />

<br />

<br />

<br />

Water pumped from the aquifer system may not be<br />

<br />

-<br />

<br />

from precipitation <strong>and</strong> streams. In other areas, replenishment<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).


NET MONTHLY CHANGE IN GROUNDWATER BUDGET, IN MILLIONS OF ACRE-FEET PER YEAR<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

Typical Year - 1975<br />

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP<br />

Dry Year - 1990<br />

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP<br />

Wet Year - 1998 (Note scale change)<br />

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP<br />

MONTH<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 71<br />

Figure B5. Monthly groundwater budget for the <strong>Central</strong> <strong>Valley</strong> for a dry year (1990), typical year (1975), <strong>and</strong> wet year (1998). Values are<br />

relative to water availability. Hence, an increase in storage is shown as a positive value.<br />

A<br />

B<br />

C<br />

EXPLANATION<br />

Net groundwater budget<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

Groundwater recharge from<br />

l<strong>and</strong>scape<br />

Stream interaction<br />

Pumpage


72 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Temporal Variation in the Hydrologic Budget<br />

<br />

-<br />

<br />

<br />

<br />

<br />

tation<br />

(<br />

the same climatic pattern as the precipitation (<br />

<br />

<br />

<br />

<br />

<strong>and</strong><br />

). -<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

). This partly is a result of an<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> <br />

<br />

<br />

-<br />

<br />

(<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

).


A<br />

MILLIONS OF ACRE-FEET PER YEAR<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure C8<br />

4/61-3/68<br />

"Variable"<br />

to<br />

Dry<br />

Representative water year<br />

Figure C9<br />

4/68-3/78<br />

"Variable"<br />

to<br />

Wet<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Time frame l<strong>and</strong>-use maps were applied, from Chapter C<br />

Typical<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 73<br />

Figure C10<br />

4/78-3/93<br />

Dry Wet Dry<br />

Wet<br />

Agricultural pumping<br />

WATER YEAR<br />

EXPLANATION<br />

Surface-water deliveries<br />

Delivery requirement<br />

L<strong>and</strong>scape recharge<br />

Figure C11<br />

4/93-3/99<br />

Dry Wet<br />

Figure C12<br />

4/99-9/03<br />

"Variable"<br />

to<br />

Dry<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Figure B6. A, Annual delivery requirement, l<strong>and</strong>scape recharge, surface-water deliveries, <strong>and</strong> agricultural pumpage. B, Annual<br />

groundwater withdrawals for agricultural <strong>and</strong> urban use for the entire <strong>Central</strong> <strong>Valley</strong> between 1962 <strong>and</strong> 2003. Other than urban<br />

pumpage, all values are simulated by the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model (CVHM) (). Urban pumpage compiled by California<br />

Department of Water Resources (C. Brush, California Department of Water Resources, written commun., February 21, 2007).<br />

represents a steady increase from less than 5 percent in 1962 to<br />

-<br />

<br />

<br />

urban uses ( <strong>and</strong> <strong>and</strong> ).


74 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

B<br />

SIMULATED PUMPAGE, IN MILLIONS OF ACRE-FEET PER YEAR<br />

20<br />

15<br />

10<br />

5<br />

"Variable"<br />

to<br />

Dry<br />

"Variable"<br />

to<br />

Wet<br />

<br />

<br />

system. <br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> inelastic compaction. <br />

<br />

<br />

<br />

<strong>and</strong> <br />

Dry Wet<br />

Dry<br />

Wet<br />

"Variable"<br />

to<br />

Dry<br />

0<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Figure B6. Continued.<br />

WATER YEAR<br />

EXPLANATION<br />

Simulated pumpage—<br />

Total<br />

Urban<br />

Agricultural<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

<br />

-<br />

<strong>and</strong> ).


ANNUAL CHANGE IN GROUNDWATER AVAILABILITY, IN MILLIONS OF ACRE-FEET PER YEAR<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

"Variable"<br />

to<br />

Dry<br />

<br />

mal<br />

precipitation () (fourth driest <strong>and</strong> the driest year<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 75<br />

Period of<br />

Period of growth of water supplies Period of abundance Period of reduced supplies<br />

drought<br />

Representative water year<br />

"Variable"<br />

to<br />

Wet<br />

Typical<br />

Available water resources<br />

Dry Wet Dry<br />

Wet<br />

WATER YEAR<br />

EXPLANATION<br />

Net groundwater budget<br />

Dry<br />

Wet<br />

"Variable"<br />

to<br />

Dry<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Groundwater flow<br />

to Delta<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

Stream interaction<br />

L<strong>and</strong>scape recharge<br />

Pumpage<br />

Figure B7. Simulated groundwater budget changes between water years 1962 <strong>and</strong> 2003 for the <strong>Central</strong> <strong>Valley</strong>, California.<br />

<br />

(


76 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

NET ANNUAL CHANGE IN STORAGE, IN MILLIONS OF ACRE-FEET PER YEAR<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

"Variable"<br />

to<br />

Dry<br />

Representative water year<br />

"Variable"<br />

to<br />

Wet<br />

Typical<br />

Figure B8. Simulated annual changes in aquifer-system storage between water years 1962 <strong>and</strong> 2003 for the <strong>Central</strong> <strong>Valley</strong>, California.<br />

<br />

-<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Dry Wet Dry<br />

Wet<br />

WATER YEAR<br />

EXPLANATION<br />

Dry Wet<br />

"Variable"<br />

to<br />

Dry<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

<br />

).<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<strong>and</strong> -


CUMULATIVE CHANGE IN GROUNDWATER STORAGE, IN MILLIONS OF ACRE-FEET<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

"Variable"<br />

to<br />

Dry<br />

Representative water year<br />

"Variable"<br />

to<br />

Wet<br />

Typical<br />

<br />

-<br />

<br />

<strong>and</strong> <br />

<br />

<br />

<br />

-<br />

<br />

<br />

<strong>and</strong><br />

, , <strong>and</strong> <br />

<br />

acre-ft in the mid-1990s ().<br />

Dry<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 77<br />

Wet Wet<br />

WATER YEAR<br />

EXPLANATION<br />

Dry<br />

Dry Wet<br />

"Variable"<br />

to<br />

Dry<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Sacramento<br />

<strong>Central</strong> <strong>Valley</strong> Overall<br />

By region<br />

Delta <strong>and</strong> Eastside Streams<br />

San Joaquin Basin<br />

Tulare Basin<br />

Figure B9. Simulated cumulative annual changes in aquifer-system storage between water years 1962 <strong>and</strong> 2003 for the <strong>Central</strong> <strong>Valley</strong>,<br />

California.<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

about 5.7 million acre-ft/yr (<br />

-


78 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table B3. Selected average annual hydrologic budget components for water years 1962–2003 for each of the 21 water balance areas<br />

in the <strong>Central</strong> <strong>Valley</strong>, California.<br />

<br />

Water-balance subregion<br />

Area<br />

(square<br />

miles)<br />

Net storage<br />

from spe-<br />

cific yield <strong>and</strong><br />

compressibility<br />

of<br />

water 1<br />

Net elastic<br />

<strong>and</strong><br />

inelastic storage<br />

1<br />

rates in the simulation period of 3.4 million acre-ft/year in<br />

2001 ( <strong>and</strong> <br />

<br />

-<br />

<br />

<br />

<strong>and</strong> <br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Net<br />

stream<br />

leakage 2<br />

Net<br />

pumpage<br />

Net<br />

recharge<br />

from l<strong>and</strong>scape<br />

3<br />

Precip-<br />

itation<br />

Evapo-<br />

trans-<br />

piration<br />

Surface-<br />

water<br />

deliveries<br />

1 611 36,000 13,000 45,000 453,000 1,063,000 547,000 46,000<br />

2 1,163 23,000 557,000 768,000 1,496,000 1,269,000 129,000<br />

3 1,112 3,000 49,000 508,000 1,125,000 1,300,000 717,000<br />

4 560 0 6,000 562,000 635,000 78,000<br />

5 957 65,000 466,000 1,200,000 1,101,000 439,000<br />

6 1,044 10,000 34,000 506,000 522,000 1,137,000 1,315,000 329,000<br />

7 534 2,000 4,000 186,000 222,000 590,000 512,000 172,000<br />

Sacramento <strong>Valley</strong> 5,981 –99,000 52,000 1,348,000 1,414,000 2,920,000 7,173,000 6,6799,000 1,910,000<br />

Eastside Streams (8) 1,362 –26,000 7,000 95,000 850,000 721,000 1,365,000 1,444,000 205,000<br />

Delta (9) 1,026 –218,000 3,000 705,000 467,000 –200,000 975,000 1,603,000 64,000<br />

10 1,083 29,000 64,000 60,000 89,000 588,000 1,465,000 983,000<br />

11 664 0 85,000 251,000 509,000 901,000 643,000<br />

12 540 1,000 39,000 45,000 131,000 384,000 702,000 440,000<br />

13 1,648 43,000 67,000 163,000 754,000 474,000 1,092,000 2,233,000 936,000<br />

San Joaquin Basin 3,935 –70,000 97,000 168,000 944,000 945,000 2,573,000 5,301,000 3,002,000<br />

14 1,071 179,000 165,000 6,000 934,000 418,000 432,000 1,631,000 716,000<br />

15 1,423 26,000 146,000 239,000 1,603,000 708,000 607,000 2,225,000 757,000<br />

16 478 89,000 35,000 33,000 202,000 212,000 299,000 518,000 358,000<br />

17 569 54,000 28,000 170,000 445,000 348,000 358,000 852,000 442,000<br />

18 1,358 158,000 198,000 104,000 1,135,000 710,000 715,000 2,237,000 821,000<br />

19 1,365 85,000 133,000 0 754,000 334,000 494,000 1,275,000 367,000<br />

20 705 74,000 92,000 19,000 252,000 240,000 295,000 892,000 610,000<br />

21 1,105 83,000 81,000 130,000 324,000 272,000 414,000 1,333,000 1,096,000<br />

Tulare Basin 8,074 748,000 878,000 701,000 5,649,000 3,188,000 3,614,000 10,963,000 5,167,000<br />

Total 20,378 300,000 1,000,000 300,000 9,300,000 7,600,000 15,700,000 25,900,000 10,300,000<br />

1 <br />

<br />

2 <br />

<br />

3 <br />

<br />

<br />

<br />

system ( <strong>and</strong> ).<br />

<br />

<br />

<br />

declines (<br />

<br />

<br />

<br />

<br />

<br />

indicates a net loss of 57.7 million acre-ft from aquifer-system<br />

, ).


Spatial Variation in the Hydrologic Budget<br />

tially<br />

( <strong>and</strong> , <strong>and</strong> <br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

( <strong>and</strong><strong>and</strong><br />

<br />

<br />

-<br />

<br />

<br />

() ( <strong>and</strong> <br />

<br />

<br />

( <strong>and</strong> <strong>and</strong> <br />

<br />

<br />

<br />

<br />

<strong>and</strong> ). In the mid-1970s, there<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

.<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 79<br />

Water Levels <strong>and</strong> Groundwater Flow<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

tions<br />

(


80 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

3%<br />

21%<br />

MILLIONS OF ACRE-FEET<br />

Sacramento<br />

45%<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

MILLIONS OF ACRE-FEET<br />

5% 0%0%<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

26%<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

MILLIONS OF ACRE-FEET<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-0.29<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

2<br />

1<br />

3<br />

0<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-0.03<br />

-1.66<br />

1<br />

2<br />

3<br />

2.88<br />

6<br />

4<br />

-1.37<br />

5<br />

6<br />

7<br />

MILLIONS OF ACRE-FEET<br />

-0.18<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

MILLIONS OF ACRE-FEET<br />

EXPLANATION<br />

Net annual groundwater budget,<br />

water years 1962-2003<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Flow of groundwater<br />

to Delta<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

Stream interaction<br />

L<strong>and</strong>scape recharge<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

1<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

Pumpage<br />

Flow between regions or<br />

water-balance subregion<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Water-balance subregion<br />

boundary <strong>and</strong> identifier<br />

Figure B10. Average annual groundwater budget for the A, Sacramento <strong>Valley</strong>. B, Delta <strong>and</strong> Eastside Streams. C, San Joaquin <strong>Valley</strong>.<br />

D, Tulare Basin. Schematic bar charts of average annual groundwater budget for the 21 water-balance subregions (WBSs) in the<br />

<strong>Central</strong> <strong>Valley</strong> also are shown.<br />

4<br />

7<br />

5


B<br />

MILLIONS OF ACRE-FEET<br />

Delta <strong>and</strong><br />

Eastside Streams<br />

1.0<br />

0.5<br />

45%<br />

2%<br />

13%<br />

3%<br />

26%<br />

11%<br />

0%<br />

MILLIONS OF ACRE-FEET<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

0.05<br />

-0.09<br />

9<br />

0.0 0.5<br />

-0.5<br />

-1.0<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure B10. Continued.<br />

9<br />

0.00<br />

0.65<br />

8<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 81<br />

0.28<br />

-1.12<br />

0.32<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.0<br />

-0.5<br />

-1.0<br />

EXPLANATION<br />

Net annual groundwater budget,<br />

water years 1962-2003<br />

8<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Flow of groundwater<br />

to Delta<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

Stream interaction<br />

L<strong>and</strong>scape recharge<br />

Pumpage<br />

Flow between regions or<br />

water-balance subregion<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Water-balance subregion<br />

boundary <strong>and</strong> identifier<br />

8


82 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

C<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

13%<br />

37%<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

San Joaquin<br />

3%<br />

0%<br />

1% 2%<br />

44%<br />

Figure B10. Continued.<br />

MILLIONS MILLIONS OF OF ACRE-FEET<br />

ACRE-FEET<br />

4<br />

33<br />

22<br />

11<br />

00<br />

-1 -1<br />

-2 -2<br />

-3 -3<br />

-4 -4<br />

-5 -5<br />

-0.04<br />

0 50 100 Miles<br />

11<br />

10<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

0<br />

11<br />

-0.02<br />

12<br />

10<br />

0.04<br />

13<br />

0.71<br />

-0.60<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-0.21<br />

MILLIONS OF ACRE-FEET<br />

EXPLANATION<br />

Net annual groundwater budget,<br />

water years 1962-2003<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

11<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Flow of groundwater<br />

to Delta<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

Stream interaction<br />

L<strong>and</strong>scape recharge<br />

Pumpage<br />

Flow between regions or<br />

water-balance subregion<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Water-balance subregion<br />

boundary <strong>and</strong> identifier<br />

12<br />

13


D<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

50%<br />

MILLIONS OF ACRE-FEET<br />

1%<br />

MILLIONS OF ACRE-FEET<br />

Tulare<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

8%<br />

31%<br />

Figure B10. Continued.<br />

0%<br />

5%<br />

5%<br />

19<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-0.88<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

15<br />

14<br />

0<br />

-0.49<br />

14<br />

21<br />

0.50<br />

16<br />

15<br />

MILLIONS OF ACRE-FEET<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 83<br />

19<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

3.26<br />

17<br />

18<br />

-5.20<br />

20<br />

21<br />

0.06<br />

MILLIONS OF ACRE-FEET<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

20<br />

EXPLANATION<br />

Net annual groundwater budget,<br />

water years 1962-2003<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

Flow of groundwater<br />

to Delta<br />

Elastic <strong>and</strong> inelastic<br />

matrix storage<br />

Stream interaction<br />

L<strong>and</strong>scape recharge<br />

MILLIONS OF ACRE-FEET<br />

MILLIONS OF ACRE-FEET<br />

15<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

Pumpage<br />

Flow between regions or<br />

water-balance subregion<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Water-balance subregion<br />

boundary <strong>and</strong> identifier<br />

16<br />

17<br />

18


84 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

depth of permeable aquifer material <strong>and</strong> by the quality of the<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

NET ANNUAL PUMPAGE AND FLOW THROUGH MULTI-NODE WELLS,<br />

IN MILLIONS OF ACRE-FEET PER YEAR<br />

1.0<br />

0<br />

-1.0<br />

-2.0<br />

-3.0<br />

-4.0<br />

"Variable"<br />

to Dry<br />

Representative water year<br />

Figure B11. Simulated flow through multi-zone wells.<br />

<br />

<br />

<br />

unit (-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 (Williamson <strong>and</strong> others, 1989). If<br />

<br />

<br />

"Variable"<br />

to Wet Dry Wet Dry<br />

Wet<br />

Typical<br />

WATER YEAR<br />

Dry Wet<br />

"Variable"<br />

to Dry<br />

-5.0<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

EXPLANATION<br />

Intra-borehole flow<br />

Pumpage


-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

(-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

). The<br />

<br />

<br />

<br />

this study (-<br />

<br />

-<br />

<br />

<br />

conditions. When compared, these potentiometric-surface<br />

<br />

<br />

<br />

<br />

time .<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

().<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 85<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

,<br />

<br />

<br />

remain fairly constant<br />

-<br />

<strong>and</strong> ).<br />

-<br />

-<br />

). In addition,<br />

<br />

<br />

<br />

<br />

<br />

2003 <strong>and</strong> <br />

, ,<br />

<strong>and</strong> )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

). The<br />

<br />

.


86 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

700<br />

500<br />

400<br />

320<br />

360<br />

280<br />

120<br />

240<br />

120<br />

160<br />

0<br />

0 50 100 Miles<br />

80<br />

200<br />

40<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

40<br />

120<br />

0<br />

160<br />

40<br />

120<br />

120<br />

120<br />

120<br />

80<br />

240<br />

120<br />

80<br />

200<br />

240<br />

160<br />

200<br />

120<br />

500<br />

600<br />

200<br />

320<br />

200<br />

280<br />

400<br />

EXPLANATION<br />

Spring 1961<br />

Water-level altitude<br />

(from Williamson <strong>and</strong> others, 1989),<br />

in feet above NGVD 29—<br />

240<br />

360<br />

280<br />

400<br />

320<br />

320<br />

160<br />

360<br />

280<br />

320<br />

280<br />

0<br />

1 to 50<br />

51 to 100<br />

101 to 200<br />

201 to 400<br />

401 to 800<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Major streams <strong>and</strong> canals<br />

Direction of flow<br />

Figure B12. Altitude of the A, Water table in the unconfined part of the aquifer system (Williamson <strong>and</strong> others, 1989). B, Potentiometric surface of the confined<br />

part of the aquifer system for 1961 (Williamson <strong>and</strong> others, 1989). C, Unconfined part of the aquifer system (Williamson <strong>and</strong> others, 1989). D, Potentiometric<br />

surface of the confined part of the aquifer system for 1976 (Williamson <strong>and</strong> others, 1989. E, Unconfined part of the aquifer system (simulated, ).<br />

F, Potentiometric surface of the confined part of the aquifer system, for 2000 (simulated, ).<br />

400<br />

240<br />

360<br />

360<br />

400<br />

320<br />

500


B<br />

Figure B12. Continued.<br />

600<br />

400<br />

320<br />

240<br />

280<br />

200<br />

80<br />

160<br />

120<br />

120<br />

80<br />

40<br />

40<br />

120<br />

40<br />

0<br />

40<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

80<br />

0<br />

160<br />

80<br />

40<br />

120<br />

80<br />

80<br />

-80<br />

80<br />

-160<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 87<br />

-120<br />

-160<br />

400<br />

40<br />

0<br />

0<br />

240<br />

-80<br />

160<br />

-40<br />

280<br />

500<br />

400<br />

160<br />

500<br />

280<br />

-40<br />

EXPLANATION<br />

320<br />

Spring 1961<br />

Potentiometric surface of the lower part of the<br />

aquifer system (from Williamson <strong>and</strong> others, 1989),<br />

in feet above NGVD 29—<br />

360<br />

120<br />

280<br />

280<br />

320<br />

-200 to -100<br />

-99 to 0<br />

240<br />

200<br />

1 to 100<br />

101 to 250<br />

251 to 500<br />

501 to 750<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Major streams <strong>and</strong> canals<br />

Direction of flow<br />

240<br />

200<br />

280<br />

160<br />

280<br />

280<br />

240<br />

160<br />

280


88 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

C<br />

Figure B12. Continued.<br />

600<br />

500<br />

240<br />

400<br />

280<br />

200<br />

80<br />

160<br />

40<br />

120<br />

0<br />

120<br />

40<br />

0<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

120<br />

40<br />

80<br />

120<br />

160<br />

240<br />

120 320<br />

80<br />

200<br />

320<br />

400<br />

700<br />

320<br />

200<br />

280 240<br />

EXPLANATION<br />

Spring 1976<br />

Water-level altitude<br />

(from Williamson <strong>and</strong> others, 1989),<br />

in feet above NGVD 29—<br />

320<br />

160<br />

120<br />

280<br />

240<br />

320<br />

400<br />

320<br />

0<br />

1 to 50<br />

51 to 100<br />

101 to 200<br />

201 to 400<br />

401 to 800<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Major streams <strong>and</strong> canals<br />

Direction of flow<br />

400


D<br />

Figure B12. Continued.<br />

500<br />

400 320<br />

280<br />

240<br />

200<br />

160<br />

80<br />

40<br />

0<br />

40<br />

80<br />

120<br />

120<br />

40<br />

0<br />

-40<br />

-40<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

0<br />

40<br />

80<br />

0<br />

80<br />

40<br />

80<br />

80<br />

120<br />

-40<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 89<br />

-80<br />

240<br />

160 80<br />

-80<br />

400<br />

0<br />

160<br />

-40<br />

0<br />

EXPLANATION<br />

Spring 1976<br />

Potentiometric surface of the lower part<br />

of the aquifer system (from Williamson <strong>and</strong> others, 1989),<br />

in feet above NGVD 29—<br />

40<br />

200<br />

400<br />

-200 to -100<br />

-99 to 0<br />

160<br />

280<br />

200<br />

40<br />

1 to 100<br />

101 to 250<br />

251 to 500<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Major streams <strong>and</strong> canals<br />

Direction of flow<br />

0<br />

200<br />

360<br />

320<br />

280<br />

320<br />

280<br />

200<br />

320<br />

240<br />

160<br />

160<br />

120<br />

80<br />

200


90 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

E<br />

Figure B12. Continued.<br />

480<br />

360<br />

320<br />

120<br />

160<br />

440<br />

280<br />

200<br />

400<br />

160<br />

240<br />

0 50 100 Miles<br />

120<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

80<br />

40<br />

80<br />

40<br />

80<br />

80<br />

120<br />

80<br />

160<br />

120<br />

40<br />

120<br />

200<br />

240<br />

160<br />

EXPLANATION<br />

200<br />

Spring 2000<br />

Simulated water-level altitude,<br />

in feet above NGVD 29—<br />

240<br />

240<br />

280<br />

200<br />

80<br />

160<br />

200<br />

40<br />

80<br />

120<br />

160<br />

200<br />

240<br />

280<br />

320<br />

360<br />

400<br />

440<br />

480<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Major streams <strong>and</strong> canals<br />

Direction of flow<br />

120<br />

280


F<br />

Figure B12. Continued.<br />

400<br />

440<br />

360<br />

320<br />

120<br />

120<br />

80<br />

0<br />

440<br />

280<br />

240<br />

200<br />

160<br />

40<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

40<br />

80<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 91<br />

160<br />

120<br />

80<br />

40<br />

0<br />

480<br />

160<br />

240<br />

440<br />

400<br />

120<br />

280<br />

240<br />

80<br />

40<br />

EXPLANATION<br />

Spring 2000<br />

Simulated potentiometric surface of the lower part<br />

of the aquifer system, in feet above NGVD 29—<br />

280<br />

240<br />

200<br />

160<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Major streams <strong>and</strong> canals<br />

120<br />

120<br />

280<br />

80<br />

240<br />

80<br />

200<br />

280<br />

0<br />

40<br />

80<br />

120<br />

160<br />

200<br />

240<br />

280<br />

320<br />

360<br />

400<br />

440<br />

480<br />

Direction of flow<br />

160


92 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

WATER-LEVEL ALTITUDE, IN FEET ABOVE NGVD 29<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

Layer 2<br />

200<br />

1960 1970 1980 1990 2000<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

Well 01_01645<br />

Note scale change<br />

Well 03b06329<br />

Layer 6<br />

Layer 7<br />

-50<br />

1960 1970 1980 1990 2000<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

Well 05_10854<br />

Layer 1<br />

Layer 2<br />

-50<br />

1960 1970 1980<br />

WATER YEAR<br />

1990 2000<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

EXPLANATION<br />

Well 02_05172<br />

Layer 2<br />

Layer 3<br />

Layer 6<br />

-50<br />

1960 1970 1980 1990 2000<br />

Well 04_07807<br />

Layer 1<br />

Layer 2<br />

-50<br />

1960 1970 1980 1990 2000<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

Well 06_14809<br />

Layer 2<br />

Layer 3<br />

-50<br />

1960 1970 1980<br />

WATER YEAR<br />

1990 2000<br />

L<strong>and</strong>-surface elevation at well Simulated water-level elevation from model for—<br />

Measured head of well<br />

Layer 1<br />

Layer 5<br />

Layer 9<br />

Layer 2<br />

Layer 6<br />

Layer 10<br />

Layer 3<br />

Layer 7<br />

Layer 4<br />

Layer 8<br />

Figure B13. Hydrographs for representative wells in the <strong>Central</strong> <strong>Valley</strong>, California (locations shown in ).<br />

50


WATER-LEVEL ALTITUDE, IN FEET ABOVE NGVD 29<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

-50<br />

1960 1970 1980 1990 2000<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

Well 06b12975<br />

Layer 2<br />

Layer 3<br />

Layer 6<br />

Layer 7<br />

-50<br />

1960 1970 1980 1990 2000<br />

Well 08_14958<br />

Layer 2<br />

EXPLANATION<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 93<br />

-50<br />

1960 1970 1980 1990 2000<br />

-50<br />

1960 1970 1980 1990 2000<br />

-50<br />

-50<br />

1960 1970 1980 1990 2000<br />

1960 1970 1980 1990 2000<br />

WATER YEAR WATER YEAR<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

Well 10_25517 Well 11_21412<br />

Layer 1<br />

Layer 2<br />

Layer 3<br />

Figure B13. Continued.<br />

L<strong>and</strong>-surface elevation at well Simulated water-level elevation from model for—<br />

Measured head of well<br />

Layer 1<br />

Layer 5<br />

Layer 9<br />

Layer 2<br />

Layer 6<br />

Layer 10<br />

Layer 3<br />

Layer 7<br />

Layer 4<br />

Layer 8<br />

50<br />

50<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

Well 07_13870<br />

Layer 2<br />

Well 09_19824<br />

Layer 1<br />

Layer 1<br />

Layer 2<br />

Layer 3<br />

Layer 4<br />

Layer 5<br />

Layer 5


94 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

WATER-LEVEL ALTITUDE, IN FEET ABOVE NGVD 29<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

NGVD<br />

29<br />

-100<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000<br />

50<br />

Well 12_22972<br />

-50<br />

1960 1970 1980 1990 2000<br />

200<br />

100<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

Layer 1<br />

Layer 2<br />

Well 14_30806<br />

L<strong>and</strong>-surface elevation 266 feet<br />

Note scale change<br />

Well 15_34255<br />

-50<br />

-50<br />

1960 1970 1980 1990 2000<br />

1960 1970 1980 1990 2000<br />

WATER YEAR WATER YEAR<br />

Figure B13. Continued.<br />

Layer 2<br />

Layer 3<br />

Layer 4<br />

Layer 5<br />

Layer 6<br />

Layer 7<br />

Layer 8<br />

Layer 9<br />

Layer 10<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

EXPLANATION<br />

-50<br />

1960 1970 1980 1990 2000<br />

L<strong>and</strong>-surface elevation at well Simulated water-level elevation from model for—<br />

Measured head of well<br />

Layer 1<br />

Layer 5<br />

Layer 9<br />

Layer 2<br />

Layer 6<br />

Layer 10<br />

Layer 3<br />

Layer 7<br />

Layer 4<br />

Layer 8<br />

50<br />

200<br />

100<br />

NGVD<br />

29<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

50<br />

Well 13_25144<br />

Layer 6<br />

Layer 7<br />

Well 14_28350<br />

L<strong>and</strong>-surface elevation 348 feet<br />

Note scale change<br />

Well 15_29737<br />

Layer 3<br />

Layer 4<br />

Layer 5<br />

Layer 6<br />

Layer 7<br />

Layer 8<br />

Layer 9<br />

Layer 10<br />

Layer 6<br />

Layer 7


WATER-LEVEL ALTITUDE, IN FEET ABOVE NGVD 29<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGVD<br />

29<br />

350<br />

300<br />

250<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Well 16_30057<br />

L<strong>and</strong>-surface elevation 213 feet<br />

Layer 3<br />

Layer 4<br />

Layer 5<br />

Layer 6<br />

-50<br />

1960 1970 1980 1990 2000<br />

Well 19_38742<br />

L<strong>and</strong>-surface elevation 269 feet<br />

Layer 2<br />

Layer 3<br />

EXPLANATION<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 95<br />

250<br />

200<br />

150<br />

100<br />

NGVD<br />

29<br />

-50<br />

1960 1970 1980 1990 2000<br />

NGVD<br />

29<br />

50<br />

Well 20_37212<br />

L<strong>and</strong>-surface elevation 590 feet<br />

Note scale change<br />

-50<br />

NGVD 29<br />

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000<br />

WATER YEAR WATER YEAR<br />

L<strong>and</strong>-surface elevation at well Simulated water-level elevation from model for—<br />

Measured head of well<br />

Layer 1<br />

Layer 5<br />

Layer 9<br />

Layer 2<br />

Layer 6<br />

Layer 10<br />

Layer 3<br />

Layer 7<br />

Layer 4<br />

Layer 8<br />

50<br />

Well 18_33084<br />

Layer 5<br />

Layer 6<br />

Layer 7<br />

200<br />

-100<br />

-200<br />

150 Well 18c33884<br />

Note scale change<br />

-300<br />

Layer 3<br />

Layer 4<br />

100<br />

Layer 2<br />

-400<br />

Layer 5<br />

50<br />

NGVD 29<br />

Layer 3<br />

Layer 6<br />

-500<br />

-600<br />

Well 19_37289<br />

L<strong>and</strong>-surface elevation 279 feet<br />

Note scale change<br />

Layer 6<br />

Layer 7<br />

Layer 8<br />

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000<br />

Figure B13. Continued.<br />

200<br />

100<br />

NGVD 29<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Layer 6<br />

Layer 7<br />

Layer 8


96 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

100<br />

100<br />

100<br />

50<br />

50<br />

50<br />

100<br />

150<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure B14. Estimated depth to water table in spring 2000.<br />

50<br />

50<br />

100<br />

150<br />

100<br />

100<br />

50<br />

50<br />

100<br />

100<br />

50<br />

150<br />

100<br />

EXPLANATION<br />

Area with depth-to-water<br />

less than 50 feet<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Line of equal depth-to-water,<br />

Spring 2000, in feet.<br />

Contour interval is 50 feet<br />

Depth-to-water, by well,<br />

in feet below l<strong>and</strong> surface<br />

0 to 50<br />

50 to 100<br />

100 to 150<br />

150 to 200<br />

200 to 500<br />

50<br />

100<br />

150<br />

50<br />

200


-<br />

<br />

<br />

<br />

<strong>and</strong><br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1960s ( <strong>and</strong> ).<br />

<br />

<br />

<br />

<br />

, , <strong>and</strong> ). The combined<br />

<br />

<br />

<br />

the aquifer system ( <strong>and</strong> ). In some parts of the<br />

-<br />

<br />

<br />

<br />

( <strong>and</strong> ).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 97<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<strong>and</strong> ). Williamson <strong>and</strong> others (1989)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<strong>and</strong> ,<br />

<strong>and</strong> terns<br />

in the aquifer system are the same from the mid-1970s to<br />

2003.<br />

-<br />

<br />

<br />

others, 1993) ( <strong>and</strong> <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(


98 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

-<br />

<br />

<br />

<strong>and</strong> ). The increased<br />

<br />

<br />

-<br />

<br />

L<strong>and</strong> Subsidence<br />

<br />

<br />

<br />

-<br />

<br />

others (1999) compiled a summary on the phenomena of l<strong>and</strong><br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1991) (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

other four processes (Williamson <strong>and</strong> others, 1989).<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

2 <br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

others, 1975).<br />

<br />

2<br />

2 in the<br />

2 <br />

<br />

Irel<strong>and</strong> <strong>and</strong> others, 1984) (-<br />

<br />

<br />

caused inelastic compaction of the clayey beds <strong>and</strong> resulted<br />

<br />

<br />

<br />

<br />

<br />

( <strong>and</strong> <br />

<br />

<br />

fraction of the total simulated aquifer-system compaction in<br />

<br />

<br />

<br />

affected by subsidence (mented<br />

that as much as 4 ft of subsidence has occurred in the<br />

<br />

<br />

<br />

feet in the early 1990s (Ikehara, 1995).


A<br />

11N/1E-24Q8<br />

0 50 100Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

A<br />

14S/12E-12H1<br />

18S/16E-33A1<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 99<br />

EXPLANATION<br />

Area of subsidence due to compaction<br />

of peat <strong>and</strong> based on field surveys in 1952<br />

Area of subsidence due to compaction<br />

of peat, more than 10 feet as of 1981<br />

Area of subsidence due to hydrocompaction<br />

Area of subsidence due to water-level<br />

decline, more than 1 foot as of 2000<br />

Historic lakes<br />

Major l<strong>and</strong>-subsidence area from Irel<strong>and</strong>, 1984.<br />

Simulated subsidence 1962-2003, in feet<br />

5<br />

10<br />

<strong>Central</strong> <strong>Valley</strong> boundary<br />

Subsidence measurement locations<br />

(extensometers)—Data for labeled<br />

sites shown on figure 15B<br />

13S/15E-31J3<br />

B<br />

17S/15E-14Q1<br />

C<br />

23S/25E-16N3<br />

32S/28E-20Q1<br />

Figure B15. A, Areal extent of l<strong>and</strong> subsidence in the <strong>Central</strong> <strong>Valley</strong> (modified from figure 9 Thomas <strong>and</strong> Phoenix, 1976; figure 11<br />

Bertoldi <strong>and</strong> others, 1991) <strong>and</strong> locations of extensometers. Contours show simulated subsidence for water years 1962-2003.<br />

B, Compaction data from selected extensometers <strong>and</strong> total simulated pumpage in the <strong>Central</strong> <strong>Valley</strong>.


100 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

GROUND MOVEMENT, IN FEET<br />

B<br />

Rebound<br />

Subsidence<br />

-1.5<br />

-1.0<br />

-0.5<br />

0.0<br />

0.5<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

"Variable"<br />

to<br />

Dry<br />

Figure B15. Continued.<br />

"Variable"<br />

to<br />

Wet<br />

1960 1970 1980<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> subsidence (<br />

<br />

<br />

(, , <strong>and</strong> <br />

<br />

<br />

<br />

Dry Wet<br />

Dry<br />

YEAR<br />

11N/1E-24Q8 17S/15E-14Q1<br />

23S/25E-16N3<br />

EXPLANATION<br />

18S/16E-33A1<br />

14S/12E-12H1 13S/15E-31J3<br />

32S/28E-20Q1<br />

Wet<br />

1990 2000<br />

Total simulated<br />

pumpage for the<br />

<strong>Central</strong> <strong>Valley</strong><br />

"Variable"<br />

to<br />

Dry<br />

<br />

<br />

<br />

<strong>and</strong> ).<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

most areas (<br />

<br />

<br />

<br />

20<br />

15<br />

10<br />

5<br />

0<br />

SIMULATED PUMPAGE, IN MILLIONS OF ACRE-FEET PER YEAR


compaction <strong>and</strong> l<strong>and</strong> subsidence in some areas (<br />

<strong>and</strong> <br />

). In some areas,<br />

<br />

<br />

2004) (<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

” subsection<br />

of the “” section.<br />

Surface Water <strong>and</strong> the Environment<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

When water levels recover,<br />

compaction <strong>and</strong> l<strong>and</strong> subsidence can abate.<br />

DEPTH-TO-WATER,<br />

IN FEET BELOW LAND SURFACE<br />

COMPACTION,<br />

IN INCHES<br />

200<br />

400<br />

600<br />

12<br />

0<br />

Deep well<br />

No data<br />

1960 1970 1980<br />

YEAR<br />

Drought Drought<br />

No data<br />

1990<br />

Development <strong>and</strong> Changes to the Hydrologic Budget 101<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

nation<br />

of <strong>and</strong> <br />

<br />

<br />

<br />

<br />

-<br />

<br />

().<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

During the droughts of 1976-77 <strong>and</strong><br />

1987-91, deliveries of imported water<br />

to the west side of the San Joaquin<br />

<strong>Valley</strong> were cut back. More groundwater<br />

was pumped to meet the dem<strong>and</strong>, resulting<br />

in a drop in the water table <strong>and</strong><br />

consequent compaction.<br />

Some elastic expansion of the aquifer<br />

system has occured but the compacted<br />

materials can never return to their<br />

pre-compacted thickness.<br />

Figure B16. Measured compaction in relation to head decline in the San Joaquin <strong>Valley</strong>. The effects of drought on groundwater levels<br />

<strong>and</strong> associated subsidence also are evident. (Modified from Galloway <strong>and</strong> others, 1999; <strong>and</strong> Swanson, 1998.)


102 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

ter<br />

resources.<br />

Global Climate Change <strong>and</strong> Variability<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

Past Climates<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

north to south (<br />

of total precipitation in the north as compared to the south,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Future Climate Projections<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

21 st -<br />

<br />

<br />

<br />

<br />

to increase. Other indirect effects of a temperature increase<br />

<br />

<br />

more than one crop in a season, <strong>and</strong> reduced milk production


-<br />

<br />

<br />

<br />

in the 21 st <br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<strong>and</strong> drier at times, could place more stress on the reliability<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

(24 million people).<br />

<br />

<br />

-<br />

<br />

humidity could help offset some of the effects of an increase in<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

Groundwater Sustainability <strong>and</strong> Management 103<br />

<br />

<br />

<br />

<br />

be affected.<br />

Groundwater Sustainability <strong>and</strong><br />

Management<br />

-<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

Groundwater Sustainability<br />

<br />

<br />

sustainable is based, in part, on social <strong>and</strong> philosophical<br />

<br />

<br />

<br />

that limit sustainability include physical, chemical, economic,<br />

<br />

ter<br />

sustainability.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


104 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

These related effects may constitute the primary constraint to<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

users (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

by 50 percent as measured in tons of crops per acre foot of<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Groundwater Management<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

(described in <br />

<br />

options.


STREAMFLOW LEAKAGE, IN MILLIONS OF ACRE-FEET PER YEAR<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0<br />

-1.0<br />

-2.0<br />

-3.0<br />

"Variable"<br />

to<br />

Dry<br />

Representative water year<br />

"Variable"<br />

to<br />

Wet<br />

Typical<br />

Figure B17. Streamflow gains <strong>and</strong> losses in the <strong>Central</strong> <strong>Valley</strong> between 1962 <strong>and</strong> 2003.<br />

Groundwater Sustainability <strong>and</strong> Management 105<br />

Dry Wet Dry<br />

Wet<br />

WATER YEAR<br />

Dry Wet<br />

"Variable"<br />

to<br />

Dry<br />

-4.0<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

EXPLANATION<br />

Surface-water loss to<br />

groundwater system<br />

Surface-water gain from<br />

groundwater system


106 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

to meet dem<strong>and</strong>.<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

decadal to century timeframes to assess policy <strong>and</strong> capital<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

Conjunctive Use<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

considered.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Groundwater Sustainability <strong>and</strong> Management 107<br />

The report states that a peripheral canal is a necessary compo-<br />

<br />

<br />

<br />

Water Banking<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

). These


108 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

habitat.<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

subsidence.<br />

<br />

) <strong>and</strong> the<br />

<br />

<br />

<br />

<br />

<br />

<br />

suitable. Other factors that need to be considered include local<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

compaction in these units.<br />

Other Management Strategies<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

ability to monitor soil moisture <strong>and</strong> other crop-related data<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ence<br />

that has already occurred, additional subsidence can be<br />

<br />

<br />

<br />

<br />

<br />

aquifer system compact inelastically <strong>and</strong> the l<strong>and</strong> subsidence<br />

becomes permanent (-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

identify areas that most likely are susceptible to subsidence<br />

<br />

<br />

others, 1999).


When long-term pumping<br />

lowers ground water levels<br />

<strong>and</strong> stresses on the aquitards<br />

beyond the preconsolidationstress<br />

thresholds, the<br />

aquitards compact <strong>and</strong> the<br />

l<strong>and</strong> surface subsides<br />

permanently.<br />

CH 1 Critical head at time, t 1<br />

CH 2 Critical head at time, t 2<br />

h 1<br />

h 2<br />

h<br />

t2 greater than t 1<br />

Head in well at t1 Head in well at t2 b Total l<strong>and</strong> subsidence,<br />

which equals compressibility<br />

times h<br />

Difference in head,<br />

(h2 minus h1) Water table<br />

Monitoring the Hydrologic System<br />

h<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

t 1<br />

L<strong>and</strong> surface<br />

Clay <strong>and</strong> silt<br />

(aquitards)<br />

Granular aquitard<br />

skeleton defining<br />

fluid-filled pore spaces<br />

storing groundwater<br />

h 1<br />

CH 1<br />

L<strong>and</strong><br />

surface<br />

b<br />

h2=CH2 Rearranged, compacted granular<br />

aquitard skeleton with reduced<br />

porosity <strong>and</strong> groundwater<br />

storage capacity<br />

Monitoring the Hydrologic System 109<br />

Depth<br />

to<br />

water<br />

When h 1 is greater than CH 1 , sediments are<br />

overconsolidated with compression, <strong>and</strong> l<strong>and</strong><br />

subsidence is predominately elastic <strong>and</strong> recoverable<br />

When h 2 is equal to CH 2 , sediments are<br />

normally consolidated with additional head<br />

decline causing inelastic <strong>and</strong> nonrecoverable<br />

l<strong>and</strong> subsidence<br />

Compaction of the aquifer system<br />

is concentrated in the aquitards<br />

Figure B18. Relationship of water-level changes <strong>and</strong> critical heads to subsidence <strong>and</strong> inelastic compaction.<br />

t 2<br />

Time<br />

Long-term decline in water level<br />

modulated by the seasonal cycles<br />

of groundwater pumping<br />

<br />

-


110 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

of an aquifer system as it is affected by l<strong>and</strong> use, climate, <strong>and</strong><br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Groundwater<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

2001).<br />

<br />

<br />

<br />

<br />

information used to constrain the model. These measure-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


-<br />

<br />

<br />

<br />

<br />

1. <br />

<br />

<br />

2. <br />

<br />

personnel to enter the property <strong>and</strong> measure the<br />

<br />

3. <br />

<br />

<br />

-<br />

-<br />

<br />

<br />

the subsurface <strong>and</strong>, in some cases, construction<br />

<br />

4. <br />

reach the end of their usefulness because the<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

analysis from different parts of the aquifer system. These data<br />

<br />

<br />

<br />

<br />

<br />

formities<br />

can cause permeability contrasts that tend to isolate<br />

-<br />

<br />

<br />

<br />

Monitoring the Hydrologic System 111<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

-<br />

<br />

<br />

section of<br />

this report.<br />

Surface Water<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

)<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-


112 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Subsidence<br />

-<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

ence<br />

from 1994 to 2007.<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Water Quality<br />

<br />

-<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-


oron, nitrate, <strong>and</strong> pesticides are of concern <strong>and</strong> monitored<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

soil leaches selenium from the soil <strong>and</strong> transports it to shal-<br />

<br />

-<br />

<br />

is found in concentrations potentially harmful to plants in the<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Williams, 1995). The source of the nitrate is attributed to<br />

Monitoring the Hydrologic System 113<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

depth.<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

quality to the public.


114 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

L<strong>and</strong> Use <strong>and</strong> Climate<br />

-<br />

<br />

<br />

<br />

to measure, it is commonly not measured or tabulated in the<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

(K <br />

number of studies report K -<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

users.<br />

Summary<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

upon to help rectify the imbalance.<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

aquifer-system compaction <strong>and</strong> associated l<strong>and</strong> subsidence.


Summary 115<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

about 8.7 million acre-ft/yr.<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

declines.<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

5,200 mi 2 <br />

been affected by subsidence.


116 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

has had substantial related consequences. These consequences<br />

perature,<br />

<strong>and</strong> l<strong>and</strong> subsidence. In turn, these consequences<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

References Cited<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

15, 2009, at


-<br />

-<br />

-<br />

<br />

http://<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

44 p.<br />

-<br />

<br />

<br />

p. 112-130.<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

References Cited 117<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

2009, at <br />

<br />

<br />

http://www.<br />

<br />

<br />

<br />

<br />

16, 2009, at <br />

<br />

<br />

<br />

<br />

<br />

<br />

2009, at <br />

<br />

<br />

2009, at <br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


118 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

http://<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

http://<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

at <br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


References Cited 119<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

77 p.<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

2009, at <br />

<br />

-<br />

<br />

<br />

http://pubs.er.usgs.gov/usgspubs/pp/<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

2008, at <br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

at


120 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

16 p.<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

ley,<br />

updated to 1995, -<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

, .<br />

-


Chapter C. Numerical Model of the Hydrologic L<strong>and</strong>scape <strong>and</strong><br />

Groundwater Flow in California’s <strong>Central</strong> <strong>Valley</strong><br />

By Claudia C. Faunt, R<strong>and</strong>all T. Hanson, Kenneth Belitz, Wolfgang Schmid, Steven P. Predmore, Diane L.<br />

Rewis, <strong>and</strong> Kelly McPherson<br />

Introduction<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

Model Development<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

) has<br />

made it possible to do more detailed <strong>and</strong> realistic simulations<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 <br />

model cells to 1 mi 2 <br />

<br />

-<br />

<br />

10 layers <strong>and</strong> the uppermost layer is 50 ft thick. This more<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

monthly stress periods facilitate representation of the cyclical<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

described in more detail in (). The


122 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C1. MODFLOW-2000 packages <strong>and</strong> processes used with the hydrologic flow model of the <strong>Central</strong> <strong>Valley</strong>, California.<br />

Table C1. MODFLOW-2000 packages <strong>and</strong> processes used with the hydrologic flow model of the <strong>Central</strong> <strong>Valley</strong>, California.—Continued<br />

Computer program<br />

(packages, processes,<br />

parameter estimation)<br />

Function Reference<br />

-<br />

Processes <strong>and</strong> Solver<br />

- -<br />

<br />

<br />

<br />

- <br />

<br />

<br />

<br />

Files<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Discretization<br />

- <br />

ary conditions of the model.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>Aquifer</strong> Parameters<br />

<br />

centers.<br />

<br />

<br />

l<strong>and</strong> subsidence<br />

<br />

<br />

<br />

<br />

Boundary Conditions<br />

<br />

<br />

<br />

<br />

Recharge <strong>and</strong> Discharge<br />

others (2000)<br />

<br />

multiple layers.<br />

<br />

Output, Observations <strong>and</strong> Sensitivity<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

each time-step for subsidence, heads, <strong>and</strong> stream-<br />

<br />

<br />

<br />

-


-<br />

mated<br />

parameter estimation. The parameter estimation code<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

of this report <strong>and</strong> in the<br />

release notes <strong>and</strong> online documentation of the source code for<br />

<br />

<br />

<br />

<br />

<br />

<br />

these model components.<br />

Discretization<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

().<br />

<br />

<br />

<br />

<br />

<br />

<br />

model cell.<br />

Spatial Discretization <strong>and</strong> Layering<br />

2 <br />

<br />

layers (<br />

<br />

Model Development 123<br />

<br />

<br />

<br />

<br />

<br />

<br />

). The top layer (layer 1) has an upper<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

described in more detail in .<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

deep.<br />

<br />

<br />

<br />

<br />

<br />

(<br />

than the model bottom <strong>and</strong> may be as much as 2,500 ft deep


124 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

0<br />

STUDY<br />

AREA<br />

C A L I F O R N I A<br />

San<br />

Francisco<br />

<strong>Central</strong><br />

<strong>Valley</strong><br />

Pacific Ocean<br />

Sierra Nevada<br />

50 100 Miles<br />

0 50 100 Kilometers<br />

1<br />

3<br />

2<br />

Stockton<br />

Fault<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Cascade Range<br />

6<br />

4<br />

5<br />

9<br />

7<br />

Coast Range<br />

8<br />

11<br />

10<br />

Sutter<br />

Buttes<br />

Sierra Nevada<br />

12<br />

13<br />

A<br />

A<br />

14<br />

EXPLANATION<br />

Model cells representing—<br />

12<br />

16<br />

15<br />

A'<br />

Active areas<br />

General-head boundary in layers 1 <strong>and</strong> 2<br />

Bedrock in some layers<br />

San Joaquin Formation in some layers<br />

Corcoran Clay in layers 4 <strong>and</strong> 5<br />

Corcoran Clay over<br />

San Joaquin Formation<br />

Potential horizontal flow<br />

barrier<br />

Active model grid boundary<br />

California Department of Water Resources<br />

water-balance subregions <strong>and</strong> identifier. See<br />

table A1 for names<br />

Geologic section along model row 355<br />

(See figure A11)<br />

19<br />

17<br />

18<br />

20<br />

21<br />

A'<br />

Tehachapi Mts<br />

White Wolf<br />

Fault<br />

Figure C1. <strong>Central</strong> <strong>Valley</strong> Hydrologic Model grid: A, Extent of San Joaquin Formation, Corcoran Member of the Tulare Formation,<br />

crystalline bedrock, <strong>and</strong> horizontal flow barriers. B, Upper-most active layer.


B<br />

0<br />

50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure C1. Continued.<br />

Cascade Range<br />

Coast Range<br />

Sierra Nevada<br />

EXPLANATION<br />

Uppermost active layer—<br />

1<br />

2<br />

3<br />

6<br />

Active model grid boundary<br />

Model Development 125<br />

California Department of Water Resources<br />

water-balance subregions<br />

Tehachapi Mts


126 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C2. Coordinates of the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model grid.<br />

<br />

<br />

Corner of<br />

model grid<br />

Model<br />

coordinates<br />

X (column)<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

for purposes of this study, are less critical. In addition, to<br />

<br />

<br />

-<br />

<br />

<br />

patterns simulated.<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

Temporal Discretization<br />

Model<br />

coordinates<br />

Y (row)<br />

Latitude<br />

(DMS)<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Longitude<br />

(DMS)<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Boundary Conditions<br />

Albers coordinates<br />

X (easting)<br />

(meters)<br />

Albers coordinates<br />

Y (northing)<br />

(meters)<br />

1 1 1,890,733<br />

Northeast 98 1 1,969,734<br />

1 441 38,818 1,280,164<br />

98 441 173,410 1,359,209<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

this chapter.


0<br />

Suisun<br />

Bay<br />

50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

1<br />

3<br />

2<br />

6<br />

4<br />

5<br />

9<br />

7<br />

8<br />

11<br />

10<br />

12<br />

13<br />

12<br />

14<br />

EXPLANATION<br />

Model stream cell<br />

Model general-head boundary cell<br />

Active model boundary<br />

Water-balance subregion receiving<br />

non-routed deliveries<br />

Diversion location<br />

Inflow location<br />

Model Development 127<br />

California Department of Water Resources<br />

water-balance subregions <strong>and</strong> identifier<br />

Figure C2. Distribution of general-head boundary cells <strong>and</strong> major streams <strong>and</strong> canals with streamflow-routing cells (including location<br />

of inflows <strong>and</strong> diversions). The water-balance subregions are described in .<br />

16<br />

15<br />

19<br />

17<br />

18<br />

20<br />

21


128 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Specified-Flow Boundaries<br />

<br />

<br />

<br />

<br />

). Where bedrock<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

Pumpage<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Agricultural Pumpage<br />

<br />

-<br />

-<br />

<br />

<br />

can be no direct determination of the accuracy of the different<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

EXPLANATION<br />

Area of Corcoran Clay<br />

Model grid boundary<br />

California Department of Water Resources<br />

water-balance subregion<br />

Pumping wells—<br />

Perforated in layers 2 <strong>and</strong>/or 3<br />

Model Development 129<br />

Perforated in upper <strong>and</strong> lower parts of system<br />

Perforated in all or parts of layers 6 through 9<br />

Multi-node irrigation wells perforated in layers<br />

2 <strong>and</strong>/or 3 <strong>and</strong> all or parts of layers 6 through 9<br />

Multi-node urban wells perforated in layers<br />

2 <strong>and</strong>/or 3 <strong>and</strong> all or parts of layers 6 through 9<br />

Figure C3. Distribution of urban <strong>and</strong> agricultural wells simulated in the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.


130 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

). In addition,<br />

<br />

<br />

<br />

).<br />

Urban Pumpage<br />

<br />

<br />

1983) (<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


REPORTED URBAN GROUNDWATER PUMPAGE, IN THOUSANDS OF ACRE-FEET PER YEAR<br />

2,000<br />

1,800<br />

1,600<br />

1,400<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1961<br />

1964<br />

1967<br />

Recharge from <strong>and</strong> Discharge to the Delta<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

1970<br />

1973<br />

Tulare Basin<br />

San Joaquin <strong>Valley</strong><br />

Sacramento <strong>Valley</strong> <strong>and</strong> Delta<br />

1976<br />

1979<br />

Pumpage reported by U.S. Geological Survey<br />

[Williams <strong>and</strong> others, 1989](1961 to 1977) for—<br />

1982<br />

YEAR<br />

EXPLANATION<br />

1985<br />

1988<br />

1991<br />

Model Development 131<br />

<br />

<br />

<strong>and</strong> remained constant for the entire simulation period. The<br />

<br />

<br />

<br />

<br />

<br />

1994<br />

Pumpage reported by California Department of<br />

Water Resources (1961 to 2003) for—<br />

Tulare Basin<br />

San Joaquin <strong>Valley</strong><br />

Sacramento <strong>Valley</strong> <strong>and</strong> Delta<br />

Figure C4. Urban pumpage from U.S. Geological Survey <strong>and</strong> California Department of Water Resources data (C. Brush, California<br />

Department of Water Resources, written commun., February 21, 2007).<br />

1997<br />

2000<br />

2003


132 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Recharge from <strong>and</strong> Discharge to Canals <strong>and</strong><br />

Streams<br />

<br />

<br />

<br />

<br />

<br />

others, 2004) (-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

, <br />

-<br />

<br />

<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Water-Table Simulation<br />

<br />

<br />

<br />

<br />

<br />

<br />

table is deeper than 50 ft (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

” sec-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Farm Process (FMP)<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

anced<br />

for each simulation time step (-<br />

<br />

<br />

.


nrd<br />

wells<br />

p<br />

nrd<br />

srdin<br />

wells<br />

egwin<br />

tgwin<br />

egwout<br />

egwin<br />

Precipitation<br />

Non-routed deliveries<br />

into farm<br />

Semi-routed deliveries<br />

into farm<br />

Groundwater well pumping<br />

deliveries into farm<br />

Evaporation from groundwater<br />

into the farm<br />

Transpiration from groundwater<br />

into the farm<br />

Farm<br />

Figure C5. Flow chart of water inflows to <strong>and</strong> outflows from a “farm” as simulated by the Farm Process (FMP).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ei<br />

ep<br />

ei<br />

ep<br />

egwout<br />

ti<br />

tp<br />

p<br />

dp<br />

<strong>Aquifer</strong><br />

tp<br />

EXPLANATION<br />

ti<br />

Evaporation from irrigation<br />

out of the farm<br />

Evaporation from precipitation<br />

out of the farm<br />

Evaporation from groundwater<br />

out of the farm<br />

Transpiration from irrigation<br />

out of the farm<br />

tgwout<br />

tgwin<br />

Transpiration from precipitation<br />

out of the farm<br />

srdout<br />

srdin<br />

tgwout<br />

run<br />

dp<br />

srdout<br />

Model Development 133<br />

run<br />

Transpiration from groundwater<br />

out of the farm<br />

Overl<strong>and</strong> runoff out<br />

of the farm<br />

Deep percolation out<br />

of the farm<br />

Semi-routed deliveries<br />

out of the farm<br />

INFLOW<br />

Streams<br />

OUTFLOW<br />

<br />

<br />

contains many optional simulation features, only some of the


134 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

others, 2006a). In contrast to the micro-scale application in<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

cussed<br />

in <br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

Delivery Requirement<br />

<br />

<br />

<br />

<br />

<br />

<br />

components estimated from both the l<strong>and</strong>scape (predominantly<br />

<br />

<br />

<br />

<br />

crop.


Soils<br />

<br />

<br />

<br />

<br />

). The<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

L<strong>and</strong> Use<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

in the model on a cell-by-cell basis <strong>and</strong> include urban <strong>and</strong><br />

<br />

2 model<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Development 135<br />

<br />

<br />

<br />

-<br />

-<br />

-<br />

<br />

).<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

detailed (-<br />

<br />

-<br />

<br />

<br />

1973, 1992, 1998, <strong>and</strong> 2000 (<br />

simplicity, the l<strong>and</strong>-use maps are named for the year the map<br />

<br />

<br />

<br />

<br />

,<br />

<br />

,<br />

<br />

<br />

more permanent or more established crop types mapped more<br />

<br />

in the earlier maps on the basis of the most recent l<strong>and</strong>-use<br />

period (2000 l<strong>and</strong> use).


136 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

EXPLANATION<br />

Agricultural soil classes <strong>and</strong> (capillary fringe)<br />

used in Farm Process—<br />

S<strong>and</strong>y loam (9.1 feet)<br />

Silty clay (7.1 feet)<br />

Silt (9.3 feet)<br />

Active model boundary<br />

California Department of Water Resources<br />

water-balance subregion<br />

Figure C6. Agricultural soils for the <strong>Central</strong> <strong>Valley</strong>, California, derived from STATSGO data (U.S. Department of Agriculture Natural<br />

Resources Conservation Service, 2005b).


CUMULATIVE DEPARTURE OF PRECIPITATION, IN INCHES PER YEAR<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

Red Bluff<br />

Davis<br />

Fresno<br />

TIME, IN YEARS<br />

Bakersfield<br />

Pacific Decadal Oscillation (PDO) Index<br />

24 month moving average<br />

Figure C8<br />

4/61-3/68<br />

EXPLANATION<br />

Annual cumulative departure of precipitation—<br />

Model Development 137<br />

Time frame l<strong>and</strong>-use maps were applied<br />

Figure C9<br />

4/68-3/78<br />

Figure C10<br />

4/78-3/93<br />

"Variable"<br />

"Variable"<br />

Dry W to<br />

Wet Dry Wet Dry Wet Dry<br />

to Wet D Wet Dry Wet<br />

et<br />

ry<br />

Dry<br />

Dry<br />

Figure C11 Figure C12<br />

4/93-3/99 4/99-9/03<br />

3.0<br />

1875 1885 1895 1905 1915 1925 1935 1945 1955 1965 1975 1985 1995 2005<br />

Figure C7. Cumulative departure of precipitation, Pacific Decadal Oscillation (PDO) Index, climate windows, <strong>and</strong> time frame l<strong>and</strong>-use<br />

maps were applied.<br />

"Variable"<br />

to<br />

Dry<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

PACIFIC DECADAL OSCILLATION (PDO) INDEX, UNITLESS


138 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C3. L<strong>and</strong>-use periods with acreage in square miles <strong>and</strong> percentage of different virtual crop categories.<br />

Area (square miles) Percentage of active model area Grouping of<br />

other classes1 1961 1973 1992 1998 2000 1961 1973 1992 1998 2000<br />

Irrigated<br />

Description<br />

1. Water No 105 124 160 347 162 1 1 1 2 1 n/a<br />

2 . Urban No 641 765 1,043 894 1,528 3 4 5 4 7 n/a<br />

2 No 7,355 4,809 6,237 5,102 6,639 36 23 30 25 32 n/a<br />

Yes n/a 312 553 263 n/a n/a 2 3 1 n/a 10,12,16<br />

Yes n/a n/a 1,799 589 n/a n/a n/a 9 3 n/a 13,14<br />

Yes n/a n/a 1,265 n/a n/a n/a n/a 6 n/a n/a 9,11,18<br />

Yes n/a n/a 634 n/a n/a n/a n/a 3 n/a n/a 11,14,17<br />

2 Yes 241 104 1 n/a 372 1 1


Virtual Crop Maps<br />

<br />

(“1960” l<strong>and</strong>-use map, <br />

<br />

<br />

<br />

<br />

<br />

<br />

sented<br />

in the simulation period from 1961 to 1968) uses<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Development 139<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

spatial patterns of l<strong>and</strong> use, there are discrepancies across<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

1973 to 1992 l<strong>and</strong>-use maps.<br />

<br />

map, <br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

-


140 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

16<br />

15<br />

17<br />

14<br />

18<br />

13<br />

12<br />

19<br />

11<br />

1 2<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

10<br />

Fraction of total area by l<strong>and</strong>-use type<br />

1<br />

9<br />

2<br />

3<br />

8<br />

6<br />

4<br />

3<br />

5<br />

9<br />

7<br />

8<br />

11<br />

12<br />

10<br />

14<br />

13<br />

EXPLANATION<br />

L<strong>and</strong> use—1961-68<br />

L<strong>and</strong> use type—<br />

1 Water<br />

2 Urban<br />

3 Native vegetation<br />

4 Orchard, groves <strong>and</strong> vineyards (none shown)<br />

5 Pasture/Hay (none shown)<br />

6 Row crops (none shown)<br />

7 Small grains (none shown)<br />

8 Idle/fallow<br />

9 Truck, nursery <strong>and</strong> berry crops<br />

10 Citrus <strong>and</strong> subtropical<br />

11 Field crops<br />

12 Vineyards<br />

13 Pasture<br />

14 Grain <strong>and</strong> hay<br />

15 Feed lots <strong>and</strong> diaries<br />

16 Deciduous fruits <strong>and</strong> nuts<br />

17 Rice<br />

18 Cotton<br />

19 Developed<br />

20 Cropl<strong>and</strong> <strong>and</strong> pasture (none shown)<br />

21 Cropl<strong>and</strong> (none shown)<br />

22 Irrigated row <strong>and</strong> field crops (none shown)<br />

16<br />

15<br />

19<br />

Water-balance subregion boundaries<br />

<strong>and</strong> identifier—See table C1<br />

Active model grid boundary—<br />

See figure C1<br />

Figure C8. Virtual crops for 1960 (modified with 2000 data), including pie chart of percentage of different virtual crops (sources:<br />

California Department of Water Resources, 2000; California State University, Chico, 2003;). The water-balance subregions are described<br />

in .<br />

17<br />

18<br />

20<br />

21


18<br />

17<br />

16<br />

20<br />

14<br />

13<br />

1 2<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

12<br />

1<br />

11<br />

2<br />

3<br />

10<br />

Fraction of total area by l<strong>and</strong>-use type<br />

9<br />

6<br />

4<br />

4<br />

8<br />

5<br />

3<br />

9<br />

7<br />

8<br />

Model Development 141<br />

EXPLANATION<br />

L<strong>and</strong> use—1968-78<br />

L<strong>and</strong> use type—<br />

1 Water<br />

2 Urban<br />

3 Native vegetation<br />

4 Orchard, groves <strong>and</strong> vineyards<br />

5 Pasture/Hay (none shown)<br />

6 Row crops (none shown)<br />

7 Small grains (none shown)<br />

8 Idle/fallow<br />

9 Truck, nursery <strong>and</strong> berry crops<br />

10 Citrus <strong>and</strong> subtropical<br />

11 Field crops<br />

12 Vineyards<br />

13 Pasture<br />

14 Grain <strong>and</strong> hay<br />

15 Feed lots <strong>and</strong> diaries (none shown)<br />

16 Deciduous fruits <strong>and</strong> nuts<br />

17 Rice<br />

18 Cotton<br />

19 Developed (none shown)<br />

20 Cropl<strong>and</strong> <strong>and</strong> pasture<br />

21 Cropl<strong>and</strong> (none shown)<br />

22 Irrigated row <strong>and</strong> field crops (none shown)<br />

Water-balance subregion boundaries<br />

<strong>and</strong> identifier—See table C1<br />

Active model grid boundary—<br />

See figure C1<br />

Figure C9. Virtual crops for 1973, including pie chart of percentage of different virtual crops (sources: U.S. Geological Survey, 1990;<br />

California Department of Water Resources, 2000). The water-balance subregions are described in .<br />

11<br />

12<br />

10<br />

14<br />

13<br />

16<br />

15<br />

19<br />

17<br />

18<br />

20<br />

21


142 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

14<br />

13<br />

12<br />

16<br />

11<br />

10<br />

17<br />

9<br />

7<br />

18<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

6<br />

1 2<br />

Fraction of total area by l<strong>and</strong>-use type<br />

1<br />

5<br />

2<br />

3<br />

4<br />

6<br />

4<br />

5<br />

3<br />

9<br />

7<br />

8<br />

EXPLANATION<br />

L<strong>and</strong> use—1978-93<br />

1<br />

L<strong>and</strong> use type—<br />

Water<br />

2 Urban<br />

3 Native vegetation<br />

4 Orchard, groves <strong>and</strong> vineyards<br />

5 Pasture/Hay<br />

6 Row crops<br />

7 Small grains<br />

8 Idle/fallow (none shown)<br />

9 Truck, nursery <strong>and</strong> berry crops<br />

10 Citrus <strong>and</strong> subtropical<br />

11 Field crops<br />

12 Vineyards<br />

13 Pasture<br />

14 Grain <strong>and</strong> hay<br />

15 Feed lots <strong>and</strong> diaries (none shown)<br />

16 Deciduous fruits <strong>and</strong> nuts<br />

17 Rice<br />

18 Cotton<br />

19 Developed (none shown)<br />

20 Cropl<strong>and</strong> <strong>and</strong> pasture (none shown)<br />

21 Cropl<strong>and</strong> (none shown)<br />

22 Irrigated row <strong>and</strong> field crops (none shown)<br />

Water-balance subregion boundaries<br />

<strong>and</strong> identifier—See table C1<br />

Active model grid boundary—<br />

See figure C1<br />

Figure C10. Virtual crops for 1992, including pie chart of percentage of different virtual crops (sources: Gilliom <strong>and</strong> others, 2006;<br />

California Department of Water Resources, 2000). The water-balance subregions are described in table A1.<br />

11<br />

12<br />

10<br />

14<br />

13<br />

16<br />

15<br />

19<br />

17<br />

18<br />

20<br />

21


l<strong>and</strong>-use map, <br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

crop maps.<br />

<br />

use map, <br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

from the late 1990s, this type of map also lacks the temporal<br />

<br />

<br />

terns,<br />

there are some discrepancies across county boundaries.<br />

<br />

<br />

<br />

-<br />

<br />

urban (<br />

-<br />

<br />

<br />

<br />

In contrast, 11 percent of the crop l<strong>and</strong>, predominantly on<br />

Model Development 143<br />

the southeast side, is planted in deciduous fruit <strong>and</strong> nut trees,<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Crop-Type Data<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

. There is<br />

-<br />

<br />

). The<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-


144 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

18<br />

17<br />

16<br />

21<br />

22<br />

1 2<br />

9<br />

14<br />

10<br />

13 12 11<br />

Fraction of total area by l<strong>and</strong>-use type<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

1<br />

2<br />

3<br />

6<br />

4<br />

3<br />

5<br />

5<br />

4<br />

9<br />

7<br />

8<br />

11<br />

12<br />

10<br />

14<br />

13<br />

16<br />

15<br />

19<br />

EXPLANATION<br />

L<strong>and</strong> use—1993-99<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

17<br />

L<strong>and</strong> use type—<br />

Water<br />

Urban<br />

Native vegetation<br />

Orchard, groves <strong>and</strong> vineyards<br />

Pasture/Hay<br />

Row crops (none shown)<br />

Small grains (none shown)<br />

Idle/fallow (none shown)<br />

Truck, nursery <strong>and</strong> berry crops<br />

Citrus <strong>and</strong> subtropical<br />

Field crops<br />

Vineyards<br />

Pasture<br />

Grain <strong>and</strong> hay<br />

Feed lots <strong>and</strong> diaries (none shown)<br />

Deciduous fruits <strong>and</strong> nuts<br />

Rice<br />

Cotton<br />

Developed (none shown)<br />

Cropl<strong>and</strong> <strong>and</strong> pasture (none shown)<br />

Cropl<strong>and</strong><br />

Irrigated row <strong>and</strong> field crops<br />

Water-balance subregion boundaries<br />

<strong>and</strong> identifier—See table C1<br />

Active model grid boundary—<br />

See figure C1<br />

Figure C11. Virtual crops for 1998, including pie chart of percentage of different virtual crops (sources: Davis <strong>and</strong> others, 1998;<br />

California Department of Water Resources, 2000). The water-balance subregions are described in .<br />

18<br />

20<br />

21


14<br />

16<br />

13<br />

17<br />

12<br />

18<br />

11<br />

1 2<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

10<br />

Fraction of total area by l<strong>and</strong>-use type<br />

9<br />

1<br />

2<br />

8<br />

3<br />

6<br />

4<br />

5<br />

3<br />

9<br />

7<br />

8<br />

11<br />

12<br />

10<br />

14<br />

13<br />

16<br />

15<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

19<br />

EXPLANATION<br />

L<strong>and</strong> use—1999-2003<br />

L<strong>and</strong> use type—<br />

Model Development 145<br />

Water<br />

Urban<br />

Native vegetation<br />

Orchard, groves <strong>and</strong> vineyards (none shown)<br />

Pasture/Hay (none shown)<br />

Row crops (none shown)<br />

Small grains (none shown)<br />

Idle/fallow<br />

Truck, nursery <strong>and</strong> berry crops<br />

Citrus <strong>and</strong> subtropical<br />

Field crops<br />

Vineyards<br />

Pasture<br />

Grain <strong>and</strong> hay<br />

Feed lots <strong>and</strong> diaries (none shown)<br />

Deciduous fruits <strong>and</strong> nuts<br />

Rice<br />

Cotton<br />

Developed (none shown)<br />

Cropl<strong>and</strong> <strong>and</strong> pasture (none shown)<br />

Cropl<strong>and</strong> (none shown)<br />

Irrigated row <strong>and</strong> field crops (none shown)<br />

Water-balance subregion boundaries<br />

<strong>and</strong> identifier—See table C1<br />

Active model grid boundary—<br />

See figure C1<br />

Figure C12. Virtual crops for 2000, including a pie chart of percentage of different virtual crops (California Department of Water<br />

Resources, 2000). The water-balance subregions are described in<br />

17<br />

18<br />

20<br />

21


146 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C4. Summary of <strong>Central</strong> <strong>Valley</strong>, California, virtual crop categories <strong>and</strong> properties.<br />

Virtual-crop<br />

crop category<br />

(number)<br />

Root depth,<br />

in feet<br />

Anoxia<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

pears, apricots, cherries, <strong>and</strong> other miscellaneous deciduous<br />

trees.<br />

Root uptake pressure heads, in feet Fraction of<br />

surface-water<br />

Lower optimal<br />

range<br />

Upper optimal<br />

range<br />

Wilting<br />

runoff from<br />

precipitation<br />

/irrigation<br />

(dimensionless)<br />

Water (1) 3.6 1.6 0.3 0.05/0.01<br />

Urban (2) 2.0 0.01/0.01<br />

10.6 1.6 0.4 0.21/0.01<br />

6.0 0.10/0.01<br />

5.3 0.10/0.02<br />

8.3 0.10/0.06<br />

4.0 0.10/0.04<br />

5.3 0.06/0.01<br />

Truck, nursery, <strong>and</strong> berry crops (9) 6.3 0.10/0.10<br />

4.0 0.10/0.01<br />

4.0 0.10/0.08<br />

5.0 0.01/0.01<br />

5.3 0.0 0.10/0.02<br />

4.0 0.10/0.04<br />

3.6 0.32/0.35<br />

poultry farms) (15)<br />

6.0 0.11/0.05<br />

5.3 1.6 0.4 0.01/0.03<br />

9.3 0.10/0.10<br />

5.3 0.10/0.08<br />

4.9 0.10/0.08<br />

6.3 0.10/0.08<br />

4.9 0.10/0.07<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

months of the year ().


CROP COEFFICIENT BY LAND-USE TYPE, UNITLESS<br />

A<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

in the simulations tabulated in <br />

Model Development 147<br />

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC<br />

L<strong>and</strong> use type—<br />

Water<br />

Urban<br />

Native vegetation<br />

Orchard, groves <strong>and</strong> vineyards<br />

MONTH<br />

EXPLANATION<br />

Pasture/hay<br />

Row crops<br />

Small grains<br />

Idle/fallow<br />

Figure C13. Monthly crop coefficients for virtual crops in the <strong>Central</strong> <strong>Valley</strong>, California (sources: Brouwer <strong>and</strong> others, 1985; Brouwer<br />

<strong>and</strong> Heibloem, 1986; Snyder <strong>and</strong> others, 1987a; Snyder <strong>and</strong> others, 1987b; Allen <strong>and</strong> others, 1998; Brush <strong>and</strong> others, 2004).


148 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

CROP COEFFICIENT BY LAND-USE TYPE, UNITLESS<br />

B<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

Figure C13. Continued.<br />

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC<br />

L<strong>and</strong> use type—<br />

<br />

<br />

<br />

time period in .<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

MONTH<br />

EXPLANATION<br />

Truck, nursery <strong>and</strong> berry crops<br />

Citrus <strong>and</strong> subtropical<br />

Field crops<br />

Vineyards<br />

Pasture<br />

Grain <strong>and</strong> hay<br />

Feed lots <strong>and</strong> dairies<br />

<br />

<br />

<br />

-


1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

CROP COEFFICIENT BY LAND-USE TYPE, UNITLESS C<br />

0.20<br />

0.00<br />

Figure C13. Continued.<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Development 149<br />

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC<br />

L<strong>and</strong> use type—<br />

Deciduous fruits <strong>and</strong> nuts<br />

Rice<br />

Cotton<br />

Developed<br />

MONTH<br />

EXPLANATION<br />

Cropl<strong>and</strong> <strong>and</strong> pasture<br />

Cropl<strong>and</strong><br />

Irrigated row <strong>and</strong> field crops<br />

<br />

-<br />

<br />

<br />

<br />

-


150 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C5. Summary of fractions of transpiration <strong>and</strong> evaporation by month for <strong>Central</strong> <strong>Valley</strong>, California, virtual crops.<br />

Table C5. Summary of fractions of transpiration <strong>and</strong> evaporation by month for <strong>Central</strong> <strong>Valley</strong> virtual crops.—Continued<br />

<br />

<br />

Virtual-crop<br />

crop category<br />

(number)<br />

January<br />

(Ftr/Fep/Fei)<br />

February<br />

(Ftr/Fep/Fei)<br />

March<br />

(Ftr/Fep/Fei)<br />

April<br />

(Ftr/Fep/Fei)<br />

May<br />

(Ftr/Fep/Fei)<br />

June<br />

(Ftr/Fep/Fei)<br />

Water (1) 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00<br />

Urban (2) 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02<br />

0.28/0.72/0.72 0.28/0.72/0.72 0.66/0.34/0.34 0.66/0.34/0.34 0.66/0.34/0.34 0.66/0.34/0.34<br />

0.20/0.80/0.80 0.20/0.80/0.80 0.37/0.63/0.63 0.23/0.77/0.77 0.46/0.54/0.54 0.47/0.53/0.53<br />

0.50/0.50/0.50 0.50/0.50/0.50 0.50/0.50/0.50 0.50/0.50/0.50 0.72/0.28/0.28 0.88/0.12/0.12<br />

0.11/0.89/0.89 0.11/0.89/0.89 0.11/0.89/0.89 0.09/0.91/0.91 0.36/0.64/0.64 0.46/0.54/0.54<br />

0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00<br />

0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00<br />

Truck, nursery, <strong>and</strong> berry crops (9) 0.80/0.20/0.18 0.80/0.20/0.18 0.39/0.61/0.61 0.44/0.56/0.36 0.42/0.58/0.38 0.80/0.20/0.18<br />

0.27/0.73/0.73 0.27/0.73/0.73 0.46/0.54/0.14 0.46/0.54/0.14 0.46/0.54/0.14 0.46/0.54/0.14<br />

0.01/0.99/0.99 0.01/0.99/0.99 0.01/0.99/0.99 0.15/0.85/0.85 0.15/0.85/0.85 0.94/0.06/0.06<br />

0.00/1.00/0.03 0.00/1.00/0.03 0.28/0.72/0.22 0.40/0.60/0.10 0.38/0.62/0.12 0.36/0.64/0.14<br />

0.18/0.82/0.82 0.15/0.85/0.85 0.46/0.64/0.64 0.91/0.09/0.03 0.91/0.09/0.03 0.91/0.09/0.03<br />

0.46/0.54/0.54 0.92/0.08/0.08 0.92/0.08/0.08 0.92/0.08/0.08 0.23/0.77/0.77 0.00/1.00/1.00<br />

0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00<br />

0.10/0.90/0.90 0.10/0.90/0.90 0.10/0.90/0.90 0.50/0.50/0.50 0.50/0.50/0.50 0.97/0.03/0.03<br />

0.20/0.80/0.50 0.20/0.80/0.50 0.20/0.80/0.50 0.75/0.25/0.25 0.75/0.25/0.25 0.80/0.20/0.10<br />

0.75/0.25/0.25 0.75/0.25/0.25 0.75/0.25/0.25 0.43/0.57/0.17 0.75/0.25/0.20 0.75/0.25/0.20<br />

0.30/0.70/0.67 0.30/0.70/0.67 0.22/0.78/0.78 0.16/0.84/0.84 0.42/0.58/0.38 0.85/0.15/0.15<br />

0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.20/0.80/0.80 0.30/0.70/0.70<br />

0.05/0.95/0.85 0.05/0.95/0.85 0.05/0.95/0.55 0.05/0.95/0.55 0.05/0.95/0.95 0.05/0.95/0.85<br />

0.05/0.95/0.55 0.05/0.95/0.55 0.05/0.95/0.75 0.05/0.95/0.75 0.20/0.80/0.78 0.85/0.15/0.10<br />

Virtual-crop<br />

crop category<br />

(number)<br />

July<br />

(Ftr/Fep/Fei)<br />

August<br />

(Ftr/Fep/Fei)<br />

September<br />

(Ftr/Fep/Fei)<br />

October<br />

(Ftr/Fep/Fei)<br />

November<br />

(Ftr/Fep/Fei)<br />

December<br />

(Ftr/Fep/Fei)<br />

Water (1) 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00<br />

Urban (2) 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02 0.25/0.75/0.02<br />

0.66/0.34/0.34 0.66/0.34/0.34 0.66/0.34/0.34 0.66/0.34/0.34 0.66/0.34/0.34 0.28/0.72/0.72<br />

0.47/0.53/0.53 0.47/0.53/0.53 0.47/0.53/0.53 0.47/0.53/0.53 0.45/0.55/0.55 0.20/0.80/0.80<br />

0.95/0.05/0.05 0.96/0.04/0.04 0.96/0.04/0.04 0.96/0.04/0.04 0.96/0.04/0.04 0.96/0.04/0.04<br />

0.95/0.05/0.05 0.87/0.13/0.13 0.12/0.88/0.88 0.11/0.89/0.89 0.11/0.89/0.89 0.11/0.89/0.89<br />

0.20/0.80/0.80 0.50/0.50/0.50 0.90/0.10/0.10 0.90/0.10/0.10 0.00/1.00/1.00 0.50/0.50/0.50<br />

0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00 0.00/1.00/0.00<br />

Truck, nursery, <strong>and</strong> berry crops (9) 0.80/0.20/0.18 0.80/0.20/0.18 0.80/0.20/0.18 0.80/0.20/0.18 0.80/0.20/0.18 0.80/0.20/0.18<br />

0.46/0.54/0.14 0.46/0.54/0.14 0.46/0.54/0.14 0.46/0.54/0.14 0.46/0.54/0.14 0.46/0.54/0.14<br />

0.94/0.06/0.06 0.94/0.06/0.06 0.90/0.10/0.10 0.01/0.99/0.99 0.01/0.99/0.99 0.01/0.99/0.99<br />

0.36/0.64/0.14 0.36/0.64/0.14 0.36/0.64/0.14 0.36/0.64/0.14 0.36/0.64/0.14 0.38/0.62/0.12<br />

0.96/0.04/0.04 0.91/0.09/0.03 0.91/0.09/0.03 0.46/0.64/0.64 0.15/0.85/0.85 0.15/0.85/0.85<br />

0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.16/0.84/0.84 0.35/0.65/0.65<br />

0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00 0.00/1.00/1.00<br />

0.97/0.03/0.03 0.97/0.03/0.03 0.97/0.03/0.03 0.10/0.90/0.90 0.10/0.90/0.90 0.10/0.90/0.90<br />

0.75/0.25/0.25 0.60/0.40/0.27 0.20/0.80/0.50 0.20/0.80/0.50 0.20/0.80/0.50 0.20/0.80/0.50<br />

0.75/0.25/0.20 0.75/0.25/0.20 0.47/0.53/0.33 0.36/0.64/0.44 0.75/0.25/0.25 0.75/0.25/0.25<br />

0.90/0.10/0.10 0.90/0.10/0.10 0.90/0.10/0.10 0.50/0.50/0.50 0.30/0.70/0.70 0.30/0.70/0.67<br />

0.85/0.15/0.15 0.95/0.05/0.05 0.90/0.10/0.10 0.50/0.50/0.50 0.00/1.00/1.00 0.00/1.00/1.00<br />

0.05/0.95/0.85 0.75/0.25/0.25 0.95/0.05/0.05 0.94/0.06/0.06 0.93/0.07/0.07 0.00/1.00/1.00<br />

0.95/0.05/0.05 0.95/0.05/0.05 0.60/0.40/0.15 0.04/0.96/0.04 0.10/0.90/0.50 0.10/0.90/0.50


Table C6. Average area-weighted composite efficiency for each<br />

water-balance subregion of the <strong>Central</strong> <strong>Valley</strong>, California, through<br />

the simulation period.<br />

<br />

Waterbalance<br />

subregion<br />

Climate Data<br />

1960s 1970s 1980s 1990s 2000s<br />

1 70 68 73 76 74<br />

2 70 68 72 75 73<br />

3 74 74 79 82 83<br />

4 71 70 74 78 79<br />

5 73 72 78 80 80<br />

6 69 69 74 77 77<br />

7 71 69 73 77 77<br />

8 69 69 75 78 75<br />

9 69 70 76 79 78<br />

10 69 72 78 80 79<br />

11 70 70 76 78 77<br />

12 71 70 74 77 76<br />

13 71 72 77 80 79<br />

14 68 73 82 86 87<br />

15 67 69 75 76 76<br />

16 72 72 78 79 81<br />

17 72 72 77 79 80<br />

18 71 72 77 79 79<br />

19 68 72 78 79 77<br />

20 72 73 78 81 81<br />

21 71 73 79 81 81<br />

<br />

-<br />

<br />

<br />

<br />

Reference Evapotranspiration (ETo)<br />

eter-based<br />

equations or simple, empirical equations. The main<br />

<br />

<br />

<br />

data required for the parameter-based equations (such as the<br />

<br />

<br />

small number of parameters (usually air temperature <strong>and</strong> solar<br />

<br />

<br />

Model Development 151<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

where,<br />

T<br />

T<br />

⎛<br />

ETh = 0. 0023Ra⎜<br />

⎝<br />

max<br />

min<br />

T + T ⎞⎛T<br />

−T<br />

max min max min<br />

⎟⎜<br />

2× 178 . ⎠⎝<br />

2<br />

is the maximum daily air temperature [ ° C],<br />

is the minimum<br />

daily air temperature [ ° C], <strong>and</strong><br />

Ra is the extraterrestrial<br />

solar radiation<br />

2<br />

(megaJoule/m /day).<br />

<br />

to be one of the simplest <strong>and</strong> most accurate of the empiri-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

the center of each 1-mi 2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

⎞<br />

⎟<br />


152 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Precipitation<br />

<br />

<br />

tation<br />

are obtained at a 1.24-mi spatial resolution from the<br />

<br />

<br />

) indicates that the<br />

<br />

<br />

monthly precipitation rate is interpolated for the center of each<br />

1 mi 2 -<br />

<br />

.<br />

<br />

<br />

<br />

precipitation occurs, a part of this precipitation becomes<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Surface-Water Supply<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<strong>and</strong> ). In<br />

<br />

<br />

<br />

<strong>and</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

). In order to compile multiple<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Groundwater Supply<br />

<br />

<br />

<br />

<br />

<br />

” section of this chapter), because the amount of<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-


Water-<br />

balance<br />

subregion<br />

Model Development 153<br />

Table C7. Average reference evapotranspiration (ETo) by month for the <strong>Central</strong> <strong>Valley</strong>, California, for 1961–2003 based on temperature<br />

data using the Hargreaves–Samani equation.<br />

<br />

January February March April May June<br />

1 1.13 1.79 2.43 3.68 5.00 6.32<br />

2 1.24 1.93 2.61 3.91 5.15 6.32<br />

3 1.39 2.15 2.91 4.22 5.34 6.55<br />

4 1.36 2.18 2.92 4.22 5.35 6.58<br />

5 1.28 2.08 2.81 4.14 5.32 6.54<br />

6 1.28 2.14 2.77 4.06 5.19 6.34<br />

7 1.15 1.96 2.65 4.00 5.24 6.45<br />

8 1.29 2.14 2.84 4.04 5.17 6.22<br />

9 1.24 2.09 2.79 4.01 4.98 5.94<br />

10 1.63 2.33 3.11 4.16 5.26 6.40<br />

11 1.53 2.43 3.16 4.24 5.35 6.44<br />

12 1.53 2.37 3.16 4.28 5.37 6.48<br />

13 1.75 2.54 3.29 4.39 5.57 6.72<br />

14 1.72 2.40 3.18 4.33 5.43 6.57<br />

15 1.61 2.32 3.15 4.39 5.51 6.60<br />

16 1.70 2.50 3.30 4.49 5.76 6.99<br />

17 1.70 2.51 3.30 4.52 5.72 6.79<br />

18 1.90 2.70 3.46 4.64 5.77 6.80<br />

19 2.10 2.62 3.33 4.38 5.38 6.48<br />

20 2.21 2.73 3.41 4.34 5.38 6.53<br />

21 2.28 2.70 3.31 4.19 5.13 6.24<br />

Water-<br />

balance<br />

subregion<br />

July August September October November December<br />

1 6.79 5.98 4.71 2.62 1.34 0.91<br />

2 6.69 5.96 4.75 2.79 1.51 1.06<br />

3 6.97 6.23 4.98 3.02 1.78 1.35<br />

4 7.14 6.36 5.05 3.06 1.79 1.40<br />

5 6.92 6.15 4.86 2.94 1.68 1.18<br />

6 6.52 5.89 4.80 2.96 1.74 1.14<br />

7 6.74 6.00 4.76 2.82 1.60 0.98<br />

8 6.53 5.82 4.69 2.94 1.80 1.25<br />

9 6.09 5.45 4.54 2.88 1.75 1.10<br />

10 6.65 5.87 4.89 3.15 1.96 1.41<br />

11 6.93 6.16 4.99 3.20 2.10 1.72<br />

12 6.77 6.02 4.92 3.18 2.01 1.48<br />

13 7.16 6.40 5.30 3.46 2.20 1.73<br />

14 6.67 5.91 4.86 3.26 2.03 1.52<br />

15 6.74 6.04 4.93 3.34 2.05 1.42<br />

16 7.36 6.65 5.32 3.47 2.23 1.73<br />

17 7.20 6.61 5.23 3.51 2.26 1.76<br />

18 7.11 6.52 5.30 3.60 2.38 1.93<br />

19 6.58 5.99 4.98 3.40 2.24 1.83<br />

20 6.63 6.02 5.02 3.38 2.29 1.95<br />

21 6.33 5.76 4.88 3.32 2.28 1.96<br />

<br />

-<br />

-<br />

<br />

<br />

used to satisfy the residual dem<strong>and</strong>.


154 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Net Recharge<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

slope (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

Hydraulic Properties<br />

<br />

<br />

<br />

K) <strong>and</strong> thickness<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

member.<br />

<br />

<br />

<br />

<br />

where<br />

x<br />

p<br />

M ( x)=<br />

n<br />

⎛ 1<br />

⎜<br />

⎝<br />

1<br />

n p<br />

p ⎞<br />

∑ xk<br />

⎟<br />

k = 1<br />

is the value being averaged (such as hydraulic<br />

conductivity),<br />

p is the averaging power-mean<br />

exponent,<br />

n is the number of elements being averaged, <strong>and</strong><br />

th<br />

x is the k element in the list.<br />

k<br />

-<br />

<br />

K ) <strong>and</strong><br />

K <br />

<br />

where<br />

F<br />

ci ,<br />

K<br />

h,i<br />

= + ⎡<br />

⎣KF<br />

K F<br />

c c, i f f , i<br />

is the fraction of coarse-grained<br />

sediment<br />

⎠<br />

⎤<br />

⎦<br />

in a cell, estimated from sediment texture<br />

data as described earlier in Chapter A, <strong>and</strong><br />

F isthe fraction<br />

of fine-grained sediment in a<br />

f , i<br />

cell (1 Fci , ).<br />

K is much smaller that K , the arithmetic mean<br />

K <strong>and</strong> fraction of the coarse-<br />

<br />

K 1/2 )<br />

p th -<br />

<br />

-<br />

<br />

where<br />

k<br />

K vk<br />

, + 1 2<br />

F f k<br />

, + 1 2<br />

p<br />

K = ⎡F<br />

K F K<br />

vk , + 1 ck , + 1 c +<br />

f , k+<br />

1<br />

2 ⎣⎢ 2<br />

2<br />

represents the layer,<br />

p<br />

f<br />

⎤<br />

⎦⎥<br />

1 p<br />

isthe fraction of coarse-grained sediment<br />

between layer midpoints, <strong>and</strong><br />

is the fraction of fine-grained<br />

sediment<br />

between layer midpoints.<br />

,


p<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

p<br />

<br />

<br />

p.<br />

<br />

<br />

<br />

mean. K <br />

<br />

<br />

<br />

<br />

RANGE IN HYDRAULIC CONDUCTIVITY, IN FEET PER DAY<br />

1,000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0 20 40<br />

PERCENTAGE COARSE-GRAINED DEPOSITS<br />

EXPLANATION<br />

Exponent of power mean—<br />

-1.0<br />

-0.8<br />

-0.5<br />

-0.3<br />

0<br />

0.5<br />

1.0<br />

Model Development 155<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-3 ft/d<br />

for silty clay to 13 ft/d for s<strong>and</strong>. Williamson <strong>and</strong> others (1989)<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

K ) to be<br />

<br />

K ) to<br />

be 4.010 -<br />

<br />

(Harmonic mean)<br />

(Geometric mean)<br />

(Arithimetic mean)<br />

60 80 100<br />

Figure C14. Relation between hydraulic conductivity <strong>and</strong> percentage coarse-grained deposits based on hydraulic conductivity end<br />

members <strong>and</strong> exponent of the power mean.


156 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

K <br />

10 ft/d (). The<br />

<br />

mean (p<br />

<br />

p<br />

<br />

p).<br />

<br />

<br />

about 6.610 <br />

10 10 <br />

5 <br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

10 to 1.510 -<br />

-<br />

10 <br />

10 -<br />

<br />

<br />

is 5.210 <br />

10 <br />

6.210 <br />

Hydraulic Conductivity<br />

<br />

in this study are K , K , <strong>and</strong> K <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

“” section of this chapter.<br />

<br />

<br />

that affect the end-member K<br />

<br />

<br />

<br />

<br />

<br />

<br />

K is 7.510 -2 <br />

K is 6.710 +2 <br />

K is 2.410 K is 3.310 +3 -<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

decrease the K<br />

(see “<br />

<br />

-<br />

<br />

<br />

<br />

K ) is based on the coarse- <strong>and</strong><br />

<br />

<br />

<br />

<br />

-<br />

<br />

aquifer system as opposed to the clayey lenses or interbeds<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

clays <strong>and</strong> the enhanced impedance caused by compaction<br />

<br />

<br />

<br />

<br />

<br />

<br />

deposits about 4.810 ft/d (0.002 * 2.410 ft/d), close to the


Table C8. Measured <strong>and</strong> simulated hydraulic properties.<br />

Model Development 157<br />

[K K K <br />

<br />

Hydraulic<br />

property<br />

Field <strong>and</strong> laboratory values Previously simulated values Values simulated in this study<br />

c +21 31 to 104 ft/d2,3,4 +2 <br />

<br />

5 +3 f 5 to ft/d4 ft/d6 -2 <br />

<br />

5 -1 corc ft/d7 ft/d4 ft/d2 ft/d6 ft/d9 <br />

<br />

-2 <br />

-3 ous<br />

simulations include borehole<br />

<br />

p 4 <br />

<br />

0.25 to 0.65 5 <br />

<br />

0.0 to 0.35 5 4<br />

0.02 to 0.20 9<br />

<br />

<br />

<br />

-6 per ft per ft9 -6 per ft per ft9 -6 per ft <br />

per ft5 per ft16 -6 per ft<br />

per ft 15 per ft 9 per ft<br />

1 <br />

2 <br />

3 <br />

4 <br />

5 <br />

6 <br />

7 <br />

8 Johnson <strong>and</strong> others (1968).<br />

9 Williamson <strong>and</strong> others (1989).<br />

10 <br />

11 <br />

12 <br />

13 <br />

14 <br />

15 <br />

16 Irel<strong>and</strong> <strong>and</strong> others (1984).


158 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

).<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

situations, such data are scarce, depth decay is obscured by<br />

<br />

is substantial. Taylor <strong>and</strong> others (2001) <strong>and</strong> Whittemore <strong>and</strong><br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

Storage Properties<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<strong>and</strong> inelastic compressibilities of the aquifer-system material.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

in <strong>and</strong> .<br />

<br />

<br />

<br />

<br />

layer (<br />

<br />

<br />

<br />

-


-<br />

<br />

<strong>and</strong> others, 1991).<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

<br />

<br />

<br />

thicknesses are summed <strong>and</strong> multiplied by the compressibility<br />

10 -6 <br />

<br />

-<br />

-<br />

<br />

Model Development 159<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

future use.<br />

<br />

<br />

lated<br />

as the product of the estimated elastic- <strong>and</strong> inelastic-spe-<br />

<br />

<br />

-<br />

<br />

-<br />

-<br />

<br />

<br />

10 to<br />

210 <br />

<br />

8.610 -<br />

fers<br />

of 1.010 <br />

<br />

<br />

<br />

<br />

<br />

<br />

10 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 per foot.<br />

-<br />

<br />

<br />

10 <br />

4 <br />

<br />

10 <br />

<br />

<br />

-


160 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

consolidation<br />

stress represents the threshold stress that deter-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

estimated by Williamson <strong>and</strong> others (1989). These heads are<br />

-<br />

<br />

<br />

<br />

<br />

Hydrogeologic Units<br />

<br />

<br />

-<br />

<br />

, the<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

Hydrogeologic Structures<br />

<br />

<br />

<br />

<br />

ley<br />

(<br />

<br />

<br />

structures (<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

the model domain ().<br />

Initial Conditions<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<strong>and</strong> ).<br />

<br />

<br />

<br />

of these <strong>and</strong> possibly other conditions, steady-state simulations<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

-


-<br />

<br />

<br />

<br />

<br />

transient effects caused by imposition of the poorly estimated<br />

<br />

-<br />

<br />

<br />

<br />

to dissipate transient effects caused by inaccurate initial heads<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity 161<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

in <br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

Observations Used in Model Calibration<br />

<br />

<br />

<br />

model calibration, often uses hydraulic head data as the sole or<br />

<br />

<br />

data lead to a more accurate, rapid, <strong>and</strong> unique calibration.<br />

<br />

-<br />

<br />

<br />

-


162 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

EXPLANATION<br />

Model calibration—<br />

Location of stream segments used<br />

for model calibration<br />

Location of wells used for model<br />

calibration<br />

Location of subsidence measurements<br />

used for model calibration<br />

<strong>Central</strong> <strong>Valley</strong> model boundary<br />

Water-balance subregion<br />

Figure C15. Distribution of calibration data (groundwater levels, gains <strong>and</strong> losses of streamflow, <strong>and</strong> subsidence observations).


Water-Level Altitudes, Water-Level Altitude<br />

Changes, <strong>and</strong> Water-Level Altitude Maps<br />

<br />

<br />

<br />

http://waterdata.usgs.<br />

gov <strong>and</strong> <br />

<br />

<br />

<br />

<br />

).<br />

<br />

<br />

<br />

simulation period.<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

on the basis of perforation depths, completeness of record,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(<br />

<br />

<br />

<br />

<br />

parameter estimation.<br />

tudes<br />

at a particular time, it is necessary to accurately simu-<br />

<br />

<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity 163<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

in the northern part of the study area, increased dramatically in<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

10 7 10 ft 2 for the 42.5-year simulation period<br />

<br />

<br />

-<br />

<br />

<br />

<br />

possibly represent errors in the databases, measurements that<br />

<br />

<br />

<br />

<br />

<br />

). In


164 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

EXPLANATION<br />

Active model grid boundary<br />

Model streams <strong>and</strong> canals<br />

Model water-balance subregion<br />

Potential horizontal flow<br />

barrier<br />

Wells selected for spatial<br />

<strong>and</strong> climate coverage<br />

Wells selected for spatial<br />

coverage<br />

Wells selected for wet <strong>and</strong> dry period<br />

coverage<br />

Remaining wells with water-level<br />

measurements between 1961 <strong>and</strong> 2003<br />

Figure C16. Distribution of wells with water-level-altitude data for the simulation period 1961–2003, <strong>and</strong> location of wells selected for<br />

model calibration. Only selected wells were used for calibration; other wells are shown to display the density of wells with water-level<br />

measurements in simulation period.


SIMULATED HYDRAULIC HEAD, IN FEET<br />

A<br />

500<br />

300<br />

100<br />

0<br />

-100<br />

-300<br />

FREQUENCY<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

-150-75-60-45-30-15 0 15 30 45 60 75 150 More<br />

RESIDUALS, IN FEET<br />

1 to 1 correlation line<br />

<br />

<br />

<br />

<br />

(-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

represent quasi-static conditions.<br />

<br />

). In<br />

Model Calibration <strong>and</strong> Sensitivity 165<br />

-500<br />

-500 -300 -100 0 100<br />

300 500<br />

A<br />

MEASURED WATER LEVELS, IN FEET<br />

EXPLANATION<br />

California Department of Water Resources water-balance subregions (See figure C1 for location)<br />

CENTRAL VALLEY<br />

Sacramento Delta <strong>and</strong> Eastside San Joaquin<br />

Tulare<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Figure C17. Plots of simulated water-level altitude values compared with the measured water-level altitudes for the A, Entire modeled<br />

area (<strong>and</strong> with inset with histogram of residuals). B, Sacramento <strong>Valley</strong>. C, Delta <strong>and</strong> Eastside. D, San Joaquin Basin. E, Tulare Basin.<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

18<br />

19<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

20<br />

21


166 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

SIMULATED HYDRAULIC HEAD, IN FEET<br />

B<br />

500<br />

300<br />

100<br />

0<br />

-100<br />

-100<br />

300<br />

100<br />

0<br />

-100<br />

D<br />

-300<br />

-100<br />

Figure C17. Continued.<br />

1 to 1 correlation line<br />

0 100<br />

300<br />

1 to 1 correlation line<br />

0 100<br />

300<br />

-100<br />

500<br />

-300<br />

-300<br />

<br />

<br />

<br />

<br />

southeastern part of the study area (<br />

<br />

<br />

<br />

().<br />

300<br />

100<br />

-100<br />

-300<br />

0<br />

500<br />

300<br />

100<br />

0<br />

-100<br />

0 100<br />

300<br />

-500<br />

-300 -100<br />

0 100<br />

300 500<br />

MEASURED WATER LEVELS, IN FEET<br />

EXPLANATION<br />

1 to 1 correlation line<br />

California Department of Water Resources water-balance subregions (See figure C1 for location)<br />

B Sacramento C Delta <strong>and</strong> Eastside D San Joaquin E Tulare<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

C<br />

E<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

18<br />

-<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

19<br />

20<br />

21


-<br />

<br />

<br />

<br />

<br />

Water-Table <strong>and</strong> Potentiometric-Surface Maps<br />

Water-table <strong>and</strong> potentiometric-surface maps for the<br />

<br />

) (Williamson <strong>and</strong> others,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

altitudes for the simulation.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

( <strong>and</strong> <br />

-<br />

<br />

<br />

<br />

<br />

, 03b06329 <strong>and</strong><br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

Sacramento <strong>Valley</strong><br />

-<br />

<br />

<br />

).<br />

<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity 167<br />

<br />

<br />

<br />

-<br />

<br />

<br />

some of the climatic effects accurately (<br />

<br />

potentiometric surface maps (<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<strong>and</strong> mid-to-late 1990s (<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

of the system (-<br />

<br />

<br />

Delta<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dent<br />

in the simulated potentiometric-surface maps ().<br />

<br />

<br />

<br />

(<br />

<br />

not in this area.


168 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

Water-level difference, in feet,<br />

simulated minus estimated (Williamson<br />

<strong>and</strong> others, 1989)—<br />

Equal to or less than -50.0<br />

-49.9 to -25.0<br />

-24.9 to 0.0<br />

0.1 to 24.9<br />

25.0 to 49.9<br />

Equal to or greater than 50.0<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Simulated water-level altitude,<br />

in feet. Spring, 1976—<br />

Model streams<br />

<strong>and</strong> canals<br />

EXPLANATION<br />

Active model grid<br />

boundary<br />

Model water-balance<br />

subregion<br />

Figure C18. The simulated A, Water-table altitude in spring 1976. B, Potentiometric-surface altitude in spring 1976, for the calibrated<br />

transient groundwater-flow model of the <strong>Central</strong> <strong>Valley</strong>. Residuals at observation points <strong>and</strong> areal differences between h<strong>and</strong>-drawn<br />

altitude maps also are shown. Maps showing the simulated water-table altitude <strong>and</strong> potentiometric-surface altitude in spring of 2000<br />

are shown in <strong>and</strong> .<br />

-160<br />

-120<br />

-80<br />

-40<br />

0<br />

40<br />

80<br />

120<br />

160<br />

200<br />

240<br />

280<br />

320<br />

360<br />

400<br />

440<br />

480<br />

Residual (Observed minus<br />

Simulated), in feet—<br />

-57.3 to -55<br />

-54.9 to -50<br />

-49.9 to -45<br />

-44.9 to -40<br />

-39.9 to -35<br />

-34.9 to -30<br />

-29.9 to -25<br />

-24.9 to -20<br />

-19.9 to -15<br />

-14.9 to -10<br />

-9.9 to -5<br />

-4.9 to 5<br />

5.1 to 10<br />

10.1 to 15<br />

15.1 to 20<br />

20.1 to 25<br />

25.1 to 30<br />

30.1 to 35<br />

35.1 to 40<br />

40.1 to 45<br />

45.1 to 50<br />

50.1 to 55<br />

55.1 to 60


B<br />

Potentiometric-surface difference, in feet,<br />

simulated minus estimated (Williamson<br />

<strong>and</strong> others, 1989)—<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure C18. Continued.<br />

Equal to or less than -50.0<br />

-49.9 to -25.0<br />

-24.9 to 0.0<br />

0.1 to 24.9<br />

25.0 to 49.9<br />

Equal to or greater than 50.0<br />

Model Calibration <strong>and</strong> Sensitivity 169<br />

Model streams<br />

<strong>and</strong> canals<br />

EXPLANATION<br />

Simulated potentiometric-surface<br />

altitude, in feet. Spring, 1976—<br />

-160<br />

-120<br />

-80<br />

-40<br />

0<br />

40<br />

80<br />

120<br />

160<br />

200<br />

240<br />

280<br />

320<br />

360<br />

400<br />

440<br />

480<br />

Active model grid<br />

boundary<br />

Model water-balance<br />

subregion<br />

Residual (Observed minus<br />

Simulated), in feet—<br />

-57.3 to -55<br />

-54.9 to -50<br />

-49.9 to -45<br />

-44.9 to -40<br />

-39.9 to -35<br />

-34.9 to -30<br />

-29.9 to -25<br />

-24.9 to -20<br />

-19.9 to -15<br />

-14.9 to -10<br />

-9.9 to -5<br />

-4.9 to 5<br />

5.1 to 10<br />

10.1 to 15<br />

15.1 to 20<br />

20.1 to 25<br />

25.1 to 30<br />

30.1 to 35<br />

35.1 to 40<br />

40.1 to 45<br />

45.1 to 50<br />

50.1 to 55<br />

55.1 to 60


170 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

San Joaquin <strong>Valley</strong><br />

<br />

<br />

<br />

<br />

<br />

ships<br />

().<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

().<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

aquifer system ( <strong>and</strong> <br />

<br />

<br />

<strong>and</strong> ).<br />

<br />

<br />

-<br />

<strong>and</strong> ).<br />

<br />

-<br />

<br />

<br />

<br />

Tulare Basin<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

) indicate a<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

simulation period. On the southeastern side of the basin,<br />

<br />

<br />

Streamflow Observations<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

in this area.


A<br />

Stony Creek<br />

Cache Creek<br />

Putah Creek<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Stanislaus<br />

Tuolumne<br />

Merced<br />

San Joaquin<br />

STREAMFLOW<br />

Fresno<br />

San Joaquin<br />

Fresno Slough<br />

Model Calibration <strong>and</strong> Sensitivity 171<br />

EXPLANATION<br />

Groundwater/surface-water interaction,<br />

in acre-feet per year—<br />

GAIN<br />

LOSS<br />

Kings River<br />

-54.97 to -44.42<br />

-44.39 to -14.81<br />

-14.78 to -1.48<br />

-1.45 to 0<br />

0.03 to 1.48<br />

1.51 to 14.81<br />

14.84 to 44.42<br />

44.45 to 113.07<br />

Active model grid boundary<br />

Model stream cells<br />

Model water-balance subregions<br />

Kaweah River<br />

Kern River<br />

Out of groundwater<br />

system<br />

Into groundwater<br />

system<br />

Figure C19. Distribution of stream gain/loss segments used for model calibration. A, Measured gaining <strong>and</strong> losing reaches for selected<br />

stream reaches for 1961–1977. B, simulated gaining <strong>and</strong> losing reaches for selected stream reaches for 1961–1977 for the <strong>Central</strong> <strong>Valley</strong>,<br />

California.


172 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

B<br />

Stony Creek<br />

Cache Creek<br />

Putah Cr ek<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

Figure C19. Continued.<br />

Stanislaus<br />

Tuolumne<br />

Merced<br />

San Joaquin<br />

STREAMFLOW<br />

GAIN<br />

LOSS<br />

Fresno<br />

San Joaquin<br />

Fresno Slough<br />

EXPLANATION<br />

Groundwater/surface-water interaction,<br />

in acre-feet per year<br />

Kings River<br />

Less than -500<br />

-500 to -100<br />

-99.9 to -25<br />

Active model grid boundary<br />

Model water-balance subregions<br />

Kaweah River<br />

-24.9 to 0<br />

0.1 to 25<br />

25.1 to 100<br />

100.1 to 500<br />

Greater than 500<br />

Kern River<br />

Out of groundwater<br />

system<br />

Into groundwater<br />

system


-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

(-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Boundary Flow Observations<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity 173<br />

<br />

-<br />

<br />

<br />

Subsidence Observations<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<strong>and</strong> ).<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

).<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

). Uplift also<br />

).<br />

pared<br />

to estimated-subsidence maps. The simulated subsidence<br />

<br />

<br />

( <strong>and</strong> -<br />

<br />

<br />

<br />

<br />

). In part, this subsidence likely is caused by the<br />

<br />

the measured declines, in these areas.


174 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

1<br />

1<br />

2<br />

-1<br />

3<br />

5 7<br />

4<br />

7<br />

4<br />

3<br />

1<br />

5<br />

4<br />

8<br />

6<br />

3<br />

EXPLANATION<br />

Subsidence, in feet, from 1961 to 1975,<br />

(Williamson <strong>and</strong> others, 1989). Negative<br />

values indicate uplift—<br />

1<br />

2 2<br />

1<br />

Model streams <strong>and</strong> canals<br />

3<br />

-1 to 0<br />

1<br />

2 to 5<br />

6 to 10<br />

Active model grid boundary<br />

Model water-balance subregion<br />

Figure C20. Distribution of historical subsidence, estimated from 1961 to 1977 extensometer data, <strong>Central</strong> <strong>Valley</strong>, California (modified<br />

from Williamson <strong>and</strong> others, 1989).<br />

4<br />

4<br />

1<br />

2<br />

3


A<br />

11N/1E-24Q8<br />

1<br />

1<br />

1<br />

1<br />

12S/12E-16H2,3<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

1<br />

1<br />

14S/12E-12H1<br />

1<br />

10<br />

14S/13E-11D6<br />

15S/13E-11D2<br />

16S/15E-34N1<br />

17S/15E-14Q1<br />

18S/16E-33A1<br />

1<br />

20S/18E-6D1<br />

5<br />

5<br />

10<br />

5<br />

5<br />

18S/16E-33A1<br />

26S/23E-16H2, 3<br />

5<br />

5<br />

10 10<br />

20S/18E-6D1<br />

5<br />

Model Calibration <strong>and</strong> Sensitivity 175<br />

EXPLANATION<br />

Active model grid boundary<br />

Model streams <strong>and</strong> canals<br />

Model water-balance subregion<br />

Simulated subsidence 1962-2003, in feet<br />

1<br />

5<br />

10<br />

Subsidence observation locations<br />

13S/15E-31J3<br />

13S/15E-35D5<br />

15S/16E-31N3<br />

5<br />

10<br />

5<br />

10<br />

5<br />

10<br />

1<br />

18S/19E-20P2<br />

5<br />

23S/25E-16N1,3,4<br />

22S/27E-30D2<br />

24S/26E-34F1<br />

24S/26E-36A2<br />

25S/26E-1A2<br />

32S/28E-20Q1<br />

Figure C21. A, Distribution of total simulated subsidence for water years 1962 through 2003, <strong>and</strong> locations of subsidence measurements.<br />

B, Aggregate compaction measured at, <strong>and</strong> simulated subsidence for, selected extensometer locations, <strong>Central</strong> <strong>Valley</strong>, California.


176 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

B<br />

SIMULATED SUBSIDENCE, IN FEET<br />

7<br />

0<br />

10<br />

20<br />

11N/1E-24Q8<br />

26<br />

1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

12S/12E-16H2<br />

12S/12E-16H3<br />

13S/15E-31J3<br />

EXPLANATION<br />

Simulated subsidence Measured subsidence<br />

26<br />

1960 1970 1980 1990 2000 2010<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

WATER YEAR WATER YEAR<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

13S/15E-35D5<br />

14S/12E-12H1<br />

14S/13E-11D6<br />

15S/13E-11D2<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

Figure C21. Continued.<br />

7<br />

0<br />

10<br />

20


B (Cont.)<br />

SIMULATED SUBSIDENCE, IN FEET<br />

7<br />

0<br />

10<br />

20<br />

26<br />

1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

Figure C21. Continued.<br />

EXPLANATION<br />

Simulated subsidence Measured subsidence<br />

Model Calibration <strong>and</strong> Sensitivity 177<br />

18S/19E-20P2<br />

26<br />

1960 1970 1980 1990 2000 2010<br />

20S/18E-6D1<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

22S/27E-30D2<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

15S/16E-31N3<br />

16S/15E-34N1<br />

17S/15E-14Q1<br />

18S/16E-33A1<br />

WATER YEAR WATER YEAR<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

23S/25E-16N1<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20


178 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

B (Cont.)<br />

SIMULATED SUBSIDENCE, IN FEET<br />

26<br />

1960 1970 1980 1990 2000 2010<br />

Figure C21. Continued.<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

23S/25E-16N4<br />

24S/26E-34F1<br />

EXPLANATION<br />

Simulated subsidence Measured subsidence<br />

25S/26E-1A2<br />

26<br />

1960 1970 1980 1990 2000 2010<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

26S/23E-16H3<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

24S/26E-36A2<br />

23S/25E-16N3<br />

WATER YEAR WATER YEAR<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

7<br />

0<br />

10<br />

20<br />

32S/28E-20Q1<br />

26<br />

26<br />

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010<br />

7<br />

0<br />

10<br />

20<br />

26S/23E-16H2


-<br />

<br />

<br />

-<br />

), they likely<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Pumpage Observations<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity 179<br />

). In particular, the<br />

trends are matched. The simulation matches closely in drier<br />

<br />

<br />

<br />

<br />

<br />

the proportions <strong>and</strong> total 21 million acre-ft of annual farm<br />

<br />

(1989).<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

). This most likely is a<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

contradict this.<br />

Water-Use Observations<br />

<br />

<br />

most of the factors used in its calculation are indirect measure-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

some cases, is less than those estimated by Williamson (1982).<br />

<br />

<br />

<br />

<br />

), the amount of


180 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

PUMPAGE, IN MILLIONS OF ACRE-FEET PER YEAR<br />

16<br />

12<br />

8<br />

4<br />

Table C9. Estimated <strong>and</strong> <strong>Central</strong> <strong>Valley</strong> Hydrologic Model-simulated average <strong>and</strong> unit evapotranspiration of applied water (ETaw) for<br />

the <strong>Central</strong> <strong>Valley</strong>, California.<br />

<br />

Basin<br />

"Variable"<br />

to<br />

Dry<br />

"Variable"<br />

to<br />

Wet<br />

Area<br />

(square<br />

miles)<br />

Dry<br />

Wet Dry<br />

Wet<br />

Estimated unit (average)<br />

ETaw 1957–1961 ETaw 1966-–1973 ETaw 1968–1978<br />

"Variable"<br />

to<br />

Dry<br />

0<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Simulated ETaw<br />

average<br />

(1962–2003)<br />

5,981 2.4 (2.49) 2.3 (2.84) 1.9 (3.04) 1.8 (2.20)<br />

2,388 2.2 (1.86) 2.1 (1.96) 1.8 (1.91) 1.9 (1.00)<br />

3,782 2.5 (2.76) 2.0 (2.48) 2.3 (3.16) 2.3 (2.90)<br />

7,780 2.1 (4.46) 2.2 (6.390) 2.2 (7.13) 2.3 (8.20)<br />

19,389 2.3 (11.57) 2.1 (13.67) 2.1 (15.24) 2.1( 14.30)<br />

YEAR<br />

EXPLANATION<br />

Simulated agricultural<br />

Estimated from<br />

power usage<br />

Figure C22. Agricultural pumpage from 1961–77 estimated from power records (Diamond <strong>and</strong> Williamson, 1983) compared to <strong>Central</strong><br />

<strong>Valley</strong> Hydrologic Model simulated agricultural pumpage for the <strong>Central</strong> <strong>Valley</strong>, California.


Water-Delivery Observations<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Parameters<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Model Calibration <strong>and</strong> Sensitivity 181<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

less than ten estimated at any one time. These parameters<br />

included hydraulic properties of the aquifer system, streambed<br />

<br />

(<br />

<br />

mated<br />

parameters.<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

” section<br />

of this report, K h <strong>and</strong> K v <br />

<br />

K <strong>and</strong> K <br />

K h <br />

K v <br />

<br />

initial calibration efforts, the same end-member hydraulic con-<br />

<br />

<br />

<br />

<br />

K <strong>and</strong> K <br />

<br />

<br />

<br />

<br />

mean (<br />

<br />

system there (). The estimated end-member hydraulic<br />

<br />

<br />

().


182 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

B<br />

SURFACE-WATER DELIVERIES, IN MILLIONS OF ACRE-FEET PER YEAR<br />

SURFACE-WATER DELIVERIES, IN THOUSANDS OF ACRE-FEET PER YEAR<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

"Variable"<br />

to<br />

Dry<br />

"Variable"<br />

to<br />

Wet<br />

Dry<br />

Wet Dry<br />

Wet<br />

"Variable"<br />

to<br />

Dry<br />

0<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

YEAR<br />

1977 1978 1979 1980 1981 1982 1983 1984<br />

WATER YEAR<br />

EXPLANATION<br />

Deliveries taken (modeled) Deliveries available<br />

Figure C23. A, Annual water deliveries. B, monthly water deliveries from the mid 1970s to mid 1980s for water-balance subregion 14.


CROP COEFFICIENT, UNITLESS<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

JAN FEB MAR APR MAY JUN<br />

MONTH<br />

EXPLANATION<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

K<br />

model layers <strong>and</strong> 0.5, 0.37, 0.24, 0.15, <strong>and</strong> 0.08 for layers<br />

<br />

<br />

).<br />

<br />

<br />

<strong>and</strong> <br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Single cropped<br />

Double cropped<br />

Figure C24. Single <strong>and</strong> double cropped crop coefficient values for truck crops.<br />

Model Calibration <strong>and</strong> Sensitivity 183<br />

JUL AUG SEP OCT NOV DEC<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

). Trends in subsidence<br />

that are inaccurately simulated indicate some error in the<br />

<br />

eter<br />

to estimate accurately.<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


184 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A<br />

B<br />

EVAPOTRANSPIRATION, IN INCHES<br />

EVAPOTRANSPIRATION, IN INCHES<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

TRUCK CROPS<br />

JAN FEB MAR APR MAY JUN<br />

COTTON CROPS<br />

JAN FEB MAR APR MAY JUN<br />

MONTH<br />

MONTH<br />

EXPLANATION<br />

Crop evapotranspiration<br />

JUL AUG SEP OCT NOV DEC<br />

JUL AUG SEP OCT NOV DEC<br />

Adjusted evapotranspiration<br />

Figure C25. Original <strong>and</strong> adjusted crop coefficient values for truck <strong>and</strong> cotton crops.


Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.<br />

Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.—Continued<br />

<br />

<br />

Parameter<br />

name<br />

Parameter<br />

description<br />

Value Units<br />

Model Calibration <strong>and</strong> Sensitivity 185<br />

Estimated<br />

using<br />

automated<br />

methods<br />

Composite<br />

scaled<br />

sensitivity<br />

Parameter<br />

group<br />

L<strong>and</strong>-use Properties<br />

10.55 feet yes 1.37 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

for urban l<strong>and</strong>-use class<br />

<br />

<br />

class<br />

<br />

<br />

<br />

for idle l<strong>and</strong>-use class<br />

<br />

<br />

<br />

<br />

class<br />

<br />

deciduous l<strong>and</strong>-use class<br />

<br />

rice l<strong>and</strong>-use class<br />

<br />

citrus l<strong>and</strong>-use class<br />

<br />

pasture l<strong>and</strong>-use class<br />

<br />

<br />

<br />

<br />

class<br />

<br />

truck crop l<strong>and</strong>-use class<br />

<br />

<br />

<br />

<br />

<br />

deciduous l<strong>and</strong>-use class<br />

<br />

rice l<strong>and</strong>-use class<br />

<br />

cotton l<strong>and</strong>-use class<br />

<br />

other l<strong>and</strong>-use class<br />

properties<br />

0.98 multiplier yes 1.1810 2 <br />

properties<br />

1.18 multiplier yes 2.2010 1 <br />

properties<br />

Runoff<br />

5.00 yes 1.671010 <br />

properties<br />

1.50 yes 1.23 <br />

properties<br />

20.71 yes 3.76 <br />

properties<br />

10.25 yes 1.41 <br />

properties<br />

6.04 yes 1.38 <br />

properties<br />

1.30 yes 3.64 <br />

properties<br />

32.29 yes 6.67109 <br />

properties<br />

10.67 yes 1.34 <br />

properties<br />

10.62 yes 3.52 <br />

properties<br />

1.00 yes 1.23 <br />

properties<br />

1.72 yes 2.671011 <br />

properties<br />

6.08 yes 1.01 <br />

properties<br />

4.46 yes 1.23 <br />

properties<br />

10.00 yes 1.40 <br />

properties<br />

7.72 yes 1.24 <br />

properties<br />

1.20 yes 1.40 <br />

properties<br />

4.82 yes 3.66 <br />

properties<br />

3.00 yes 1.001010 <br />

properties<br />

10.16 yes 2.001010 <br />

properties<br />

7.76 yes 1.28 <br />

properties


186 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.—Continued<br />

<br />

Parameter<br />

name<br />

Parameter<br />

description<br />

Value Units<br />

Estimated<br />

using<br />

automated<br />

methods<br />

Composite<br />

scaled<br />

sensitivity<br />

Parameter<br />

group<br />

Soil Properties<br />

<br />

9.08 feet yes 3.51 <br />

silty-clay<br />

properties<br />

7.10 feet yes 1.12 <br />

properties<br />

<br />

9.32 feet yes 3.81 <br />

s<strong>and</strong>y-loam<br />

properties<br />

Irrigation efficiency<br />

0.971 multiplier yes 2.4710<br />

<br />

1964<br />

1 <br />

properties<br />

0.991 multiplier yes 1.5310<br />

<br />

1977<br />

10 <br />

properties<br />

1.030 multiplier no 6.7510<br />

<br />

1 <br />

properties<br />

1.040 multiplier no 2.46 <br />

<br />

properties<br />

1.050 multiplier no 2.42 <br />

<br />

properties<br />

1.060 multiplier no 1.86 <br />

<br />

properties<br />

1.065 multiplier no 3.06 <br />

<br />

properties<br />

1.070 multiplier no 6.66 <br />

<br />

properties<br />

1.074 multiplier yes 1.3210<br />

<br />

2003<br />

1 <br />

properties<br />

60.30 yes 4.51 <br />

<br />

properties<br />

80.00 yes 1.21 <br />

properties<br />

Hydraulic Conductivity<br />

<br />

<br />

<br />

672.93 feet/day yes 4.091011 <br />

<br />

<br />

<br />

0.24 feet/day yes 1.26101 <br />

<br />

<br />

<br />

4921.50 feet/day yes 2.71 <br />

<br />

<br />

<br />

0.08 feet/day yes 4.42 <br />

<br />

<br />

1.57 feet/day yes 4.17107 <br />

0.17 feet/day yes 1.33 <br />

<br />

multipliers<br />

<br />

the dissected upl<strong>and</strong>s<br />

0.68 feet/day yes 1.40101 <br />

1.57 feet/day yes 1.26 <br />

bedrock<br />

multipliers


Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.—Continued<br />

<br />

Parameter<br />

name<br />

Parameter<br />

description<br />

Value Units<br />

Model Calibration <strong>and</strong> Sensitivity 187<br />

Estimated<br />

using<br />

automated<br />

methods<br />

Composite<br />

scaled<br />

sensitivity<br />

Parameter<br />

group<br />

0.17 feet/day yes 2.64 <br />

<br />

multipliers<br />

0.68 feet/day yes 1.93 <br />

the dissected upl<strong>and</strong>s<br />

multipliers<br />

Multiplier on hydraulic properties of Corcoran Clay<br />

0.010 multiplier yes 1.35 <br />

<br />

multipliers<br />

<br />

0.002 multiplier yes 7.45 <br />

<br />

multipliers<br />

Horizontal Conductivity Depth Decay<br />

1.000 multiplier no 2.35 <br />

<br />

multipliers<br />

1.000 multiplier no 1.8310<br />

<br />

11 <br />

multipliers<br />

0.181 multiplier yes 2.0810<br />

<br />

14)<br />

10 <br />

multipliers<br />

0.914 multiplier yes 1.46 <br />

<br />

multipliers<br />

0.614 multiplier yes 3.8410<br />

<br />

11 <br />

multipliers<br />

0.100 multiplier no 9.59 <br />

<br />

multipliers<br />

0.370 multiplier no 4.1910<br />

<br />

1 <br />

multipliers<br />

0.240 multiplier no 1.0010<br />

<br />

11 <br />

multipliers<br />

0.075 multiplier no 8.59 <br />

<br />

multipliers<br />

0.240 multiplier no 4.1710<br />

<br />

1 <br />

multipliers<br />

0.180 multiplier no 4.1710<br />

<br />

10 <br />

multipliers<br />

- 0.060 multiplier no 4.36 <br />

<br />

multipliers<br />

0.150 multiplier no 1.52 <br />

<br />

multipliers<br />

0.040 multiplier no 1.84 <br />

<br />

multipliers<br />

0.040 multiplier no 3.14 <br />

<br />

multipliers<br />

0.080 multiplier no 1.0010<br />

<br />

11 <br />

multipliers<br />

0.020 multiplier no 1.73 <br />

<br />

multipliers<br />

0.020 multiplier no 1.4210<br />

<br />

11 <br />

multipliers


188 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.—Continued<br />

<br />

Parameter<br />

name<br />

Parameter<br />

description<br />

Value Units<br />

Estimated<br />

using<br />

automated<br />

methods<br />

Composite<br />

scaled<br />

sensitivity<br />

Parameter<br />

group<br />

Vertical Conductivity Depth Decay<br />

1.000 multiplier no 1.61 <br />

<br />

multipliers<br />

1.000 multiplier no 5.94 <br />

<br />

multipliers<br />

0.180 multiplier no 2.18 <br />

<br />

14)<br />

multipliers<br />

0.663 multiplier yes 1.67 <br />

<br />

multipliers<br />

0.463 multiplier yes 5.34 <br />

<br />

multipliers<br />

0.150 multiplier no 1.61 <br />

<br />

multipliers<br />

0.370 multiplier no 1.40 <br />

<br />

multipliers<br />

0.200 multiplier no 2.14 <br />

<br />

multipliers<br />

0.100 multiplier no 1.53 <br />

<br />

multipliers<br />

0.240 multiplier no 1.62 <br />

<br />

multipliers<br />

0.150 multiplier no 1.78 <br />

<br />

multipliers<br />

0.060 multiplier no 1.66 <br />

<br />

multipliers<br />

0.150 multiplier no 1.94 <br />

<br />

multipliers<br />

0.040 multiplier no 4.1710<br />

<br />

10 <br />

multipliers<br />

0.040 multiplier no 1.51 <br />

<br />

multipliers<br />

0.080 multiplier no 4.0010<br />

<br />

11 <br />

multipliers<br />

0.020 multiplier no 2.52 <br />

<br />

multipliers<br />

0.020 multiplier no 1.2510<br />

<br />

10 <br />

multipliers


Table C10. Parameter values estimated for the <strong>Central</strong> <strong>Valley</strong> Hydrologic Model.—Continued<br />

<br />

Parameter<br />

name<br />

Parameter<br />

description<br />

Value Units<br />

Model Calibration <strong>and</strong> Sensitivity 189<br />

Estimated<br />

using<br />

automated<br />

methods<br />

Composite<br />

scaled<br />

sensitivity<br />

Conductance<br />

3281.00 feet/day no 1.36 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Stream Bed Hydraulic Conductivity<br />

Parameter<br />

group<br />

0.04 feet/day yes 1.70 <br />

<br />

0.16 feet/day yes 1.101011 <br />

<br />

0.48 feet/day yes 4.58 <br />

<br />

2.71 feet/day yes 1.49 <br />

<br />

0.33 feet/day yes 1.21 <br />

<br />

5.64 feet/day yes 2.3710 11 <br />

<br />

3.31 feet/day yes 1.3310 10 <br />

<br />

0.19 feet/day yes 1.40 <br />

<br />

Storage Properties<br />

<br />

<br />

<br />

1.33 multiplier yes 5.93 <br />

<br />

deposits<br />

25.00 no 1.26 <br />

<br />

deposits<br />

50.00 no 2.371011 <br />

<br />

dissected upl<strong>and</strong>s<br />

1.00 multiplier yes 3.33109 <br />

<br />

<br />

1.00 multiplier yes 5.73 <br />

1.37E-04 per foot yes 6.67109


190 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

0 50 100 Miles<br />

0 50 100 Kilometers<br />

Shaded relief derived from U.S. Geological Survey<br />

National Elevation Dataset, 2006. Albers Equal Area Conic Projection<br />

EXPLANATION<br />

Stream cell hydraulic conductivity,<br />

in feet per day—<br />

0.0413406<br />

0.0564332<br />

0.16405<br />

0.193579<br />

0.326131<br />

0.3281<br />

0.479026<br />

0.588939<br />

1.29271<br />

2.71358<br />

3.31381<br />

5.63676<br />

32.81<br />

328.133<br />

(K_SACRIVN)<br />

(K_TRIB_NWB)<br />

(K_SACRIV)<br />

(K_TRIB_SW)<br />

(K_TRIB_NE)<br />

(K_OTHER1)<br />

(K_SJRIV)<br />

(K_TRIB_SEB)<br />

(K_TRIB_NEB)<br />

(K_SO_RIV)<br />

(K_TRIB_SE)<br />

(K_TRIB_NW)<br />

(K_OTHER2)<br />

(K_TRIB_SEC)<br />

Active model grid boundary<br />

Model water-balance subregions<br />

Inflow locations<br />

Figure C26. Distribution of cells used for streams, colored by streambed hydraulic conductivity values for cells estimated during<br />

calibration.


Sensitivity Analysis<br />

<br />

-<br />

<br />

<br />

limited the use of systematic parameter-estimation techniques<br />

-<br />

<br />

estimation techniques based on perturbation approaches for<br />

<br />

<br />

<br />

used to identify the parameters to include in the parameter<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

(<br />

<br />

K -<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Simulation Results <strong>and</strong> Budget 191<br />

Simulation Results <strong>and</strong> Budget<br />

<br />

<br />

<br />

-<br />

<br />

42-year simulation. This chapter focuses on the simulation of<br />

<br />

<br />

<br />

are the focus of .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

aquifer-system compaction <strong>and</strong> l<strong>and</strong> subsidence.<br />

<br />

<br />

<br />

( <strong>and</strong>


192 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

COMPOSITE SCALED SENSITIVITY, UNITLESS<br />

10 12<br />

10 10<br />

10 8<br />

10 6<br />

10 4<br />

10 2<br />

10 0<br />

KC<br />

VK_LN10_VF<br />

HK_LS6_VF<br />

PAS_IRO<br />

K_TRIB_NW<br />

PHI_F<br />

Recharge <strong>and</strong> Discharge<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

HK_US_VF<br />

HK_WS10_VF<br />

K_SACRIVN<br />

HK_LN10_VF<br />

HK_LS7_VF<br />

HK_LS8_VF<br />

Parameter groups—<br />

VK_LS9_VF<br />

Hydraulic conductivity<br />

HK_UWS_VF<br />

COT_IRO<br />

H2O_PRO<br />

EFF_MLT2<br />

PARAMETER IDENTIFIER<br />

Hydraulic conductivity multipliers<br />

Farm process properties<br />

EXPLANATION<br />

K_TRIB_SE<br />

RIC_IRO<br />

SEM_PRO<br />

Storage properties<br />

SUB_I<br />

Streambed conductance<br />

Figure C27. Relative composite sensitivity of computed water-level altitudes, flows, <strong>and</strong> subsidence information at calibration points to<br />

changes in parameters. Composite scaled sensitivity values are used here to show relative sensitivity; the definition <strong>and</strong> derivation are<br />

described in Hill <strong>and</strong> others (2000). The top 30 composite scaled sensitivities are plotted.<br />

VK_WS10_VF<br />

SS_QPC_MULT<br />

HK_BEDRX<br />

-<br />

<br />

<br />

-<br />

<strong>and</strong> <strong>and</strong><br />

<br />

<br />

<br />

<br />

mechanisms.<br />

KC_S<br />

HK_LN7_VF<br />

HK_LN8_VF<br />

EFF_MLT1<br />

KC_W<br />

HK_QPC


23%<br />

FLOW RANGE, IN MILLIONS OF ACRE-FEET PER YEAR<br />

17%<br />

p<br />

nrd<br />

srdin<br />

wells<br />

egwin<br />

tgwin<br />

7%<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

3%<br />

INFLOWS<br />

Precipitation<br />

p<br />

nrd<br />

10%<br />

Non-routed deliveries<br />

into farm<br />

Semi-routed deliveries<br />

into farm<br />

Groundwater well pumping<br />

deliveries into farm<br />

Evaporation from groundwater<br />

into the farm<br />

Transpiration from groundwater<br />

into the farm<br />

srd in<br />

wells<br />

40%<br />

egwin tgwin<br />

ei<br />

egwout<br />

ep<br />

egw out<br />

ti<br />

3%<br />

30%<br />

3%<br />

tp<br />

8%<br />

Evaporation from irrigation<br />

out of the farm<br />

Evaporation from precipitation<br />

out of the farm<br />

Evaporation from groundwater<br />

out of the farm<br />

Transpiration from irrigation<br />

out of the farm<br />

Transpiration from precipitation<br />

out of the farm<br />

tgw out run<br />

Figure C28. Average annual components of farm budget for water years 1962–2003.<br />

ei<br />

ep<br />

ti<br />

tp<br />

dp<br />

Simulation Results <strong>and</strong> Budget 193<br />

8%<br />

OUTFLOWS<br />

tgwout<br />

run<br />

dp<br />

29%<br />

12%<br />

7%<br />

Transpiration from groundwater<br />

out of the farm<br />

Overl<strong>and</strong> runoff out<br />

of the farm<br />

Deep percolation out<br />

of the farm


194 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

WATER FLOW, IN MILLIONS OF ACRE-FEET PER YEAR<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Evapotranspiration<br />

Runoff<br />

Deep percolation<br />

-<br />

<br />

<br />

( <strong>and</strong> <strong>and</strong> , , <strong>and</strong> <br />

1962 <strong>and</strong> 2003, <br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

YEAR<br />

EXPLANATION<br />

Figure C29. Farm budget changes through time for the <strong>Central</strong> <strong>Valley</strong>, California.<br />

Evapotranspiration from groundwater<br />

Groundwater pumpage<br />

Surface-water deliveries<br />

Precipitation<br />

Flow into l<strong>and</strong>scape<br />

system<br />

Flow out of l<strong>and</strong>scape<br />

system<br />

<br />

-<br />

<br />

<br />

<br />

son<br />

<strong>and</strong> others (1989) (<br />

<br />

).


A<br />

ESTIMATED WATER USAGE,<br />

IN MILLIONS OF ACRE-FEET PER YEAR<br />

B<br />

ESTIMATED WATER USAGE,<br />

IN MILLIONS OF ACRE-FEET PER YEAR<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Simulation Results <strong>and</strong> Budget 195<br />

"Variable"<br />

to<br />

Dry Wet<br />

Dry Wet<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982<br />

WATER YEAR<br />

1977 1978 1979 1980 1981 1982 1983 1984 1985<br />

WATER YEAR<br />

Total farm delivery requirements<br />

Routed surface-water deliveries<br />

EXPLANATION<br />

Non-routed surface-water deliveries<br />

Groundwater pumpage<br />

Figure C30. Farm budget changes through time for water-balance subregion 13, western San Joaquin <strong>Valley</strong>, <strong>Central</strong> <strong>Valley</strong>, California.<br />

A, Water years 1962–2003. B, Water years 1977–1985.


196 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

A (continued)<br />

Wet Dry<br />

Wet<br />

<br />

to year <strong>and</strong> month to month (<br />

<br />

<br />

<br />

opposite effects.<br />

Water pumped from the aquifer system may or may not<br />

<br />

<br />

<br />

areas, replenishment only occurs in years of abundant precipi-<br />

<br />

<br />

<br />

"Variable"<br />

to<br />

Dry<br />

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003<br />

WATER YEAR<br />

Figure C30. Continued.<br />

ESTIMATED WATER USAGE,<br />

IN MILLIONS OF ACRE-FEET PER YEAR<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

this report.<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0


WATER FLOW, IN MILLIONS OF ACRE-FEET PER YEAR<br />

A<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

<strong>Aquifer</strong>-System Storage<br />

<br />

<br />

( <strong>and</strong> <br />

<br />

-<br />

<br />

<br />

Simulation Results <strong>and</strong> Budget 197<br />

-40<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

L<strong>and</strong>scape recharge<br />

General-head boundary<br />

Farm wells<br />

Pumpage<br />

Stream leakage<br />

Subsidence<br />

Storage<br />

YEAR<br />

EXPLANATION<br />

Groundwater Surface water<br />

L<strong>and</strong>scape recharge<br />

General-head boundary<br />

Pumpage<br />

Figure C31. Groundwater budget changes through time for the <strong>Central</strong> <strong>Valley</strong>. A, All values. B, Net values.<br />

Stream leakage<br />

Subsidence<br />

Storage<br />

Flow into groundwater<br />

system<br />

Flow from groundwater<br />

system<br />

<br />

<br />

<strong>and</strong> <br />

<br />

<br />

-


198 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

WATER FLOW, IN MILLIONS OF ACRE-FEET PER YEAR<br />

B<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Figure C31. Continued.<br />

Specific yield <strong>and</strong><br />

compressibility of water<br />

General-head boundary<br />

YEAR<br />

EXPLANATION<br />

Elastic <strong>and</strong> inelastic storage<br />

Stream leakage<br />

L<strong>and</strong>scape recharge<br />

Pumpage<br />

Flow into groundwater<br />

system<br />

Flow out of groundwater<br />

system


Table C11. Simulated farm budget for the <strong>Central</strong> <strong>Valley</strong>, California, in acre-feet per year.<br />

bold italicbolditalic.<br />

Year Precipitation<br />

Surface-water<br />

deliveries<br />

Groundwater<br />

pumpage<br />

Evapotrans- piration<br />

Runoff<br />

Simulation Results <strong>and</strong> Budget 199<br />

Evapotrans-<br />

piration from<br />

groundwater<br />

Deep percolation<br />

1962 14,281,000 10,808,000 11,271,000 25,505,000 1,310,000 3,522,000 12,967,000<br />

1963 17,119,000 9,625,000 9,096,000 26,300,000 1,097,000 3,056,000 11,391,000<br />

1964 9,877,000 9,079,000 12,156,000 24,584,000 795,000 3,484,000 9,108,000<br />

1965 15,590,000 9,915,000 9,355,000 25,448,000 1,221,000 3,337,000 11,425,000<br />

1966 10,876,000 9,619,000 12,918,000 24,920,000 1,071,000 3,663,000 10,976,000<br />

1967 19,718,000 10,583,000 8,743,000 25,748,000 1,652,000 3,514,000 15,012,000<br />

1968 11,127,000 9,322,000 12,734,000 26,118,000 820,000 3,639,000 9,798,000<br />

1969 23,300,000 11,002,000 8,231,000 25,937,000 2,015,000 4,039,000 18,433,000<br />

1970 18,345,000 10,261,000 10,738,000 26,122,000 1,675,000 4,342,000 15,723,000<br />

1971 14,102,000 9,701,000 10,569,000 25,198,000 1,159,000 4,114,000 11,973,000<br />

1972 8,042,000 10,200,000 12,875,000 25,015,000 716,000 4,139,000 9,394,000<br />

1973 21,343,000 11,136,000 8,253,000 25,934,000 1,772,000 4,043,000 16,914,000<br />

1974 17,548,000 11,581,000 7,854,000 26,366,000 1,311,000 3,966,000 13,154,000<br />

1975 14,527,000 11,279,000 7,925,000 25,525,000 1,024,000 3,927,000 10,995,000<br />

1976 9,301,000 9,560,000 10,558,000 25,581,000 453,000 3,894,000 7,177,000<br />

1977 7,152,000 7,034,000 15,551,000 25,389,000 436,000 3,445,000 7,279,000<br />

1978 24,651,000 10,546,000 6,768,000 27,474,000 1,755,000 3,521,000 16,088,000<br />

1979 14,134,000 12,364,000 7,661,000 26,325,000 941,000 3,857,000 10,657,000<br />

1980 18,453,000 11,735,000 6,230,000 26,189,000 1,257,000 3,616,000 12,472,000<br />

1981 12,350,000 11,440,000 9,108,000 26,510,000 810,000 3,965,000 9,435,000<br />

1982 22,260,000 11,133,000 4,956,000 26,990,000 1,386,000 3,360,000 13,176,000<br />

1983 28,589,000 10,166,000 4,341,000 26,664,000 2,050,000 3,532,000 17,703,000<br />

1984 13,603,000 12,098,000 7,258,000 25,091,000 1,148,000 4,640,000 11,233,000<br />

1985 11,972,000 10,760,000 7,647,000 25,435,000 700,000 4,055,000 8,204,000<br />

1986 19,712,000 11,273,000 5,836,000 26,435,000 1,324,000 3,809,000 12,738,000<br />

1987 10,048,000 10,509,000 8,843,000 25,282,000 581,000 4,171,000 7,620,000<br />

1988 12,796,000 9,390,000 9,815,000 26,129,000 792,000 3,880,000 8,850,000<br />

1989 12,632,000 9,663,000 9,830,000 26,131,000 741,000 3,549,000 8,662,000<br />

1990 10,121,000 8,356,000 11,690,000 25,993,000 487,000 3,331,000 6,919,000<br />

1991 11,763,000 8,009,000 12,549,000 25,424,000 793,000 3,436,000 9,395,000<br />

1992 13,684,000 7,889,000 12,229,000 26,666,000 821,000 3,334,000 9,546,000<br />

1993 22,192,000 10,538,000 6,958,000 26,430,000 1,645,000 3,262,000 14,726,000<br />

1994 11,690,000 9,676,000 9,522,000 26,196,000 617,000 3,332,000 7,295,000<br />

1995 24,818,000 10,345,000 5,737,000 25,428,000 1,913,000 3,366,000 16,739,000<br />

1996 17,151,000 11,843,000 6,485,000 25,973,000 1,240,000 3,814,000 11,969,000<br />

1997 16,299,000 11,567,000 6,644,000 24,859,000 1,294,000 4,120,000 12,347,000<br />

8,946,000 4,535,000 25,846,000 2,139,000 3,190,000 18,646,000<br />

1999 12,511,000 10,006,000 4,831,000 22,538,000 757,000 3,969,000 7,885,000<br />

2000 15,602,000 10,116,000 4,887,000 23,765,000 1,019,000 4,157,000 9,822,000<br />

2001 13,197,000 9,099,000 6,127,000 24,232,000 673,000 3,925,000 7,316,000<br />

2002 12,868,000 9,425,000 7,137,000 23,175,000 943,000 4,050,000 9,238,000<br />

2003 16,050,000 9,571,000 5,643,000 24,252,000 1,009,000 3,695,000 9,554,000<br />

15,752,000 10,171,000 8,621,000 25,598,000 1,128,000 3,740,000 11,427,000


200 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C12. Simulated groundwater budget for the <strong>Central</strong> <strong>Valley</strong>, California, in acre-feet per year.<br />

Table C12. Simulated groundwater budget for the <strong>Central</strong> <strong>Valley</strong>, California, in acre-feet per year—Continued.<br />

[bold italic<br />

bold bolditalic<br />

italic<br />

bolditalic<br />

OUT]<br />

OUT]<br />

Year<br />

Specific yield <strong>and</strong><br />

compressibility<br />

of water IN<br />

GHB IN<br />

Elastic <strong>and</strong> inelastic<br />

storage IN<br />

Stream<br />

leakage IN<br />

Farm<br />

recharge IN<br />

Pumpage<br />

IN 1<br />

1962 8,613,000 57,000 3,150,000 3,791,000 12,166,000 439,000<br />

1963 6,688,000 32,000 2,582,000 2,619,000 10,597,000 448,000<br />

1964 8,424,000 58,000 3,320,000 1,957,000 8,299,000 451,000<br />

1965 6,990,000 49,000 2,559,000 2,715,000 10,638,000 452,000<br />

1966 8,331,000 63,000 3,369,000 2,171,000 10,197,000 465,000<br />

1967 6,527,000 37,000 2,389,000 3,284,000 14,196,000 463,000<br />

1968 8,849,000 59,000 3,206,000 1,684,000 8,957,000 464,000<br />

1969 8,351,000 35,000 1,950,000 5,879,000 17,582,000 479,000<br />

1970 9,620,000 23,000 2,515,000 2,425,000 14,898,000 565,000<br />

1971 8,774,000 25,000 2,326,000 1,891,000 11,129,000 558,000<br />

1972 9,570,000 56,000 2,859,000 1,445,000 8,511,000 557,000<br />

1973 7,424,000 26,000 1,839,000 2,919,000 16,122,000 490,000<br />

1974 7,262,000 20,000 1,643,000 2,398,000 12,247,000 463,000<br />

1975 7,667,000 29,000 1,664,000 1,901,000 10,189,000 436,000<br />

1976 9,005,000 60,000 2,099,000 1,224,000 6,313,000 430,000<br />

1977 10,460,000 102,000 3,827,000 1,347,000 6,436,000 477,000<br />

1978 7,231,000 46,000 1,409,000 4,261,000 15,387,000 478,000<br />

1979 7,636,000 42,000 1,429,000 1,719,000 9,930,000 395,000<br />

1980 6,741,000 29,000 1,195,000 2,600,000 11,765,000 374,000<br />

1981 8,560,000 47,000 1,693,000 1,405,000 8,731,000 367,000<br />

1982 5,916,000 21,000 995,000 2,781,000 12,536,000 343,000<br />

1983 5,928,000 8,000 827,000 4,266,000 17,069,000 301,000<br />

1984 9,222,000 12,000 1,340,000 1,825,000 10,613,000 313,000<br />

1985 8,734,000 22,000 1,457,000 1,387,000 7,597,000 356,000<br />

1986 7,199,000 17,000 1,177,000 2,712,000 12,106,000 340,000<br />

1987 9,340,000 25,000 1,782,000 1,062,000 7,085,000 338,000<br />

1988 9,462,000 34,000 2,136,000 1,211,000 8,202,000 344,000<br />

1989 8,803,000 42,000 2,198,000 1,300,000 8,065,000 362,000<br />

1990 9,428,000 62,000 2,991,000 1,113,000 6,292,000 394,000<br />

1991 10,969,000 67,000 3,188,000 3,908,000 8,830,000 470,000<br />

1992 9,813,000 67,000 3,153,000 1,324,000 8,941,000 497,000<br />

1993 7,367,000 40,000 1,589,000 2,339,000 14,114,000 425,000<br />

1994 8,959,000 55,000 2,310,000 1,417,000 6,773,000 381,000<br />

1995 10,261,000 26,000 1,337,000 8,331,000 16,185,000 414,000<br />

1996 8,420,000 20,000 1,237,000 2,296,000 11,452,000 312,000<br />

1997 9,249,000 22,000 1,277,000 3,735,000 11,851,000 299,000<br />

<br />

1999 8,626,000 17,000 1,133,000 1,715,000 7,381,000 248,000<br />

2000 8,730,000 20,000 1,245,000 1,862,000 9,176,000 264,000<br />

2001 9,324,000 25,000 1,622,000 1,680,000 6,716,000 283,000<br />

2002 9,699,000 26,000 1,877,000 2,011,000 8,686,000 316,000<br />

2003 8,533,000 24,000 1,560,000 2,197,000 8,950,000 305,000<br />

8,465,000 37,000 2,011,000 2,561,000 10,739,000 401,000


Table C12. Simulated groundwater budget for the <strong>Central</strong> <strong>Valley</strong>, California, in acre-feet per year—Continued.<br />

Simulation Results <strong>and</strong> Budget 201<br />

bold italic<br />

bolditalic<br />

OUT]<br />

Year<br />

Specific yield <strong>and</strong><br />

compressibility of<br />

water OUT<br />

GHB OUT<br />

Elastic <strong>and</strong> inelastic<br />

storage OUT<br />

Stream<br />

leakage OUT<br />

Farm recharge<br />

OUT 2<br />

Pumpage<br />

OUT 3<br />

Farm wells<br />

OUT<br />

1962 10,634,000 105,000 1,153,000 1,850,000 2,648,000 1,628,000 10,185,000<br />

1963 8,192,000 120,000 1,007,000 1,738,000 2,209,000 1,513,000 8,170,000<br />

1964 4,694,000 53,000 809,000 1,689,000 2,618,000 1,720,000 10,911,000<br />

1965 8,013,000 98,000 1,058,000 1,729,000 2,493,000 1,548,000 8,449,000<br />

1966 5,811,000 65,000 864,000 1,667,000 2,807,000 1,815,000 11,548,000<br />

1967 11,462,000 132,000 1,259,000 1,983,000 2,630,000 1,468,000 7,948,000<br />

1968 4,601,000 56,000 793,000 1,814,000 2,729,000 1,986,000 11,220,000<br />

1969 17,398,000 263,000 1,537,000 2,905,000 3,122,000 1,738,000 7,290,000<br />

1970 11,241,000 182,000 1,164,000 2,558,000 3,439,000 2,151,000 9,297,000<br />

1971 6,685,000 126,000 1,030,000 2,361,000 3,197,000 2,158,000 9,129,000<br />

1972 3,466,000 46,000 875,000 1,976,000 3,168,000 2,328,000 11,119,000<br />

1973 12,662,000 165,000 1,406,000 2,333,000 3,169,000 1,962,000 7,109,000<br />

1974 8,543,000 154,000 1,201,000 2,457,000 2,999,000 1,953,000 6,708,000<br />

1975 6,496,000 115,000 1,125,000 2,361,000 3,060,000 1,963,000 6,752,000<br />

1976 2,127,000 39,000 892,000 1,922,000 2,945,000 2,154,000 9,037,000<br />

1977 1,918,000 10,000 531,000 1,552,000 2,527,000 2,502,000 13,593,000<br />

1978 14,447,000 164,000 1,564,000 2,131,000 2,736,000 1,862,000 5,889,000<br />

1979 6,590,000 86,000 935,000 1,982,000 3,040,000 1,984,000 6,516,000<br />

1980 9,350,000 142,000 1,081,000 2,146,000 2,845,000 1,885,000 5,242,000<br />

1981 4,987,000 61,000 787,000 1,963,000 3,168,000 2,173,000 7,641,000<br />

1982 10,469,000 182,000 1,122,000 2,225,000 2,660,000 1,799,000 4,123,000<br />

1983 15,728,000 331,000 1,134,000 3,009,000 2,858,000 1,737,000 3,583,000<br />

1984 7,235,000 232,000 666,000 3,051,000 3,966,000 2,169,000 5,988,000<br />

1985 4,195,000 118,000 772,000 2,504,000 3,400,000 2,247,000 6,298,000<br />

1986 9,712,000 186,000 1,006,000 2,597,000 3,133,000 2,070,000 4,825,000<br />

1987 3,336,000 94,000 673,000 2,203,000 3,586,000 2,398,000 7,321,000<br />

1988 4,666,000 68,000 778,000 1,957,000 3,182,000 2,481,000 8,238,000<br />

1989 4,546,000 55,000 756,000 1,775,000 2,894,000 2,505,000 8,221,000<br />

1990 2,779,000 33,000 582,000 1,641,000 2,635,000 2,724,000 9,871,000<br />

1991 8,216,000 99,000 728,000 2,041,000 2,785,000 2,847,000 10,702,000<br />

1992 5,346,000 49,000 856,000 1,547,000 2,644,000 2,820,000 10,513,000<br />

1993 11,676,000 116,000 1,325,000 1,881,000 2,584,000 2,290,000 5,992,000<br />

1994 3,835,000 52,000 818,000 1,686,000 2,728,000 2,627,000 8,133,000<br />

1995 20,424,000 384,000 1,475,000 4,125,000 2,756,000 2,398,000 4,970,000<br />

1996 8,814,000 231,000 933,000 2,510,000 3,245,000 2,475,000 5,509,000<br />

1997 10,716,000 249,000 1,012,000 2,610,000 3,568,000 2,645,000 5,614,000<br />

<br />

1999 4,894,000 240,000 688,000 2,793,000 3,422,000 3,130,000 3,938,000<br />

2000 7,112,000 195,000 732,000 2,411,000 3,468,000 3,306,000 4,052,000<br />

2001 4,471,000 137,000 636,000 2,166,000 3,284,000 3,869,000 5,068,000<br />

2002 6,189,000 130,000 710,000 2,086,000 3,448,000 4,053,000 5,979,000<br />

2003 6,966,000 137,000 879,000 2,041,000 3,046,000 3,768,000 4,712,000<br />

8,131,000 142,000 972,000 2,240,000 2,988,000 2,314,000 7,410,000


202 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Table C12. Simulated groundwater budget for the <strong>Central</strong> <strong>Valley</strong>, California, in acre-feet per year—Continued.<br />

bold italic<br />

bolditalic<br />

OUT]<br />

Year<br />

Net specific<br />

yield <strong>and</strong> compressibility<br />

of water<br />

Net GHB<br />

Net elastic<br />

<strong>and</strong> inelastic<br />

storage<br />

Net stream<br />

leakage<br />

Net farm<br />

recharge<br />

Net Pumpage 4<br />

1962 1,997,000 1,941,000 9,519,000 <br />

1963 1,575,000 881,000 8,388,000 <br />

1964 3,730,000 4,000 2,511,000 268,000 5,681,000 <br />

1965 1,500,000 986,000 8,145,000 <br />

1966 2,521,000 2,505,000 504,000 7,389,000 <br />

1967 1,129,000 1,301,000 11,566,000 <br />

1968 4,247,000 2,000 2,413,000 6,229,000 <br />

1969 413,000 2,974,000 14,460,000 <br />

1970 1,351,000 11,459,000 <br />

1971 2,089,000 1,296,000 7,932,000 <br />

1972 6,103,000 10,000 1,984,000 5,343,000 <br />

1973 433,000 586,000 12,953,000 <br />

1974 442,000 9,247,000 <br />

1975 1,171,000 –86,000 539,000 –461,000 7,129,000 –8,279,000<br />

1976 6,878,000 22,000 1,208,000 3,368,000 <br />

1977 8,542,000 92,000 3,296,000 3,909,000 <br />

1978 2,130,000 12,651,000 <br />

1979 1,046,000 494,000 6,890,000 <br />

1980 114,000 454,000 8,920,000 <br />

1981 3,573,000 906,000 5,562,000 <br />

1982 556,000 9,877,000 <br />

1983 1,258,000 14,211,000 <br />

1984 1,987,000 674,000 6,647,000 <br />

1985 4,539,000 685,000 4,197,000 <br />

1986 171,000 116,000 8,973,000 <br />

1987 6,004,000 1,109,000 3,499,000 <br />

1988 4,796,000 1,358,000 5,020,000 <br />

1989 4,257,000 1,442,000 5,171,000 <br />

1990 6,649,000 29,000 2,409,000 –528,000 3,657,000 –12,201,000<br />

1991 2,753,000 2,460,000 1,868,000 6,045,000 <br />

1992 4,467,000 18,000 2,297,000 6,297,000 <br />

1993 264,000 459,000 11,531,000 <br />

1994 5,124,000 3,000 1,492,000 4,045,000 <br />

1995 4,206,000 13,428,000 <br />

1996 303,000 8,206,000 <br />

1997 266,000 1,125,000 8,283,000 <br />

<br />

1999 3,732,000 445,000 3,959,000 <br />

2000 1,619,000 513,000 5,708,000 <br />

2001 4,853,000 986,000 3,432,000 <br />

2002 3,510,000 1,168,000 5,237,000 <br />

2003 1,566,000 680,000 155,000 5,904,000 <br />

334,000 1,039,000 321,000 7,751,000 <br />

1 <br />

2 <br />

3 <br />

4


Model Uncertainty <strong>and</strong> Limitations<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

to facilitate addition of more detailed features that may be<br />

<br />

<br />

<br />

of the study, the use of numerical models to simulate hydro-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<strong>and</strong> Whealan, 2005). One component of model error relates to<br />

<br />

<br />

<br />

2 model<br />

cells <strong>and</strong> features smaller cells that are not simulated. In reality,<br />

the model is likely only to represent features accurately<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

able<br />

model solutions to mass-balance residuals of less than<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Model Uncertainty <strong>and</strong> Limitations 203<br />

<br />

-<br />

<br />

<br />

<br />

<br />

near the l<strong>and</strong> surface to 256,000 acre-ft at depth. Within each<br />

of these cells, the hydraulic properties are interpolated or<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

results <strong>and</strong> analyses that depend on the early part of the simu-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

tain<br />

include hydraulic properties, the location <strong>and</strong> properties<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-


204 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

to constrain these features.<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

of the skin factor is uncertain. This skin factor promotes or<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

these areas.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

K <br />

-<br />

<br />

<br />

<br />

<br />

<br />

addition to K <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

source of model error <strong>and</strong> may affect the local accuracy of the<br />

-


(<br />

<br />

<br />

<br />

<br />

the quality <strong>and</strong> spatial distribution of input data <strong>and</strong> of<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Future Work 205<br />

<br />

<br />

tional<br />

features.<br />

<br />

<br />

<br />

<br />

l<strong>and</strong>-use <strong>and</strong> crop distributions are used to estimate pump-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Future Work<br />

The performance, utility, detail, <strong>and</strong> accuracy of the<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

enhancements may create more accurate or realistic simulations.<br />

In order for these simulations to be as accurate <strong>and</strong> real-<br />

<br />

<br />

<br />

limitations of the current state of the model. The simulation<br />

<br />

<br />

<br />

simulation of aquifer-system compaction. Thick interbeds<br />

-


206 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

commun., 2008).<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2006a).<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

distributions could be based on l<strong>and</strong>-use distributions that<br />

<br />

<br />

<br />

-


-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

nia<br />

<strong>and</strong> other stakeholders an ability to forecast the potential<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

References Cited<br />

References Cited 207<br />

<br />

<br />

<br />

<br />

<br />

<br />

2009, at <br />

html<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

http://<br />

<br />

html<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

map.<br />

<br />

<br />

<br />

44 p.<br />

-


208 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

91 p.<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

16, 2009, at <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2009, at <br />

html<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

http://water.usgs.gov/pubs/<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

letin<br />

190, 508 p.


References Cited 209<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

5211, 36 p.<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

-<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

nia, doctoral dissertation, 175 p.<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


210 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

tion<br />

no. 207, 83 p.<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

76-41, 46 p.<br />

<br />

-<br />

<br />

54 p.<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

http://pubs.usgs.


References Cited 211<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2009, at <br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


212 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

93-1, 170 p.<br />

<br />

-


Appendix 1. Supplemental Information—Modifications to<br />

Modflow-2000 Packages <strong>and</strong> Processes<br />

By Wolfgang Schmid <strong>and</strong> R.T. Hanson<br />

Introduction<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

http://water.usgs.gov/nrp/<br />

).<br />

Layer-Property Flow Package (LPF)<br />

<br />

-<br />

<br />

-<br />

-<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Multiplier Package (MULT)<br />

tion<br />

as an additional binary operator that could be performed<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

a cell-by-cell basis (<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

uses the “^” as a binary operator similar to the other binary<br />

-<br />

<br />

<br />

-<br />

tion<br />

needs to occur prior to other mathematical operations,<br />

the user should make this binary operation a separate input<br />

comm<strong>and</strong> prior to other mathematical operations.<br />

Time-Series Package (HYDMOD)<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-


214 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Streamflow Routing Package (SFR1)<br />

ers,<br />

2004) includes an additional option to compute streambed<br />

-<br />

<br />

<br />

<br />

<br />

<br />

The Farm Process (FMP1)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

-<br />

<br />

<strong>and</strong> by crop for the entire simulation or each stress period. The<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

Concepts <strong>and</strong> Input Instructions for<br />

New FMP1 Features<br />

-<br />

<br />

<br />

-


Data for each Simulation<br />

Item No. Input instruction for each item<br />

0 <br />

The Farm Process (FMP1) 215<br />

1 <br />

2 ICUFL<br />

ISRDFLISRRFL<br />

IFBPFL {Option} read<br />

3 <br />

4 [xyz] read*<br />

<br />

<br />

5 <br />

6 <br />

or [Farm-ID OFE(FID,CID ), OFE(FID,CID ), … , OFE(FID,CID )]<br />

7<br />

1 2 <br />

<br />

8 <br />

9 <br />

<br />

10 <br />

11 <br />

12 <br />

13 <br />

14 PSI(1) PSI(2) PSI(3) PSI(4)<br />

15 0 1 2 3 {NONIRR}<br />

<br />

16 <br />

<br />

<br />

17 <br />

18 <br />

19 <br />

<br />

20 Reach<br />

[Farm-ID Row Column Segment Reach]


216 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Data for each Stress Period<br />

Item No. Input instruction for each item<br />

21 <br />

22 <br />

23 <br />

24<br />

)]<br />

1 2 <br />

<br />

25 <br />

26 <br />

27 <br />

<br />

28 <br />

29 <br />

30 <br />

31<br />

<br />

32 <br />

<br />

33<br />

1 2 <br />

<br />

t .<br />

34 <br />

<br />

35 <br />

36


Root Uptake Under Variably Saturated<br />

Conditions (PSI specified in Item 14)<br />

<br />

the simulation of transpiration uptake from unsaturated root<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

http://<br />

).<br />

Current Concept of Root Uptake from<br />

Unsaturated Conditions<br />

<br />

<br />

<br />

<br />

<br />

uptake from saturated conditions.<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

1<br />

4 2, 3 ). The<br />

<br />

<br />

1 2 3 4 <br />

<br />

<br />

<br />

<br />

<br />

4 3 2 1 are con-<br />

<br />

<br />

h b <br />

The Farm Process (FMP1) 217<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ux ).<br />

AURZ(h) = TRZ AZ WZ, hh ≥ h<br />

GSE AZ h, h h ≥ h<br />

0 h ≥ ux<br />

b w0<br />

w0 ux<br />

<br />

<br />

<br />

with :<br />

T<br />

T h T , AURZ h / TRZ<br />

c− pot<br />

( )= ( )<br />

gw−act −unsat c− pot<br />

Tgw−act −unsat<br />

= potential transpiration;<br />

= actual transpiration<br />

(root uptake) from groundwater .<br />

Exp<strong>and</strong>ed Concept of Root Uptake from Variably<br />

Saturated Conditions<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

uptake from both unsaturated <strong>and</strong> saturated conditions occurs.<br />

<br />

<br />

-<br />

1 2 <br />

<br />

<br />

<br />

(<br />

(1)<br />

(2)


218 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Ground<br />

Surface<br />

Groundwater<br />

Level<br />

Bottom of<br />

Root Zone<br />

Wilting<br />

| |<br />

4 | |<br />

3 2<br />

1<br />

Depth below Surface<br />

= 1<br />

= 0<br />

Anoxia &<br />

High<br />

Pressure<br />

ln (| |), for < 0 Soil Water Pressure Head , for 0<br />

| | =<br />

| |(d)<br />

Stress Response<br />

= h - z<br />

Depth below Surface<br />

User specified stress response function,<br />

Simplified stress response function in FMP<br />

Pressure head distribution in unsaturated root<br />

zone: | | = | |(d) solved by analytical solution<br />

Hydrostatic pressure heads in saturated root<br />

zone: = h - z = head minus elevation<br />

Unsaturated Zone within Root Zone<br />

Saturated Zone within Root Zone<br />

Saturated Zone below Root Zone<br />

Zero uptake Full uptake<br />

0 Stress Response 1<br />

Wilting Zone with<br />

zero uptake (WZ)<br />

Active Unsaturated<br />

Root Zone with full<br />

uptake (AURZ)<br />

Active Saturated<br />

Root Zone with<br />

full uptake<br />

(ASRZ1)<br />

Active Saturated<br />

Root Zone with<br />

reduced<br />

uptake<br />

(ASRZ2)<br />

Inactive<br />

Saturated<br />

Zone below<br />

Root Zone<br />

with zero uptake<br />

Inactive Saturated<br />

Zone with zero<br />

uptake due to<br />

High Pressure (> 1)<br />

<strong>and</strong> Anoxia<br />

Figure 1-1. Evaluation of active <strong>and</strong> inactive parts of a variably saturated root zone in FMP (Concept of stress response, , as a<br />

function of pressure heads, , varying over depth, d).


2<br />

<br />

<br />

<br />

displayed in <br />

is found.<br />

2<br />

<br />

(full 2<br />

<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> the pressure head at the bottom of<br />

2 1<br />

is not found<br />

1<br />

<br />

but by the pressure<br />

1<br />

<br />

<br />

<br />

the uptake from saturated conditions is formulated as<br />

<br />

Tgw−act−sat ( h)= Tc−pot i( ASRZ1( h) + ASRZ 2( h) i<br />

( h)) / TRZ (3)<br />

<br />

<br />

( )= ( ( ) + ( )+<br />

ASRZ 2( h) i<br />

( h)) / TRZ<br />

T h T i AURZ h ASRZ1 h<br />

gw−act c− pot<br />

<br />

<strong>and</strong><br />

1 2 1<br />

<br />

2<br />

depend on the simulated<br />

<br />

ASRZ 2( h) i ( h)<br />

<br />

-<br />

<br />

<br />

k k<br />

gw−act ( )= c− pot ( ( )+ ( )+<br />

k<br />

T h T i AURZ h ASRZ1 h<br />

( ) ( ))<br />

k k−1<br />

ASRZ 2 h i<br />

h / TRZ<br />

can<br />

be split into non-head-dependent <strong>and</strong> head-dependent terms.<br />

, is separated into terms either dependent<br />

or not dependent on the head of the current iteration. While<br />

(4)<br />

(5)<br />

The Farm Process (FMP1) 219<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

made here.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

possible transpiration.<br />

<br />

<br />

<br />

transpiration components. These components are fed either by<br />

<br />

-<br />

,<br />

-<br />

<br />

<br />

<br />

<br />

possible transpiration may be supplemented by precipitation<br />

,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

stress response, <br />

<br />

1 2 <br />

1 2 ) may<br />

<br />

<br />

response, <br />

2 is found<br />

2 <br />

1 2


220 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Example 1:<br />

= 30 inches<br />

1<br />

Head-dependent Combinations<br />

of Transpiration Components<br />

Case 1: Transpiration =<br />

Uptake from saturated root zone<br />

Case 2: Transpiration =<br />

Uptake from saturated root zone plus<br />

Capillary uptake from unsat. root zone<br />

Case 3: Transpiration =<br />

Uptake from saturated root zone plus<br />

Capillary uptake from unsat. root zone<br />

plus uptake from irrigation <strong>and</strong><br />

precipitation<br />

Case 4: Transpiration =<br />

Capillary uptake from unsat. root zone<br />

plus Uptake from irrigation <strong>and</strong><br />

precipitation<br />

Case 5: Transpiration =<br />

Uptake from irrigation <strong>and</strong><br />

precipitation<br />

T<br />

c-pot Potential Transpiration<br />

Tgw-sat Transpiration fed by groundwater<br />

uptake in saturated root zone<br />

Tgw-unsat Transpiration fed by capillary<br />

groundwater uptake in unsaturated<br />

root zone<br />

Ti Transpiration fed by irrigation<br />

Tp Transpiration fed by precipitation<br />

Ec-pot Potential Evaporation<br />

Egw-sat Surface Evaporation from<br />

ponding groundwater<br />

Egw-unsat Surface Evaporation fed by<br />

capillary rise from groundwater<br />

Ei Evaporation fed by irrigation<br />

Ep Evaporation fed by precipitation<br />

1<br />

EXPLANATION<br />

Positive pressure head with<br />

maximum transpiration<br />

2 Positive pressure head with<br />

zero transpiration<br />

Transpiration from fully active<br />

portion of the saturated<br />

rootzone (ASRZ1)<br />

Transpiration from partially<br />

active portion of the<br />

saturated rootzone (ASRZ2)<br />

Total Transpiration from the<br />

saturated root zone<br />

Ground<br />

Surface<br />

Root<br />

zone<br />

Capillary<br />

Fringe<br />

water<br />

level<br />

Tgw<br />

-Extinction<br />

1<br />

1<br />

water level<br />

2<br />

2<br />

water level<br />

Components of Transpiration <strong>and</strong><br />

Evaporation with varying Water Level<br />

T gw-unsat<br />

T c-pot<br />

E<br />

c-pot<br />

Capillary<br />

Fringe<br />

E -Extinction<br />

gw<br />

water<br />

level<br />

c-pot<br />

Tc-pot Tc-pot<br />

Flux<br />

Example 2:<br />

Root zone = 30 inches<br />

1<br />

2<br />

T gw-sat<br />

= 30 inches<br />

= 10 inches<br />

E gw<br />

T i T p E i<br />

Subcomponents of Transpiration<br />

from Saturated Conditions<br />

Root<br />

Zone<br />

E p<br />

Ground<br />

Surface<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

2<br />

2<br />

water level<br />

water level<br />

Subcomponents of Transpiration<br />

from Saturated Conditions<br />

T<br />

Example 1:<br />

Root zone = 30 inches<br />

1<br />

2<br />

= 20 inches<br />

= 10 inches<br />

Flux<br />

Example 3:<br />

Root zone = 30 inches<br />

1<br />

2<br />

= 40 inches<br />

= 10 inches<br />

Flux<br />

Subcomponents of Transpiration<br />

from Saturated Conditions<br />

Figure 1-2. Conceptualization to the change of transpiration uptake from a saturated root zone with varying water level (Three<br />

examples with different 1 values; example 1 at top includes conceptualization of all transpiration <strong>and</strong> evaporation components with<br />

varying water level).<br />

Root<br />

Zone<br />

Root<br />

Zone


Input Instructions<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

after the section titles.<br />

<br />

<br />

<br />

pressure heads. Therefore, the user must be able to enter any<br />

<br />

<br />

<br />

<br />

1 <strong>and</strong><br />

2 <br />

2 <br />

1 -<br />

3 4 <br />

3 4 )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Matrix of On-Farm Efficiencies (OFE specified<br />

in Items 7 or 24)<br />

<br />

<br />

<br />

<br />

-<br />

The Farm Process (FMP1) 221<br />

<br />

<br />

<br />

<br />

Input Requirements<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

... <br />

<br />

1 1,1 1,2 … 2 2,1 2,2 … … … … … … …<br />

<br />

<br />

… CAUTION<br />

<br />

<br />

<br />

<br />

<br />

Data Output<br />

<br />

<br />

each iteration, each time step, or selected time steps either to


222 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Non-Irrigation Crops (NONIRR Specified in<br />

Items 15 or 27)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

percolation.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

…<br />

1<br />

2<br />

…<br />

1 2 …<br />

1 2 …<br />

<br />

Or<br />

-<br />

<br />

<br />

<br />

<br />

1 1 … 1<br />

2 2 … 2<br />

… … … … …<br />

… <br />

Consumptive Use Options (ICUFL Specified in<br />

Item 2; ETR Specified as New Item)<br />

1. <br />

c <br />

<br />

c c-pot ) <strong>and</strong><br />

<br />

<br />

2. <br />

<br />

<br />

<br />

<br />

<br />

3. -<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

4. -<br />

c <br />

<br />

c c<br />

c c-pot <br />

<br />

<br />

-<br />

<br />

<br />

<br />

after item 27).<br />

Semi-Routed Delivery (ISRDFL in Item 2; REACH<br />

in Items 20 or 34)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ber<br />

<strong>and</strong> reach number. Therefore, option 5 became obsolete


Semi-Routed Surface-Water Runoff-Return Flow<br />

(ISRRFL in Item 2 <strong>and</strong> ROW COLUMN SEGMENT<br />

REACH Specified as New Item)<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

of the farm.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>and</strong> reach numbers is read for the entire<br />

simulation.<br />

<br />

<strong>and</strong> reach numbers is read for each stress<br />

period.<br />

-<br />

<br />

a farm. If none of these are found, then, by second priority,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The Farm Process (FMP1) 223<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Farm-Related Data List for Semi-Routed Runoff-Return<br />

Flow Locations (New Item Added After Items 20 or 34):<br />

<br />

are attributed<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

simulation.<br />

<br />

<br />

must be equal to the sequential number of a


224 Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

<br />

<br />

<br />

<br />

full set of informa- -<br />

mation<br />

if more than one<br />

<br />

<br />

<br />

<br />

the cell<br />

0 0 if more than one<br />

<br />

<br />

<br />

location by<br />

coordinates<br />

<br />

of location<br />

by reach<br />

<br />

numbers<br />

<br />

Additional Auxiliary Variable (AUX NOCIRNOQ<br />

Specified in Item 2)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Farm Budget Output Options (IFBPFL Specified<br />

in Item 2)<br />

<br />

<br />

-<br />

<br />

IFBPFL = 1 -<br />

<br />

<br />

<br />

<br />

Time step<br />

<br />

<br />

<br />

Flow rates into a farm:<br />

<br />

<br />

<br />

<br />

<br />

Flow rates out of farm:


-<br />

<br />

IEBPFL=2 <br />

<br />

<br />

<br />

Time step<br />

<br />

<br />

Flowrates into a farm:<br />

<br />

<br />

<br />

<br />

<br />

<br />

farm<br />

<br />

the farm<br />

<br />

<br />

Flowrates out of a farm:<br />

<br />

farm<br />

<br />

the farm<br />

<br />

the farm<br />

<br />

farm<br />

Transpiration from precipitation out of<br />

the farm<br />

<br />

the farm<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

References Cited<br />

References Cited 225<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

46 p.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

<br />

-


Manuscript appproved on April 16, 2009<br />

Prepared by the USGS Publishing Network,<br />

Publishing Service Center, Sacramento, California<br />

For more information concerning the research in this report, contact<br />

the<br />

California Water Science Center Director,<br />

U.S. Geological Survey, 6000 J Street<br />

Sacramento, California 95819


Printed on recycled paper<br />

Groundwater Availability of<br />

the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California<br />

Faunt — Groundwater Availability of the <strong>Central</strong> <strong>Valley</strong> <strong>Aquifer</strong>, California Professional Paper 1766

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!