20.07.2013 Views

Linear Quadratic Regulator (LQR) control

Linear Quadratic Regulator (LQR) control

Linear Quadratic Regulator (LQR) control

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Consider the CTLTI system<br />

where D T zu D zu<br />

J =<br />

=<br />

<strong>Linear</strong> <strong>Quadratic</strong> <strong>Regulator</strong> (<strong>LQR</strong>) <strong>control</strong><br />

˙x =Ax + Buu, x(0) = x0,<br />

z =Czx + Dzuu.<br />

≻ Θ and the cost function<br />

∞<br />

z(t) T z(t) dt,<br />

0<br />

∞<br />

0<br />

x(t) T C T<br />

z C z<br />

<br />

Q<br />

x + 2x(t) T C T<br />

z D zu<br />

<br />

S<br />

u(t) + u(t) T D T<br />

zuDzu u(t) dt.<br />

<br />

R<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 1


<strong>Linear</strong> <strong>Quadratic</strong> <strong>Regulator</strong> (<strong>LQR</strong>) <strong>control</strong><br />

The <strong>control</strong> that minimizes the cost function J over all possible <strong>control</strong>lers (including nonlinear<br />

<strong>control</strong>lers) is the state feedback law u = Kx where<br />

K = −(D T<br />

zuDzu )−1 B T<br />

u P + DT<br />

zuC <br />

z ,<br />

and P is the stabilizing solution to the Riccati equation<br />

A T P + P A − P Bu + C T<br />

z D T<br />

zu DzuD −1 T<br />

zu Bu P + DT<br />

zuC T<br />

z + Cz Cz The optimal <strong>control</strong> achieves the optimal performance<br />

J ∗ ∞<br />

=<br />

0<br />

z ∗ (t) T z ∗ (t) dt = x T<br />

0 P x0.<br />

= Θ.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 2


Plant (CTLTI system)<br />

State Feedback H2 Control (primal form)<br />

˙x =Ax + Bww + Buu, x(0) = Θ,<br />

z =Czx + Dzww + Dzuu.<br />

Controller (state-feedback <strong>control</strong>ler)<br />

Closed Loop System<br />

˙x = (A + BuK)<br />

<br />

Acl<br />

z = (Cz + DzuK)<br />

<br />

Ccl<br />

u =Kx.<br />

x + Bw<br />

<br />

Bcl<br />

x + Dzw<br />

<br />

w, x(0) = Θ,<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 3<br />

Dcl<br />

w.


State Feedback H2 Control (primal form)<br />

Analysis Conditions (H2 norm) ∃K ∈ R m×n such that<br />

Hcl(K, s) 2<br />

2<br />

if, and only if, ∃K ∈ R m×n and P ∈ S n such that<br />

P ≻ Θ, (A T + K T B T<br />

u )<br />

<br />

A T cl<br />

P + P (A + BuK)<br />

<br />

tr[B T<br />

w<br />

<br />

B T cl<br />

Bcl<br />

Acl<br />

< µ<br />

+ C T<br />

z + KT D T<br />

zu<br />

<br />

<br />

C T cl<br />

P Bw ] < µ, Dzw = Θ.<br />

<br />

Dcl<br />

(Cz + DzuK)<br />

<br />

C cl<br />

≺ Θ,<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 4


State Feedback H2 Control (primal form)<br />

Method I (congruence + change-of-variables) In primal form we need to apply the<br />

congruence transformations to obtain P −1 ≻ Θ and<br />

AP −1 + P −1 A T + BuKP −1 + P −1 K T B T<br />

u +<br />

+ P −1 C T<br />

z + P −1 K T D T <br />

zu CzP −1 + DzuKP −1 ≺ Θ,<br />

which can be transformed into<br />

X ≻ Θ, AX + XA T + BuL + L T B T<br />

u + XC T<br />

z + LT D T <br />

zu (CzX + DzuL) ≺ Θ<br />

using the change-of-variables X := P −1 , L := KP −1 . This inequality can be transformed into<br />

an LMI by Schur complement<br />

⎡<br />

⎣ AX + XAT + B u L + L T B T u XCT z + LT D T zu<br />

CzX + DzuL −I<br />

⎤<br />

⎦ ≺ Θ.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 5


State Feedback H2 Control (primal form)<br />

The “cost inequality” can be manipulated by introducing the auxiliary matrix W as<br />

so that if tr [W ] < µ then<br />

W ≻ B T<br />

wP Bw,<br />

tr B T <br />

wP Bw < tr [W ] < µ.<br />

Then Schur complement can be used to convert it into and LMI in X in the form<br />

⎡ ⎤ ⎡ ⎤<br />

⎣ W BT w<br />

Bw P −1<br />

⎦ =<br />

⎣ W BT w<br />

Bw X<br />

⎦ ≻ Θ.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 6


State Feedback H2 Control (primal form)<br />

State Feedback H2 <strong>control</strong> The CTLTI system<br />

˙x =Ax + Bww + Buu, x(0) = Θ,<br />

z =Czx + Dzww + Dzuu.<br />

is stabilizable by the state feedback <strong>control</strong> u = Kx such that Hwz(s)2 2 < µ if, and only if,<br />

Dzw = Θ and ∃X ∈ Sn , L ∈ Rm×n and W ∈ Sr such that tr [W ] < µ and<br />

⎡<br />

⎤ ⎡ ⎤<br />

XCT + L T D T zu<br />

⎣ AX + XAT + BuL + LT BT u<br />

CzX + DzuL −I<br />

If so, a stabilizing <strong>control</strong> gain is K = LX −1 .<br />

Remarks<br />

• Optimal H2 <strong>control</strong>: minimize µ.<br />

⎦ ≺ Θ,<br />

⎣ W Bw BT w X<br />

⎦ ≻ Θ.<br />

• Finsler’s Lemma provide necessary and sufficient conditions in this case (why?) even when<br />

Dzu = Θ (why?).<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 7


Equivalence between H2 and <strong>LQR</strong> <strong>control</strong><br />

Assume that DT zuDzu ≻ Θ and DT zuCz = Θ. Manipulate the H2 state feedback form into the<br />

intermediate formulation<br />

min<br />

X≻Θ,L<br />

tr BwX −1 <br />

Bw<br />

s.t. AX + XA T + BuL + L T B T<br />

u<br />

and define the Lagrangian function<br />

L(X, L, Λ) := tr BwX −1 <br />

Bw +<br />

T<br />

Λ, AX + XA + BuL + L T B T<br />

u<br />

where Λ ∈ S n , Λ Θ.<br />

+ XCT z CzX + LT D T<br />

zuDzuL Θ.<br />

+ XCT<br />

z C z X + LT D T<br />

zu D zu L .<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 8


Notice that<br />

Equivalence between H2 and <strong>LQR</strong> <strong>control</strong><br />

L(X, L, Λ) =f(X, Λ) + Λ, BuL + L T B T<br />

u + LT D T<br />

zu D zu L ,<br />

so that<br />

L(X, L + ɛHL, Λ) =L(X, L, Λ) + 2ɛ Λ, BuHL + L T D T<br />

zuDzuHL 2<br />

+ O(ɛ ),<br />

<br />

=L(X, L, Λ) + 2ɛ Λ Bu + L T D T<br />

zuD T<br />

<br />

zu , HL + O(ɛ 2 ).<br />

Hence, ∇LL = 2Λ B T u + DT zu D zu L . A necessary condition for optimality is that<br />

∂<br />

L L(X, L, Λ) =∇LL = 2Λ B T<br />

u<br />

+ DT<br />

zu D zu L = Θ<br />

Constraint qualification (slater condition) and perturbations on Bw can be used to guarantee that<br />

at the optimum Λ ≻ Θ. Therefore<br />

∂<br />

L<br />

L(X, L, Λ) = Θ ⇒ BT<br />

u<br />

+ DT<br />

zuDzuL = Θ,<br />

⇒ L = − D T<br />

zuD −1 T<br />

zu Bu .<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 9


Also by completion-of-squares<br />

Equivalence between H2 and <strong>LQR</strong> <strong>control</strong><br />

Θ AX + XA T + BuL + L T B T<br />

u<br />

=AX + XA T + XC T<br />

z C z<br />

DT zuD −1 T<br />

zu Bu X − Bu<br />

T T<br />

+ L D<br />

and using the comparison theorem X ≻ ¯X where<br />

and L = − D T zu D zu<br />

+ XCT<br />

z C z X + LT D T<br />

zu D zu L,<br />

D T<br />

zu D zu<br />

zu D zu<br />

−1 B T<br />

u +<br />

T<br />

DzuD −1 T<br />

zu Bu Θ A ¯X + ¯XA T + ¯XC T<br />

z Cz ¯X<br />

T<br />

− Bu DzuD −1 T<br />

zu Bu −1 B T u .<br />

<br />

+ L<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 10


min<br />

X≻Θ,L<br />

Equivalence between H2 and <strong>LQR</strong> <strong>control</strong><br />

Substituting L = − DT zuD −1 T<br />

zu Bu in the original problem we obtain<br />

tr BwX −1 <br />

Bw<br />

s.t. AX + XA T − Bu<br />

Notice that at the optimum P := X −1 ≻ Θ and<br />

T<br />

DzuD −1 T<br />

zu Bu <br />

−1<br />

Θ =X AX + XA T T<br />

− Bu DzuD −1 T<br />

zu Bu =A T P + P A − P Bu<br />

T<br />

DzuD −1 T<br />

zu Bu P + CT<br />

z Cz .<br />

+ XCT z CzX Θ.<br />

+ XCT z CzX <br />

X −1 ,<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 11


Equivalence between H2 and <strong>LQR</strong> <strong>control</strong><br />

The optimal state feedback H2 <strong>control</strong> for the CTLTI system<br />

where D T zu D zu<br />

J =<br />

=<br />

˙x =Ax + x0w + Buu, x(0) = Θ,<br />

z =Czx + Dzuu.<br />

≻ Θ is also the one that minimizes among all <strong>control</strong>lers the cost function<br />

∞<br />

z(t) T z(t) dt,<br />

0<br />

∞<br />

0<br />

for the CTLTI system<br />

x(t) T C T<br />

z C z<br />

<br />

Q<br />

x + 2x(t) T C T<br />

z D zu<br />

<br />

S<br />

˙x =Ax + Buu, x(0) = x0,<br />

z =Czx + Dzuu.<br />

u(t) + u(t) T D T<br />

zuDzu u(t) dt<br />

<br />

R<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 12


Plant (CTLTI system)<br />

State Feedback H∞ Control<br />

˙x =Ax + Bww + Buu, x(0) = Θ,<br />

z =Czx + Dzww + Dzuu.<br />

Controller (state-feedback <strong>control</strong>ler)<br />

Closed Loop System<br />

˙x = (A + BuK)<br />

<br />

Acl<br />

z = (Cz + DzuK)<br />

<br />

Ccl<br />

u =Kx.<br />

x + Bw<br />

<br />

Bcl<br />

x + Dzw<br />

<br />

w, x(0) = Θ,<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 13<br />

Dcl<br />

w.


State Feedback H∞ Control<br />

Analysis Conditions (H∞ norm) ∃K ∈ R m×n such that<br />

Hcl(K, s)∞ < µ<br />

if, and only if, ∃K ∈ Rm×n and P ∈ Sn such that (BRL)<br />

⎡<br />

P ≻ Θ,<br />

⎢<br />

⎣<br />

A T cl P + P Acl P Bcl C T cl<br />

B T cl P −µI DT cl<br />

Ccl Dcl −µI<br />

⎤<br />

⎥<br />

⎦<br />

≺ Θ<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 14


State Feedback H∞ Control<br />

Method I (congruence + change-of-variables) Apply the congruence transformation<br />

on the BRL<br />

⎡<br />

P<br />

⎢<br />

⎣<br />

−1 Θ<br />

Θ<br />

I<br />

⎤ ⎡<br />

Θ A<br />

⎥ ⎢<br />

Θ⎥<br />

⎢<br />

⎦ ⎣<br />

Θ Θ I<br />

T clP + P Acl P Bcl CT B<br />

cl<br />

T clP −µI DT ⎤ ⎡<br />

P<br />

⎥ ⎢<br />

⎥ ⎢<br />

cl ⎦ ⎣<br />

Ccl Dcl −µI<br />

−1 Θ<br />

Θ<br />

I<br />

⎤<br />

Θ<br />

⎥<br />

Θ⎥<br />

⎦ ≺ Θ,<br />

Θ Θ I<br />

⎡<br />

⎢<br />

⎣<br />

AclP −1 + P −1 A T cl Bcl P −1 C T cl<br />

⇕<br />

B T cl −µI D T cl<br />

CclP −1 Dcl −µI<br />

⎤<br />

⎥<br />

⎦<br />

≺ Θ.<br />

The matrices Bcl = Bw and Dcl = Dzw are constant matrices and the products<br />

AclP −1 = AP −1 + BuKP −1 , CclP −1 = CzP −1 + DzuKP −1 ,<br />

can be transformed into LMI using the change-of-variables X := P −1 , L := KX.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 15


State Feedback H∞ Control<br />

State Feedback H∞ <strong>control</strong> The CTLTI system<br />

˙x =Ax + Bww + Buu, x(0) = Θ,<br />

z =Czx + Dzww + Dzuu.<br />

is stabilizable by the state feedback <strong>control</strong> u = Kx such that Hwz(s)∞ < µ if, and only if,<br />

∃X ∈ Sn and L ∈ Rm×n such that<br />

⎡<br />

⎤<br />

X ≻ Θ,<br />

⎢<br />

⎣<br />

AX + XA T + BuL + L T B T u Bw XC T + L T D T zu<br />

If so, a stabilizing <strong>control</strong> gain is K = LX −1 .<br />

Remarks<br />

• Optimal H∞ <strong>control</strong>: minimize µ.<br />

B T w −µI D T zw<br />

CzX + DzuL Dzw −µI<br />

⎥<br />

⎦ ≺ Θ.<br />

• This result can be used to provide stabilizability analysis of uncertain systems with norm<br />

bounded uncertainty.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 16


State Feedback H∞ Control<br />

Finsler’s Lemma (second version) Let x ∈ R n , Q ∈ S n , B ∈ R m×n and B ∈ R p×n<br />

such that rank (B) < n and rank (C) < n. The following statements are equivalent:<br />

i) x T Qx < 0, ∀Bx = Θ, Cx = Θ, x = 0.<br />

ii) B ⊥T QB ⊥ ≺ Θ and C ⊥T QC ⊥ ≺ Θ<br />

iii) ∃ µ ∈ R : Q − µB T B ≺ Θ, and Q − µC T C ≺ Θ.<br />

iv) ∃ X ∈ R p×m : Q + C T X B + B T X T C ≺ Θ.<br />

Remarks<br />

• A proof can be found in Skelton, Iwasaki and Grigoriadis, Theorem 2.3.12, p. 29.<br />

• The reconstruction of the variable X from i), ii) and iii) is slightly more involved.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 17


State Feedback H∞ Control<br />

Method II (existence conditions) The analysis conditions can be rewritten as<br />

∃K ∈ Rm×n and P ∈ Sn such that P ≻ Θ and<br />

⎡<br />

A<br />

⎢<br />

⎣<br />

T P + P A P Bw CT B<br />

z<br />

T wP −µI DT Cz Dzw<br />

<br />

⎤ ⎡ ⎤<br />

I<br />

⎥ ⎢ ⎥<br />

⎥<br />

zw⎦<br />

+ ⎢<br />

⎣Θ⎥<br />

⎦<br />

−µI Θ<br />

<br />

Q<br />

CT K T<br />

<br />

B<br />

X<br />

T u P Θ DT <br />

B<br />

⎡ ⎤<br />

<br />

P Bu<br />

⎢ ⎥<br />

+ ⎢<br />

zu ⎣ Θ ⎥<br />

⎦<br />

<br />

Dzu<br />

<br />

BT <br />

K<br />

X T<br />

<br />

I<br />

<br />

Θ<br />

<br />

C<br />

<br />

Θ ≺ Θ<br />

<br />

In this form the equivalence between items iv) and ii) of the second form of Finsler’s Lemma can<br />

be used to eliminate variable K.<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 18


State Feedback H∞ Control<br />

Computing B ⊥ and C ⊥ Assuming that D T zu D zu<br />

Bx =<br />

Notice that<br />

≻ Θ is nonsingular<br />

<br />

BT u P Θ DT <br />

x = Θ zu<br />

⇒ B ⊥ ⎡<br />

⎤<br />

I<br />

⎢<br />

= ⎢<br />

⎣<br />

Θ<br />

<br />

T −1 T −Dzu DzuDzu Bu P<br />

Θ<br />

⎥<br />

I ⎥<br />

⎦<br />

Θ<br />

<br />

BT u P Θ DT <br />

zu<br />

⎛<br />

⎜<br />

⎝<br />

x1<br />

x2<br />

x3<br />

⎞<br />

⎟<br />

⎠<br />

= Θ ⇒ BT<br />

u P x1 + D T<br />

zu x3 = Θ.<br />

<br />

T −1<br />

Considering x3 = Dzu DzuDzu z the above condition reduces to<br />

B T<br />

u P x1 + z = Θ ⇒ z = −B T<br />

u P x1 ⇒<br />

T<br />

x3 = −Dzu DzuD −1 T<br />

zu Bu P x1.<br />

Cx =<br />

<br />

I Θ Θ x = Θ ⇒ C ⊥ =<br />

⎡ ⎤<br />

Θ<br />

⎢<br />

⎣ I<br />

Θ<br />

⎥<br />

Θ⎥<br />

⎦<br />

Θ I<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 19


From Finsler’s Lemma, iv), ∃ K T<br />

<br />

such that<br />

X<br />

⎡<br />

A<br />

⎢<br />

⎣<br />

T P + P A P Bw CT B<br />

z<br />

T wP −µI DT ⎤ ⎡ ⎤<br />

I<br />

⎥ ⎢ ⎥<br />

⎥<br />

zw⎦<br />

+ ⎢<br />

⎣Θ⎥<br />

⎦<br />

<br />

Cz Dzw<br />

<br />

−µI<br />

<br />

Θ<br />

<br />

Q<br />

CT State Feedback H∞ Control<br />

K T<br />

<br />

<br />

X<br />

⎡<br />

P Bu<br />

BT u P Θ DT <br />

B<br />

⎢ ⎥<br />

+ ⎢<br />

zu ⎣ Θ ⎥<br />

⎦<br />

<br />

Dzu<br />

<br />

BT <br />

K<br />

X T<br />

⇕<br />

<br />

I<br />

<br />

Θ<br />

<br />

C<br />

<br />

Θ ≺ Θ,<br />

<br />

ii) B ⊥T QB ⊥ ≺ Θ, and C ⊥T QC ⊥ ≺ Θ<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 20<br />


State Feedback H∞ Control<br />

The second inequality in ii) provides<br />

⎡<br />

Θ<br />

Θ ≻ ⎣<br />

Θ<br />

<br />

I<br />

Θ<br />

<br />

C<br />

⎤<br />

Θ<br />

⎦<br />

I<br />

<br />

⊥T<br />

⎡<br />

A<br />

⎢<br />

⎣<br />

T P + P A P Bw CT B<br />

z<br />

T wP −µI DT Cz Dzw<br />

<br />

Q<br />

⎤ ⎡ ⎤<br />

Θ Θ<br />

⎥ ⎢ ⎥<br />

⎥ ⎢<br />

zw⎦<br />

⎣ I Θ⎥<br />

⎦<br />

−µI Θ I<br />

<br />

C⊥ ⎡<br />

⎤<br />

,<br />

=<br />

⎣ −µI DT zw⎦<br />

Dzw −µI<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 21


State Feedback H∞ Control<br />

<br />

T −1 T Defining F := Dzu DzuDzu Bu the first inequality in ii) provides<br />

⎡<br />

I<br />

Θ ≻ ⎣<br />

Θ<br />

<br />

⎤<br />

T<br />

Θ −P F<br />

⎦<br />

I Θ<br />

<br />

B⊥T ⎡<br />

A<br />

⎢<br />

⎣<br />

T P + P A P Bw CT B<br />

z<br />

T wP −µI DT Cz Dzw<br />

<br />

Q<br />

⎤ ⎡<br />

I<br />

⎥ ⎢<br />

⎥ ⎢<br />

zw⎦<br />

⎣ Θ<br />

−µI −F P<br />

<br />

B<br />

⎤<br />

Θ<br />

⎥<br />

I ⎥<br />

⎦<br />

Θ<br />

<br />

⊥<br />

⎡<br />

,<br />

=<br />

⎣ AT P + P A − P F T Cz − CT z F P − µP F T F P P Bw − P F T Dzw<br />

BT wP − DT zwF P −µI<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 22<br />

⎤<br />

⎦ .


State Feedback H∞ Control<br />

The last inequality can be converted into an LMI using the change of variable X := P −1 and the<br />

congruence transformation<br />

⎡<br />

Θ ≻ ⎣ P −1 ⎡⎛<br />

⎤<br />

Θ ⎢⎝<br />

⎦ ⎢<br />

⎣<br />

Θ I<br />

AT P + P A − P F T Cz − CT z F P −<br />

µP F T ⎞<br />

⎠ P Bw − P F<br />

F P<br />

T Dzw<br />

BT wP − DT ⎤<br />

⎡<br />

⎥ ⎣<br />

⎦<br />

zwF P −µI<br />

P −1 ⎤<br />

Θ<br />

⎦ ,<br />

Θ I<br />

⎡<br />

⎤<br />

=<br />

=<br />

⎣ AP −1 + P −1AT − F T CzP −1 − P −1C T z F − µF T F Bw − F T Dzw<br />

BT w − DT zwF −µI<br />

⎡<br />

⎣ AX + XAT − F T CzX − XC T z F − µF T F Bw − F T Dzw<br />

BT w − DT zwF −µI<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 23<br />

⎤<br />

⎦ .<br />

⎦ ,


State Feedback H∞ Control<br />

State Feedback H∞ <strong>control</strong> The CTLTI system<br />

˙x =Ax + Bww + Buu, x(0) = Θ,<br />

z =Czx + Dzww + Dzuu.<br />

is stabilizable by the state feedback <strong>control</strong> u = Kx such that Hwz(s)∞ < µ if, and only if,<br />

∃X ∈ Sn such that<br />

⎡<br />

⎤<br />

with F := D zu<br />

⎣ AX + XAT − F T CzX − XC T z F − µF T F Bw − F T Dzw<br />

BT w − DT ⎦ ≺ Θ,<br />

zwF −µI<br />

⎡<br />

⎤<br />

<br />

T −1 T DzuDzu Bu .<br />

⎣ −µI DT zw⎦<br />

≺ Θ, X ≻ Θ,<br />

Dzw −µI<br />

280B - <strong>Linear</strong> Control Design Maurício de Oliveira Control Design III – p. 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!