3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ... 3+1 formalism and bases of numerical relativity - LUTh ...

luth.obspm.fr
from luth.obspm.fr More from this publisher
20.07.2013 Views

98 Conformal decomposition 6.5.2 Hamiltonian constraint Substituting Eq. (6.52) for R and Eq. (6.96) into the Hamiltonian constraint equation (4.65) yields ˜Di ˜ D i Ψ − 1 8 ˜ 1 RΨ + 8 Ãij Ãij − 1 12 K2 + 2πE Ψ 5 = 0 . (6.101) Let us consider the alternative scaling α = −10 to re-express the term Ãij Ãij . By combining Eqs. (6.76), (6.72), (6.82) and (6.85), we get the following relations  ij = Ψ 6 à ij Hence Ãij Ãij = Ψ −12 Âij Âij and Eq. (6.101) becomes and Âij = Ψ 6 Ãij . (6.102) ˜Di ˜ D i Ψ − 1 8 ˜ RΨ + 1 8 Âij Âij Ψ −7 + 2πE − 1 12 K2 Ψ 5 = 0 . (6.103) This is the Lichnerowicz equation. It has been obtained by Lichnerowicz in 1944 [177] in the special case K = 0 (maximal hypersurface) (cf. also Eq. (11.7) in Ref. [178]). Remark : If one regards Eqs. (6.101) and (6.103) as non-linear elliptic equations for Ψ, the negative power (−7) of Ψ in the Âij Âij term in Eq. (6.103), as compared to the positive power (+5) in Eq. (6.101), makes a big difference about the mathematical properties of these two equations. This will be discussed in detail in Chap. 8. 6.5.3 Momentum constraint The momentum constraint has been already written in terms of Âij : it is Eq. (6.83). Taking into account relation (6.102), we can easily rewrite it in terms of Ãij : ˜Dj Ãij + 6 Ãij ˜ Dj ln Ψ − 2 3 ˜ D i K = 8πΨ 4 p i . (6.104) 6.5.4 Summary: conformal 3+1 Einstein system Let us gather Eqs. (6.70), (6.73), (6.97), (6.100), (6.101) and (6.104): ∂ − Lβ Ψ = ∂t Ψ ˜Diβ 6 i − NK (6.105) ∂ − Lβ ˜γij = −2N ∂t Ãij − 2 3 ˜ Dkβ k ˜γij (6.106) ∂ − Lβ K = −Ψ ∂t −4 Di ˜ ˜ D i N + 2 ˜ Di ln Ψ ˜ D i N + N 4π(E + S) + Ãij Ãij + K2 3 (6.107)

6.6 Isenberg-Wilson-Mathews approximation to General Relativity 99 ∂ − Lβ Ãij = − ∂t 2 3 ˜ Dkβ k Ãij + N +Ψ −4 KÃij − 2˜γ kl ÃikÃjl − 8π Ψ −4 Sij − 1 3 S˜γij − ˜ Di ˜ DjN + 2 ˜ Di ln Ψ ˜ DjN + 2 ˜ Dj ln Ψ ˜ DiN + 1 ˜Dk 3 ˜ D k N − 4 ˜ Dk ln Ψ ˜ D k N ˜γij +N ˜Rij − 1 3 ˜ R˜γij − 2 ˜ Di ˜ Dj lnΨ + 4 ˜ Di ln Ψ ˜ Dj ln Ψ + 2 ˜Dk 3 ˜ D k ln Ψ − 2 ˜ Dk ln Ψ ˜ D k ln Ψ ˜γij . (6.108) ˜Di ˜ D i Ψ − 1 8 ˜ 1 RΨ + 8 Ãij Ãij − 1 12 K2 + 2πE Ψ 5 = 0 (6.109) ˜Dj Ãij + 6 Ãij ˜ Dj ln Ψ − 2 3 ˜ D i K = 8πΨ 4 p i . (6.110) For the last two equations, which are the constraints, we have the alternative forms (6.103) and (6.101) in terms of Âij (instead of Ãij ): ˜Di ˜ D i Ψ − 1 8 ˜ RΨ + 1 8 Âij Âij Ψ −7 + 2πE − 1 12 K2 Ψ 5 = 0 , (6.111) ˜Dj Âij − 2 3 Ψ6 ˜ D i K = 8πΨ 10 p i . (6.112) Equations (6.105)-(6.110) constitute the conformal 3+1 Einstein system. An alternative form is constituted by Eqs. (6.105)-(6.108) and (6.111)-(6.112). In terms of the original 3+1 Einstein system (4.63)-(4.66), Eq. (6.105) corresponds to the trace of the kinematical equation (4.63) and Eq. (6.106) to its traceless part, Eq. (6.107) corresponds to the trace of the dynamical Einstein equation (4.64) and Eq. (6.108) to its traceless part, Eq. (6.109) or Eq. (6.111) is the Hamiltonian constraint (4.65), whereas Eq. (6.110) or Eq. (6.112) is the momentum constraint. If the system (6.105)-(6.110) is solved in terms of ˜γij, Ãij (or Âij), Ψ and K, then the physical metric γ and the extrinsic curvature K are recovered by γij = Ψ 4 ˜γij Kij = Ψ 4 Ãij + 1 3 K˜γij (6.113) = Ψ −2 Âij + 1 3 KΨ4 ˜γij. (6.114) 6.6 Isenberg-Wilson-Mathews approximation to General Relativity In 1978, J. Isenberg [160] was looking for some approximation to general relativity without any gravitational wave, beyond the Newtonian theory. The simplest of the approximations that he found amounts to impose that the 3-metric γ is conformally flat. In the framework of the

6.6 Isenberg-Wilson-Mathews approximation to General Relativity 99<br />

<br />

∂<br />

− Lβ Ãij = −<br />

∂t 2<br />

3 ˜ Dkβ k Ãij + N<br />

+Ψ −4<br />

<br />

<br />

KÃij − 2˜γ kl ÃikÃjl <br />

− 8π Ψ −4 Sij − 1<br />

3 S˜γij<br />

<br />

− ˜ Di ˜ DjN + 2 ˜ Di ln Ψ ˜ DjN + 2 ˜ Dj ln Ψ ˜ DiN<br />

+ 1<br />

<br />

˜Dk<br />

3<br />

˜ D k N − 4 ˜ Dk ln Ψ ˜ D k <br />

N ˜γij<br />

<br />

+N ˜Rij − 1<br />

3 ˜ R˜γij − 2 ˜ Di ˜ Dj lnΨ + 4 ˜ Di ln Ψ ˜ Dj ln Ψ<br />

+ 2<br />

<br />

˜Dk<br />

3<br />

˜ D k ln Ψ − 2 ˜ Dk ln Ψ ˜ D k <br />

ln Ψ ˜γij .<br />

(6.108)<br />

˜Di ˜ D i Ψ − 1<br />

8 ˜ <br />

1<br />

RΨ +<br />

8 Ãij Ãij − 1<br />

12 K2 <br />

+ 2πE Ψ 5 = 0 (6.109)<br />

˜Dj Ãij + 6 Ãij ˜ Dj ln Ψ − 2<br />

3 ˜ D i K = 8πΨ 4 p i . (6.110)<br />

For the last two equations, which are the constraints, we have the alternative forms (6.103) <strong>and</strong><br />

(6.101) in terms <strong>of</strong> Âij (instead <strong>of</strong> Ãij ):<br />

˜Di ˜ D i Ψ − 1<br />

8 ˜ RΨ + 1<br />

8 Âij Âij Ψ −7 <br />

+ 2πE − 1<br />

12 K2<br />

<br />

Ψ 5 = 0 , (6.111)<br />

˜Dj Âij − 2<br />

3 Ψ6 ˜ D i K = 8πΨ 10 p i . (6.112)<br />

Equations (6.105)-(6.110) constitute the conformal <strong>3+1</strong> Einstein system. An alternative<br />

form is constituted by Eqs. (6.105)-(6.108) <strong>and</strong> (6.111)-(6.112). In terms <strong>of</strong> the original <strong>3+1</strong><br />

Einstein system (4.63)-(4.66), Eq. (6.105) corresponds to the trace <strong>of</strong> the kinematical equation<br />

(4.63) <strong>and</strong> Eq. (6.106) to its traceless part, Eq. (6.107) corresponds to the trace <strong>of</strong> the dynamical<br />

Einstein equation (4.64) <strong>and</strong> Eq. (6.108) to its traceless part, Eq. (6.109) or Eq. (6.111) is the<br />

Hamiltonian constraint (4.65), whereas Eq. (6.110) or Eq. (6.112) is the momentum constraint.<br />

If the system (6.105)-(6.110) is solved in terms <strong>of</strong> ˜γij, Ãij (or Âij), Ψ <strong>and</strong> K, then the<br />

physical metric γ <strong>and</strong> the extrinsic curvature K are recovered by<br />

γij = Ψ 4 ˜γij<br />

Kij = Ψ 4<br />

<br />

Ãij + 1<br />

3 K˜γij<br />

<br />

(6.113)<br />

= Ψ −2 Âij + 1<br />

3 KΨ4 ˜γij. (6.114)<br />

6.6 Isenberg-Wilson-Mathews approximation to General Relativity<br />

In 1978, J. Isenberg [160] was looking for some approximation to general <strong>relativity</strong> without any<br />

gravitational wave, beyond the Newtonian theory. The simplest <strong>of</strong> the approximations that<br />

he found amounts to impose that the 3-metric γ is conformally flat. In the framework <strong>of</strong> the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!