20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

96 Conformal decomposition<br />

hence<br />

LmK = −DiD i N + N R + K 2 + 4π(S − 3E) . (6.89)<br />

Let use the Hamiltonian constraint (4.65) to replace R + K 2 by 16πE + KijK ij . Then, writing<br />

LmK = (∂/∂t − Lβ )K,<br />

<br />

∂<br />

− Lβ K = −DiD<br />

∂t i N + N 4π(E + S) + KijK ij . (6.90)<br />

Remark : At the Newtonian limit, as defined by Eqs. (5.15), (5.25) <strong>and</strong> (5.59), Eq. (6.90)<br />

reduces to the Poisson equation for the gravitational potential Φ:<br />

DiD i Φ = 4πρ0. (6.91)<br />

Substituting Eq. (6.89) for LmK <strong>and</strong> Eq. (6.86) for LmKij into Eq. (6.87) yields<br />

<br />

LmAij = −DiDjN + N Rij + 5<br />

+ 1<br />

<br />

DkD<br />

3<br />

k N − N(R + K 2 <br />

)<br />

3 KKij − 2KikK k j<br />

<br />

− 8π Sij − 1<br />

3 Sγij<br />

<br />

γij. (6.92)<br />

Let us replace Kij by its expression in terms <strong>of</strong> Aij <strong>and</strong> K [Eq. (6.57)]: the terms in the<br />

right-h<strong>and</strong> side <strong>of</strong> the above equation which involve K are then written<br />

5K<br />

3 Kij − 2KikK k j − K2<br />

3 γij = 5K<br />

<br />

Aij +<br />

3<br />

K<br />

3 γij<br />

<br />

− 2 Aik + K<br />

= 5K<br />

3 Aij + 5K2<br />

9 γij − 2<br />

3 γik<br />

<br />

A k j + K<br />

<br />

AikA k j + 2K<br />

3 Aij + K2<br />

9 γij<br />

3 δk j<br />

<br />

− K2<br />

3 γij<br />

<br />

− K2<br />

3 γij<br />

= 1<br />

3 KAij − 2AikA k j . (6.93)<br />

Accordingly Eq. (6.92) becomes<br />

LmAij<br />

<br />

= −DiDjN + N Rij + 1<br />

3 KAij − 2AikA k <br />

j − 8π Sij − 1<br />

3 Sγij<br />

<br />

+ 1<br />

<br />

DkD<br />

3<br />

k <br />

N − NR γij. (6.94)<br />

Remark : Regarding the matter terms, this equation involves only the stress tensor S (more<br />

precisely its traceless part) <strong>and</strong> not the energy density E, contrary to the evolution equation<br />

(6.86) for K ij , which involves both.<br />

At this stage, we may say that we have split the dynamical Einstein equation (6.86) in<br />

two parts: a trace part: Eq. (6.90) <strong>and</strong> a traceless part: Eq. (6.94). Let us now perform the<br />

conformal decomposition <strong>of</strong> these relations, by introducing Ãij. We consider Ãij <strong>and</strong> not Âij,<br />

i.e. the scaling α = −4 <strong>and</strong> not α = −10, since we are discussing time evolution equations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!