20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

94 Conformal decomposition<br />

to write<br />

<br />

∂<br />

− Lβ ˜γij = −2N<br />

∂t Ãij − 2<br />

3 ˜ Dkβ k ˜γij . (6.73)<br />

Notice that, as an immediate consequence <strong>of</strong> Eq. (6.54), Ãij is traceless:<br />

Let us rise the indices <strong>of</strong> Ãij with the conformal metric, defining<br />

Since ˜γ ij = Ψ 4 γ ij , we get<br />

˜γ ij Ãij = 0 . (6.74)<br />

à ij := ˜γ ik ˜γ jl Ãkl. (6.75)<br />

à ij = Ψ 4 A ij . (6.76)<br />

This corresponds to the scaling factor α = −4 in Eq. (6.58). This choice <strong>of</strong> scaling has been first<br />

considered by Nakamura in 1994 [192].<br />

We can deduce from Eq. (6.73) an evolution equation for the inverse conformal metric ˜γ ij .<br />

Indeed, raising the indices <strong>of</strong> Eq. (6.73) with ˜γ, we get<br />

hence<br />

˜γ ik ˜γ jl Lm ˜γkl = −2N Ãij − 2<br />

3 ˜ Dkβ k ˜γ ij<br />

˜γ ik [Lm(˜γ jl ˜γkl ) − ˜γklLm ˜γ jl ] = −2NÃij − 2<br />

3 ˜ Dkβ k ˜γ ij<br />

<br />

=δ j<br />

k<br />

− ˜γ ik ˜γkl<br />

<br />

=δ i l<br />

2) “Momentum-constraint” scaling: α = −10<br />

Lm ˜γ jl = −2N Ãij − 2<br />

3 ˜ Dkβ k ˜γ ij , (6.77)<br />

<br />

∂<br />

− Lβ ˜γ<br />

∂t ij = 2NÃij + 2<br />

3 ˜ Dkβ k ˜γ ij . (6.78)<br />

Whereas the scaling α = −4 was suggested by the evolution equation (6.59) (or equivalently<br />

Eq. (4.63) <strong>of</strong> the <strong>3+1</strong> Einstein system), another scaling arises when contemplating the momentum<br />

constraint equation (4.66). In this equation appears the divergence <strong>of</strong> the extrinsic<br />

curvature, that we can write using the twice contravariant version <strong>of</strong> K <strong>and</strong> Eq. (6.57):<br />

Now, from Eqs. (6.29), (6.33) <strong>and</strong> (6.46),<br />

DjK ij = DjA ij + 1<br />

3 Di K. (6.79)<br />

DjA ij = ˜ DjA ij + C i jkAkj + C j<br />

jkAik = ˜ DjA ij <br />

+ 2 δ i j ˜ Dk ln Ψ + δ i k ˜ Dj ln Ψ − ˜ D i ln Ψ ˜γjk<br />

<br />

A kj + 6 ˜ Dk ln Ψ A ik<br />

= ˜ DjA ij + 10A ij ˜ Dj lnΨ − 2 ˜ D i ln Ψ ˜γjkA jk . (6.80)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!