20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

72 <strong>3+1</strong> equations for matter <strong>and</strong> electromagnetic field<br />

5.2 Energy <strong>and</strong> momentum conservation<br />

5.2.1 <strong>3+1</strong> decomposition <strong>of</strong> the 4-dimensional equation<br />

Let us replace T in Eq. (5.1) by its <strong>3+1</strong> expression (4.10) in terms <strong>of</strong> the energy density E, the<br />

momentum density p <strong>and</strong> the stress tensor S, all <strong>of</strong> them as measured by the Eulerian observer.<br />

We get, successively,<br />

∇µT µ α<br />

= 0<br />

∇µ (S µ α + nµ pα + p µ nα + En µ nα) = 0<br />

∇µS µ α − Kpα + n µ ∇µpα + ∇µp µ nα − p µ Kµα − KEnα + EDα ln N<br />

+n µ ∇µE nα = 0, (5.2)<br />

where we have used Eq. (3.20) to express the ∇n in terms <strong>of</strong> K <strong>and</strong> D ln N.<br />

5.2.2 Energy conservation<br />

Let us project Eq. (5.2) along the normal to the hypersurfaces Σt, i.e. contract Eq. (5.2) with<br />

n α . We get, since p, K <strong>and</strong> D ln N are all orthogonal to n:<br />

Now, since n · S = 0,<br />

Similarly<br />

n ν ∇µS µ ν + nµ n ν ∇µpν − ∇µp µ + KE − n µ ∇µE = 0. (5.3)<br />

n ν ∇µS µ ν = −S µ ν∇µn ν = S µ ν(K ν µ + D ν ln N nµ) = KµνS µν . (5.4)<br />

n µ n ν ∇µpν = −pνn µ ∇µn ν = −pνD ν ln N. (5.5)<br />

Besides, let us express the 4-dimensional divergence ∇µp µ is terms <strong>of</strong> the 3-dimensional one,<br />

Dµp µ . For any vector v tangent to Σt, like p, Eq. (2.79) gives<br />

Dµv µ = γ ρ µ γµ σ ∇ρv σ = γ ρ σ ∇ρv σ = (δ ρ σ +nρ nσ)∇ρv σ = ∇ρv ρ −v σ n ρ ∇ρnσ = ∇ρv ρ −v σ Dσ ln N<br />

(5.6)<br />

Hence the usefull relation between the two divergences<br />

or in terms <strong>of</strong> components,<br />

∀v ∈ T (Σt), ∇·v = D·v + v · D ln N , (5.7)<br />

∀v ∈ T (Σt), ∇µv µ = Div i + v i Di ln N. (5.8)<br />

Applying this relation to v = p <strong>and</strong> taking into account Eqs. (5.4) <strong>and</strong> (5.5), Eq. (5.3) becomes<br />

Ln E + D · p + 2p · D ln N − KE − KijS ij = 0. (5.9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!