20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

68 <strong>3+1</strong> decomposition <strong>of</strong> Einstein equation<br />

Using Eqs. (4.104), (4.108) <strong>and</strong> (4.105), we have<br />

H = √ γ Kγ ij − K ij (−2NKij + Diβj + Djβi) − N √ γ(R + KijK ij − K 2 )<br />

= √ <br />

γ −N(R + K 2 − KijK ij <br />

) + 2 Kγ j<br />

<br />

i − Kj<br />

i Djβ i<br />

= − √ <br />

γ N(R + K 2 − KijK ij <br />

i<br />

) + 2β DiK − DjK j<br />

<br />

i<br />

+2 √ <br />

γDj Kβ j − K j<br />

iβi . (4.110)<br />

The corresponding Hamiltonian is<br />

<br />

H =<br />

Σt<br />

H d 3 x. (4.111)<br />

Noticing that the last term in Eq. (4.110) is a divergence <strong>and</strong> therefore does not contribute to<br />

the integral, we get<br />

<br />

H = −<br />

<br />

NC0 − 2β i √ 3<br />

Ci γd x , (4.112)<br />

where<br />

Σt<br />

C0 := R + K 2 − KijK ij , (4.113)<br />

Ci := DjK j<br />

i − DiK (4.114)<br />

are the left-h<strong>and</strong> sides <strong>of</strong> the constraint equations (4.65) <strong>and</strong> (4.66) respectively.<br />

The Hamiltonian H is a functional <strong>of</strong> the configuration variables (γij,N,β i ) <strong>and</strong> their con-<br />

), the last two ones being identically zero since<br />

jugate momenta (π ij ,π N ,π β<br />

i<br />

π N := ∂L<br />

∂ ˙<br />

N<br />

= 0 <strong>and</strong> πβ<br />

i := ∂L<br />

∂ ˙ = 0. (4.115)<br />

βi The scalar curvature R which appears in H via C0 is a function <strong>of</strong> γij <strong>and</strong> its spatial derivatives,<br />

via Eqs. (4.72)-(4.74), whereas Kij which appears in both C0 <strong>and</strong> Ci is a function <strong>of</strong> γij <strong>and</strong> πij ,<br />

obtained by “inverting” relation (4.108):<br />

Kij = Kij[γ,π] = 1<br />

√ γ<br />

<br />

1<br />

2 γklπ kl γij − γikγjlπ kl<br />

<br />

. (4.116)<br />

The minimization <strong>of</strong> the Hilbert action is equivalent to the Hamilton equations<br />

δH<br />

= ˙γij<br />

(4.117)<br />

δπij δH<br />

δγij<br />

= − ˙π ij<br />

(4.118)<br />

δH<br />

δN = − ˙πN = 0 (4.119)<br />

δH<br />

= − ˙πβ<br />

δβi i = 0. (4.120)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!