20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.4 The Cauchy problem 63<br />

hightest degree (two in the present case). We get, denoting by “· · ·” everything but a second<br />

order derivative <strong>of</strong> γij:<br />

Rij = ∂Γkij ∂xk − ∂Γk ik + · · ·<br />

∂xj = 1 ∂<br />

2 ∂xk <br />

γ kl<br />

<br />

∂γlj ∂γil ∂γij<br />

+ −<br />

∂xi ∂xj ∂xl <br />

− 1 ∂<br />

2 ∂xj <br />

γ kl<br />

<br />

∂γlk<br />

∂x ∂x<br />

= 1<br />

2 γkl<br />

<br />

∂2γlj Rij = − 1<br />

2 γkl<br />

<br />

∂2γij ∂xk∂xl + ∂2γkl ∂xi∂xj − ∂2γlj ∂xi∂xk − ∂2γil ∂xj∂xk <br />

+ Qij<br />

∂γil ∂γik<br />

+ − i k<br />

∂xk∂xi + ∂2γil ∂xk∂xj − ∂2γij ∂xk∂xl − ∂2γlk ∂xj∂xi − ∂2γil ∂xj∂xk + ∂2γik ∂xj∂xl γkl, ∂γkl<br />

∂x m<br />

∂xl <br />

+ · · ·<br />

<br />

+ · · ·<br />

<br />

, (4.86)<br />

where Qij(γkl,∂γkl/∂x m ) is a (non-linear) expression containing the components γkl <strong>and</strong> their<br />

first spatial derivatives only. Taking the trace <strong>of</strong> (4.86) (i.e. contracting with γij ), we get<br />

<br />

. (4.87)<br />

Besides<br />

R = γ ik γ jl ∂2γij ∂xk∂xl − γijγ kl ∂2γij ∂xk + Q<br />

∂xl Dj(γ jk ˙γki) = γ jk Dj ˙γki = γ jk<br />

<br />

∂ ˙γki<br />

= γ jk ∂2γki ∂xj <br />

+ Qi<br />

∂t<br />

γkl, ∂γkl<br />

∂x m<br />

∂x j − Γl jk ˙γli − Γ l ji ˙γkl<br />

γkl, ∂γkl ∂γkl<br />

∂xm, ∂t<br />

<br />

<br />

, (4.88)<br />

where Qi(γkl,∂γkl/∂x m ,∂γkl/∂t) is some expression that does not contain any second order<br />

derivative <strong>of</strong> γkl. Substituting Eqs. (4.86), (4.87) <strong>and</strong> (4.88) in Eqs. (4.83)-(4.85) gives<br />

− ∂2 <br />

γij ∂2γij + γkl<br />

∂t2 ∂xk∂xl + ∂2γkl ∂xi∂xj − ∂2γlj ∂xi∂xk − ∂2γil ∂xj∂xk <br />

= 8π [(S − E)γij − 2Sij]<br />

<br />

+Qij γkl, ∂γkl<br />

<br />

∂γkl<br />

∂xm, (4.89)<br />

∂t<br />

γ ik γ jl ∂2γij ∂xk∂xl − γijγ kl ∂2γij ∂xk <br />

= 16πE + Q γkl,<br />

∂xl ∂γkl<br />

<br />

∂γkl<br />

∂xm, (4.90)<br />

∂t<br />

γ jk ∂2γki ∂xj∂t − γkl ∂2γkl ∂xi∂t = −16πpi<br />

<br />

+ Qi γkl, ∂γkl<br />

<br />

∂γkl<br />

∂xm, . (4.91)<br />

∂t<br />

Notice that we have incorporated the first order time derivatives into the Q terms.<br />

Equations (4.89)-(4.91) constitute a system <strong>of</strong> PDEs for the unknowns γij. This system is <strong>of</strong><br />

second order <strong>and</strong> non linear, but quasi-linear, i.e. linear with respect to all the second order<br />

derivatives. Let us recall that, in this system, the γ ij ’s are to be considered as functions <strong>of</strong> the<br />

γij’s, these functions being given by expressing the matrix (γij) as the inverse <strong>of</strong> the matrix (γij)<br />

(e.g. via Cramer’s rule).<br />

A key feature <strong>of</strong> the system (4.89)-(4.91) is that it contains 6 + 1 + 3 = 10 equations for<br />

the 6 unknowns γij. Hence it is an over-determined system. Among the three sub-systems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!