20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.3.5 Evolution <strong>of</strong> the 3-metric<br />

3.3 Foliation kinematics 45<br />

The evolution <strong>of</strong> Σt’s metric γ is naturally given by the Lie derivative <strong>of</strong> γ along the normal<br />

evolution vector m (see Appendix A). By means <strong>of</strong> Eqs. (A.8) <strong>and</strong> (3.22), we get<br />

Lmγαβ = m µ ∇µγαβ + γµβ∇αm µ + γαµ∇βm µ<br />

= Nn µ ∇µ(nαnβ) − γµβ (NK µ α + D µ N nα − n µ ∇αN)<br />

−γαµ<br />

= N( n µ ∇µnα<br />

<br />

aα<br />

<br />

Hence the simple result:<br />

<br />

NK µ<br />

β + Dµ N nβ − n µ <br />

∇βN<br />

=N −1 DαN<br />

nβ + nα n µ ∇µnβ<br />

<br />

aβ<br />

<br />

=N−1Dβ N<br />

) − NKβα − DβN nα − NKαβ − DαN nβ<br />

= −2NKαβ. (3.23)<br />

Lmγ = −2NK . (3.24)<br />

One can deduce easily from this relation the value <strong>of</strong> the Lie derivative <strong>of</strong> the 3-metric along<br />

the unit normal n. Indeed, since m = Nn,<br />

Hence<br />

Lmγαβ = LNnγαβ<br />

= Nn µ ∇µγαβ + γµβ∇α(Nn µ ) + γαµ∇β(Nn µ )<br />

= Nn µ ∇µγαβ + γµβn µ<br />

∇αN + Nγµβ∇αn µ + γαµn µ<br />

<br />

=0<br />

<br />

=0<br />

∇βN + Nγαµ∇βn µ<br />

= NLn γαβ. (3.25)<br />

Consequently, Eq. (3.24) leads to<br />

Ln γ = 1<br />

N Lmγ. (3.26)<br />

K = − 1<br />

2 Ln γ . (3.27)<br />

This equation sheds some new light on the extrinsic curvature tensor K. In addition to being<br />

the projection on Σt <strong>of</strong> the gradient <strong>of</strong> the unit normal to Σt [cf. Eq. (2.76)],<br />

K = −γ ∗ ∇n, (3.28)<br />

as well as the measure <strong>of</strong> the difference between D-derivatives <strong>and</strong> ∇-derivatives for vectors<br />

tangent to Σt [cf. Eq. (2.83)],<br />

∀(u,v) ∈ T (Σ) 2 , K(u,v)n = Duv − ∇uv, (3.29)<br />

K is also minus one half the Lie derivative <strong>of</strong> Σt’s metric along the unit timelike normal.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!