20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

216 BIBLIOGRAPHY<br />

[255] K. Taniguchi <strong>and</strong> E. Gourgoulhon : Various features <strong>of</strong> quasiequilibrium sequences <strong>of</strong><br />

binary neutron stars in general <strong>relativity</strong>, Phys. Rev. D 68, 124025 (2003).<br />

[256] S.A. Teukolsky : Linearized quadrupole waves in general <strong>relativity</strong> <strong>and</strong> the motion <strong>of</strong> test<br />

particles, Phys. Rev. D 26, 745 (1982).<br />

[257] S.A Teukolsky : Irrotational binary neutron stars in quasi-equilibrium in general <strong>relativity</strong>,<br />

Astrophys. J. 504, 442 (1998).<br />

[258] K.S. Thorne <strong>and</strong> D. Macdonald : Electrodynamics in curved spacetime: <strong>3+1</strong> formulation,<br />

Mon. Not. R. Astron. Soc. 198, 339 (1982).<br />

[259] W. Tichy, B. Brügmann, M. Campanelli, <strong>and</strong> P. Diener : Binary black hole initial data<br />

for <strong>numerical</strong> general <strong>relativity</strong> based on post-Newtonian data, Phys. Rev. D 67, 064008<br />

(2003).<br />

[260] A.A. Tsokaros <strong>and</strong> K. Uryu : Numerical method for binary black hole/neutron star initial<br />

data: Code test, Phys. Rev. D 75, 044026 (2007).<br />

[261] K. Uryu <strong>and</strong> Y. Eriguchi : New <strong>numerical</strong> method for constructing quasiequilibrium sequences<br />

<strong>of</strong> irrotational binary neutron stars in general <strong>relativity</strong>, Phys. Rev. D 61, 124023<br />

(2000).<br />

[262] K. Uryu, M. Shibata, <strong>and</strong> Y. Eriguchi : Properties <strong>of</strong> general relativistic, irrotational<br />

binary neutron stars in close quasiequilibrium orbits: Polytropic equations <strong>of</strong> state, Phys.<br />

Rev. D 62, 104015 (2000).<br />

[263] K. Uryu, F. Limousin, J.L. Friedman, E. Gourgoulhon, <strong>and</strong> M. Shibata : Binary Neutron<br />

Stars: Equilibrium Models beyond Spatial Conformal Flatness, Phys. Rev. Lett. 97, 171101<br />

(2006).<br />

[264] J.R. van Meter, J.G. Baker, M. Koppitz, D.I. Choi : How to move a black hole without<br />

excision: gauge conditions for the <strong>numerical</strong> evolution <strong>of</strong> a moving puncture, Phys. Rev.<br />

D 73, 124011 (2006).<br />

[265] R.M. Wald : General <strong>relativity</strong>, University <strong>of</strong> Chicago Press, Chicago (1984).<br />

[266] D. Walsh : Non-uniqueness in conformal formulations <strong>of</strong> the Einstein Constraints, preprint<br />

gr-qc/0610129.<br />

[267] J.A. Wheeler : Geometrodynamics <strong>and</strong> the issue <strong>of</strong> the final state, in Relativity, Groups<br />

<strong>and</strong> Topology, edited by C. DeWitt <strong>and</strong> B.S. DeWitt, Gordon <strong>and</strong> Breach, New York<br />

(1964), p. 316.<br />

[268] J.R. Wilson <strong>and</strong> G.J. Mathews : Relativistic hydrodynamics, in Frontiers in <strong>numerical</strong><br />

<strong>relativity</strong>, edited by C.R. Evans, L.S. Finn <strong>and</strong> D.W. Hobill, Cambridge University Press,<br />

Cambridge (1989), p. 306.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!