3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ... 3+1 formalism and bases of numerical relativity - LUTh ...

luth.obspm.fr
from luth.obspm.fr More from this publisher
20.07.2013 Views

214 BIBLIOGRAPHY [226] M. Shibata : Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests, Phys. Rev. D 60, 104052 (1999). [227] M. Shibata : Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes, Phys. Rev. D 67, 024033 (2003). [228] M. Shibata : Collapse of Rotating Supramassive Neutron Stars to Black Holes: Fully General Relativistic Simulations, Astrophys. J. 595, 992 (2003). [229] M. Shibata, T.W. Baumgarte, and S.L. Shapiro : Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity, Phys. Rev. D 61, 044012 (2000). [230] M. Shibata, T.W. Baumgarte, and S.L. Shapiro : The Bar-Mode Instability in Differentially Rotating Neutron Stars: Simulations in Full General Relativity, Astrophys. J. 542, 453 (2000). [231] M. Shibata, Y.T. Liu, S.L. Shapiro, and B.C. Stephens : Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity, Phys. Rev. D 74, 104026 (2006). [232] M. Shibata and T. Nakamura : Conformal Time Slicing Condition in Three Dimensional Numerical Relativity, Prog. Theor. Phys. 88, 317 (1992). [233] M. Shibata and T. Nakamura : Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D 52, 5428 (1995). [234] M. Shibata and Y. Sekiguchi : Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities, Phys. Rev. D 71, 024014 (2005). [235] M. Shibata and Y. Sekiguchi : Magnetohydrodynamics in full general relativity: Formulation and tests, Phys. Rev. D 72, 044014 (2005). [236] M. Shibata and K. Taniguchi : Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing, Phys. Rev. D 73, 064027 (2006). [237] M. Shibata, K. Taniguchi, and K. Uryu : Merger of binary neutron stars of unequal mass in full general relativity, Phys. Rev. D 68, 084020 (2003). [238] M. Shibata, K. Taniguchi, and K. Uryu : Merger of binary neutron stars with realistic equations of state in full general relativity, Phys. Rev. D 71, 084021 (2005). [239] M. Shibata and K. Uryu : Simulation of merging binary neutron stars in full general relativity: Γ = 2 case, Phys. Rev. D 61, 064001 (2000). [240] M. Shibata and K. Uryu : Gravitational Waves from the Merger of Binary Neutron Stars in a Fully General Relativistic Simulation, Prog. Theor. Phys. 107, 265 (2002).

BIBLIOGRAPHY 215 [241] M. Shibata, K. Uryu, and J.L. Friedman : Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits, Phys. Rev. D 70, 044044 (2004); errata in Phys. Rev. D 70, 129901(E) (2004). [242] H. Shinkai : Introduction to Numerical Relativity, lecture notes for APCTP Winter School on Gravitation and Cosmology, Jan 17-18 2003 (Seoul, Korea), available at http://www.einstein1905.info/winterAPCTP/ [243] H. Shinkai and G. Yoneda : Re-formulating the Einstein equations for stable numerical simulations: Formulation Problem in Numerical Relativity, to appear (?) in Progress in Astronomy and Astrophysics (Nova Science Publ.), preprint gr-qc/0209111. [244] L. Smarr : Gauge conditions, radiation formulae and the two black hole collisions, in Sources of Gravitational Radiation, edited by L.L. Smarr, Cambridge University Press, Cambridge (1979), p. 245. [245] L. Smarr, A. Čadeˇz, B. DeWitt, and K. Eppley : Collision of two black holes: Theoretical framework, Phys. Rev. D 14, 002443 (1976). [246] L. Smarr and J.W. York : Radiation gauge in general relativity, Phys. Rev. D 17, 1945 (1978). [247] L. Smarr and J.W. York : Kinematical conditions in the construction of spacetime, Phys. Rev. D 17, 2529 (1978). [248] U. Sperhake : Binary black-hole evolutions of excision and puncture data, preprint grqc/0606079. [249] R.F. Stark and T. Piran : Gravitational-Wave Emission from Rotating Gravitational Collapse, Phys. Rev. Lett. 55, 891 (1985). [250] J.M. Stewart : The Cauchy problem and the initial boundary value problem in numerical relativity, Class Quantum Grav. 15, 2865 (1998). [251] N. Straumann : General Relavity, with Applications to Astrophysics, Springer-Verlag, Berlin (2004). [252] K. Taniguchi, T.W. Baumgarte, J.A. Faber, and S.L. Shapiro : Quasiequilibrium sequences of black-hole-neutron-star binaries in general relativity, Phys. Rev. D 74, 041502(R) (2006). [253] K. Taniguchi, T.W. Baumgarte, J.A. Faber, and S.L. Shapiro : Quasiequilibrium black hole-neutron star binaries in general relativity, Phys. Rev. D, submitted [preprint: grqc/0701110]. [254] K. Taniguchi and E. Gourgoulhon : Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. III. Identical and different mass stars with γ = 2, Phys. Rev. D 66, 104019 (2002).

BIBLIOGRAPHY 215<br />

[241] M. Shibata, K. Uryu, <strong>and</strong> J.L. Friedman : Deriving formulations for <strong>numerical</strong> computation<br />

<strong>of</strong> binary neutron stars in quasicircular orbits, Phys. Rev. D 70, 044044 (2004);<br />

errata in Phys. Rev. D 70, 129901(E) (2004).<br />

[242] H. Shinkai : Introduction to Numerical Relativity, lecture notes for APCTP Winter School<br />

on Gravitation <strong>and</strong> Cosmology, Jan 17-18 2003 (Seoul, Korea),<br />

available at http://www.einstein1905.info/winterAPCTP/<br />

[243] H. Shinkai <strong>and</strong> G. Yoneda : Re-formulating the Einstein equations for stable <strong>numerical</strong><br />

simulations: Formulation Problem in Numerical Relativity, to appear (?) in Progress in<br />

Astronomy <strong>and</strong> Astrophysics (Nova Science Publ.), preprint gr-qc/0209111.<br />

[244] L. Smarr : Gauge conditions, radiation formulae <strong>and</strong> the two black hole collisions, in<br />

Sources <strong>of</strong> Gravitational Radiation, edited by L.L. Smarr, Cambridge University Press,<br />

Cambridge (1979), p. 245.<br />

[245] L. Smarr, A. Čadeˇz, B. DeWitt, <strong>and</strong> K. Eppley : Collision <strong>of</strong> two black holes: Theoretical<br />

framework, Phys. Rev. D 14, 002443 (1976).<br />

[246] L. Smarr <strong>and</strong> J.W. York : Radiation gauge in general <strong>relativity</strong>, Phys. Rev. D 17, 1945<br />

(1978).<br />

[247] L. Smarr <strong>and</strong> J.W. York : Kinematical conditions in the construction <strong>of</strong> spacetime, Phys.<br />

Rev. D 17, 2529 (1978).<br />

[248] U. Sperhake : Binary black-hole evolutions <strong>of</strong> excision <strong>and</strong> puncture data, preprint grqc/0606079.<br />

[249] R.F. Stark <strong>and</strong> T. Piran : Gravitational-Wave Emission from Rotating Gravitational Collapse,<br />

Phys. Rev. Lett. 55, 891 (1985).<br />

[250] J.M. Stewart : The Cauchy problem <strong>and</strong> the initial boundary value problem in <strong>numerical</strong><br />

<strong>relativity</strong>, Class Quantum Grav. 15, 2865 (1998).<br />

[251] N. Straumann : General Relavity, with Applications to Astrophysics, Springer-Verlag,<br />

Berlin (2004).<br />

[252] K. Taniguchi, T.W. Baumgarte, J.A. Faber, <strong>and</strong> S.L. Shapiro : Quasiequilibrium sequences<br />

<strong>of</strong> black-hole-neutron-star binaries in general <strong>relativity</strong>, Phys. Rev. D 74, 041502(R)<br />

(2006).<br />

[253] K. Taniguchi, T.W. Baumgarte, J.A. Faber, <strong>and</strong> S.L. Shapiro : Quasiequilibrium black<br />

hole-neutron star binaries in general <strong>relativity</strong>, Phys. Rev. D, submitted [preprint: grqc/0701110].<br />

[254] K. Taniguchi <strong>and</strong> E. Gourgoulhon : Quasiequilibrium sequences <strong>of</strong> synchronized <strong>and</strong> irrotational<br />

binary neutron stars in general <strong>relativity</strong>. III. Identical <strong>and</strong> different mass stars<br />

with γ = 2, Phys. Rev. D 66, 104019 (2002).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!