3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ... 3+1 formalism and bases of numerical relativity - LUTh ...

luth.obspm.fr
from luth.obspm.fr More from this publisher
20.07.2013 Views

200 BIBLIOGRAPHY [13] A. Anderson and J.W. York : Fixing Einstein’s Equations, Phys. Rev. Lett. 82, 4384 (1999). [14] M. Anderson and R.A. Matzner : Extended Lifetime in Computational Evolution of Isolated Black Holes, Found. Phys. 35, 1477 (2005). [15] L. Andersson : The Global Existence Problem in General Relativity, in Ref. [93], p. 71. [16] L. Andersson and V. Moncrief : Elliptic-Hyperbolic Systems and the Einstein Equations, Ann. Henri Poincaré 4, 1 (2003). [17] P. Anninos, J. Massó, E. Seidel, W.-M. Suen, and J. Towns : Three-dimensional numerical relativity: The evolution of black holes, Phys. Rev. D 52, 2059 (1995). [18] M. Ansorg : Double-domain spectral method for black hole excision data, Phys. Rev. D 72, 024018 (2005). [19] M. Ansorg: Multi-Domain Spectral Method for Initial Data of Arbitrary Binaries in General Relativity, preprint gr-qc/0612081. [20] M. Ansorg, B. Brügmann and W. Tichy : Single-domain spectral method for black hole puncture data, Phys. Rev. D 70, 064011 (2004). [21] M. Ansorg and D. Petroff : Negative Komar mass of single objects in regular, asymptotically flat spacetimes, Class. Quantum Grav. 23, L81 (2006). [22] L. Antón , O. Zanotti, J.A. Miralles, J.M. Martí, J.M. Ibáñez, J.A. Font, and J.A. Pons : Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach, Astrophys. J. 637, 296 (2006). [23] R. Arnowitt, S. Deser and C.W Misner : The Dynamics of General Relativity, in Gravitation: an introduction to current research, edited by L. Witten, Wiley, New York (1962), p. 227; available at http://arxiv.org/abs/gr-qc/0405109. [24] A. Ashtekar : Asymptotic Structure of the Gravitational Field at Spatial Infinity, in General Relativity and Gravitation, one hundred Years after the Birth of Albert Einstein, Vol. 2, edited by A. Held, Plenum Press, New York (1980), p. 37. [25] A. Ashtekar and R. O. Hansen : A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity, J. Math. Phys. 19, 1542 (1978). [26] A. Ashtekar and A. Magnon-Ashtekar : On conserved quantities in general relativity, J. Math. Phys. 20, 793 (1979). [27] R.F. Baierlein, D.H Sharp and J.A. Wheeler : Three-Dimensional Geometry as Carrier of Information about Time, Phys. Rev. 126, 1864 (1962).

BIBLIOGRAPHY 201 [28] L. Baiotti, I. Hawke, P.J. Montero, F. Löffler, L. Rezzolla, N. Stergioulas, J.A. Font, and E. Seidel : Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole, Phys. Rev. D 71, 024035 (2005). [29] L. Baiotti, I. Hawke, L. Rezzolla, and E. Schnetter : Gravitational-Wave Emission from Rotating Gravitational Collapse in Three Dimensions, Phys. Rev. Lett. 94, 131101 (2005). [30] L. Baiotti and L. Rezzolla : Challenging the Paradigm of Singularity Excision in Gravitational Collapse, Phys. Rev. Lett. 97, 141101 (2006). [31] J.G. Baker, M. Campanelli, C.O. Lousto and R. Takashi : Modeling gravitational radiation from coalescing binary black holes, Phys. Rev. D 65, 124012 (2002). [32] J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter : Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes, Phys. Rev. Lett. 96, 111102 (2006). [33] J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter : Binary black hole merger dynamics and waveforms, Phys. Rev. D 73, 104002 (2006). [34] J.M. Bardeen : A Variational Principle for Rotating Stars in General Relativity, Astrophys. J. 162, 71 (1970). [35] J.M. Bardeen : Gauge and radiation conditions in numerical relativity, in Rayonnement gravitationnel / Gravitation Radiation, edited by N. Deruelle and T. Piran, North Holland, Amsterdam (1983), p. 433. [36] J.M. Bardeen and T. Piran : General relativistic axisymmetric rotating systems: coordinates and equations, Phys. Rep. 96, 206 (1983). [37] R. Bartnik : Quasi-spherical metrics and prescribed scalar curvature, J. Diff. Geom. 37, 31 (1993). [38] R. Bartnik and G. Fodor : On the restricted validity of the thin sandwich conjecture, Phys. Rev. D 48, 3596 (1993). [39] R. Bartnik and J. Isenberg : The Constraint Equations, in Ref. [93], p. 1. [40] T.W. Baumgarte : Innermost stable circular orbit of binary black holes, Phys. Rev. D 62, 024018 (2000). [41] T.W. Baumgarte, G.B. Cook, M.A. Scheel, S.L. Shapiro, and S.A. Teukolsky : Binary neutron stars in general relativity: Quasiequilibrium models, Phys. Rev. Lett. 79, 1182 (1997). [42] T.W. Baumgarte, G.B. Cook, M.A. Scheel, S.L. Shapiro, and S.A. Teukolsky : General relativistic models of binary neutron stars in quasiequilibrium, Phys. Rev. D 57, 7299 (1998).

200 BIBLIOGRAPHY<br />

[13] A. Anderson <strong>and</strong> J.W. York : Fixing Einstein’s Equations, Phys. Rev. Lett. 82, 4384<br />

(1999).<br />

[14] M. Anderson <strong>and</strong> R.A. Matzner : Extended Lifetime in Computational Evolution <strong>of</strong> Isolated<br />

Black Holes, Found. Phys. 35, 1477 (2005).<br />

[15] L. Andersson : The Global Existence Problem in General Relativity, in Ref. [93], p. 71.<br />

[16] L. Andersson <strong>and</strong> V. Moncrief : Elliptic-Hyperbolic Systems <strong>and</strong> the Einstein Equations,<br />

Ann. Henri Poincaré 4, 1 (2003).<br />

[17] P. Anninos, J. Massó, E. Seidel, W.-M. Suen, <strong>and</strong> J. Towns : Three-dimensional <strong>numerical</strong><br />

<strong>relativity</strong>: The evolution <strong>of</strong> black holes, Phys. Rev. D 52, 2059 (1995).<br />

[18] M. Ansorg : Double-domain spectral method for black hole excision data, Phys. Rev. D<br />

72, 024018 (2005).<br />

[19] M. Ansorg: Multi-Domain Spectral Method for Initial Data <strong>of</strong> Arbitrary Binaries in General<br />

Relativity, preprint gr-qc/0612081.<br />

[20] M. Ansorg, B. Brügmann <strong>and</strong> W. Tichy : Single-domain spectral method for black hole<br />

puncture data, Phys. Rev. D 70, 064011 (2004).<br />

[21] M. Ansorg <strong>and</strong> D. Petr<strong>of</strong>f : Negative Komar mass <strong>of</strong> single objects in regular, asymptotically<br />

flat spacetimes, Class. Quantum Grav. 23, L81 (2006).<br />

[22] L. Antón , O. Zanotti, J.A. Miralles, J.M. Martí, J.M. Ibáñez, J.A. Font, <strong>and</strong> J.A. Pons :<br />

Numerical <strong>3+1</strong> General Relativistic Magnetohydrodynamics: A Local Characteristic Approach,<br />

Astrophys. J. 637, 296 (2006).<br />

[23] R. Arnowitt, S. Deser <strong>and</strong> C.W Misner : The Dynamics <strong>of</strong> General Relativity, in Gravitation:<br />

an introduction to current research, edited by L. Witten, Wiley, New York (1962),<br />

p. 227; available at http://arxiv.org/abs/gr-qc/0405109.<br />

[24] A. Ashtekar : Asymptotic Structure <strong>of</strong> the Gravitational Field at Spatial Infinity, in General<br />

Relativity <strong>and</strong> Gravitation, one hundred Years after the Birth <strong>of</strong> Albert Einstein, Vol. 2,<br />

edited by A. Held, Plenum Press, New York (1980), p. 37.<br />

[25] A. Ashtekar <strong>and</strong> R. O. Hansen : A unified treatment <strong>of</strong> null <strong>and</strong> spatial infinity in general<br />

<strong>relativity</strong>. I. Universal structure, asymptotic symmetries, <strong>and</strong> conserved quantities at<br />

spatial infinity, J. Math. Phys. 19, 1542 (1978).<br />

[26] A. Ashtekar <strong>and</strong> A. Magnon-Ashtekar : On conserved quantities in general <strong>relativity</strong>, J.<br />

Math. Phys. 20, 793 (1979).<br />

[27] R.F. Baierlein, D.H Sharp <strong>and</strong> J.A. Wheeler : Three-Dimensional Geometry as Carrier <strong>of</strong><br />

Information about Time, Phys. Rev. 126, 1864 (1962).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!