20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10.3 Free evolution schemes 179<br />

Remark : We assume here specifically that Eq. (10.23) holds, because in the following we do<br />

not dem<strong>and</strong> that the whole Einstein equation is satisfied, but only its dynamical part, i.e.<br />

Eq. (10.12).<br />

As we have seen in Chap. 5, in order for Eq. (10.23) to be satisfied, the matter energy density<br />

E <strong>and</strong> momentum density p (both relative to the Eulerian observer) must obey to the evolution<br />

equations (5.12) <strong>and</strong> (5.23).<br />

Thanks to the Bianchi identity (10.21) <strong>and</strong> to the energy-momentum conservation law<br />

(10.23), the divergence <strong>of</strong> Eq. (10.19) leads to, successively,<br />

∇µ (G µ α − 8πT µ α ) = 0<br />

∇µ [F µ α + (H − F)γµ α + nµ Mα + M µ nα + Hn µ nα] = 0,<br />

∇µF µ α + Dα(H − F) + (H − F)(∇µn µ nα + n µ ∇µnα) − KMα + n µ ∇µMα<br />

+∇µM µ nα − M µ Kµα + n µ ∇µH nα − HKnα + HDα ln N = 0,<br />

∇µF µ α + Dα(H − F) + (2H − F)(Dα lnN − Knα) − KMα + n µ ∇µMα,<br />

+∇µM µ nα − KαµM µ + n µ ∇µH nα = 0, (10.24)<br />

where we have used Eq. (3.20) to express the ∇n in terms <strong>of</strong> K <strong>and</strong> D ln N (in particular<br />

∇µn µ = −K). Let us contract Eq. (10.24) with n: we get, successively,<br />

n ν ∇µF µ ν + (2H − F)K + n ν n µ ∇µMν − ∇µM µ − n µ ∇µH = 0,<br />

−F µ ν∇µn ν + (2H − F)K − Mνn µ ∇µn ν − ∇µM µ − n µ ∇µH = 0,<br />

K µν Fµν + (2H − F)K − M ν Dν ln N − ∇µM µ − n µ ∇µH = 0. (10.25)<br />

Now the ∇-divergence <strong>of</strong> M is related to the D-one by<br />

Thus Eq. (10.25) can be written<br />

Noticing that<br />

DµM µ = γ ρ µ γσ ν ∇ρM σ = γ ρ σ ∇ρM σ = ∇ρM ρ + n ρ nσ∇ρM σ<br />

= ∇µM µ − M µ Dµ ln N. (10.26)<br />

n µ ∇µH = −DµM µ − 2M µ Dµ lnN + K(2H − F) + K µν Fµν. (10.27)<br />

n µ ∇µH = 1<br />

N mµ ∇µH = 1<br />

N LmH = 1<br />

<br />

∂<br />

− Lβ H, (10.28)<br />

N ∂t<br />

where m is the normal evolution vector (cf. Sec. 3.3.2), we get the following evolution equation<br />

for the Hamiltonian constraint violation<br />

<br />

∂<br />

− Lβ H = −Di(NM<br />

∂t i ) − M i DiN + NK(2H − F) + NK ij Fij . (10.29)<br />

Let us now project Eq. (10.24) onto Σt:<br />

γ να ∇µF µ ν + D α (H − F) + (2H − F)D α ln N − KM α + γ α νn µ ∇µM ν − K α µM µ = 0. (10.30)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!