20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

178 Evolution schemes<br />

Comparing with Eq. (10.11), we get<br />

γ ∗ (G − 8πT) = F − 1 4R <br />

+ 8π(S − E) γ. (10.14)<br />

2<br />

Besides, the trace <strong>of</strong> Eq. (10.11) is<br />

F = trγF = γ ij Fij = γ µν Fµν<br />

= γ µν γ ρ µ γ σ ν 4 Rρσ − 8π<br />

<br />

=γ ρν<br />

<br />

S + 1<br />

<br />

(E − S) × 3<br />

2<br />

= γ ρσ4 Rρσ + 4π(S − 3E) = 4 R + 4 Rρσ n ρ n σ + 4π(S − 3E). (10.15)<br />

Now, from Eq. (10.4), 4 Rρσ n ρ n σ = H − 4 R/2 + 8πE, so that the above relation becomes<br />

F = 4 R + H − 14<br />

R + 8πE + 4π(S − 3E)<br />

2<br />

= H + 1 4R <br />

+ 8π(S − E) .<br />

2<br />

(10.16)<br />

This enables us to write Eq. (10.14) as<br />

γ ∗ (G − 8πT) = F + (H − F)γ. (10.17)<br />

Similarly to the <strong>3+1</strong> decomposition (4.10) <strong>of</strong> the stress-energy tensor, the <strong>3+1</strong> decomposition<br />

<strong>of</strong> G − 8πT is<br />

G − 8πT = γ ∗ (G − 8πT) + n ⊗ M + M ⊗ n + H n ⊗ n, (10.18)<br />

γ ∗ (G − 8πT) playing the role <strong>of</strong> S, M that <strong>of</strong> p <strong>and</strong> H that <strong>of</strong> E. Thanks to Eq. (10.17), we<br />

may write<br />

G − 8πT = F + (H − F)γ + n ⊗ M + M ⊗ n + H n ⊗ n , (10.19)<br />

or, in index notation,<br />

Gαβ − 8πTαβ = Fαβ + (H − F)γαβ + nαMβ + Mαnβ + Hnαnβ. (10.20)<br />

This identity can be viewed as the <strong>3+1</strong> decomposition <strong>of</strong> Einstein equation (10.2) in terms <strong>of</strong><br />

the dynamical equation violation F , the Hamiltonian constraint violation H <strong>and</strong> the momentum<br />

constraint violation M.<br />

The next step consists in invoking the contracted Bianchi identity:<br />

i.e.<br />

∇ · G = 0 , (10.21)<br />

∇ µ Gαµ = 0 . (10.22)<br />

Let us recall that this identity is purely geometrical <strong>and</strong> holds independently <strong>of</strong> Einstein equation.<br />

In addition, we assume that the matter obeys the energy-momentum conservation law (5.1) :<br />

∇ · T = 0 . (10.23)<br />

In view <strong>of</strong> the Bianchi identity (10.21), Eq. (10.23) is a necessary condition for the Einstein<br />

equation (10.2) to hold.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!