20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.3 ADM mass 107<br />

Example : Let us consider Schwarzschild spacetime <strong>and</strong> use the st<strong>and</strong>ard Schwarzschild coordinates<br />

(x α ) = (t,r,θ,φ):<br />

gµνdx µ dx ν <br />

= − 1 − 2m<br />

<br />

dt<br />

r<br />

2 <br />

+ 1 − 2m<br />

−1 dr<br />

r<br />

2 + r 2 (dθ 2 + sin 2 θdϕ 2 ). (7.16)<br />

Let us take for Σt the hypersurface <strong>of</strong> constant Schwarzschild coordinate time t. Then we<br />

read on (7.16) the components <strong>of</strong> the induced metric in the coordinates (x i ) = (r,θ,ϕ):<br />

γij = diag<br />

1 − 2m<br />

−1 , r<br />

r<br />

2 , r 2 sin 2 <br />

θ . (7.17)<br />

On the other side, the components <strong>of</strong> the flat metric in the same coordinates are<br />

fij = diag 1,r 2 ,r 2 sin 2 θ <br />

<strong>and</strong> f ij = diag 1,r −2 ,r −2 sin −2 θ . (7.18)<br />

Let us now evaluate MADM by means <strong>of</strong> the integral (7.14) (we cannot use formula (7.15)<br />

because the coordinates (xi ) are not Cartesian-like). It is quite natural to take for St the<br />

sphere r = const in the hypersurface Σt. Then ya = (θ,ϕ), √ q = r2 sin θ <strong>and</strong>, at spatial<br />

infinity, si√q d2y = r2 sin θ dθ dϕ(∂r) i , where ∂r is the natural basis vector associated the<br />

coordinate r: (∂r) i = (1,0,0). Consequently, Eq. (7.14) becomes<br />

MADM = 1<br />

16π lim<br />

<br />

D<br />

r→∞<br />

r=const<br />

j γrj − Dr(f kl <br />

γkl) r 2 sin θ dθ dϕ, (7.19)<br />

with<br />

f kl γkl = γrr + 1<br />

r2γθθ 1<br />

+<br />

r2 sin2 θ γϕϕ<br />

<br />

= 1 − 2m<br />

−1 + 2, (7.20)<br />

r<br />

<strong>and</strong> since f kl γkl is a scalar field,<br />

Dr(f kl γkl) = ∂<br />

∂r (fkl <br />

γkl) = − 1 − 2m<br />

−2 2m<br />

. (7.21)<br />

r r2 There remains to evaluate D j γrj. One has<br />

D j γrj = f jk Dkγrj = Drγrr + 1<br />

r 2 Dθγrθ +<br />

1<br />

r 2 sin 2 θ Dϕγrϕ, (7.22)<br />

with the covariant derivatives given by (taking into account the form (7.17) <strong>of</strong> γij)<br />

Drγrr = ∂γrr<br />

∂r − 2¯ Γ i rrγir = ∂γrr<br />

∂r − 2¯ Γ r rrγrr<br />

Dθγrθ = ∂γrθ<br />

∂θ − ¯ Γ i θr γiθ − ¯ Γ i θθ γri = − ¯ Γ θ θr γθθ − ¯ Γ r θθ γrr<br />

(7.23)<br />

(7.24)<br />

Dϕγrϕ = ∂γrϕ<br />

∂ϕ − ¯ Γ i ϕrγiϕ − ¯ Γ i ϕϕγri = − ¯ Γ ϕ ϕrγϕϕ − ¯ Γ r ϕϕγrr, (7.25)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!