use of fly ash as an alternative filler material in pvc-plastisols

use of fly ash as an alternative filler material in pvc-plastisols use of fly ash as an alternative filler material in pvc-plastisols

library.iyte.edu.tr
from library.iyte.edu.tr More from this publisher
19.07.2013 Views

USE OF FLY ASH AS AN ALTERNATIVE FILLER MATERIAL IN PVC-PLASTISOLS A Thesis Submitted to the Graduate School of Engineering and Science of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Chemistry by İpek SAYHAN March 2010 İZMİR i

USE OF FLY ASH<br />

AS AN ALTERNATIVE FILLER MATERIAL<br />

IN PVC-PLASTISOLS<br />

A Thesis Submitted to<br />

the Graduate School <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g <strong>an</strong>d Science <strong>of</strong><br />

İzmir Institute <strong>of</strong> Technology<br />

<strong>in</strong> Partial Fulfillment <strong>of</strong> the Requirements for the Degree <strong>of</strong><br />

MASTER OF SCIENCE<br />

<strong>in</strong> Chemistry<br />

by<br />

İpek SAYHAN<br />

March 2010<br />

İZMİR<br />

i


We approve the thesis <strong>of</strong> İpek SAYHAN<br />

__________________________________<br />

Pr<strong>of</strong>. Dr. Hürriyet POLAT<br />

Supervisor<br />

__________________________________<br />

Pr<strong>of</strong>. Dr. Met<strong>in</strong> TANOĞLU<br />

Co-Supervisor<br />

__________________________________<br />

Pr<strong>of</strong>. Dr. Devrim BALKÖSE<br />

Committee Member<br />

__________________________________<br />

Pr<strong>of</strong>. Dr. Mehmet POLAT<br />

Committee Member<br />

__________________________________<br />

Assoc. Pr<strong>of</strong>. Dr. Mustafa DEMİR<br />

Committee Member<br />

18 March 2010<br />

__________________________ __________________________<br />

Pr<strong>of</strong>. Dr. Levent ARTOK Assoc. Pr<strong>of</strong>. Dr. Talat YALÇIN<br />

Head <strong>of</strong> the Department <strong>of</strong> De<strong>an</strong> <strong>of</strong> the Graduate School <strong>of</strong><br />

Chemistry Eng<strong>in</strong>eer<strong>in</strong>g <strong>an</strong>d Sciences


ACKNOWLEDGMENTS<br />

I would like to th<strong>an</strong>k all people who have helped <strong>an</strong>d <strong>in</strong>spired me dur<strong>in</strong>g my<br />

thesis study.<br />

I especially w<strong>an</strong>t to th<strong>an</strong>k my advisor Pr<strong>of</strong>. Dr. Hurriyet POLAT for her<br />

guid<strong>an</strong>ce, underst<strong>an</strong>d<strong>in</strong>g, motivations <strong>an</strong>d endless support dur<strong>in</strong>g this study <strong>an</strong>d<br />

preparation <strong>of</strong> this thesis. I also would like to th<strong>an</strong>k my co-advisor Pr<strong>of</strong>. Dr. Met<strong>in</strong><br />

TANOĞLU for his guid<strong>an</strong>ce <strong>an</strong>d comments about mech<strong>an</strong>ical part <strong>of</strong> researchments.<br />

Very special th<strong>an</strong>ks to Pr<strong>of</strong>. Dr. Mehmet Polat for be<strong>in</strong>g father <strong>of</strong> iade about this<br />

thesis. I am also th<strong>an</strong>kful to my thesis jury members; Pr<strong>of</strong>. Dr. Devrim BALKÖSE,<br />

she is a very helpful, thoughtful person to all people <strong>an</strong>d I always respect to<br />

experiences <strong>of</strong> her, <strong>an</strong>d Assoc. Pr<strong>of</strong>. Dr. Mustafa DEMİR for his patient <strong>an</strong>d support.<br />

I warmly th<strong>an</strong>k to IYTE Center <strong>of</strong> Material Research members for their<br />

<strong>as</strong>sist<strong>an</strong>ce <strong>in</strong> SEM, EDS, XRD <strong>an</strong>d XRF me<strong>as</strong>urements.<br />

I am also grateful to RULTRANS AŞ. Especially to Şölen SERT for her<br />

support <strong>an</strong>d patience, <strong>an</strong>d I also wish to th<strong>an</strong>k Berk<strong>an</strong> MIZRAK, Demet TURAN for<br />

their helps dur<strong>in</strong>g do<strong>in</strong>g experiments about mech<strong>an</strong>ical parts.<br />

Also, I would like to th<strong>an</strong>k my family for their support, cont<strong>in</strong>ued patience,<br />

encouragement <strong>an</strong>d help throughout my studies.<br />

F<strong>in</strong>ally, I w<strong>an</strong>t to express my appreciation to my best friend Çağlar Çelik, who<br />

believed to me firmly, for endless support, patient <strong>an</strong>d help <strong>of</strong> him.<br />

iii


ABSTRACT<br />

USE OF FLY ASH AS AN ALTERNATIVE FILLER MATERIALIN<br />

PVC-PASTISOLS<br />

In this study, <strong>an</strong> <strong>alternative</strong> fill<strong>in</strong>g <strong>material</strong>, <strong>fly</strong> <strong><strong>as</strong>h</strong> w<strong>as</strong> tested <strong>in</strong> PVC<br />

p<strong>as</strong>tisols. Therefore, - 38 μm Soma <strong>fly</strong> <strong><strong>as</strong>h</strong> sample w<strong>as</strong> <strong>use</strong>d <strong>an</strong>d its results were<br />

compared with that <strong>of</strong> calcite <strong>material</strong> <strong>as</strong> a <strong>filler</strong>. Therefore, this study w<strong>as</strong> conducted<br />

to have three sections <strong>as</strong>: 1) Characterization <strong>of</strong> powders calcite, <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d PVC<br />

powder: SEM, XRF, XRD, Size me<strong>as</strong>urement, 2) Preparation <strong>an</strong>d characterization <strong>of</strong><br />

PVC pl<strong>as</strong>tisols with <strong>an</strong>d without <strong>fly</strong> <strong><strong>as</strong>h</strong>: Rheological me<strong>as</strong>urements 3)<br />

Characterization <strong>of</strong> f<strong>in</strong>al PVC product: Surface, hardness <strong>an</strong>d strength tests. The<br />

results <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> were always compared with the results <strong>of</strong> calcite <strong>an</strong>d discussed <strong>in</strong><br />

this thesis.<br />

It w<strong>as</strong> suggested that <strong>fly</strong> <strong><strong>as</strong>h</strong> could be <strong>an</strong> <strong>alternative</strong> fill<strong>in</strong>g <strong>material</strong> for PVC<br />

pl<strong>as</strong>tisols. It’s effect, on the other h<strong>an</strong>d, w<strong>as</strong> found to ch<strong>an</strong>ge depend<strong>in</strong>g on the<br />

temperature, mix<strong>in</strong>g speed <strong>an</strong>d concentration. In overall, the mech<strong>an</strong>ical properties <strong>of</strong><br />

PVC-product obta<strong>in</strong>ed were affected positively <strong>an</strong>d better PVC <strong>material</strong>s were<br />

obta<strong>in</strong>ed. Under some conditions, however, the rheological properties were became<br />

shear thicken<strong>in</strong>g while it w<strong>as</strong> newtoni<strong>an</strong> <strong>an</strong>d shear th<strong>in</strong><strong>in</strong>g before. The ch<strong>an</strong>ges <strong>in</strong> the<br />

rheological properties <strong>of</strong> PVC pl<strong>as</strong>tisols <strong>an</strong>d the mech<strong>an</strong>ical properties (quality) <strong>of</strong><br />

f<strong>in</strong>al PVC-product were all expla<strong>in</strong>ed by the differences <strong>in</strong> the composition <strong>an</strong>d shape<br />

<strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> particles. Beca<strong>use</strong>, the composition <strong>an</strong>d shape <strong>of</strong> the particles are<br />

expected to affect the <strong>in</strong>teractions <strong>of</strong> PVC particles with that <strong>of</strong> <strong>filler</strong> <strong>material</strong> which<br />

will def<strong>in</strong>etely affect the quality <strong>of</strong> <strong>material</strong>.<br />

iv


ÖZET<br />

UÇUCU KÜLÜN PVC PLASTİSOLLER İÇERİSİNDE ALTERNATİF<br />

DOLGU MALZEMESİ OLARAK KULLANILMASI<br />

Bu çalışmada, PVC pl<strong>as</strong>tisoller içeris<strong>in</strong>de alternatif dolgu malzemesi olarak<br />

uçucu kül test edilmiştir. Bunun iç<strong>in</strong> -38 μm Soma uçucu kül numunesi kull<strong>an</strong>ılmış ve<br />

sonuçlar, dolgu malzemesi olarak kalsit kull<strong>an</strong>ıl<strong>an</strong> malzemeler ile karşılaştırılmıştır.<br />

Çalışma, aşağıda sıral<strong>an</strong><strong>an</strong> kısımlard<strong>an</strong> oluşmuşdur. Bunlar: 1) Toz malzemeler<strong>in</strong><br />

karakteriz<strong>as</strong>yonu: SEM, XRF, XRD, T<strong>an</strong>e boyutu ölçümleri, 2) Uçucu kül içeren ve<br />

içermeyen PVC pl<strong>as</strong>tisoller<strong>in</strong> hazırl<strong>an</strong>m<strong>as</strong>ı ve karakteriz<strong>as</strong>yonu: Reoloji ölçümleri ve<br />

3) Son ürünün karakteriz<strong>as</strong>yonu: Yüzey, sertlik ve mukavemet testleri.<br />

Çalışm<strong>an</strong>ın sonuçlarına day<strong>an</strong>arak, uçucu külün PVC pl<strong>as</strong>tisoller iç<strong>in</strong><br />

alternatif dolgu malzemesi olabilecegi önerilmiştir. Bu malzemen<strong>in</strong> etkis<strong>in</strong><strong>in</strong><br />

sıcaklık, karıştırma hızı ve kons<strong>an</strong>tr<strong>as</strong>yona göre değiştiği bulunmuştur. Sonuçta,<br />

PVC-ürünün mek<strong>an</strong>ik özellikler<strong>in</strong><strong>in</strong> pozitif olarak etkilendiği ve daha iyi bir malzeme<br />

elde edildiği gözlenmiştir. Ancak bazı koşullarda “shear th<strong>in</strong>n<strong>in</strong>g” ol<strong>an</strong> reolojik<br />

davr<strong>an</strong>ışın “shear thicken<strong>in</strong>g” olduğu da gözlenmiştir. PVC pl<strong>as</strong>tisoller<strong>in</strong> reolojik<br />

özellikler<strong>in</strong>de ve nihai PVC ürünün mek<strong>an</strong>ik özellikler<strong>in</strong>de (kalite) gerçekleşen tüm<br />

bu değişiklikler uçucu külün yapısındaki ve t<strong>an</strong>e şekl<strong>in</strong>deki farklılıklarla<br />

açıkl<strong>an</strong>mıştır. Çünkü, hem yapıdaki değişiklikler<strong>in</strong> hemde t<strong>an</strong>e şekl<strong>in</strong>deki<br />

değişikler<strong>in</strong> PVC t<strong>an</strong>ecikleri ile dolgu malzemeleri ar<strong>as</strong>ındaki ilişkileri<br />

etkileyeceğ<strong>in</strong>den sonuçta meyd<strong>an</strong>a gelecek ol<strong>an</strong> ürünü kes<strong>in</strong>likle etkilemesi<br />

beklenmektedir.<br />

v


TABLE OF CONTENTS<br />

LIST OF FIGURES ......................................................................................................... ix<br />

LIST OF TABLES..........................................................................................................xii<br />

CHAPTER 1. INTRODUCTION ..................................................................................... 1<br />

CHAPTER 2. PVC PLASTISOLS AND CONVEYOR BELT ....................................... 4<br />

2.1. PVC Pl<strong>as</strong>tisols........................................................................................ 4<br />

2.1.1. Raw Materials <strong>of</strong> PVC Pl<strong>as</strong>tisols..................................................... 5<br />

2.1.2. Pl<strong>as</strong>ticizers for pl<strong>as</strong>tic ...................................................................... 6<br />

2.1.3. Fillers ............................................................................................... 7<br />

2.2. Conveyor Belt ........................................................................................ 8<br />

2.3. Rheology .............................................................................................. 11<br />

2.3.1. Newtoni<strong>an</strong> Fluids........................................................................... 13<br />

2.3.2. Non-Newtoni<strong>an</strong> Fluids................................................................... 14<br />

2.3.2.1. Time Independent Non-Newtoni<strong>an</strong> Fluids .......................... 14<br />

2.3.2.1.1. Shear-Th<strong>in</strong>n<strong>in</strong>g ........................................................ 14<br />

2.3.2.1.2. Shear-Thickenn<strong>in</strong>g................................................... 15<br />

2.3.2.1.3. Pl<strong>as</strong>ticity .................................................................. 16<br />

2.3.2.2. Time Dependent Non-Newtoni<strong>an</strong> Fluids............................. 17<br />

2.3.2.2.1. Thixotropy ............................................................... 17<br />

2.3.2.2.2. Rheopexy ................................................................. 18<br />

2.3.3. Rheology <strong>of</strong> Ceramics ................................................................... 18<br />

2.4. Fly Ash <strong>as</strong> <strong>an</strong> Alternative Filler Material............................................. 19<br />

2.4.1. Production <strong>of</strong> Fly Ash.................................................................... 19<br />

2.4.2. Composition <strong>of</strong> Fly Ash................................................................. 20<br />

2.4.3. Material Properties......................................................................... 21<br />

2.4.3.1. Physical Properties............................................................... 21<br />

2.4.3.2. Chemical Properties............................................................. 22<br />

vi


CHAPTER 3. MATERIALS AND METHODS ............................................................ 24<br />

3.1. Materials............................................................................................... 24<br />

3.2. Methods................................................................................................ 25<br />

3.2.1. Preparation <strong>of</strong> PVC Pl<strong>as</strong>tisols <strong>an</strong>d Test speciements.................... 25<br />

3.2.2. Rheology me<strong>as</strong>urements............................................................... 27<br />

3.2.3. Particle Size Distribution Me<strong>as</strong>urements....................................... 27<br />

3.2.4. Surface Area Analysis ................................................................... 28<br />

3.2.5. Thermal Gravimetric Analysis (TGA)........................................... 29<br />

3.2.6. Mech<strong>an</strong>ical Me<strong>as</strong>urements ............................................................ 29<br />

3.2.6.1. Me<strong>as</strong>urement <strong>of</strong> Tensile Strength....................................... 29<br />

3.2.6.2. Me<strong>as</strong>urement Of Hardness ................................................ 31<br />

3.2.7. Surface Roughness: Pr<strong>of</strong>ilometry .................................................. 32<br />

CHAPTER 4. RESULTS AND DISCUSSION.............................................................. 35<br />

4.1. Characterization <strong>of</strong> Materials: PVC powder, <strong>fly</strong> <strong><strong>as</strong>h</strong>, calcite............... 35<br />

4.1.1. Morphology ................................................................................... 35<br />

4.1.2. Particle Size Distribution Me<strong>as</strong>urements....................................... 37<br />

4.1.3. Thermal Gravimetric Analysis (TGA) <strong>of</strong> Fly Ash........................ 39<br />

4.1.4. XRD Analysis <strong>of</strong> Fillers ............................................................... 40<br />

4.1.5. Surface Area Analysis ................................................................... 41<br />

4.1.6. XRF Analysis <strong>of</strong> Fly Ash............................................................... 42<br />

4.1.7. ICP- MS Metal Analysis <strong>of</strong> Fly Ash............................................ 42<br />

4.2. Rheology Me<strong>as</strong>urements <strong>of</strong> the PVC Pl<strong>as</strong>tisols.................................. 43<br />

4.3. Surface Characterization ...................................................................... 57<br />

4.3.1. SEM ( Sc<strong>an</strong>n<strong>in</strong>g Electron Microscope ) ....................................... 57<br />

4.3.2. Surface Roughness Me<strong>as</strong>urements ................................................ 59<br />

4.4. Mech<strong>an</strong>ical Tests.................................................................................. 60<br />

4.4.1. Hardness Me<strong>as</strong>urements ................................................................ 60<br />

4.4.2. Tensile Strength Me<strong>as</strong>urements..................................................... 61<br />

4.4.2.1. Effect <strong>of</strong> Filler Concentration To the Mech. Properties ...... 61<br />

4.4.2.2. Comparison <strong>of</strong> Filler Types................................................. 63<br />

4.4.2.3. Effect <strong>of</strong> Mix<strong>in</strong>g Rates <strong>of</strong> The PVC Pl<strong>as</strong>tisols To the<br />

Mech<strong>an</strong>ical Properties.......................................................... 66<br />

vii


CHAPTER 5. CONCLUSION........................................................................................ 72<br />

REFERENCES ............................................................................................................... 74<br />

viii


LIST OF FIGURES<br />

Figure Page<br />

Figure 2.1. A schematic presentation <strong>of</strong> the production <strong>of</strong> the PVC Pl<strong>as</strong>tisol ............ 5<br />

Figure 2.2. Diisononyl Pthalate ( DINP ), C26H42O4 ..................................................6<br />

Figure 2.3. Butylbenzyl Phthalate ( BBP ), C19H20O4 ..................................................6<br />

Figure 2.4. (a) <strong>an</strong>d (b) represent conveyor belt <strong>an</strong>d systems...................................... 9<br />

Figure 2.5. Warp <strong>an</strong>d weft <strong>of</strong> the fabric ................................................................... 9<br />

Figure 2.6. A schematic representation <strong>of</strong> Conveyor Belt Production...................... 11<br />

Figure 2.7. Viscosity Model...................................................................................... 12<br />

Figure 2.8. Velocity, shear rate <strong>an</strong>d shear stress for flow betweem two plates ...... 13<br />

Figure 2.9. Diagram for Newtoni<strong>an</strong> Behaviour......................................................... 13<br />

Figure 2.10. Diagram for Shear-Th<strong>in</strong>n<strong>in</strong>g Behaviour ................................................. 15<br />

Figure 2.11. Diagrams for Shear-Thicken<strong>in</strong>g Behaviour ............................................ 16<br />

Figure 2.12. Diagrams for Pl<strong>as</strong>tic Behaviour.............................................................. 16<br />

Figure 2.13. Types <strong>of</strong> Time Independent Non-Newtoni<strong>an</strong> Flow ................................ 17<br />

Figure 2.14. Diagram <strong>of</strong> Thixotropic Flow ................................................................. 17<br />

Figure 2.15. Diagram <strong>of</strong> Rheopectic Flow.................................................................. 18<br />

Figure 2.16. Production <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>in</strong> a dry-bottom utility boiler with electrostatic<br />

precipitator. ............................................................................................. 19<br />

Figure 3.1. Work<strong>in</strong>g pr<strong>in</strong>ciple <strong>of</strong> M<strong>as</strong>tersizer 2000 ................................................ 27<br />

Figure 3.2. The mach<strong>in</strong>e for tensile strength test- <strong>in</strong>clud<strong>in</strong>g tension, compression<br />

parts......................................................................................................... 29<br />

Figure 3.3. Test speciments for tensile strength shape............................................. 30<br />

Figure 3.4. Durometer , accord<strong>in</strong>g to ASTM D 2240 st<strong>an</strong>dart................................. 31<br />

Figure 3.5. Schematic Configuration <strong>of</strong> a Pr<strong>of</strong>ilometer <strong>an</strong>d Its Units ...................... 32<br />

Figure 3.6. Four Ways to Calculate Roughness ........................................................ 34<br />

Figure 4.1. SEM Pictures <strong>of</strong> Sieved Fly Ash Powder ( -37 µ ) .............................. 36<br />

Figure 4.2. SEM Picture <strong>of</strong> Commercial Calcite ( 5 µm ) ( 2500x ) ....................... 36<br />

Figure 4.3. SEM Picture <strong>of</strong> Commercial Product PVC Powder ( 2500x ) ............ 37<br />

Figure 4.4. Particle size distribution <strong>of</strong> Calcite (Malvern M<strong>as</strong>tersizer 2000 HD) .. 38<br />

Figure 4.5. Particle size distribution <strong>of</strong> Fly Ash, after sieve <strong>an</strong>alysis. .................... 38<br />

ix


Figure 4.6. Particle size distribution <strong>of</strong> Soma Fly Ash, before sieve <strong>an</strong>alysis. ...... 38<br />

Figure 4.7. Particle size distribution <strong>of</strong> Soma Fly Ash, before sieve <strong>an</strong>alysis. ....... 39<br />

Figure 4.8. TGA graph <strong>of</strong> the Soma Fly Ash ............................................................ 40<br />

Figure 4.9. XRD <strong>an</strong>alysis <strong>of</strong> Calcite.......................................................................... 40<br />

Figure 4.10. XRD <strong>an</strong>alysis <strong>of</strong> Soma Fly Ash.............................................................. 41<br />

Figure 4.11. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on rheological behaviour <strong>of</strong> st<strong>an</strong>dart<br />

PVC pl<strong>as</strong>tisol mixtures after different mix<strong>in</strong>g rates: (a) 600 RPM, (b)<br />

1000 RPM, (c) 1400 RPM. .................................................................... 44<br />

Figure 4.12. Effect <strong>of</strong> temperature on the rheological behaviour <strong>of</strong><br />

PVC – CALCITE pl<strong>as</strong>tisol, sample 1 mixtures after different mix<strong>in</strong>g<br />

rates: (a) 600 RPM, (b) 1000 RPM, (c) 1400 RPM. .............................. 46<br />

Figure 4.13. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong><br />

PVC – CALCITE pl<strong>as</strong>tisol, sample 2 mixtures after different mix<strong>in</strong>g<br />

rates: (a) 600 RPM, (b) 1000 RPM, (c) 1400 RPM. .............................. 48<br />

Figure 4.14. Presents similar type <strong>of</strong> results for the rheological behaviour <strong>of</strong> PVC<br />

pl<strong>as</strong>tisols with a fill<strong>in</strong>g <strong>material</strong>, calcite, sample 3 ................................. 50<br />

Figure 4.15. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong><br />

PVC – FLY ASH pl<strong>as</strong>tisol, sample 1 mixtures after different mix<strong>in</strong>g<br />

rates: (a) 600 RPM, (b) 1000 RPM, (c) 1400 RPM. .............................. 51<br />

Figure 4.16. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong><br />

PVC –FLY ASH pl<strong>as</strong>tisol, sample 2 mixtures after different<br />

mix<strong>in</strong>g rates: (a) 600 RPM, (b) 1000 RPM, (c) 1400 RPM.................... 52<br />

Figure 4.17. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong><br />

PVC – FLY ASH pl<strong>as</strong>tisol, sample 3 mixtures after different mix<strong>in</strong>g<br />

rates: (a) 600 RPM, (b) 1000 RPM, (c) 1400 RPM. .............................. 53<br />

Figure 4.18. Effect <strong>of</strong> mix<strong>in</strong>g rate on the rheological behaviour <strong>of</strong> st<strong>an</strong>dart PVC<br />

pl<strong>as</strong>tisol mixtures at different temperatures :<br />

(a) 25 0C, (b) 30 0C, (c) 35 0C. ............................................................. 54<br />

Figure 4.19. Effect <strong>of</strong> mix<strong>in</strong>g rate on the rheological behaviour <strong>of</strong><br />

PVC – CALCITE pl<strong>as</strong>tisol mixtures at different temperatures :<br />

(a) 25 0C, (b) 30 0C, (c) 35 0C. ............................................................. 55<br />

x


Figure 4.20. Effect <strong>of</strong> mix<strong>in</strong>g rate on the rheological behaviour <strong>of</strong><br />

PVC –FLY ASH pl<strong>as</strong>tisol mixtures at different temperatures :<br />

(a) 25 0C, (b) 30 0C, (c) 35 0C. ............................................................. 56<br />

Figure 4.21. SEM photographs <strong>of</strong> the PVC films, <strong>in</strong>cluded different concentration<br />

<strong>of</strong> calcite. (a) Std Sample surface, (b) Calcite- Sample 1, (c) Calcite-<br />

Sample 2, (d) Calcite- Sample 3 ......................................................... 57<br />

Figure 4.22. SEM photographs <strong>of</strong> the PVC films, <strong>in</strong>cluded different concentration<br />

<strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> (a) Std Sample surface , (b) Fly Ash –Sample 1, (c) Fly Ash<br />

–Sample 2, (d) Fly Ash –Sample 3 ................................................... 58<br />

Figure 4.23. Pr<strong>of</strong>ilometer surface roughness graph for Calcite filled PVC films. ..... 59<br />

Figure 4.24. Pr<strong>of</strong>ilometer surface roughness graph for Fly Ash filled PVC films.... 60<br />

Figure 4.25. Filler concentration ( Vol %) versus stress at failure graphs ................. 62<br />

Figure 4.26. Filler concentration ( Vol %) versus stress at failure graphs (a) 600<br />

RPM<br />

(b) 1000 RPM (c) 1400 RPM............................................................... 63<br />

Figure 4.27. Filler concentration ( Vol %) versus stress at 1% elongation graphs<br />

(a) 600 RPM (b) 1000 RPM (c) 1400 RPM......................................... 64<br />

Figure 4.28. Mix<strong>in</strong>g Rate <strong>of</strong> PVC Pl<strong>as</strong>tisols versus stress at failure graphs<br />

(a) Sample 1 (b) Sample 2 (c) Sample 3 ............................................ 66<br />

Figure 4.29. Mix<strong>in</strong>g Rate <strong>of</strong> PVC Pl<strong>as</strong>tisols versus stress at 1% Elongation graphs<br />

(a) Sample 1 (b) Sample 2 (c) Sample 3 ............................................ 68<br />

Figure 4.30. Mix<strong>in</strong>g Rate <strong>of</strong> PVC Pl<strong>as</strong>tisols versus % Elongation at Break graphs<br />

(a) Sample 1 (b) Sample 2 (c) Sample 3............................................. 70<br />

xi


LIST OF TABLES<br />

Figure Page<br />

Table 2.1. Pl<strong>as</strong>ticizer-related technical challenges ........................................................ 7<br />

Table 2.2. Normal r<strong>an</strong>ge <strong>of</strong> chemical composition for <strong>fly</strong> <strong><strong>as</strong>h</strong> produced from<br />

different coal types (expressed <strong>as</strong> percent by weight). .............................. 23<br />

Table 3.1. Properties <strong>of</strong> PVC res<strong>in</strong> .............................................................................. 24<br />

Table 3.2. Properties <strong>of</strong> pl<strong>as</strong>ticizer .............................................................................. 24<br />

Table 3.3. Properties <strong>of</strong> stabilizer ............................................................................... 25<br />

Table 3.4. Ingredents <strong>of</strong> st<strong>an</strong>dart PVC pl<strong>as</strong>tisol sample .............................................. 25<br />

Table 3.5. Amount <strong>of</strong> <strong>filler</strong> <strong>in</strong> volume % <strong>an</strong>d PHR (Part Per Res<strong>in</strong>)............................ 26<br />

Table 3.6. Composition <strong>of</strong> PVC pl<strong>as</strong>tisol samples with Calcite <strong>as</strong> a <strong>filler</strong> ................... 26<br />

Table 3.7. Composition <strong>of</strong> PVC pl<strong>as</strong>tisol samples with Fly Ash <strong>as</strong> a <strong>filler</strong>................. 26<br />

Table 4.1. Surface area results <strong>of</strong> powders <strong>use</strong>d <strong>in</strong> this study ...................................... 42<br />

Table 4.2. XRF <strong>an</strong>alysis result <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> sample ......................................................... 42<br />

Table 4.3. ICP-MS results <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>............................................................................. 43<br />

Table 4.4. Hardness values <strong>of</strong> the PVC films ............................................................... 61<br />

xii


CHAPTER 1<br />

INTRODUCTION<br />

Fillers are one <strong>of</strong> the most import<strong>an</strong>t raw <strong>material</strong>s <strong>of</strong> the polymer <strong>in</strong>dustry.<br />

They are also import<strong>an</strong>t <strong>in</strong> m<strong>an</strong>y other sectors. In recent years, there are m<strong>an</strong>y<br />

scientific <strong>an</strong>d <strong>in</strong>dustrial developments done about them. They affect the mech<strong>an</strong>ical<br />

properties <strong>of</strong> the polymer, modify rheology, supply a chemical resist<strong>an</strong>ce to the<br />

product <strong>an</strong>d reduce the cost <strong>of</strong> the production. PVC pl<strong>as</strong>tisols are one <strong>of</strong> the fields<br />

us<strong>in</strong>g <strong>filler</strong>s <strong>in</strong> <strong>in</strong>dustry to reduce cost <strong>an</strong>d modify rheology. For PVC pl<strong>as</strong>tisols, there<br />

are m<strong>an</strong>y types <strong>of</strong> commercial <strong>filler</strong>s <strong>in</strong> the market to supply properties mentioned<br />

above such <strong>as</strong> calcite, montmorillonite, kaol<strong>in</strong>, talk, are common <strong>filler</strong>s. These are<br />

<strong>in</strong>org<strong>an</strong>ic subst<strong>an</strong>ces with some specific properties, crystall<strong>in</strong>e structure, hardness,<br />

etc.<br />

One application <strong>of</strong> the PVC pl<strong>as</strong>tisols is the conveyor belts that are <strong>use</strong>d<br />

approximately <strong>in</strong> all fields <strong>of</strong> the <strong>in</strong>dustry. This is beca<strong>use</strong> there will be always a<br />

production for hum<strong>an</strong> <strong>an</strong>d goods should be tr<strong>an</strong>sported from production mach<strong>in</strong>e.<br />

Depend<strong>in</strong>g on the goods that are be<strong>in</strong>g tr<strong>an</strong>sported, conveyor belts should have some<br />

technical properties. For example, they should not be expensive. Therefore <strong>filler</strong>s are<br />

<strong>use</strong>d <strong>in</strong> their production to cut the cost <strong>an</strong>d keep the product quality const<strong>an</strong>t.<br />

There are some studies <strong>in</strong> the p<strong>as</strong>s related to the PVC pl<strong>as</strong>tisols. The most <strong>of</strong><br />

the studies were on the rheological behaviour <strong>of</strong> pl<strong>as</strong>tisols. For example Garcia <strong>an</strong>d<br />

Marcilla, 1998 studied the <strong>in</strong>fluence <strong>of</strong> pl<strong>as</strong>ticizer type <strong>an</strong>d concentration on the<br />

rheological behaviour <strong>of</strong> pl<strong>as</strong>tisols. In their study, commercial res<strong>in</strong>s <strong>an</strong>d pl<strong>as</strong>ticizers<br />

were <strong>use</strong>d <strong>an</strong>d viscoel<strong>as</strong>tic properties were searched by monitor<strong>in</strong>g gelation <strong>an</strong>d<br />

fusion method us<strong>in</strong>g Rheometer BOHLIN CS 50 <strong>in</strong>strument. They found that low<br />

pl<strong>as</strong>ticizer concentration supplied a higher compatibility with PVC <strong>an</strong>d <strong>in</strong>cre<strong>as</strong><strong>in</strong>g<br />

particle size <strong>an</strong>d MW (molecular weigth) <strong>of</strong> the PVC ca<strong>use</strong>d a decre<strong>as</strong>e <strong>in</strong> the<br />

velocity <strong>of</strong> gelation (Garcia <strong>an</strong>d Marcilla 1998).<br />

Another study w<strong>as</strong> on the rheological <strong>an</strong>d mech<strong>an</strong>ical properties <strong>of</strong><br />

PVC/CaCO3 n<strong>an</strong>ocomposites. N<strong>an</strong>ocomposites were prepared by <strong>in</strong> situ<br />

polymerization <strong>of</strong> v<strong>in</strong>yl chloride <strong>an</strong>d CaCO3 n<strong>an</strong>oparticles. The rheological<br />

1


properties <strong>of</strong> these n<strong>an</strong>ocomposites studied us<strong>in</strong>g a capillary rheometer (model XLY-<br />

1) at 175 0 C. In their study, tensile properties were also determ<strong>in</strong>ed us<strong>in</strong>g <strong>an</strong> Instron<br />

tester (model 4206) at a crosshead rate <strong>of</strong> 5 mm/m<strong>in</strong>. They concluded that CaCO3<br />

n<strong>an</strong>oparticles were uniformly distributed <strong>in</strong> the PVC matrix dur<strong>in</strong>g <strong>in</strong> situ<br />

polymerization <strong>of</strong> PVC with 5.0 wt% or less n<strong>an</strong>oparticles. The n<strong>an</strong>ocomposites all<br />

showed shear th<strong>in</strong>n<strong>in</strong>g behaviour <strong>an</strong>d power law behaviors. They concluded that<br />

CaCO3 n<strong>an</strong>oparticles acts <strong>as</strong> stress concentrators lead<strong>in</strong>g to <strong>in</strong>terface<br />

debond<strong>in</strong>g/void<strong>in</strong>g <strong>an</strong>d matrix deformation (Xie, et al. 2004).<br />

There are m<strong>an</strong>y studies done to <strong>in</strong>vestigate the effect <strong>of</strong> <strong>filler</strong>s on some<br />

properties <strong>of</strong> the <strong>material</strong>s. One <strong>of</strong> this study w<strong>as</strong> related with the characterization <strong>of</strong><br />

PVC <strong>an</strong>d agalmatolite composites <strong>an</strong>d effect <strong>of</strong> m<strong>in</strong>eral <strong>filler</strong> through thermal<br />

<strong>an</strong>alysis <strong>an</strong>d mech<strong>an</strong>ical properties. The gl<strong>as</strong>s tr<strong>an</strong>sition temperature <strong>an</strong>d mech<strong>an</strong>ical<br />

properties were evaluated with respect to PVC <strong>an</strong>d calcium carbonate composites.<br />

The results showed that when the agalmatolite content w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed from 10 to 40<br />

phr(part per res<strong>in</strong>), the gl<strong>as</strong>s tr<strong>an</strong>sition temperature decre<strong>as</strong>ed, but the same result w<strong>as</strong><br />

not observed for <strong>material</strong>s filled calcium carbonate. As a mech<strong>an</strong>ical properties,<br />

agalmatolite filled <strong>material</strong>s had higher Young’s modulus <strong>an</strong>d elongation at break <strong>of</strong><br />

the composites th<strong>an</strong> calcium carbonate filled composites (Pedro, et al. 2000).<br />

Fly <strong><strong>as</strong>h</strong> is a pozzol<strong>an</strong>ic <strong>material</strong> generated from coal-burn<strong>in</strong>g thermal power<br />

pl<strong>an</strong>ts. Though a signific<strong>an</strong>t fraction <strong>of</strong> coal <strong>fly</strong> <strong><strong>as</strong>h</strong> is <strong>use</strong>d <strong>as</strong> a cement <strong>an</strong>d concrete<br />

additive <strong>in</strong> the world, only a very small portion <strong>of</strong> the 15 million tons <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

generated is re-utilized <strong>in</strong> Turkey (Baba 2004). Fly <strong><strong>as</strong>h</strong> conta<strong>in</strong>s a r<strong>an</strong>ge <strong>of</strong> heavy<br />

metals <strong>of</strong> different mobilities <strong>in</strong> its structure (Polat, at al. 2002). S<strong>in</strong>ce it is usually<br />

disposed <strong>of</strong> <strong>in</strong> the form <strong>of</strong> a slurry <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> the power pl<strong>an</strong>t, <strong>fly</strong> <strong><strong>as</strong>h</strong> possesses<br />

signific<strong>an</strong>t environmental risk due to the possibility <strong>of</strong> leach<strong>in</strong>g <strong>of</strong> these metals <strong>in</strong>to<br />

environment (Baba 2004, Polat, et al. 2002, P<strong>an</strong>di<strong>an</strong> 2004). This risk h<strong>as</strong> led to<br />

extensive studies on the physical-chemical properties <strong>an</strong>d leach<strong>in</strong>g behavior <strong>of</strong> <strong>fly</strong><br />

<strong><strong>as</strong>h</strong> (V<strong>as</strong>silev, et al. 2005, S<strong>in</strong>gh, et al., 2003, Mohapatra <strong>an</strong>d Rao 2001, L<strong>an</strong>dm<strong>an</strong><br />

2002, Nath<strong>an</strong>, et al. 1999, Puert<strong>as</strong>, et al., 2003, Murugendrappa, et al. 2005). There is<br />

a large body <strong>of</strong> work on the <strong>use</strong> <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>in</strong> cement <strong>an</strong>d brick production (Majko <strong>an</strong>d<br />

Pistilli 1984, Demirb<strong>as</strong> 1996, Djuric 1996, Palamo, et al. 1999, Kula, et al. 2001,<br />

C<strong>an</strong>polat, et al. 2004). In one study, the Derjagu<strong>in</strong>–L<strong>an</strong>dau–Verway–Overbeek<br />

(DLVO) theory for dispersion–flocculation <strong>of</strong> heterogeneous particles with different<br />

2


surface potentials w<strong>as</strong> applied to expla<strong>in</strong> the effect <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> on the rheology <strong>of</strong><br />

cement p<strong>as</strong>te conta<strong>in</strong><strong>in</strong>g naphthalene sulfonate superpl<strong>as</strong>ticizer. The <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d<br />

ord<strong>in</strong>ary porl<strong>an</strong>d cement were compared. The <strong>fly</strong> <strong><strong>as</strong>h</strong>–cement p<strong>as</strong>te without<br />

superpl<strong>as</strong>ticizer resulted the sign <strong>of</strong> zeta potential <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> w<strong>as</strong> different from<br />

ord<strong>in</strong>ary porl<strong>an</strong>d cement. So, the extent <strong>of</strong> the potential energy barrier between<br />

particles w<strong>as</strong> small or showed negative value, <strong>an</strong>d the ch<strong>an</strong>ge <strong>in</strong> the rheology <strong>of</strong> the<br />

<strong>fly</strong> <strong><strong>as</strong>h</strong>–cement p<strong>as</strong>te w<strong>as</strong> ma<strong>in</strong>ly dependent on the bulk solid volume <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>. The<br />

<strong>fly</strong> <strong><strong>as</strong>h</strong>–cement p<strong>as</strong>te with naphthalene sulfonate superpl<strong>as</strong>ticizer, <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d cement<br />

had the same sign <strong>an</strong>d dispersed well due to higher potential barrier. The extent <strong>of</strong><br />

potential energy barrier depended on the absolute value <strong>of</strong> surface potential, which<br />

w<strong>as</strong> represented by a function <strong>of</strong> the amount <strong>of</strong> adsorbed superpl<strong>as</strong>ticizer. The bulk<br />

solid volume <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> also affected the ch<strong>an</strong>ge <strong>in</strong> flow ability (Termkhajornkit <strong>an</strong>d<br />

Nawa 2003).<br />

The purpose <strong>of</strong> this study w<strong>as</strong> to <strong>in</strong>vestigate the usage <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>as</strong> <strong>an</strong><br />

<strong>alternative</strong> <strong>filler</strong> <strong>material</strong> <strong>in</strong> PVC p<strong>as</strong>tisols. Therefore the study w<strong>as</strong> design to have<br />

three parts <strong>as</strong>:<br />

1) Characterization <strong>of</strong> powders: SEM, XRF, XRD, size me<strong>as</strong>urement<br />

2) Characterization <strong>of</strong> PVC pl<strong>as</strong>tisols prepared with <strong>an</strong>d without <strong>fly</strong><strong><strong>as</strong>h</strong>:<br />

Rheological me<strong>as</strong>urements.<br />

3) Characterization <strong>of</strong> f<strong>in</strong>al product: Hardness <strong>an</strong>d strenght tests.<br />

3


CHAPTER 2<br />

PVC PLASTISOLS AND CONVEYOR BELT<br />

2. 1. PVC Pl<strong>as</strong>tisols<br />

PVC (Polyv<strong>in</strong>yl Chloride) pl<strong>as</strong>tisols are mixtures that are formed <strong>as</strong> a result <strong>of</strong><br />

dispersion <strong>of</strong> PVC dust <strong>in</strong> pl<strong>as</strong>ticizer. In addition, <strong>in</strong> order to give different properties<br />

to the product, additive <strong>material</strong>s <strong>as</strong> firepro<strong>of</strong> provider, thermal stability provider, etc.<br />

are <strong>use</strong>d <strong>as</strong>.<br />

Raw <strong>material</strong>s <strong>an</strong>d their amounts which are <strong>use</strong>d <strong>in</strong> the preparation <strong>of</strong> pl<strong>as</strong>tisol<br />

c<strong>an</strong> be listed <strong>as</strong> follows:<br />

• PVC-powder 50-60 %<br />

• Pl<strong>as</strong>ticizer 25-35 %<br />

• Additives (Epoxized soybe<strong>an</strong> oil, viscosity regulators, defoamer, flame<br />

retard<strong>an</strong>ts, stabilizers (heat <strong>an</strong>d light), <strong>an</strong>tistatic agents ch<strong>an</strong>ge <strong>in</strong> 0.5-5 %<br />

• Pigments, TiO2 pigments 0.5 -1.5 %<br />

• Calcite <strong>an</strong>d talk <strong>as</strong> a <strong>filler</strong> 15-20 %<br />

4


PREPARATION OF PVC PLASTISOLS<br />

All the liquids that is <strong>use</strong>d for the preparation <strong>of</strong> PVC pl<strong>as</strong>tisols<br />

are mixed by us<strong>in</strong>g a mixer device<br />

PVC powder is added<br />

It is mixed at 700-800 rpm for 10-15 m<strong>in</strong>.<br />

Some part <strong>of</strong> the first prepared pl<strong>as</strong>tisol is get <strong>in</strong>to the vacuum tube<br />

Color pigment is added <strong>in</strong>side<br />

It is mixed for 10-15 m<strong>in</strong> under vacuum<br />

(until a homogeneous mixture is provided)<br />

Figure 2.1. A schematic presentation <strong>of</strong> the production <strong>of</strong> the PVC pl<strong>as</strong>tisol<br />

2.1.1. Raw Materials <strong>of</strong> PVC Pl<strong>as</strong>tisols<br />

PVC pl<strong>as</strong>tisols are formed by PVC res<strong>in</strong>, <strong>an</strong>d some additives, that is<br />

pl<strong>as</strong>ticizer, stabilizers, <strong>filler</strong>, etc. Usage <strong>of</strong> additives <strong>in</strong> the formulation, improves<br />

some properties <strong>of</strong> the PVC, such <strong>as</strong> flexibility <strong>an</strong>d workability (Jimenez, et al.<br />

2000).<br />

5


2.1.2. Pl<strong>as</strong>ticizers for pl<strong>as</strong>tic<br />

For produc<strong>in</strong>g flexible pl<strong>as</strong>tics, eng<strong>in</strong>eer<strong>in</strong>g <strong>an</strong>d medical applications<br />

pl<strong>as</strong>ticizers have been <strong>use</strong>d with polymers (Rahm<strong>an</strong> 2006).<br />

Pl<strong>as</strong>ticizers are low molecular weight (MW) res<strong>in</strong>s or liquids <strong>in</strong>deed, which<br />

form secondary bonds to polymer cha<strong>in</strong>s <strong>an</strong>d spread them apart.<br />

Therefore, pl<strong>as</strong>ticizers decre<strong>as</strong>e polymer-polymer cha<strong>in</strong> secondary bond<strong>in</strong>g<br />

<strong>an</strong>d more mobility for the macromolecules, consequential <strong>in</strong> a s<strong>of</strong>ter <strong>an</strong>d more e<strong>as</strong>ily<br />

deformable m<strong>as</strong>s is provided (Rahm<strong>an</strong> <strong>an</strong>d Brazel 2004). Common types <strong>of</strong><br />

pl<strong>as</strong>ticizers are shown <strong>in</strong> Figure 2.2 <strong>an</strong>d Figure 2.3.<br />

Figure 2.2. Diisononyl Pthalate ( DINP ), C26H42O4<br />

(Source: Chemicalregister 2010 )<br />

Figure 2.3. Butylbenzyl Phthalate ( BBP ), C19H20O4<br />

(Source: Chemicalregister 2010 )<br />

Pl<strong>as</strong>ticizers are generally chosen on the b<strong>as</strong>is <strong>of</strong> the follow<strong>in</strong>g criteria<br />

• Compatibility <strong>of</strong> a pl<strong>as</strong>ticizer with a given polymer,<br />

• Process<strong>in</strong>g characteristics,<br />

• Desired thermal, electrical <strong>an</strong>d mech<strong>an</strong>ical properties <strong>of</strong> the end<br />

product,<br />

• Resist<strong>an</strong>ce to water, chemicals, solar radiation,<br />

6


• Weather<strong>in</strong>g, dirt, microorg<strong>an</strong>isms, (Rahm<strong>an</strong> <strong>an</strong>d Brazel 2004).<br />

2.1.3. Fillers<br />

Table 2.1. Pl<strong>as</strong>ticizer-related technical challenges<br />

1. Migration out <strong>of</strong> pl<strong>as</strong>tic<br />

a. Solid–solid migration<br />

b. Evaporation<br />

c. Liquid leach<strong>in</strong>g<br />

2. High temperature flexibility<br />

3. Low temperature lubricity<br />

4. Health <strong>an</strong>d environmental effects (cytotoxicity)<br />

5. Flammability concern regard<strong>in</strong>g pl<strong>as</strong>ticizers<br />

6. Compatibility with new polymers<br />

7. Stability to ultraviolet rays<br />

8. Biodegradability<br />

9. Improved <strong>material</strong> lifetime<br />

Filler c<strong>an</strong> be chosen <strong>as</strong> <strong>an</strong>y low cost solid, liquid, or g<strong>as</strong> which resides <strong>in</strong><br />

volume <strong>in</strong> order to reduce its volume-cost. Functional <strong>filler</strong>s are added to improve<br />

specific properties. For <strong>in</strong>st<strong>an</strong>ces, calc<strong>in</strong>ed clays are added to wire <strong>in</strong>sulation<br />

formul<strong>as</strong> to raise electrical volume resistivity, fumed silica or bentonite clay added to<br />

pl<strong>as</strong>tisols to <strong>in</strong>cre<strong>as</strong>e their yield value. Moreover, hollow microspheres <strong>use</strong>d to lower<br />

specific gravity while achiev<strong>in</strong>g other desired <strong>filler</strong> effects. The most common <strong>use</strong>d<br />

<strong>filler</strong>s <strong>in</strong> flexible <strong>an</strong>d semi-rigid PVC are graduated <strong>as</strong> dry-ground, wetground, or<br />

precipitated calcium carbonate which are derived from limestone or marble (Wilkes,<br />

et al. 2005).<br />

This is the stable crystal structure <strong>of</strong> CaCO3 at normal temperatures <strong>an</strong>d<br />

pressures. Pure calcium carbonate <strong>filler</strong>s are low <strong>in</strong> abr<strong>as</strong>ivity to process<strong>in</strong>g<br />

equipment beca<strong>use</strong> <strong>of</strong> its low hardness (Mohs <strong>of</strong> 3) (Wilkes, et al. 2005).<br />

Considerations <strong>in</strong> chosen a particular grade <strong>of</strong> calcium carbonate <strong>filler</strong> conta<strong>in</strong><br />

the purity <strong>of</strong> the orig<strong>in</strong>al ore, if it h<strong>as</strong> been dry-ground or wet-ground or precipitated,<br />

7


the average particle size <strong>an</strong>d size distribution, <strong>an</strong>d if the particles have had a surface<br />

treatment. The “pack<strong>in</strong>g fraction” (PF) is a efficiency me<strong>as</strong>ure <strong>of</strong> f<strong>in</strong>er particles for<br />

fill<strong>in</strong>g the voids between coarser particles (Wilkes, et al. 2005).<br />

Equivalent spherical diameter (esd) is the def<strong>in</strong>ition term <strong>of</strong> average size <strong>of</strong><br />

<strong>filler</strong> particles <strong>an</strong>d “<strong>as</strong>pect ratio” is the ratio <strong>of</strong> the average lengths <strong>of</strong> the major to<br />

m<strong>in</strong>or axes <strong>of</strong> <strong>filler</strong> particles. Aspect ratios <strong>of</strong> the most <strong>use</strong>d <strong>filler</strong>s have less th<strong>an</strong> 4 :<br />

1. Strengthen<strong>in</strong>g <strong>material</strong>s such <strong>as</strong> gl<strong>as</strong>s or metal fibers have <strong>as</strong>pect ratios <strong>in</strong> excess<br />

<strong>of</strong> 10 : 1 generally. V<strong>in</strong>yl floor tile made by calender<strong>in</strong>g tolerates <strong>filler</strong> particle sizes<br />

up to 99% through a U.S. Typical 50 mesh screen hav<strong>in</strong>g 297 micron open<strong>in</strong>gs (11.7<br />

mils). Typical electrical <strong>in</strong>sulations <strong>an</strong>d extruded cable jackets need <strong>filler</strong>s with <strong>an</strong><br />

average esd <strong>of</strong> 3 microns. Or, diameter <strong>of</strong> coarsest particles must be less th<strong>an</strong> 12<br />

microns (0.47 mils). In general, precipitated calcium carbonates hav<strong>in</strong>g 0.6 micron<br />

esd is <strong>use</strong>d by cable jackets that rele<strong>as</strong>e low HCl emission on burn<strong>in</strong>g. Determ<strong>in</strong>ation<br />

<strong>of</strong> the best <strong>filler</strong> particle sizes for most flexible PVC applications are made by<br />

experience, <strong>in</strong> optimiz<strong>in</strong>g end-<strong>use</strong> properties <strong>an</strong>d m<strong>in</strong>imiz<strong>in</strong>g cost. Talc is the s<strong>of</strong>test<br />

non-carbonate <strong>filler</strong> that <strong>use</strong>d <strong>in</strong> flexible PVC (Wilkes, et al. 2005).<br />

It is represented by the formula; 3 MgO · 4 SiO2 · H2O.<br />

Zero or very low amount <strong>of</strong> <strong>as</strong>bestos-related m<strong>in</strong>erals comprise is def<strong>in</strong>ed for<br />

talcs <strong>use</strong>d with PVC. In order to improve flow <strong>in</strong> bulk h<strong>an</strong>dl<strong>in</strong>g systems <strong>an</strong>d hopper<br />

cars, talc c<strong>an</strong> also be dusted at rate <strong>of</strong> 0.1 to 0.25% over PVC compound cubes or<br />

pellets (Wilkes, et al. 2005).<br />

In order to impart a non-block<strong>in</strong>g surface <strong>an</strong>d to supply stiffen<strong>in</strong>g, mica is<br />

added to PVC compound. Typical grades <strong>use</strong>d <strong>in</strong> non-block<strong>in</strong>g calendered films are<br />

f<strong>in</strong>e-ground so that > 99% p<strong>as</strong>ses a 325 mesh screen (with open<strong>in</strong>gs <strong>of</strong> 1.7 mils or 44<br />

microns). In order to <strong>in</strong>cre<strong>as</strong>e viscosity <strong>an</strong>d yield value <strong>an</strong>d to reduce surface gloss<br />

after fusion diatomite (amorphous silica) is added to PVC pl<strong>as</strong>tisols. As a scrubb<strong>in</strong>g<br />

agent, fumed silica c<strong>an</strong> be added to hot-processed compounds. In order to <strong>in</strong>cre<strong>as</strong>e<br />

viscosity <strong>an</strong>d yield value it c<strong>an</strong> be added to pl<strong>as</strong>tisols (Wilkes, et al. 2005).<br />

2.2. Conveyor Belt<br />

Conveyor is a device that is <strong>use</strong>d for tr<strong>an</strong>sportation by mov<strong>in</strong>g on drive<br />

pulleys by the help <strong>of</strong> actuation drum. Plate or drum on this system which carries the<br />

8


tr<strong>an</strong>sport<strong>in</strong>g <strong>material</strong> is the product that is called conveyor belt. Conveyor systems <strong>in</strong><br />

food sector are shown <strong>in</strong> Figure 2.4.<br />

(a) (b)<br />

Figure 2.4 (a) <strong>an</strong>d (b) represent conveyor belt <strong>an</strong>d systems.<br />

Conveyor belts are prepared by us<strong>in</strong>g different chemicals <strong>an</strong>d additives with<br />

different processes <strong>in</strong> our country <strong>an</strong>d also <strong>in</strong> the world.<br />

Conveyor belts are generally grouped <strong>as</strong> PVC (Polyv<strong>in</strong>iyl Chloride); PO<br />

(Polyolef<strong>in</strong>e) PU (Polyureth<strong>an</strong>e) <strong>an</strong>d etc.<br />

PVC conveyor belts are m<strong>an</strong>ufactured with<strong>in</strong> Rultr<strong>an</strong>s Incorporated.<br />

Actually <strong>in</strong>staller on conveyor system is conveyor belt. Material property <strong>of</strong><br />

fabric may be, polyester, nylon, cotton, nylon / nylon, nylon / polyester, nylon /<br />

cotton, etc. There are wefts <strong>an</strong>d warps <strong>in</strong> the structure <strong>of</strong> the fabric <strong>as</strong> shown <strong>in</strong><br />

Figure 2.5. Tr<strong>an</strong>sition direction <strong>of</strong> conveyor belt through mach<strong>in</strong>e is the same with<br />

direction <strong>of</strong> warp which have higer strength.<br />

Figure 2.5. Warp <strong>an</strong>d weft <strong>of</strong> the fabric<br />

9


Fabric <strong>an</strong>d PVC pl<strong>as</strong>tisol process is a system which consists such coat<strong>in</strong>g<br />

units, ovens, thrust <strong>an</strong>d cool<strong>in</strong>g cyl<strong>in</strong>der. In later stages, the scheme <strong>of</strong> fabrication<br />

will be shown. At this stage the purpose <strong>of</strong> units are stated.<br />

In production, PVC mixtures are dumped on polyester fabric which have<br />

different features <strong>in</strong> the desired thickness with the help <strong>of</strong> a knife <strong>an</strong>d polymerization<br />

is done by p<strong>as</strong>s<strong>in</strong>g it through a furnace at 220 ºC.<br />

Then it is tw<strong>in</strong>ed around a different cyl<strong>in</strong>der after it is crushed with the help <strong>of</strong><br />

cool<strong>in</strong>g cyl<strong>in</strong>ders <strong>an</strong>d emboss<strong>in</strong>g rollers.<br />

Production is performed <strong>in</strong> the 2000-3000 mm wideness <strong>an</strong>d <strong>in</strong> approximately<br />

600000 mm <strong>in</strong> length.<br />

Conveyor belts are m<strong>an</strong>ufactured <strong>as</strong> they have 1-2-3 floored fabric. Product<br />

thickness varies between 1 mm <strong>an</strong>d 10 mm.<br />

10


Figure 2.6. A schematic representation <strong>of</strong> conveyor belt production<br />

2.3. Rheology<br />

Rheology is the science <strong>of</strong> the ch<strong>an</strong>ge <strong>in</strong> form <strong>an</strong>d flow <strong>of</strong> matter, encloses<br />

el<strong>as</strong>ticity, viscosity <strong>an</strong>d pl<strong>as</strong>ticity. Rheology is import<strong>an</strong>t <strong>in</strong> m<strong>an</strong>y <strong>in</strong>dustries such <strong>as</strong><br />

food, pa<strong>in</strong>t, rubber, textiles. Rheological behaviour is also <strong>of</strong> major import<strong>an</strong>ce <strong>in</strong><br />

biology <strong>an</strong>d medic<strong>in</strong>e (Shaw 1992).<br />

Viscosity is a me<strong>as</strong>ure <strong>of</strong> the resist<strong>an</strong>ce <strong>of</strong> a slip to flow, the <strong>in</strong>ternal friction<br />

<strong>of</strong> a fluid. This friction becomes apparent when a layer <strong>of</strong> fluid is made to move <strong>in</strong><br />

relation to <strong>an</strong>other layer. The greater the friction, the grater the amount <strong>of</strong> force<br />

11


equired to ca<strong>use</strong> this movement, which is called shear. Shear<strong>in</strong>g occurs whenever<br />

the fluid is physically moved or distributed, <strong>as</strong> <strong>in</strong> pour<strong>in</strong>g, spread<strong>in</strong>g, spray<strong>in</strong>g,<br />

mix<strong>in</strong>g, etc. Highly viscous fluids, therefore, require more force to move th<strong>an</strong> less<br />

viscous <strong>material</strong>s (Vlachopoulos 2005).<br />

Figure 2.7. Viscosity Model<br />

(Source: Vlachopoulos 2005)<br />

Two paralel flat are<strong>as</strong> <strong>of</strong> fluid <strong>of</strong> the same size A are separated by a dist<strong>an</strong>ce<br />

dx <strong>an</strong>d are mov<strong>in</strong>g <strong>in</strong> the same direction at different velocities V1 <strong>an</strong>d V2. Newton<br />

<strong>as</strong>sumed that the force required to ma<strong>in</strong>ta<strong>in</strong> this difference <strong>in</strong> speed w<strong>as</strong> proportional<br />

to the difference <strong>in</strong> speed through the liquid, or the velocity gradient.<br />

F dv<br />

= η<br />

(2.1)<br />

A dx<br />

Where η is a const<strong>an</strong>t for a given <strong>material</strong> <strong>an</strong>d is called its viscosity. The<br />

velocity gradient, dv/dx, is a me<strong>as</strong>ure <strong>of</strong> ch<strong>an</strong>ge <strong>in</strong> speed at which the <strong>in</strong>termediate<br />

layers move with respect to each other. It describes the shear<strong>in</strong>g the liquid<br />

experiences <strong>an</strong>d is thus called shear rate. This is symbolized <strong>as</strong> γ <strong>an</strong>d its unit <strong>of</strong><br />

me<strong>as</strong>ure is called the reciprocal second (sec -1 ). Plott<strong>in</strong>g shear rate aga<strong>in</strong>st viscosity<br />

determ<strong>in</strong>es the rheology <strong>of</strong> the slip.<br />

The term F/A <strong>in</strong>dicates the force per unit area required to produce shear<strong>in</strong>g<br />

action. It is referred to <strong>as</strong> shear stress <strong>an</strong>d is symbolized <strong>as</strong> τ. Its unit <strong>of</strong> me<strong>as</strong>urement<br />

is “dynes per square centimeter” (dynes/cm 2 ) or “Newtons per square meter” (N/m 2 ).<br />

12


Viscosity may be def<strong>in</strong>ed mathematically by Equation 2.2:<br />

τ shear stress<br />

η = viscosity = =<br />

(2.2)<br />

γ shear rate<br />

Figure 2.8. Velocity, shear rate <strong>an</strong>d shear stress for flow between two plates<br />

The fundamental unit <strong>of</strong> viscosity me<strong>as</strong>urement is “poise”. Sometimes<br />

“P<strong>as</strong>cal-seconds” (Pa.s) or “milliP<strong>as</strong>cal-seconds” (mPa.s) are <strong>use</strong>d.<br />

Fluids have different rheological characteristics. Generally fluids are divided<br />

<strong>in</strong>to two cl<strong>as</strong>ses <strong>as</strong> Newtoni<strong>an</strong> <strong>an</strong>d Non-Newtoni<strong>an</strong> (Brookfield Eng<strong>in</strong>eer<strong>in</strong>g 2005).<br />

2.3.1. Newtoni<strong>an</strong> Fluids<br />

Newton <strong>as</strong>sumed that all <strong>material</strong>s have, at a const<strong>an</strong>t temperature <strong>an</strong>d<br />

pressure, a viscosity that is <strong>in</strong>dependent <strong>of</strong> the shear rate. In other words, the shear<br />

viscosity does not vary with shear rate <strong>an</strong>d viscosity rema<strong>in</strong>s same at different shear<br />

rates (different rpm’s). Newtoni<strong>an</strong> behavior is more typical <strong>of</strong> nonpolar liquids such<br />

<strong>as</strong> hydrocarbons, th<strong>in</strong> motor oils or water. Newtoni<strong>an</strong> fluids have proportional<br />

relationship between shear stress (τ) <strong>an</strong>d shear rate (γ) <strong>as</strong> shown <strong>in</strong> Figure 2.9.<br />

Figure 2.9. Diagram for Newtoni<strong>an</strong> Behaviour<br />

13


2.3.2. Non-Newtoni<strong>an</strong> Fluids<br />

These fluids have different viscosities at different shear rates (different rpm’s).<br />

When the shear rate is varied, the shear stress does not vary <strong>in</strong> the same proportion.<br />

The viscosity <strong>of</strong> such fluids will therefore ch<strong>an</strong>ge <strong>as</strong> the shear rate is varied. This<br />

me<strong>as</strong>ured viscosity is called the apparent viscosity <strong>of</strong> the fluid.<br />

Non-Newtoni<strong>an</strong> flow c<strong>an</strong> be envisioned by th<strong>in</strong>k<strong>in</strong>g <strong>of</strong> <strong>an</strong>y fluid <strong>as</strong> a mixtures<br />

<strong>of</strong> molecules with different shapes <strong>an</strong>d sizes. As they p<strong>as</strong>s by each other, <strong>as</strong> happens<br />

dur<strong>in</strong>g flow, their size, shape, <strong>an</strong>d cohesiveness will determ<strong>in</strong>e how much force is<br />

required to move them. At each specific rate <strong>of</strong> shear, the alignment may be different<br />

<strong>an</strong>d more or less force may be required to ma<strong>in</strong>ta<strong>in</strong> motion (Brookfield Eng<strong>in</strong>eer<strong>in</strong>g<br />

2005).<br />

There are several types <strong>of</strong> non-Newtoni<strong>an</strong> flow behavior, characterized by a<br />

fluid’s viscosity ch<strong>an</strong>ges <strong>in</strong> response to variations <strong>in</strong> shear rate. Flow behaviour may<br />

depend only on shear rate <strong>an</strong>d not on the duration <strong>of</strong> shear that is time-<strong>in</strong>dependent,<br />

or may depend also on the duration <strong>of</strong> shear, time-dependent.<br />

2.3.2.1. Time Independent Non-Newtoni<strong>an</strong> Fluids<br />

Time <strong>in</strong>dependency is also called <strong>as</strong> steady-state phenomena. There are three<br />

types <strong>of</strong> time-<strong>in</strong>dependent fluids.<br />

2.3.2.1.1. Shear-Th<strong>in</strong>n<strong>in</strong>g<br />

Shear-th<strong>in</strong>n<strong>in</strong>g fluids are popularly called pseudopl<strong>as</strong>tic, <strong>in</strong>clude pa<strong>in</strong>ts,<br />

emulsions, <strong>an</strong>d dispersions <strong>of</strong> m<strong>an</strong>y types. This type <strong>of</strong> fluid will display a decre<strong>as</strong><strong>in</strong>g<br />

viscosity with <strong>an</strong> <strong>in</strong>cre<strong>as</strong><strong>in</strong>g shear rate. The f<strong>as</strong>ter the rotation, the more the structure<br />

is destroyed <strong>an</strong>d the less structure <strong>of</strong> molecules slide <strong>in</strong> together therefore viscosity<br />

will be lower.<br />

14


Figure 2.10. Diagram for Shear-Th<strong>in</strong>n<strong>in</strong>g Behaviour<br />

If particle aggregation occurs <strong>in</strong> a colloidal system, then <strong>an</strong> <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> the<br />

shear rate will tend to break down the aggregates, which will result <strong>in</strong> a reduction <strong>of</strong><br />

the amount <strong>of</strong> solvent immobilised by the particles, thus lower<strong>in</strong>g the apparent<br />

viscosity <strong>of</strong> the system.<br />

Shear-th<strong>in</strong>n<strong>in</strong>g is particularly common to systems conta<strong>in</strong><strong>in</strong>g <strong>as</strong>ymmetric<br />

particles. Asymmetric particles disturb the flow l<strong>in</strong>es to a greater extent when they<br />

are r<strong>an</strong>domly orientated at low-velocity gradients th<strong>an</strong> when they have been aligned<br />

at high-velocity gradients. In addition, particle <strong>in</strong>teraction <strong>an</strong>d solvent immobilisation<br />

are favoured when conditions <strong>of</strong> r<strong>an</strong>dom orientation prevail. The apparent viscosity<br />

<strong>of</strong> a system which th<strong>in</strong>s on shear<strong>in</strong>g is most susceptible to ch<strong>an</strong>ges <strong>in</strong> the shear rate <strong>in</strong><br />

the <strong>in</strong>termediate r<strong>an</strong>ge where there is a bal<strong>an</strong>ce between r<strong>an</strong>domness <strong>an</strong>d alignment,<br />

<strong>an</strong>d between aggregation <strong>an</strong>d dispersion (Shaw 1992).<br />

2.3.2.1.2. Shear-Thicken<strong>in</strong>g<br />

Shear-thicken<strong>in</strong>g, dilat<strong>an</strong>cy, is characterized by <strong>in</strong>cre<strong>as</strong><strong>in</strong>g viscosity with <strong>an</strong><br />

<strong>in</strong>cre<strong>as</strong>e <strong>in</strong> shear rate. Dilat<strong>an</strong>cy is frequently observed <strong>in</strong> fluids conta<strong>in</strong><strong>in</strong>g high<br />

levels <strong>of</strong> deflocculated solids, such <strong>as</strong> clay slurries, c<strong>an</strong>dy compounds, <strong>an</strong>d<br />

s<strong>an</strong>d/water mixtures.<br />

15


2.3.2.1.3. Pl<strong>as</strong>ticity<br />

Figure 2.11. Diagrams for Shear-Thicken<strong>in</strong>g Behaviour<br />

This type <strong>of</strong> fluid will behave <strong>as</strong> a solid under static conditions. A certa<strong>in</strong><br />

amount <strong>of</strong> stress must be applied to the fluid before <strong>an</strong>y flow is <strong>in</strong>duced; this stress is<br />

called yield stress or yield value (f΄). Pl<strong>as</strong>ticity is due to a cont<strong>in</strong>uous structural<br />

network which imparts rigidity to the sample <strong>an</strong>d which must be broken before flow<br />

c<strong>an</strong> occur. Tomato catsup is a good example for this type <strong>of</strong> fluid. Once the yield<br />

value is exceeded <strong>an</strong>d flow beg<strong>in</strong>s, pl<strong>as</strong>tic fluids may display Newtoni<strong>an</strong>, or dilat<strong>an</strong>t<br />

flow characteristics (Shaw 1992, Brookfield Eng<strong>in</strong>eer<strong>in</strong>g 2005).<br />

Figure 2.12. Diagrams for Pl<strong>as</strong>tic Behaviour<br />

16


Figure 2.13. Types <strong>of</strong> Time Independent Non-Newtoni<strong>an</strong> Flow<br />

2.3.2.2. Time Dependent Non-Newtoni<strong>an</strong> Fluids<br />

Some fluids will display a ch<strong>an</strong>ge <strong>in</strong> viscosity with time under conditions <strong>of</strong><br />

const<strong>an</strong>t shear rate. There are two categories to consider: Thixotropy <strong>an</strong>d Rheopexy.<br />

2.3.2.2.1. Thixotropy<br />

Thixotropy is the time-dependent <strong>an</strong>alogue <strong>of</strong> shear-th<strong>in</strong>n<strong>in</strong>g <strong>an</strong>d pl<strong>as</strong>tic<br />

behaviour. A thixotropic fluid undergoes a decre<strong>as</strong>e <strong>in</strong> viscosity with time, while it is<br />

subjected to a const<strong>an</strong>t shear rate. The cl<strong>as</strong>sical examples <strong>of</strong> thixotropic behaviour are<br />

the weak gel systems, such <strong>as</strong> flocculated sols <strong>of</strong> iron(III) oxide, alum<strong>in</strong>a <strong>an</strong>d m<strong>an</strong>y<br />

clays, which c<strong>an</strong> be liquefied on shak<strong>in</strong>g <strong>an</strong>d solidify on st<strong>an</strong>d<strong>in</strong>g (Shaw 1992).<br />

Figure 2.14. Diagram <strong>of</strong> Thixotropic Flow<br />

17


2.3.2.2.2. Rheopexy<br />

This is time-dependent shear-thicken<strong>in</strong>g, the opposite <strong>of</strong> thixotropic behavior,<br />

<strong>in</strong> that the fluid’s viscosity <strong>in</strong>cre<strong>as</strong>es with time <strong>as</strong> it is sheared at a const<strong>an</strong>t rate.<br />

2.3.3. Rheology <strong>of</strong> Ceramics<br />

Figure 2.15. Diagram <strong>of</strong> Rheopectic Flow<br />

Rheology is import<strong>an</strong>t <strong>in</strong> ceramic process<strong>in</strong>g <strong>an</strong>d the rheological behaviour <strong>of</strong><br />

colloidal suspensions depends ma<strong>in</strong>ly on the follow<strong>in</strong>g factors (Shaw 1992, Funk <strong>an</strong>d<br />

D<strong>in</strong>ger 1994):<br />

• viscosity <strong>of</strong> the dispersion medium<br />

• particle concentration (volume percentage <strong>of</strong> solids)<br />

• particle size distribution <strong>an</strong>d shape<br />

• defloccul<strong>an</strong>t concentration<br />

• pH<br />

• ionic strength<br />

• particle – particle <strong>an</strong>d particle – dispersion medium <strong>in</strong>teractions.<br />

Me<strong>as</strong>ured viscosities <strong>an</strong>d rheologies directly correlate to the behaviours <strong>of</strong><br />

bodies <strong>an</strong>d suspensions dur<strong>in</strong>g process<strong>in</strong>g. All particle/fluid suspensions, abroad<br />

category which <strong>in</strong>cludes all ceramic suspensions <strong>an</strong>d form<strong>in</strong>g bodies, are non-<br />

Newtoni<strong>an</strong> fluids. For this re<strong>as</strong>on it is import<strong>an</strong>t to characterize each suspension <strong>an</strong>d<br />

form<strong>in</strong>g body by me<strong>as</strong>ur<strong>in</strong>g its viscosities at each shear rate <strong>an</strong>d its rheology.<br />

18


Viscosity behaviour over a r<strong>an</strong>ge <strong>of</strong> imposed shear rates def<strong>in</strong>es a body’s rheological<br />

properties (Funk <strong>an</strong>d D<strong>in</strong>ger 1994).<br />

2.4. Fly Ash <strong>as</strong> <strong>an</strong> Alternative Filler Material<br />

By-product <strong>material</strong> <strong>of</strong> a coal combustion process for energy generation is<br />

recognized <strong>as</strong> <strong>an</strong> environmental pollut<strong>an</strong>t. Therefore a good deal <strong>of</strong> work on the<br />

utilization <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> h<strong>as</strong> been undertaken world over.<br />

Different applications (cements, roads <strong>an</strong>d backfill) <strong>of</strong> them already allow a<br />

recycl<strong>in</strong>g <strong>of</strong> <strong>an</strong> import<strong>an</strong>t part <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> production which, for <strong>in</strong>st<strong>an</strong>ce, reached<br />

450,000 tons <strong>in</strong> 1997 <strong>in</strong> Fr<strong>an</strong>ce. Their <strong>use</strong> <strong>as</strong> <strong>an</strong> adsorbent <strong>material</strong>, however, is be<strong>in</strong>g<br />

<strong>in</strong>vestigated recently. Some studies have shown that these <strong>material</strong>s might be<br />

beneficial for removal <strong>of</strong> heavy metal ions from w<strong>as</strong>te waters (Rio <strong>an</strong>d Delebarre<br />

2003)<br />

2.4.1. Production <strong>of</strong> Fly Ash<br />

The <strong>fly</strong> <strong><strong>as</strong>h</strong> produced from the burn<strong>in</strong>g <strong>of</strong> pulverized coal <strong>in</strong> a coal-fired boiler<br />

is a f<strong>in</strong>e-gra<strong>in</strong>ed, powdery particulate <strong>material</strong> that is carried <strong>of</strong>f <strong>in</strong> the flue g<strong>as</strong> <strong>an</strong>d<br />

usually collected from the flue g<strong>as</strong> by me<strong>an</strong>s <strong>of</strong> electrostatic precipitators, bagho<strong>use</strong>s,<br />

or mech<strong>an</strong>ical collection devices such <strong>as</strong> cyclones. The term <strong>fly</strong> <strong><strong>as</strong>h</strong> is not applied to<br />

the residue extracted from the bottom <strong>of</strong> boilers. A general flow diagram <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

production <strong>in</strong> a dry-bottom coal-fired utility boiler operation is presented <strong>in</strong> Figure<br />

2.16.<br />

Figure 2.16. Production <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>in</strong> a dry-bottom utility boiler with electrostatic<br />

precipitator<br />

19


Fly <strong><strong>as</strong>h</strong> is def<strong>in</strong>ed <strong>as</strong> “the f<strong>in</strong>ely divided residue result<strong>in</strong>g from the combustion<br />

<strong>of</strong> ground or powdered coal which is tr<strong>an</strong>sported from the firebox through the boiler<br />

by flue g<strong>as</strong>es; known <strong>in</strong> UK <strong>as</strong> pulverized fuel<strong><strong>as</strong>h</strong> (pfa)” (ACI Committee 226, 1987)<br />

(Dermat<strong>as</strong> <strong>an</strong>d Meng 2003).<br />

Fly <strong><strong>as</strong>h</strong>es may be sub-divided <strong>in</strong>to two categories, accord<strong>in</strong>g to their orig<strong>in</strong><br />

(ASTM):<br />

Cl<strong>as</strong>s F : Fly <strong><strong>as</strong>h</strong> normally produced by burn<strong>in</strong>g <strong>an</strong>thracite or bitum<strong>in</strong>ous coal<br />

which meets the requirements applicable to this cl<strong>as</strong>s.<br />

Cl<strong>as</strong>s C : Fly <strong><strong>as</strong>h</strong> normally produced by burn<strong>in</strong>g lignite or sub-bitum<strong>in</strong>ous coal<br />

which meets the requirements applicable to this cl<strong>as</strong>s. Cl<strong>as</strong>s C <strong>fly</strong> <strong><strong>as</strong>h</strong> possesses some<br />

cementitious properties. Some Cl<strong>as</strong>s C <strong>fly</strong> <strong><strong>as</strong>h</strong>es may have lime contents <strong>in</strong> excess <strong>of</strong><br />

10 % (Weshe 1991).<br />

Bottom <strong><strong>as</strong>h</strong> is the <strong><strong>as</strong>h</strong> which is removed from a fixed grate by h<strong>an</strong>d or which<br />

falls by gravity from the combustion zone. It is coarser <strong>an</strong>d heavier th<strong>an</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

particles. Bottom <strong><strong>as</strong>h</strong> forms when <strong><strong>as</strong>h</strong> particles agglomerate to form aggregates<br />

similar to volc<strong>an</strong>ic rock.<br />

Slag is the <strong>material</strong> reta<strong>in</strong>ed <strong>in</strong> the furnace. It is a k<strong>in</strong>d <strong>of</strong> a solidified molten<br />

<strong><strong>as</strong>h</strong>. Hence, the <strong>material</strong> is gl<strong>as</strong>sy <strong>an</strong>d the larger pieces resemble obsidi<strong>an</strong>. Compared<br />

to bottom <strong><strong>as</strong>h</strong>, slag may have slightly higher bulk density <strong>an</strong>d lower absorption<br />

capacity (Ç<strong>an</strong>ci 1998).<br />

2.4.2. Composition <strong>of</strong> Fly Ash<br />

M<strong>in</strong>eralogical Composition: The chemical <strong>an</strong>d m<strong>in</strong>eralogical composition <strong>of</strong><br />

<strong>fly</strong> <strong><strong>as</strong>h</strong>es depends upon the characteristics <strong>an</strong>d composition <strong>of</strong> the coal burned <strong>in</strong> the<br />

power pl<strong>an</strong>t. Ow<strong>in</strong>g to the rapid cool<strong>in</strong>g <strong>of</strong> the <strong>material</strong>, <strong>fly</strong> <strong><strong>as</strong>h</strong>es are composed<br />

chie<strong>fly</strong> (50 – 90 %) <strong>of</strong> m<strong>in</strong>eral matter <strong>in</strong> the form <strong>of</strong> gl<strong>as</strong>sy particles. A small amount<br />

<strong>of</strong> <strong><strong>as</strong>h</strong> occurs <strong>in</strong> the form <strong>of</strong> crystals. Unburned coal is collected with the <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>as</strong><br />

particles <strong>of</strong> carbon, which may constitute up to 16 % <strong>of</strong> the total, depend<strong>in</strong>g on the<br />

rate <strong>an</strong>d temperature <strong>of</strong> combustion, the degree <strong>of</strong> pulverization <strong>of</strong> the orig<strong>in</strong>al coal,<br />

the fuel/air ratio, the nature <strong>of</strong> the coal be<strong>in</strong>g burned, etc.<br />

The most import<strong>an</strong>t m<strong>in</strong>erals found <strong>in</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>es from bitum<strong>in</strong>ous coal are:<br />

20


Magnetite 0.8 – 6.5%<br />

Hematite 1.1 – 2.7%<br />

Quartz 2.2 – 8.5%<br />

Mullite 6.5 – 9.0%<br />

Free calcium oxide up to 3.5%<br />

Other m<strong>in</strong>erals like goethite, pyrite, calcite, <strong>an</strong>hydrite <strong>an</strong>d pericl<strong>as</strong>e r<strong>an</strong>ge from<br />

trace amounts to 2.5 % (Weshe 1991).<br />

Geochemistry <strong>of</strong> Fly Ash: The elements <strong>in</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> are ma<strong>in</strong>ly litophiles<br />

<strong>an</strong>d chalcophiles. Lithophiles are the elements that are concentrated <strong>in</strong><br />

alum<strong>in</strong>osilicates <strong>as</strong> oxide forms rather th<strong>an</strong> <strong>in</strong> the metallic <strong>an</strong>d sulfide ph<strong>as</strong>es. They<br />

are ma<strong>in</strong>ly, Al, Ca, K, Mg, Na, Si <strong>an</strong>d the rare earth elements. Chalcophiles are the<br />

elements that are concentrated <strong>in</strong> the sulfide ph<strong>as</strong>es rather th<strong>an</strong> <strong>in</strong> the metallic <strong>an</strong>d<br />

silicate ph<strong>as</strong>es. They are ma<strong>in</strong>ly, As, Cd, Ga, Ge, Pb, Sb, Sn, Tl <strong>an</strong>d Zn. Be<strong>in</strong>g<br />

nonvolatile, lithophiles form the matrix <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>es. Chalcophiles, on the other h<strong>an</strong>d,<br />

are volatile elements <strong>an</strong>d are <strong>as</strong>sociated with the non-matrix structure. They are<br />

concentrated at the surface <strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong>es. Br, Cl <strong>an</strong>d F are halogens which rema<strong>in</strong><br />

ma<strong>in</strong>ly <strong>in</strong> the g<strong>as</strong> ph<strong>as</strong>e. Others, such <strong>as</strong> Ba, Be, Bi, Co, Cr, Cu, Mn, Ni, U, V <strong>an</strong>d W<br />

are <strong>in</strong>termediate, show<strong>in</strong>g <strong>an</strong> equal distribution between the matrix <strong>an</strong>d non-matrix<br />

structure.<br />

The matrix <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> particles is pr<strong>in</strong>cipally composed <strong>of</strong> alum<strong>in</strong>um-siliconoxygen<br />

compounds (non-volatile oxides <strong>of</strong> the major elements), with smaller<br />

amounts <strong>of</strong> Fe, Mg, Na, K, Ca, Th, Ti <strong>an</strong>d the rare earth elements. This structure is<br />

commonly called the alum<strong>in</strong>osilicate matrix (Ç<strong>an</strong>ci 1998).<br />

2.4.3. Material Properties<br />

2.4.3.1. Physical Properties<br />

Fly <strong><strong>as</strong>h</strong> consists <strong>of</strong> f<strong>in</strong>e, powdery particles that are predom<strong>in</strong><strong>an</strong>tly spherical <strong>in</strong><br />

shape, either solid or hollow, <strong>an</strong>d mostly gl<strong>as</strong>sy (amorphous) <strong>in</strong> nature. The<br />

carbonaceous <strong>material</strong> <strong>in</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> is composed <strong>of</strong> <strong>an</strong>gular particles. The particle size<br />

distribution <strong>of</strong> most bitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es is generally similar to that <strong>of</strong> a silt<br />

21


(less th<strong>an</strong> a 0.075 mm or No. 200 sieve). Although subbitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es are<br />

also silt-sized, they are generally slightly coarser th<strong>an</strong> bitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es<br />

(DiGioia <strong>an</strong>d Nuzzo 1972).<br />

The specific gravity <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> usually r<strong>an</strong>ges from 2.1 to 3.0, while its specific<br />

surface area (me<strong>as</strong>ured by the Bla<strong>in</strong>e air permeability method) (Annual Book <strong>of</strong><br />

ASTM St<strong>an</strong>dards) may r<strong>an</strong>ge from 170 to 1000 m 2 /kg.<br />

The color <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> c<strong>an</strong> vary from t<strong>an</strong> to gray to black, depend<strong>in</strong>g on the<br />

amount <strong>of</strong> unburned carbon <strong>in</strong> the <strong><strong>as</strong>h</strong>. The lighter the color, the lower the carbon<br />

content. Lignite or subbitum<strong>in</strong>ous <strong>fly</strong> <strong><strong>as</strong>h</strong>es are usually light t<strong>an</strong> to buff <strong>in</strong> color,<br />

<strong>in</strong>dicat<strong>in</strong>g relatively low amounts <strong>of</strong> carbon <strong>as</strong> well <strong>as</strong> the presence <strong>of</strong> some lime or<br />

calcium. Bitum<strong>in</strong>ous <strong>fly</strong> <strong><strong>as</strong>h</strong>es are usually some shade <strong>of</strong> gray, with the lighter shades<br />

<strong>of</strong> gray generally <strong>in</strong>dicat<strong>in</strong>g a higher quality <strong>of</strong> <strong><strong>as</strong>h</strong>.<br />

2.4.3.2. Chemical Properties<br />

The chemical properties <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> are <strong>in</strong>fluenced to a great extent by those <strong>of</strong><br />

the coal burned <strong>an</strong>d the techniques <strong>use</strong>d for h<strong>an</strong>dl<strong>in</strong>g <strong>an</strong>d storage. There are b<strong>as</strong>ically<br />

four types, or r<strong>an</strong>ks, <strong>of</strong> coal, each <strong>of</strong> which varies <strong>in</strong> terms <strong>of</strong> its heat<strong>in</strong>g value, its<br />

chemical composition, <strong><strong>as</strong>h</strong> content, <strong>an</strong>d geological orig<strong>in</strong>. The four types, or r<strong>an</strong>ks, <strong>of</strong><br />

coal are <strong>an</strong>thracite, bitum<strong>in</strong>ous, subbitum<strong>in</strong>ous, <strong>an</strong>d lignite. In addition to be<strong>in</strong>g<br />

h<strong>an</strong>dled <strong>in</strong> a dry, conditioned, or wet form, <strong>fly</strong> <strong><strong>as</strong>h</strong> is also sometimes cl<strong>as</strong>sified<br />

accord<strong>in</strong>g to the type <strong>of</strong> coal from which the <strong><strong>as</strong>h</strong> w<strong>as</strong> derived.<br />

The pr<strong>in</strong>cipal components <strong>of</strong> bitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong> are silica, alum<strong>in</strong>a, iron<br />

oxide, <strong>an</strong>d calcium, with vary<strong>in</strong>g amounts <strong>of</strong> carbon, <strong>as</strong> me<strong>as</strong>ured by the loss on<br />

ignition (LOI). Lignite <strong>an</strong>d subbitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es are characterized by higher<br />

concentrations <strong>of</strong> calcium <strong>an</strong>d magnesium oxide <strong>an</strong>d reduced percentages <strong>of</strong> silica<br />

<strong>an</strong>d iron oxide, <strong>as</strong> well <strong>as</strong> a lower carbon content, compared with bitum<strong>in</strong>ous coal <strong>fly</strong><br />

<strong><strong>as</strong>h</strong> (Meyers, et al. 1976). Very little <strong>an</strong>thracite coal is burned <strong>in</strong> utility boilers, so<br />

there are only small amounts <strong>of</strong> <strong>an</strong>thracite coal <strong>fly</strong> <strong><strong>as</strong>h</strong>.<br />

Table 2.9 compares the normal r<strong>an</strong>ge <strong>of</strong> the chemical constituents <strong>of</strong><br />

bitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong> with those <strong>of</strong> lignite coal <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d subbitum<strong>in</strong>ous coal <strong>fly</strong><br />

<strong><strong>as</strong>h</strong>. From the table, it is evident that lignite <strong>an</strong>d subbitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es have a<br />

higher calcium oxide content <strong>an</strong>d lower loss on ignition th<strong>an</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>es from<br />

22


itum<strong>in</strong>ous coals. Lignite <strong>an</strong>d subbitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es may have a higher<br />

concentration <strong>of</strong> sulfate compounds th<strong>an</strong> bitum<strong>in</strong>ous coal <strong>fly</strong> <strong><strong>as</strong>h</strong>es.<br />

The chief difference between Cl<strong>as</strong>s F <strong>an</strong>d Cl<strong>as</strong>s C <strong>fly</strong> <strong><strong>as</strong>h</strong> is <strong>in</strong> the amount <strong>of</strong><br />

calcium <strong>an</strong>d the silica, alum<strong>in</strong>a, <strong>an</strong>d iron content <strong>in</strong> the <strong><strong>as</strong>h</strong> (Annual Book <strong>of</strong> ASTM<br />

St<strong>an</strong>dards). In Cl<strong>as</strong>s F <strong>fly</strong> <strong><strong>as</strong>h</strong>, total calcium typically r<strong>an</strong>ges from 1 to 12 percent,<br />

mostly <strong>in</strong> the form <strong>of</strong> calcium hydroxide, calcium sulfate, <strong>an</strong>d gl<strong>as</strong>sy components <strong>in</strong><br />

comb<strong>in</strong>ation with silica <strong>an</strong>d alum<strong>in</strong>a. In contr<strong>as</strong>t, Cl<strong>as</strong>s C <strong>fly</strong> <strong><strong>as</strong>h</strong> may have reported<br />

calcium oxide contents <strong>as</strong> high <strong>as</strong> 30 to 40 percent (McKerall, et al. 1982). Another<br />

difference between Cl<strong>as</strong>s F <strong>an</strong>d Cl<strong>as</strong>s C is that the amount <strong>of</strong> alkalis (comb<strong>in</strong>ed<br />

sodium <strong>an</strong>d pot<strong>as</strong>sium) <strong>an</strong>d sulfates (SO4) are generally higher <strong>in</strong> the Cl<strong>as</strong>s C <strong>fly</strong><br />

<strong><strong>as</strong>h</strong>es th<strong>an</strong> <strong>in</strong> the Cl<strong>as</strong>s F <strong>fly</strong> <strong><strong>as</strong>h</strong>es.<br />

Table 2.2. Normal r<strong>an</strong>ge <strong>of</strong> chemical composition for <strong>fly</strong> <strong><strong>as</strong>h</strong> produced from different<br />

coal types(expressed <strong>as</strong> percent by weight).<br />

Component Bitum<strong>in</strong>ous Subbitum<strong>in</strong>ous Lignite<br />

SiO2 20-60 40-60 15-45<br />

Al2O3 5-35 20-30 10-25<br />

Fe2O3 10-40 4-10 4-15<br />

CaO 1-12 5-30 15-40<br />

MgO 0-5 1-6 3-10<br />

SO3 0-4 0-2 0-10<br />

Na2O 0-4 0-2 0-6<br />

K2O 0-3 0-4 0-4<br />

LOI 0-15 0-3 0-5<br />

Although the Cl<strong>as</strong>s F <strong>an</strong>d Cl<strong>as</strong>s C designations strictly apply only to <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

meet<strong>in</strong>g the ASTM C618 specification, these terms are <strong>of</strong>ten <strong>use</strong>d more generally to<br />

apply to <strong>fly</strong> <strong><strong>as</strong>h</strong> on the b<strong>as</strong>is <strong>of</strong> its orig<strong>in</strong>al coal type or CaO content. It is import<strong>an</strong>t to<br />

recognize that not all <strong>fly</strong> <strong><strong>as</strong>h</strong>es are able to meet ASTM C618 requirements <strong>an</strong>d that,<br />

for applications other th<strong>an</strong> concrete, it may not be necessary for them to do so.<br />

The loss on ignition (LOI), which is a me<strong>as</strong>urement <strong>of</strong> the amount <strong>of</strong><br />

unburned carbon rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong>, is one <strong>of</strong> the most signific<strong>an</strong>t chemical<br />

properties <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>, especially <strong>as</strong> <strong>an</strong> <strong>in</strong>dicator <strong>of</strong> suitability for <strong>use</strong> <strong>as</strong> a cement<br />

replacement <strong>in</strong> concrete.<br />

23


3.1. Materials<br />

CHAPTER 3<br />

MATERIALS AND METHODS<br />

One type <strong>of</strong> commercial PVC res<strong>in</strong>, emulsion type <strong>of</strong> PVC (E-PVC), w<strong>as</strong><br />

employed for preparation <strong>of</strong> PVC pl<strong>as</strong>tisols. The K value <strong>of</strong> this res<strong>in</strong> is 75. The<br />

other properties <strong>of</strong> PVC res<strong>in</strong> is given <strong>in</strong> Table 3.1. DINP ( Diisononyl pthalate ) w<strong>as</strong><br />

<strong>use</strong>d <strong>as</strong> a pl<strong>as</strong>tcizer. The properties <strong>of</strong> this pl<strong>as</strong>ticizer is given <strong>in</strong> Table 3.2. Liquid<br />

butyl t<strong>in</strong> carboxylate w<strong>as</strong> <strong>use</strong>d <strong>as</strong> a commercial heat stabilizer to cure PVC films at<br />

150 o C. The properties <strong>of</strong> heat stabilizer is given <strong>in</strong> Table 3.3.<br />

Table 3.1. Properties <strong>of</strong> PVC res<strong>in</strong><br />

(Source: Arkema 2008 )<br />

Property Unit Reference St<strong>an</strong>dart Value<br />

K Value ISO 1628-2 75<br />

Physical Form White Powder<br />

Humidity % ISO 1269 < 0.25<br />

Rheological Behaviour Pseudo pl<strong>as</strong>tic<br />

Pl<strong>as</strong>ticizer R<strong>an</strong>ge pcr 5-100<br />

Table 3.2. Properties <strong>of</strong> pl<strong>as</strong>ticizer<br />

(Source: Pl<strong>as</strong>tay 2010 )<br />

Property Unit Reference st<strong>an</strong>dart Value<br />

Appear<strong>an</strong>ce Clear, colorless liquid<br />

Molecular weigth 148<br />

Viscosity cp , 20 0 C ASTM D 1045 70-80<br />

Density g/cm3 ASTM D 1045 0.970-0.974<br />

24


Table 3.3. Properties <strong>of</strong> stabilizer<br />

(Source: Baerlocher 2006 )<br />

Property Unit Value<br />

Physical Form Liquid<br />

Viscosity mPa.s 130<br />

Density g/cm3 1.08<br />

Commercial calcite supplied from OMYA <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> supplied from Soma<br />

Thermic Central were <strong>use</strong>d <strong>as</strong> <strong>filler</strong>s. Wet seiv<strong>in</strong>g w<strong>as</strong> applied to <strong>fly</strong> <strong><strong>as</strong>h</strong> samples to<br />

get -38 µm particles.<br />

3.2. Methods<br />

3.2.1. Preparation <strong>of</strong> PVC Pl<strong>as</strong>tisols <strong>an</strong>d Test speciements<br />

PVC pl<strong>as</strong>tisols were prepared us<strong>in</strong>g mech<strong>an</strong>ical stirrer (Heidolph) for<br />

rheological me<strong>as</strong>urements. For this purpose, all liquids, pl<strong>as</strong>ticizer (DINP), heat<br />

stabilizer, PVC powder <strong>an</strong>d <strong>filler</strong>s were placed <strong>in</strong> a beaker <strong>an</strong>d mixed at different<br />

rates (600 RPM, 1000 RPM, 1400 RPM) for 5 m<strong>in</strong>utes.<br />

PVC films were prepared on acetate sheets (us<strong>in</strong>g 500 µm applicator) <strong>an</strong>d<br />

cured at 150 o C for 10 m<strong>in</strong>utes to <strong>use</strong> for tensile strength tests. In addition, 6 mm<br />

samples were prepared us<strong>in</strong>g petri plates <strong>an</strong>d cured at 150 0 C for 20 m<strong>in</strong>utes to <strong>use</strong><br />

for hardness <strong>an</strong>d surface roughness tests.<br />

The composition <strong>of</strong> PVC pl<strong>as</strong>tisols were given <strong>in</strong> Tables 3.4-3.7.<br />

Std PVC Pl<strong>as</strong>tisol<br />

Table 3.4. Ingredents <strong>of</strong> st<strong>an</strong>dart PVC pl<strong>as</strong>tisol sample<br />

Sample<br />

g wt%<br />

PVC 100.00 61.3<br />

Pl<strong>as</strong>ticizer 60.00 37.04<br />

Stabilizer 2.00 1.23<br />

Total 162.00 100.00<br />

25


Filler densities were <strong>use</strong>d to determ<strong>in</strong>e the amount <strong>of</strong> <strong>filler</strong> <strong>in</strong>gredents <strong>in</strong> the<br />

pl<strong>as</strong>tisols. Volume fractions <strong>of</strong> the <strong>filler</strong>s were kept const<strong>an</strong>t for the pl<strong>as</strong>tisols<br />

beca<strong>use</strong> <strong>of</strong> the difference between the densities <strong>of</strong> <strong>filler</strong>s <strong>use</strong>d. dFly Ash = 2.2 g/cm 3 <strong>an</strong>d<br />

dCalcite = 2.7 g/cm 3 . In Table 3.5 amount <strong>of</strong> <strong>filler</strong>s are given <strong>as</strong> PHR (Part Per Res<strong>in</strong>)<br />

<strong>an</strong>d volume percentage.<br />

Table 3.5. Amount <strong>of</strong> <strong>filler</strong> <strong>in</strong> volume % <strong>an</strong>d PHR (Part Per Res<strong>in</strong>)<br />

SAMPLE NO PHR vol %<br />

SAMPLE 1 10.00 3.70<br />

SAMPLE 2 20.00 7.41<br />

SAMPLE 3 30.00 11.11<br />

Table 3.6. Composition <strong>of</strong> PVC pl<strong>as</strong>tisol samples with Calcite <strong>as</strong> a <strong>filler</strong><br />

Sample 1 Sample 2 Sample 3<br />

PVC + Calcite g wt% g wt% g wt%<br />

PVC 100.00 58.14 100.00 54.95 100.00 52.08<br />

Pl<strong>as</strong>ticizer 60.00 34.88 60.00 32.97 60.00 31.25<br />

Stabilizer 2.0 1.16 2.00 1.10 2.00 1.04<br />

Calcite 10.00 5.81 20.00 10.99 30.00 15.63<br />

Total 172.00 100.00 182.00 100.00 192.00 100.00<br />

Table 3.7. Composition <strong>of</strong> PVC pl<strong>as</strong>tisol samples with Fly Ash <strong>as</strong> a <strong>filler</strong>.<br />

Sample 1 Sample 2 Sample 3<br />

PVC + Fly Ash g wt% g wt% g wt%<br />

PVC 100.00 58.78 100.00 56.09 100.00 53.64<br />

Pl<strong>as</strong>ticizer 60.00 35.27 60.00 33.65 60.00 32.18<br />

Stabilizer 2.00 1.18 2.00 1.12 2.00 1.07<br />

Fly Ash 8.14 4.78 16.30 9.14 24.44 13.11<br />

Total 170.14 100.00 178.30 100.00 186.44 100.00<br />

26


3.2.2. Rheology Me<strong>as</strong>urements<br />

Brookfield DV III+ rheometer with ULA adapter w<strong>as</strong> <strong>use</strong>d to <strong>in</strong>vestigate the<br />

rheological behaviour <strong>of</strong> PVC pl<strong>as</strong>tisols. These me<strong>as</strong>uremets were conducted to test<br />

the follow<strong>in</strong>g conditions:<br />

• Filler type: Calcite, Fly Ash<br />

• Filler concentration: (vol %) 3.70, 7.41, 11.11<br />

• Temperature : 25 o C, 30 o C, 35 o C<br />

• Mix<strong>in</strong>g rate : 600, 1000, 1400 RPM<br />

Shear stress <strong>of</strong> the pl<strong>as</strong>tisols were me<strong>as</strong>ured at different speeds by us<strong>in</strong>g the<br />

follow<strong>in</strong>g set conditions:<br />

• Speed w<strong>as</strong> set at m<strong>in</strong>imum 0.01 RPM<br />

• Speed w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed to 0.2 RPM by 0.01 RPM <strong>in</strong> every 30 second<br />

The shear rate w<strong>as</strong> adjusted to ch<strong>an</strong>ge between 0.01s -1 to 0.2 s -1 which seemed<br />

to be better condition for the system <strong>of</strong> this study.<br />

3.2.3. Particle Size Distribution Me<strong>as</strong>urements<br />

The particle size distribution <strong>of</strong> <strong>filler</strong>s, <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d calcite, were me<strong>as</strong>ured<br />

us<strong>in</strong>g Malvern M<strong>as</strong>tersizer 2000 HD <strong>in</strong>strument. The work<strong>in</strong>g pr<strong>in</strong>ciple <strong>of</strong> this<br />

<strong>in</strong>strument is mie scatter<strong>in</strong>g (Figure 3.1).<br />

Figure 3.1. Work<strong>in</strong>g pr<strong>in</strong>ciple <strong>of</strong> M<strong>as</strong>tersizer 2000<br />

(Source: Malvern 2005)<br />

27


Particles are p<strong>as</strong>sed through a foc<strong>use</strong>d l<strong>as</strong>er beam, scatter light at <strong>an</strong> <strong>an</strong>gle, is<br />

<strong>in</strong>versely proportional to their size. The <strong>an</strong>gular <strong>in</strong>tensity <strong>of</strong> the scattered light is then<br />

me<strong>as</strong>ured by a series <strong>of</strong> photosensitive detectors <strong>as</strong> shown <strong>in</strong> Figure 3.1. The map <strong>of</strong><br />

scatter<strong>in</strong>g <strong>in</strong>tensity versus <strong>an</strong>gle is the primary source <strong>of</strong> <strong>in</strong>formation <strong>use</strong>d to<br />

calculate the particle size (Malvern 2005).<br />

3.2.4. Surface Area Analysis<br />

The total exposed surface area present <strong>in</strong> the powder samples is me<strong>as</strong>ured by<br />

the surface area <strong>an</strong>alyzers.<br />

• Specific Surface Area (SSA) the surface area <strong>in</strong> a fixed m<strong>as</strong>s <strong>of</strong><br />

particles (m 2 /g)<br />

• Volume Spesific Surface Area (VSA) the surface area <strong>in</strong> a fixed<br />

volume <strong>of</strong> particles (m 2 /cm 3 ) (D<strong>in</strong>ger 2005).<br />

The B.E.T. equation w<strong>as</strong> <strong>use</strong>d to me<strong>as</strong>ure <strong>of</strong> Vm, the volume <strong>of</strong> g<strong>as</strong> necessary<br />

to form a monolayer <strong>of</strong> liquid across a solid surface.<br />

The equation is ;<br />

V<br />

x 1 ( C−<br />

)1 x<br />

= +<br />

V1(<br />

− x)<br />

V<br />

m<br />

m<br />

( 3.1 )<br />

X The relative pressure P/P0, a g<strong>as</strong> <strong>of</strong> volume V (m 3 at S.T.P.) is<br />

absorbed<br />

P Pressure <strong>of</strong> the g<strong>as</strong><br />

P0 The saturated vapor pressure at the temperature<br />

Vm The volume <strong>of</strong> g<strong>as</strong> required to form a monolayer on the absorbent<br />

C Const<strong>an</strong>t<br />

L<strong>an</strong>gmuir adsorption isotherm applied to multilayer adsorption is formulated<br />

<strong>in</strong> Equation (3.1). The theory is b<strong>as</strong>ed on the establisment <strong>of</strong> <strong>an</strong> equilibrium between<br />

g<strong>as</strong> <strong>an</strong>d adsorbed <strong>material</strong> <strong>in</strong>volv<strong>in</strong>g the dynamic tr<strong>an</strong>sfer <strong>of</strong> molecules betwwen the<br />

g<strong>as</strong> ph<strong>as</strong>e <strong>an</strong>d the surface.<br />

28


The B.E.T. method yields a value for the volume <strong>of</strong> a monolayer <strong>of</strong> adsorbed<br />

g<strong>as</strong> on the solid surface (McKay 1996).<br />

The B.E.T. <strong>an</strong>d L<strong>an</strong>gmuir surface area, <strong>an</strong>d pore size <strong>an</strong>d volume <strong>of</strong> PVC<br />

powder <strong>an</strong>d <strong>filler</strong>s were determ<strong>in</strong>ed by Micromeritics Gem<strong>in</strong>i 2380 model surface<br />

area <strong>an</strong>alyzer.<br />

3.2.5. Thermal Gravimetric Analysis (TGA)<br />

The m<strong>as</strong>s loss <strong>of</strong> the Soma <strong>fly</strong> <strong><strong>as</strong>h</strong> w<strong>as</strong> obta<strong>in</strong>ed previos studies. H2O (free<br />

water molecules) w<strong>as</strong> removed at a temperature around 200 °C <strong>an</strong>d bound water w<strong>as</strong><br />

removed up to 400 °C po<strong>in</strong>t.<br />

3.2.6. Mech<strong>an</strong>ical Me<strong>as</strong>urements<br />

3.2.6.1. Me<strong>as</strong>urement <strong>of</strong> Tensile Strength<br />

The most general method is tensile strength to characterize the mech<strong>an</strong>ical<br />

behavior <strong>of</strong> the <strong>material</strong>. The mach<strong>in</strong>e is <strong>use</strong>d to be tested this property <strong>as</strong> shown <strong>in</strong><br />

Figure 3.2.<br />

Figure 3.2. The mach<strong>in</strong>e for tensile strength test- <strong>in</strong>clud<strong>in</strong>g tension, compression<br />

parts<br />

29


This type <strong>of</strong> mach<strong>in</strong>es should be const<strong>an</strong>t-rate-<strong>of</strong>-crosshead movement <strong>an</strong>d<br />

consist<strong>in</strong>g one fixed <strong>an</strong>d one movable parts. Extensiometer is <strong>use</strong>d to me<strong>as</strong>ure the<br />

dist<strong>an</strong>ce between two jaws. Tested <strong>material</strong>s are fixed by jaws. Speed <strong>of</strong> test is<br />

def<strong>in</strong>ed <strong>as</strong> the relative rate <strong>of</strong> motion.<br />

Test speciements are cutted accord<strong>in</strong>g to related st<strong>an</strong>darts. This shape is called<br />

dogbone .Test speciements are shown <strong>in</strong> Figure 3.3.<br />

Figure 3.3. Test speciments for tensile strength shape<br />

Two properties were determ<strong>in</strong>ed, the first one is eng<strong>in</strong>eer<strong>in</strong>g stress:<br />

• F, applied force<br />

σ=F/A0 (3.2)<br />

• A0, <strong>in</strong>itial cross-sectional area<br />

The True stres is b<strong>as</strong>ed on the actual cross-sectional area, A, that ch<strong>an</strong>ge<br />

dur<strong>in</strong>g the experiment.<br />

The other import<strong>an</strong>t property is the eng<strong>in</strong>eer<strong>in</strong>g stra<strong>in</strong>,<br />

ε = (t-t0)/l0 = Δt/l0 (3.3)<br />

• l, current length <strong>of</strong> the speciment<br />

• l0, org<strong>in</strong>al length<br />

Obta<strong>in</strong>ed qu<strong>an</strong>tities from tensile test<strong>in</strong>g ;<br />

•<br />

Tensile Strength: Maximum load divided by A0.<br />

• Percent Elongation: Percent elongation at yield is calculated, if the<br />

speciment gives a yield load bigger th<strong>an</strong> the load at break.<br />

30


• Modulus <strong>of</strong> El<strong>as</strong>ticity: E is the proportionality factor <strong>in</strong> Hooke’s law :<br />

σ = E. ε (3.4)<br />

It is also called Young Modulus. E is calculated from the <strong>in</strong>itial l<strong>in</strong>ear portion<br />

<strong>of</strong> the load versus extension curve giv<strong>in</strong>g us the stress versus stra<strong>in</strong> curve (Mark<br />

2006).<br />

In this study, samples for the mech<strong>an</strong>ical me<strong>as</strong>urement were prepared <strong>as</strong> 0.5<br />

mm <strong>in</strong> thickness, 20 mm <strong>in</strong> width <strong>an</strong>d 150 mm <strong>in</strong> lentgh.<br />

3.2.6.2. Me<strong>as</strong>urement Of Hardness<br />

Hardness <strong>of</strong> the <strong>material</strong> is me<strong>as</strong>ured with durometer <strong>as</strong> shown <strong>in</strong> Figure 3.4.<br />

Hardness is me<strong>as</strong>urement <strong>of</strong> depth <strong>of</strong> <strong>an</strong> <strong>in</strong>dentation <strong>in</strong> the <strong>material</strong> created by a<br />

given force. The depth is related with the hardness, viscoel<strong>as</strong>tic properties <strong>an</strong>d the<br />

shape <strong>of</strong> the presser food. Durometer is <strong>use</strong>d to me<strong>as</strong>ure <strong>of</strong> hardness <strong>of</strong> polymers,<br />

el<strong>as</strong>tomers <strong>an</strong>d rubbers. There are several types <strong>of</strong> durometer <strong>use</strong>d for <strong>material</strong>s with<br />

different properties. ASTM D2240 type A <strong>an</strong>d type D scales are common scales. The<br />

A scale is for s<strong>of</strong>ter pl<strong>as</strong>tics <strong>an</strong>d the D scale is for harder ones (Wikipedia 2010).<br />

Figure 3.4. Durometer , accord<strong>in</strong>g to ASTM D 2240 st<strong>an</strong>dart.<br />

Accord<strong>in</strong>g to ASTM D 2240 st<strong>an</strong>dart m<strong>in</strong>imum thickness value should be 6.4<br />

mm. Samples <strong>of</strong> this study w<strong>as</strong> 6 mm <strong>in</strong> thickness.<br />

31


3.2.7. Surface Roughness: Pr<strong>of</strong>ilometry<br />

Pr<strong>of</strong>ilometry is <strong>use</strong>d to study the topography <strong>of</strong> a <strong>material</strong> surface. Surface<br />

roughness is a critical parameter <strong>in</strong> various fields <strong>of</strong> <strong>material</strong>s science (Seitavuopio,<br />

et al. 2005). The b<strong>as</strong>ic pr<strong>in</strong>ciple <strong>of</strong> all <strong>in</strong>struments for physical pr<strong>of</strong>ile me<strong>as</strong>urement<br />

is b<strong>as</strong>ed on a sensitive detection stylus that sc<strong>an</strong>s the substrate surface. The stylus<br />

consists <strong>of</strong> a f<strong>in</strong>e tip that is fixed to a lever (S<strong>in</strong>z<strong>in</strong>ger <strong>an</strong>d Jahns 2003). Pr<strong>of</strong>ilometry<br />

is accurate, qu<strong>an</strong>titative, flexible method <strong>an</strong>d it c<strong>an</strong> be <strong>use</strong>d to study are<strong>as</strong> with<br />

diameters up to several centimeters (Seitavuopio, et al. 2005). All pr<strong>of</strong>ilometers<br />

me<strong>as</strong>ure the physical depth <strong>of</strong> surface irregularities us<strong>in</strong>g some form <strong>of</strong> diamond or<br />

brush-type stylus attached to <strong>an</strong> arm that travels <strong>in</strong> a straight l<strong>in</strong>e for a specified<br />

cut<strong>of</strong>f or sampl<strong>in</strong>g length, typically 0.08 cm. Most pr<strong>of</strong>ilometers allow for various<br />

cut<strong>of</strong>f lengths. The pr<strong>of</strong>ilometer tr<strong>an</strong>sforms the <strong>in</strong>formation from the stylus <strong>in</strong>to <strong>an</strong><br />

electrical signal <strong>an</strong>d converts that signal <strong>in</strong>to usable data.<br />

Pr<strong>of</strong>ilometry c<strong>an</strong> be divided <strong>in</strong>to two groups <strong>as</strong> stylus <strong>an</strong>d optical. The stylus<br />

pr<strong>of</strong>ilometer (SP), a powerful microscopic technique, h<strong>as</strong> been developed to study<br />

the surface roughness <strong>of</strong> <strong>material</strong>s (Williamson 1967, Guenther, et al. 1984,<br />

Wiesend<strong>an</strong>ger 1994). The stylus <strong>in</strong> the SP is <strong>use</strong>d to sc<strong>an</strong> surface, sense the variations<br />

<strong>of</strong> the sample. The stylus <strong>in</strong> the pr<strong>of</strong>ilometer is carried by a c<strong>an</strong>tilever beam <strong>an</strong>d it<br />

rides on the sample surface. This me<strong>an</strong>s that a rough surface c<strong>an</strong> be pl<strong>as</strong>tically<br />

deformed (Davis <strong>an</strong>d Stout 1982). It is a technique <strong>in</strong> which a diamond stylus<br />

brought <strong>in</strong>to contact with a sample <strong>an</strong>d sc<strong>an</strong>ned over the surface. The surface pr<strong>of</strong>ile<br />

ca<strong>use</strong>s <strong>an</strong> up-<strong>an</strong>d-down movement <strong>of</strong> the lever which is detected (S<strong>in</strong>z<strong>in</strong>ger <strong>an</strong>d<br />

Jahns 2003).<br />

Figure 3.5. Schematic Configuration <strong>of</strong> a Pr<strong>of</strong>ilometer <strong>an</strong>d Its Units<br />

(Source: Johnson 2000)<br />

32


One well-established method for surface roughness me<strong>as</strong>urement is noncontact<br />

l<strong>as</strong>er pr<strong>of</strong>ilometry or optical pr<strong>of</strong>ilometry (Podczek 1998, Riippi, et al. 1998,<br />

Salako, et al. 1998, Ruotsala<strong>in</strong>en, et al. 2002, Seitavuopio, et al. 2003). The<br />

adv<strong>an</strong>tages <strong>of</strong> pr<strong>of</strong>ilometry us<strong>in</strong>g a l<strong>as</strong>er are the absence <strong>of</strong> contact, higher<br />

me<strong>as</strong>urement speed, higher lateral resolution <strong>an</strong>d greater depth r<strong>an</strong>ge. Pr<strong>of</strong>ilometry<br />

us<strong>in</strong>g a diamond stylus produces far better depth resolution. L<strong>as</strong>er pr<strong>of</strong>ilometry h<strong>as</strong><br />

also been <strong>use</strong>d <strong>in</strong> m<strong>an</strong>y different fields <strong>of</strong> <strong>material</strong> research like paper coat<strong>in</strong>g, dental<br />

<strong>material</strong>s <strong>an</strong>d surgical prothesis (Wagberg, et al. 1993, Cho, et al. 2002, Chauvy, et<br />

al. 1998).<br />

Roughness is commonly calculated us<strong>in</strong>g one <strong>of</strong> four methods: Ra (roughness<br />

average), RMS (root me<strong>an</strong> square), Rz (a 10 po<strong>in</strong>t average), <strong>an</strong>d Rt or Rmax<br />

(maximum between peak <strong>an</strong>d valley). Surface roughness is calculated by a<br />

pr<strong>of</strong>ilometer us<strong>in</strong>g <strong>an</strong>y <strong>of</strong> four common methods: Ra, RMS, Rz, <strong>an</strong>d Rt (Rmax).<br />

a) Ra or roughness average is the average <strong>of</strong> peak <strong>an</strong>d valley dist<strong>an</strong>ces<br />

me<strong>as</strong>ured along the centerl<strong>in</strong>e <strong>of</strong> one cut<strong>of</strong>f length (usually 0.08 cm).<br />

b) RMS or root me<strong>an</strong> square is <strong>an</strong> older method, not common today, averag<strong>in</strong>g<br />

only the heights <strong>of</strong> all po<strong>in</strong>ts me<strong>as</strong>ured <strong>in</strong> one cut<strong>of</strong>f length. Read<strong>in</strong>gs are similar to<br />

Ra but about 10% higher.<br />

c) Rz, a 10-po<strong>in</strong>t average, is <strong>an</strong> average <strong>of</strong> the five highest peaks <strong>an</strong>d the five<br />

lowest valleys me<strong>as</strong>ured <strong>in</strong> one cut<strong>of</strong>f length.<br />

d) Rt (Rmax), maximum height between peak <strong>an</strong>d valley, is the value <strong>of</strong> the<br />

vertical dist<strong>an</strong>ce between the highest peak <strong>an</strong>d lowest valley me<strong>as</strong>ured along one<br />

cut<strong>of</strong>f length.<br />

33


Figure 3.6. Four Ways to Calculate Roughness<br />

(Source: Hebert 2009)<br />

In the study surface roughness <strong>of</strong> the polymer films w<strong>as</strong> me<strong>as</strong>ured with a<br />

stylus pr<strong>of</strong>ilometer (Mitutoyo Surftest SJ-201P, Jap<strong>an</strong>) which sc<strong>an</strong>s surface<br />

roughness between 0.01 – 100 μm with 2μm-diameter diamond stylus <strong>an</strong>d 0.01μm<br />

resolution. The roughness <strong>of</strong> the surfaces, Ra, w<strong>as</strong> determ<strong>in</strong>ed with 0.8 mm sampl<strong>in</strong>g<br />

length <strong>an</strong>d three sampl<strong>in</strong>g sc<strong>an</strong>s. For each film at le<strong>as</strong>t ten me<strong>as</strong>urements were done.<br />

34


CHAPTER 4<br />

RESULTS AND DISCUSSION<br />

4.1. Characterization <strong>of</strong> Materials: PVC Powder, Fly Ash, Calcite<br />

4.1.1. Morphology<br />

Sc<strong>an</strong>n<strong>in</strong>g electron microscope (SEM) w<strong>as</strong> <strong>use</strong>d to take pictures <strong>of</strong> the powder<br />

<strong>material</strong>s to determ<strong>in</strong>e the general look <strong>of</strong> particles such <strong>as</strong> shape. These pictures are<br />

presented <strong>in</strong> Figure 4.1 <strong>an</strong>d Figure 4.2 for both calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>material</strong>s. As it is<br />

seen from Figure 4.1 that the shape <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> is not regular <strong>an</strong>d uniform. There are<br />

large <strong>an</strong>d small particles. There are some perfectly sphere <strong>fly</strong> <strong><strong>as</strong>h</strong> particules. This is<br />

expected due to the mixed compositon <strong>of</strong> <strong><strong>as</strong>h</strong> content. Figure 4.2 gives the general<br />

morphology <strong>of</strong> calcite particles. As it is seen from the figure that the shape <strong>of</strong> calcite<br />

particles are quite different from the that <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> particles. In deed, this difference<br />

w<strong>as</strong> one <strong>of</strong> the ma<strong>in</strong> re<strong>as</strong>ons that the <strong>fly</strong> <strong><strong>as</strong>h</strong> w<strong>as</strong> chosen <strong>as</strong> <strong>an</strong> <strong>alternative</strong> <strong>filler</strong><br />

<strong>material</strong> <strong>in</strong> this study.<br />

Morphology is <strong>use</strong>d to determ<strong>in</strong>e the possibility <strong>of</strong> process<strong>in</strong>g. PVC<br />

morphology is affected dur<strong>in</strong>g two stages <strong>of</strong> its produc<strong>in</strong>g: <strong>in</strong> polymerization <strong>an</strong>d<br />

dur<strong>in</strong>g dry<strong>in</strong>g (Wypych 1988).<br />

35


(a) (2500x)<br />

(b) (10000x)<br />

Figure 4.1. SEM Pictures <strong>of</strong> sieved <strong>fly</strong> <strong><strong>as</strong>h</strong> powder (-37 µ)<br />

(a) (2500x) (b) (10000x)<br />

Figure 4.2. SEM Picture <strong>of</strong> commercial calcite (5 µm) (2500x)<br />

36


Figure 4.3. SEM Picture <strong>of</strong> commercial product PVC powder (2500x)<br />

The morphology <strong>of</strong> the PVC particules that are known to affect the migration<br />

<strong>of</strong> the pl<strong>as</strong>ticizer <strong>in</strong>to the PVC particles (which suppose to happen dur<strong>in</strong>g the<br />

preparation <strong>of</strong> PVC pl<strong>as</strong>tisols) <strong>an</strong>d ch<strong>an</strong>ge some properties <strong>of</strong> the flexible PVC<br />

pl<strong>as</strong>tisols such <strong>as</strong> viscosity, process rate, cur<strong>in</strong>g time, were also <strong>in</strong>vestigated.<br />

Therefore, the general morphology <strong>of</strong> PVC powder (SEM picture) is presented <strong>in</strong><br />

Figure 4.3. PVC powder particles seem to all have spherical shapes <strong>as</strong> shown <strong>in</strong> the<br />

figure. However, there is a size distribution. That is the size <strong>of</strong> spheres are not<br />

uniform.<br />

4.1.2. Particle Size Distribution Me<strong>as</strong>urements<br />

Particle size distributions <strong>of</strong> calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> powders were obta<strong>in</strong>ed us<strong>in</strong>g<br />

Malvern M<strong>as</strong>tersizer 2000 HD <strong>an</strong>d presented <strong>in</strong> Figures 4.4-4.6. The size distribution<br />

<strong>of</strong> PVC powder, on the other h<strong>an</strong>d, could not be obta<strong>in</strong>ed with this system due to the<br />

distribution problems observed <strong>in</strong> water. Therefore, the particle size <strong>in</strong>formation <strong>of</strong><br />

PVC powder w<strong>as</strong> obta<strong>in</strong>ed us<strong>in</strong>g the SEM picture given <strong>in</strong> Figure 4.7. It is seen that<br />

the size <strong>of</strong> PVC particles were <strong>in</strong> n<strong>an</strong>ometers <strong>an</strong>d have some distribution also.<br />

37


Volume %<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

CALCITE- WITH CHEMICAL TREATMENT<br />

0 10 20 30<br />

Particle Size ( µm )<br />

Figure 4.4. Particle size distribution <strong>of</strong> calcite (Malvern M<strong>as</strong>tersizer 2000 HD)<br />

Volume %<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

FLY ASH WITH CHEMICAL TREATMENT,<br />

after sieve <strong>an</strong>alysis (-38 µm ).<br />

0 10 20 30<br />

Particle Size ( µm )<br />

Figure 4.5. Particle size distribution <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>, after sieve <strong>an</strong>alysis<br />

Volume %<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

FLY ASH WITH CHEMICAL<br />

TREATMENT, before sieve <strong>an</strong>alysis.<br />

0 100 200 300 400 500<br />

Particle Size ( µm )<br />

Figure 4.6. Particle size distribution <strong>of</strong> Soma <strong>fly</strong> <strong><strong>as</strong>h</strong>, before sieve <strong>an</strong>alysis<br />

38


Figure 4.4 gives the size distribution <strong>of</strong> -38 µm <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>material</strong> which is one<br />

<strong>use</strong>d <strong>in</strong> this study <strong>as</strong> <strong>filler</strong> while Figure 4.6 gives the size distribution <strong>of</strong> all <strong>material</strong><br />

before siev<strong>in</strong>g. The Figures 4.4 <strong>an</strong>d 4.5 shows that the size distributions <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

<strong>an</strong>d calcite powders are so similar to each other. This is good <strong>in</strong> terms <strong>of</strong> comparison<br />

<strong>of</strong> these <strong>material</strong>s. The coarse particles were separated from <strong>fly</strong> <strong><strong>as</strong>h</strong> s<strong>in</strong>ce these are<br />

expected to affect the surface <strong>an</strong>d mech<strong>an</strong>ical properties <strong>of</strong> the PVC films.<br />

Figure 4.7. Particle size distribution <strong>of</strong> Soma <strong>fly</strong> <strong><strong>as</strong>h</strong>, before sieve <strong>an</strong>alysis<br />

4.1.3. Thermal Gravimetric Analysis (TGA) <strong>of</strong> Fly Ash<br />

The TGA results are presented <strong>in</strong> Figure 4.8 <strong>as</strong> a % m<strong>as</strong>s loss percent <strong>as</strong> a<br />

function <strong>of</strong> temperature. It is seen that there is no considerable ch<strong>an</strong>ge <strong>in</strong> m<strong>as</strong>s loss<br />

after 700 °C. The total m<strong>as</strong>s losses from the <strong><strong>as</strong>h</strong> is between 2 to 4 % when it is heated<br />

to 1000 °C.<br />

39


4.1.4. XRD Analysis <strong>of</strong> Fillers<br />

Figure 4.8. TGA graph <strong>of</strong> the Soma <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

Figure 4.9. XRD <strong>an</strong>alysis <strong>of</strong> calcite<br />

40


Figure 4.10. XRD <strong>an</strong>alysis <strong>of</strong> Soma <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

The identification <strong>of</strong> <strong>filler</strong>s were also done by XRD <strong>an</strong>alyses. The graphical<br />

representations expla<strong>in</strong> that calcite is highly rich <strong>in</strong> Ca(CO)3,. Soma <strong>fly</strong> <strong><strong>as</strong>h</strong> is ma<strong>in</strong>ly<br />

rich <strong>in</strong> amounts <strong>of</strong> Al, Si, Ca compounds.<br />

4.1.5. Surface Area Analysis<br />

Surface area property <strong>of</strong> <strong>filler</strong>s affect the surface <strong>an</strong>d mech<strong>an</strong>ical properties <strong>of</strong><br />

the polymers. Some additives <strong>in</strong> pl<strong>as</strong>tisols <strong>in</strong>teract with particle surfaces <strong>an</strong>d affect<br />

<strong>in</strong>terparticle repulsive <strong>an</strong>d attractive forces <strong>in</strong> the <strong>in</strong>terparticle fluid. Therefore<br />

surface area me<strong>as</strong>urements <strong>of</strong> calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> samples w<strong>as</strong> done <strong>an</strong>d the results are<br />

presented <strong>in</strong> Table 4.1. Accord<strong>in</strong>g to Table 4.1 PVC particles have higher surface<br />

area th<strong>an</strong> <strong>filler</strong>s. However, <strong>fly</strong> <strong><strong>as</strong>h</strong> powder seems to have higher surface area th<strong>an</strong><br />

calcite. The average pore size is also little higher <strong>in</strong> the c<strong>as</strong>e <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> compare to the<br />

other <strong>material</strong>s.<br />

41


Material<br />

Table 4.1. Surface area results <strong>of</strong> powders <strong>use</strong>d <strong>in</strong> this study<br />

Surface Area<br />

BET Surface Area L<strong>an</strong>gmuir Surface Area<br />

BJH Adsorption Average<br />

Pore Witdh (4V/A)<br />

m²/g m²/g Å<br />

PVC(KValue=75) 5.7224 23.0932 29.453<br />

Calcite 3.528 14.5911 29.453<br />

Soma Fly Ash 4.07 16.62 33.21<br />

4.1.6. XRF Analysis <strong>of</strong> Fly Ash<br />

XRF <strong>an</strong>alysis is one <strong>of</strong> the elemental <strong>an</strong>alysis for the <strong>fly</strong> <strong><strong>as</strong>h</strong>. Spectro IQ II<br />

<strong>in</strong>strument is <strong>use</strong>d for <strong>an</strong>alysis. Table 4.2 shows that <strong>fly</strong> <strong><strong>as</strong>h</strong> sample conta<strong>in</strong>s Ca, Si<br />

<strong>an</strong>d Al at highest conc<strong>an</strong>tration values.<br />

Table 4.2. XRF <strong>an</strong>alysis result <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> sample<br />

Z Symbol Element Concentration<br />

12 Mg Magnesium 1.50%<br />

13 Al Alum<strong>in</strong>um 11.74%<br />

14 Si Silicon 19.56%<br />

20 Ca Calcium 17.19%<br />

26 Fe Iron 3.41%<br />

4.1.7. ICP-MS Metal Analysis <strong>of</strong> Fly Ash<br />

The elemental determ<strong>in</strong>ations obta<strong>in</strong>ed by ICP-MS <strong>an</strong>alyses were shown <strong>in</strong><br />

Table 4.3.<br />

42


Table 4.3. ICP-MS results <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

Metal Concentration (µg/L) ICP-MS<br />

Li / 7 595.100<br />

B / 11 4.051<br />

Na / 23 179800<br />

Mg / 24 31.060<br />

Al / 27 14.730<br />

K / 39 34380<br />

Ca / 43 344100<br />

Cr / 53 121.800<br />

Fe / 56 4.975<br />

Co / 59 1.750<br />

Ni / 60 13.280<br />

Cu / 63 7.783<br />

Zn / 66 62.360<br />

Ga / 69 21.830<br />

Sr / 88 3963<br />

Ba / 137 789.00<br />

Bi / 209 5.360<br />

ICP-MS <strong>an</strong>alyses shows that obta<strong>in</strong>ed <strong>fly</strong> <strong><strong>as</strong>h</strong> from Soma Thermic Central<br />

conta<strong>in</strong>s very high concentrations <strong>of</strong> Ca <strong>an</strong>d Na metals. Other high level <strong>of</strong> metals<br />

are; K, Sr <strong>an</strong>d Ba. The amount <strong>of</strong> metals <strong>in</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> describes us production type<br />

<strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d type. But <strong>use</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>in</strong> this study could not be match with <strong>an</strong>y<br />

type. Beca<strong>use</strong> metal concentration values were found different from desired values.<br />

4.2. Rheology Me<strong>as</strong>urements <strong>of</strong> the PVC Pl<strong>as</strong>tisols<br />

Rheology is import<strong>an</strong>t for the process<strong>in</strong>g <strong>of</strong> PVC pl<strong>as</strong>tisols due to their effect<br />

on the surface characteristics <strong>an</strong>d process parameters such <strong>as</strong> process rate, time <strong>an</strong>d<br />

therefore the quality <strong>an</strong>d cost <strong>of</strong> f<strong>in</strong>al product. PVC Pl<strong>as</strong>tisols are known to show<br />

different type <strong>of</strong> rheological properties accord<strong>in</strong>g to PVC type. But, the common<br />

rheological behaviour is supposed to be Pseudopl<strong>as</strong>tic especially <strong>in</strong> the c<strong>as</strong>e <strong>of</strong> PVC<br />

pl<strong>as</strong>tisols <strong>use</strong>d <strong>in</strong> leather <strong>an</strong>d conveyor belt production.<br />

43


In this study, the rheological behaviour <strong>of</strong> PVC pl<strong>as</strong>tisols with different<br />

compositions were tested. These studies were conducted us<strong>in</strong>g the test procedure<br />

given <strong>in</strong> Chapter 3. The follow<strong>in</strong>g parameters were tested.<br />

• Type <strong>of</strong> <strong>filler</strong><br />

• Concentration <strong>of</strong> <strong>filler</strong>s<br />

• Mix<strong>in</strong>g rate <strong>of</strong> PVC pl<strong>as</strong>tisols<br />

• Temperature <strong>of</strong> PVC pl<strong>as</strong>tisols<br />

Figure 4.11 presents the rheological behaviour <strong>of</strong> st<strong>an</strong>dart PVC pl<strong>as</strong>tisols <strong>as</strong> a<br />

function <strong>of</strong> temperature (25, 30 <strong>an</strong>d 35 o C). This samples do not conta<strong>in</strong> <strong>an</strong>y <strong>filler</strong><br />

<strong>material</strong>. Therefore they will be <strong>use</strong>d <strong>as</strong> reference results dur<strong>in</strong>g this study. These<br />

me<strong>as</strong>urements are conducted at different mix<strong>in</strong>g rates.<br />

It is seen from Figure 4.11 that, the shear stress seems to <strong>in</strong>cre<strong>as</strong>e slightly with<br />

temperature <strong>in</strong>cre<strong>as</strong>e at 600 <strong>an</strong>d 1000 RPM mix<strong>in</strong>g rates. This might be due to the<br />

follow<strong>in</strong>g re<strong>as</strong>on. When the temperature gets higher, pl<strong>as</strong>ticizer, the mobile ph<strong>as</strong>e,<br />

may diff<strong>use</strong> <strong>in</strong>to the PVC plarticules e<strong>as</strong>ily <strong>an</strong>d therefore dim<strong>in</strong>ish from the system.<br />

This will make more PVC particules swell <strong>an</strong>d <strong>in</strong>cre<strong>as</strong>e the viscosity <strong>of</strong> PVC<br />

pl<strong>as</strong>tisol. At high shear rate, on the other h<strong>an</strong>d, this effect disappears.<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(a)<br />

STD PLASTISOL, 600 RPM<br />

0<br />

0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Shear Rate, 1/sec.<br />

25 0C<br />

30 0C<br />

35 0C<br />

Figure 4.11. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on rheological behaviour <strong>of</strong> st<strong>an</strong>dart PVC<br />

pl<strong>as</strong>tisol mixtures after different mix<strong>in</strong>g rates: (a) 600 RPM, (b) 1000<br />

RPM, (c) 1400 RPM (cont. on next page)<br />

44


Shear Stress, p<strong>as</strong>cal<br />

Shear stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

STD PLASTISOL, 1000 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

(b)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(c)<br />

Figure 4.11. (cont.)<br />

Shear Rate 1/sec.<br />

STD PLASTISOL, 1400 RPM<br />

Shear Rate, 1/sec.<br />

25 0C<br />

30 0C<br />

35 0C<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Figure 4.12 presents the rheological behaviour <strong>of</strong> PVC pl<strong>as</strong>tisols with a fill<strong>in</strong>g<br />

<strong>material</strong>, calcite, <strong>as</strong> a function <strong>of</strong> temperature (25, 30 <strong>an</strong>d 35 o C). These<br />

me<strong>as</strong>urements are conducted at different mix<strong>in</strong>g rates for sample 1. It is seen from<br />

Figure 4.12 that, the shear stress seems to <strong>in</strong>cre<strong>as</strong>e with high temperature 35 o C <strong>in</strong> the<br />

45


c<strong>as</strong>e <strong>of</strong> 1000 RPM mix<strong>in</strong>g rate. At high mix<strong>in</strong>g rate (1400 RPM), however, the<br />

rheological behaviour <strong>of</strong> the suspension ch<strong>an</strong>ges from newtoni<strong>an</strong> to the<br />

presudopl<strong>as</strong>tic.<br />

In the absence <strong>of</strong> calcite, <strong>an</strong> <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> temperature <strong>in</strong>cre<strong>as</strong>ed the viscosity <strong>of</strong><br />

pl<strong>as</strong>tisols due to the <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> diffusion <strong>of</strong> pl<strong>as</strong>tiser (dim<strong>in</strong>ish from the system) <strong>in</strong> to<br />

the PVC particles <strong>an</strong>d therefore the swell <strong>of</strong> PVC particles. In the presence <strong>of</strong> calcite,<br />

however, at moderate mix<strong>in</strong>g rates, the shear stress seems to <strong>in</strong>cre<strong>as</strong>e with high<br />

temperature most probably due to the same re<strong>as</strong>on given above <strong>an</strong>d then the the<br />

rheological behaviour <strong>of</strong> system ch<strong>an</strong>ged form newtoni<strong>an</strong> to pseudopl<strong>as</strong>tic.<br />

Shear stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

CALCITE- SAMPLE 1- 600 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

(a)<br />

Shear Rate, 1/sec.<br />

25 o C<br />

30 o C<br />

35 o C<br />

Figure 4.12. Effect <strong>of</strong> temperature on the rheological behaviour <strong>of</strong> PVC – CALCITE<br />

pl<strong>as</strong>tisol, sample 1 mixtures after different mix<strong>in</strong>g rates: (a) 600 RPM,<br />

b) 1000 RPM, (c) 1400 RPM (cont. on next page )<br />

46


Shear stress, p<strong>as</strong>cal<br />

Shear stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

CALCITE- SAMPLE 1- 1000 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

80<br />

60<br />

40<br />

20<br />

(b)<br />

(c)<br />

Figure 4.12. (cont.)<br />

Shear Rate, 1/sec.<br />

CALCITE- SAMPLE 1- 1400 RPM<br />

Shear Rate, 1/sec.<br />

25 o C<br />

30 o C<br />

35 o C<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Figure 4.13 presents similar type <strong>of</strong> results for the rheological behaviour <strong>of</strong><br />

PVC pl<strong>as</strong>tisols with a fill<strong>in</strong>g <strong>material</strong>, calcite, sample 2. It is seen from Figure 4.13<br />

47


that, the shear stress seems to <strong>in</strong>cre<strong>as</strong>e at high temperature, 35 o C, <strong>in</strong> the c<strong>as</strong>e <strong>of</strong> both<br />

600 <strong>an</strong>d 1000 RPM mix<strong>in</strong>g rates. This is most probably due to the same re<strong>as</strong>on given<br />

above. The high mix<strong>in</strong>g rate (1400 RPM), however, destroys this effect <strong>an</strong>d<br />

decre<strong>as</strong>es shear stress down to its orig<strong>in</strong>al value. The rheological behaviour <strong>of</strong> the<br />

suspension also stays newtoni<strong>an</strong>.<br />

Shear Stress, p<strong>as</strong>cal<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CALCITE - SAMPLE 2 - 600 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

(a)<br />

Shear Rate, 1/sec.<br />

25 o C<br />

30 o C<br />

35 o C<br />

Figure 4.13. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong> PVC-<br />

CALCITE pl<strong>as</strong>tisol, sample 2 mixtures after different mix<strong>in</strong>g rates: (a)<br />

600 RPM, (b) 1000 RPM, (c) 1400 RPM (cont. on next page )<br />

48


Shear Stress<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

80<br />

60<br />

40<br />

20<br />

CALCITE - SAMPLE 2 - 1000 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

(b)<br />

(c)<br />

Figure 4.13. (cont.)<br />

Shear Rate<br />

CALCITE - SAMPLE 2 - 1400 RPM<br />

Shear Rate, 1/sec.<br />

25 o C<br />

30 o C<br />

35 o C<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

49


Figure 4.14 presents similar type <strong>of</strong> results for the rheological behaviour <strong>of</strong><br />

PVC pl<strong>as</strong>tisols with a fill<strong>in</strong>g <strong>material</strong>, calcite, sample 3. It is seen from Figure 4.14<br />

that, the effect <strong>of</strong> temperature seems complex.<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

CALCITE- SAMPLE 3- 600 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Shear Rate, 1/sec.<br />

80<br />

60<br />

40<br />

20<br />

(a)<br />

CALCITE- SAMPLE 3<br />

1000 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Shear Rate, 1/sec.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(b)<br />

CALCITE- SAMPLE 3<br />

1400 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Shear Rate, 1/sec.<br />

(c)<br />

Figure 4.14. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong> PVC-<br />

CALCITE pl<strong>as</strong>tisol, sample 3 mixtures after different mix<strong>in</strong>g rates: (a)<br />

600 RPM, (b) 1000 RPM, (c) 1400 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

50


Figures 4.15, 4.16, <strong>an</strong>d 4.17 present similar type <strong>of</strong> results for the rheological<br />

behaviour <strong>of</strong> PVC pl<strong>as</strong>tisols with a fill<strong>in</strong>g <strong>material</strong>, <strong>fly</strong> <strong><strong>as</strong>h</strong>. It is seen from the figures<br />

that the effect <strong>of</strong> temperature seems complex <strong>in</strong> the c<strong>as</strong>e <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>. However, the<br />

results also show that the rheolgoy <strong>of</strong> PVC pl<strong>as</strong>tisol ch<strong>an</strong>ges. It becomes harder<br />

system.<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Shear Stress, p<strong>as</strong>cal<br />

FLY ASH- SAMPLE 1<br />

600 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

Shear Rate, 1/sec.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(a)<br />

FLY ASH- SAMPLE 1<br />

1000 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16<br />

Shear Rate, 1/sec.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(b)<br />

FLY ASH- SAMPLE 1<br />

1400 RPM<br />

0<br />

0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14<br />

Shear Rate, 1/sec.<br />

(c)<br />

Figure 4.15. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong> PVC–FLY<br />

ASH pl<strong>as</strong>tisol, sample 1 mixtures after different mix<strong>in</strong>g rates: (a) 600<br />

RPM, (b) 1000 RPM, (c) 1400 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

51


Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

FLY ASH- SAMPLE 2, 600 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(a)<br />

Shear Rate, 1/sec.<br />

Shear Rate, 1/sec.<br />

25 o C<br />

30 o C<br />

35 o C<br />

FLY ASH- SAMPLE 2<br />

1000 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

(b)<br />

FLY ASH- SAMPLE 2,<br />

1400 RPM<br />

0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14<br />

(c)<br />

Shear Rate, 1/sec.<br />

Figure 4.16. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong> PVC–FLY<br />

ASH pl<strong>as</strong>tisol, sample 2 mixtures after different mix<strong>in</strong>g rates: (a) 600<br />

RPM, (b) 1000 RPM, (c) 1400 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

52


Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

FLY ASH-SAMPLE 3<br />

600 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14<br />

Shear Rate, 1/sec.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

(a)<br />

FLY ASH-SAMPLE 3<br />

1000 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0,06 0,08 0,10 0,12 0,14 0,16<br />

Shear Rate, 1/sec.<br />

(b)<br />

FLY ASH-SAMPLE 3- 1400 RPM<br />

25 o C<br />

30 o C<br />

35 o C<br />

0<br />

0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13<br />

Shear Rate, 1/sec.<br />

(c)<br />

Figure 4.17. Effect <strong>of</strong> temperature ch<strong>an</strong>ge on the rheological behaviour <strong>of</strong> PVC–FLY<br />

ASH pl<strong>as</strong>tisol, sample 3 mixtures after different mix<strong>in</strong>g rates: (a) 600<br />

RPM, (b) 1000 RPM, (c) 1400 RPM<br />

Figures 4.18- 4.20 present the rheological behaviour <strong>of</strong> st<strong>an</strong>dart <strong>an</strong>d other<br />

PVC pl<strong>as</strong>tisols with calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>as</strong> a function <strong>of</strong> mix<strong>in</strong>g rate (600, 1500 <strong>an</strong>d<br />

1400 RPM) for different temperatures. The sample type <strong>use</strong>d <strong>in</strong> these studies were<br />

type 1. It is seen from the figures that, the rheology <strong>of</strong> the st<strong>an</strong>dart PVC pl<strong>as</strong>tisol does<br />

not ch<strong>an</strong>ge with the ch<strong>an</strong>ge <strong>in</strong> mix<strong>in</strong>g rate. However, <strong>in</strong> the c<strong>as</strong>e <strong>of</strong> fill<strong>in</strong>g <strong>material</strong>s<br />

53


calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong>, the rheology <strong>of</strong> the PVC st<strong>an</strong>dart ch<strong>an</strong>ges. This ch<strong>an</strong>ge seems<br />

complex.<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

SAMPLE STD, 25 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(a)<br />

Shear Rate, 1/sec.<br />

SAMPLE STD, 30 o C<br />

Shear Rate, 1/sec.<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(b)<br />

SAMPLE STD, 35 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,1<br />

(c)<br />

Shear Rate, 1/sec.<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

Figure 4.18. Effect <strong>of</strong> mix<strong>in</strong>g rate on the rheological behaviour <strong>of</strong> st<strong>an</strong>dart PVC<br />

pl<strong>as</strong>tisol mixtures at different temperatures : (a) 25 0 C, (b) 30 0 C, (c) 35<br />

0 C<br />

54


Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Calcite-1, 25 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,1<br />

(a)<br />

Calcite-,25 o C<br />

Sear Rate, 1/sec.<br />

Shear Rate, 1/sec.<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(b)<br />

Calcite-3, 25 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

(c)<br />

Shear Rate, 1/sec.<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

Figure 4.19. Effect <strong>of</strong> mix<strong>in</strong>g rate on the rheological behaviour <strong>of</strong> PVC – CALCITE<br />

pl<strong>as</strong>tisol mixtures at different temperatures : (a) 25 0 C, (b) 30 0 C, (c) 35<br />

0 C<br />

55


Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

Shear Stress, p<strong>as</strong>cal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Fly Ash-1, 25 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16 0,18<br />

100<br />

100<br />

80<br />

60<br />

40<br />

20<br />

80<br />

60<br />

40<br />

20<br />

(a)<br />

Shear Rate, 1/sec.<br />

Shear Rate, 1/sec.<br />

Fly <strong><strong>as</strong>h</strong> -2, 25 o C<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

0<br />

0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13<br />

(b)<br />

Fly <strong><strong>as</strong>h</strong>-3, 25 o C<br />

0<br />

0,06 0,08 0,10 0,12 0,14 0,16<br />

(c)<br />

Shear Rate, 1/sec.<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

Figure 4.20. Effect <strong>of</strong> mix<strong>in</strong>g rate on the rheological behaviour <strong>of</strong> PVC –FLY ASH<br />

pl<strong>as</strong>tisol mixtures at different temperatures : (a) 25 0 C, (b) 30 0 C, (c) 35<br />

0 C<br />

56


4.3. Surface Characterization<br />

4.3.1. SEM ( Sc<strong>an</strong>n<strong>in</strong>g Electron Microscope )<br />

Representative SEM images were collected r<strong>an</strong>domly at 1000 magnification to<br />

have <strong>an</strong> idea about the appear<strong>an</strong>ce <strong>of</strong> the PVC films. These SEM images are <strong>in</strong> good<br />

agreement with the pr<strong>of</strong>ilometer results. That is, there are enough ch<strong>an</strong>ges <strong>in</strong> the<br />

surface roughness which are visible to the eye at these magnifications <strong>as</strong> a function <strong>of</strong><br />

<strong>filler</strong> (calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong>) concentration.<br />

(a) (b)<br />

(c ) (d)<br />

Figure 4.21. SEM photographs <strong>of</strong> the PVC films, <strong>in</strong>cluded diffrent concentration <strong>of</strong><br />

calcite. (a) Std sample surface, (b) Calcite-Sample 1, (c) Calcite-<br />

Sample 2, (d) Calcite-Sample 3<br />

57


Figure 4.21 shows the calcite filled PVC film surfaces, PVC film without <strong>filler</strong><br />

<strong>an</strong>d maximum level <strong>of</strong> calcite loaded films seem similar, sample-1 <strong>an</strong>d sample-3<br />

seem different. Especially, there is a particules on the surface <strong>of</strong> the calcite-sample 2.<br />

These particules may be PVC powders which were not swell<strong>in</strong>g <strong>an</strong>d wet by<br />

pl<strong>as</strong>ticizer beca<strong>use</strong> <strong>of</strong> a <strong>in</strong>adequate mix<strong>in</strong>g.<br />

(a) (b)<br />

(c ) (d)<br />

Figure 4.22. SEM photographs <strong>of</strong> the PVC films, <strong>in</strong>cluded different concentration <strong>of</strong><br />

<strong>fly</strong> <strong><strong>as</strong>h</strong> (a) Std sample surface , (b) Fly Ash–Sample 1, (c) Fly Ash–<br />

Sample 2, (d) Fly Ash–Sample 3<br />

Figure 4.22 shows <strong>fly</strong> <strong><strong>as</strong>h</strong> filled PVC film surfaces, (b,c <strong>an</strong>d d) <strong>an</strong>d PVC film<br />

without <strong>filler</strong> (a), Sample 1, which w<strong>as</strong> loaded m<strong>in</strong>imum concentration <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d<br />

st<strong>an</strong>dart PVC films seem similar, but at higher concentrations, there are corruption on<br />

the surfaces.<br />

58


4.3.2. Surface Roughness Me<strong>as</strong>urements<br />

Surface roughness me<strong>as</strong>urements were conducted us<strong>in</strong>g a pr<strong>of</strong>ilometer<br />

mentioned <strong>in</strong> Chapter 3 <strong>in</strong> detail. The effect <strong>of</strong> both <strong>filler</strong> type <strong>an</strong>d concentration were<br />

tested. The results <strong>of</strong> these me<strong>as</strong>urements are presented <strong>in</strong> Figures 4.23 <strong>an</strong>d 4.24 for<br />

calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> concentrations respectively. It is seen from the figures that us<strong>in</strong>g a<br />

<strong>filler</strong> (calcite or <strong>fly</strong> <strong><strong>as</strong>h</strong>) <strong>in</strong>cre<strong>as</strong>es surface roughness. However, this <strong>in</strong>cre<strong>as</strong>e is more<br />

<strong>in</strong> the c<strong>as</strong>e <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>. In the absence <strong>of</strong> <strong>an</strong>y <strong>filler</strong>, the surface roughness w<strong>as</strong> found to<br />

be approximately 0.2 μm. Incre<strong>as</strong><strong>in</strong>g calcite concentration from 6% to 18% <strong>in</strong>cre<strong>as</strong>ed<br />

the surface roughness value from 0.2 to 0.8 μm. This might be simply due to the<br />

larger size <strong>of</strong> calcite particles (see also Figures. 4.4, 4.5 <strong>an</strong>d 4.7). However, the<br />

roughness is more (from 0.2 to 1.5 μm) <strong>in</strong> the c<strong>as</strong>e <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> even though it h<strong>as</strong> very<br />

similar size distribution to calcite. This might be due to the complex composition <strong>of</strong><br />

<strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d <strong>in</strong>terparticle relations.<br />

As a conclusion, the roughness <strong>of</strong> PVC pl<strong>as</strong>tisol will be depend the type <strong>an</strong>d<br />

concetration <strong>of</strong> <strong>filler</strong> <strong>material</strong>. Therefore, one h<strong>as</strong> to optimize the type <strong>an</strong>d<br />

concentration <strong>of</strong> <strong>filler</strong> <strong>material</strong> depend<strong>in</strong>g on the purpose <strong>of</strong> PVC pl<strong>as</strong>tisol<br />

application <strong>an</strong>d the dem<strong>an</strong>d <strong>of</strong> surface roughness.<br />

Roughness, µm<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Calcite concentration ( % )<br />

Figure 4.23. Pr<strong>of</strong>ilometer surface roughness graph for calcite filled PVC films<br />

59


Roughness, µm<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

0 5 10 15 20 25 30<br />

Fly Ash concentration ( % )<br />

Figure 4.24. Pr<strong>of</strong>ilometer surface roughness graph for Fly Ash filled PVC films<br />

4.4. Mech<strong>an</strong>ical Tests<br />

4.4.1. Hardness Me<strong>as</strong>urements<br />

Hardness <strong>of</strong> polymer <strong>material</strong> filled with <strong>fly</strong> <strong><strong>as</strong>h</strong> is very different from calcite<br />

filled <strong>an</strong>d no filled <strong>material</strong>s. At some <strong>in</strong>dustries, harder <strong>material</strong>s are choosen for<br />

their usage, such <strong>as</strong> belts on the treadmill. S<strong>of</strong>t conveyor belts are choosen to be able<br />

to tr<strong>an</strong>sform boxes or goods for slopped systems. Accord<strong>in</strong>g to their hardness values<br />

all metarials filled with <strong>filler</strong>, <strong>use</strong>d <strong>in</strong> this study, c<strong>an</strong> be <strong>use</strong>d <strong>in</strong> conveyor belt <strong>as</strong><br />

cover <strong>material</strong>s accord<strong>in</strong>g to usage <strong>of</strong> <strong>material</strong>s. Hardness may be ca<strong>use</strong>d due to<br />

hardness <strong>of</strong> the <strong>filler</strong> <strong>material</strong>.<br />

60


Table 4.4. Hardness values <strong>of</strong> the PVC films<br />

Sample<br />

Hardness<br />

Shore A<br />

Std PVC Film 76<br />

Calcite 1 77<br />

Calcite 2 78<br />

Calcite 3 78<br />

Fly Ash 1 77<br />

Fly Ash 2 82<br />

Fly Ash 3 82<br />

4.4.2. Tensile Strength Me<strong>as</strong>urements<br />

4.4.2.1 Effect <strong>of</strong> Filler Concentration to the Mech<strong>an</strong>ical Properties<br />

Tensile strength me<strong>as</strong>urements are conducted <strong>as</strong> a function <strong>of</strong> <strong>filler</strong><br />

concentration. The results <strong>of</strong> these me<strong>as</strong>urements are presented <strong>in</strong> Figures 4.25 a-b for<br />

<strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d Figures 4.26 a-b for calcite. It is seen from Figures 4.25 a-b that the effect<br />

<strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> concentration is import<strong>an</strong>t. The stress <strong>in</strong>cre<strong>as</strong>es with <strong>an</strong> <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

concentration first reaches a maximum value, 6 N/mm 2 at 8% <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d then<br />

decre<strong>as</strong>es with a further <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> concentration for all the stirr<strong>in</strong>g speeds tested.<br />

However, this is not the c<strong>as</strong>e for calcite. The stress does not ch<strong>an</strong>ge signific<strong>an</strong>tly with<br />

<strong>an</strong> <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> calcite concentration except the highest concentration tested at 600<br />

RPM mix<strong>in</strong>g rate. As a result, both the <strong>filler</strong> concentration <strong>an</strong>d mix<strong>in</strong>g rates <strong>of</strong> the<br />

PVC pl<strong>as</strong>tisols affect the mech<strong>an</strong>ical properties <strong>of</strong> the PVC films formed. At low<br />

concentration <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>, 4%, PVC film had better mech<strong>an</strong>ical properties th<strong>an</strong> calcite<br />

filled PVC films. At higher concentrations, on the other h<strong>an</strong>d, the stress values<br />

decre<strong>as</strong>ed. This is the <strong>in</strong>dication <strong>of</strong> weaker mech<strong>an</strong>ical properties.<br />

.<br />

61


Stress at Failure, N/ mm 2<br />

Stress at Failure, N/mm 2<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

(a)<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

0 2 4 6 8 10 12<br />

600 RPM<br />

1000 RPM<br />

1400 RPM<br />

Vol % <strong>of</strong> Fly Ash<br />

0 2 4 6 8 10 12<br />

Vol % <strong>of</strong> Calcite<br />

(b)<br />

Figure 4.25. Filler concentration (Vol %) versus stress at failure graphs (a) Fly Ash<br />

(b) Calcite<br />

In addition, the Figures 4.26 a,b <strong>an</strong>d c are given to compare the stress at<br />

failure results <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d calcite <strong>as</strong> fill<strong>in</strong>g <strong>material</strong>s.<br />

62


4.4.2.2 Comparison <strong>of</strong> Filler Types<br />

Stress at Failure, N/mm 2<br />

Stress at Failure, N/mm 2<br />

Stress at Failure, N/mm 2<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

5,5<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

Calcite<br />

Fly Ash<br />

0 2 4 6 8 10 12<br />

Vol % <strong>of</strong> Filler<br />

(a) 600 RPM<br />

Calcite<br />

Fly Ash<br />

0 2 4 6 8 10 12<br />

(b) 1000 RPM<br />

Calcite<br />

Fly Ash<br />

Vol % <strong>of</strong> Filler<br />

0 2 4 6 8 10 12<br />

Vol % <strong>of</strong> Filler<br />

(c ) 1400 RPM<br />

Figure 4.26. Filler concentration ( Vol %) versus stress at failure graphs (a) 600 RPM<br />

(b) 1000 RPM (c) 1400 RPM<br />

63


As <strong>in</strong> general results are taken from Figure 4.25 <strong>an</strong>d Figure 4.26, <strong>filler</strong><br />

concentration <strong>an</strong>d mix<strong>in</strong>g rates <strong>of</strong> the PVC pl<strong>as</strong>tisols affect the mech<strong>an</strong>ical properties<br />

<strong>of</strong> the PVC <strong>material</strong>s. At low concentration <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> films have better mech<strong>an</strong>ical<br />

properties th<strong>an</strong> calcite filled PVC films. At highest concentration values <strong>of</strong> <strong>filler</strong>,<br />

stress values decre<strong>as</strong>es me<strong>an</strong>s mech<strong>an</strong>ical behaviours <strong>of</strong> the <strong>material</strong>s become<br />

weaker.<br />

As mentioned before, 1% elongation property is very import<strong>an</strong>t for the<br />

conveyor belts, if higher force is loaded th<strong>an</strong> required force for 1 % elongation to the<br />

conveyor belt dur<strong>in</strong>g <strong>as</strong>samblage to the conveyor system, belt undergoes pl<strong>as</strong>tic<br />

deformation <strong>an</strong>d pull out. In Figure 4.27, the effect <strong>of</strong> <strong>filler</strong> concentration on stress at<br />

1% elongation values are represented <strong>as</strong> a graph.<br />

Stress at 1% Elongation<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

Calcite<br />

Fly Ash<br />

0 2 4 6 8 10 12<br />

Vol % <strong>of</strong> Filler<br />

( a)<br />

Figure 4.27. Filler concentration (Vol %) versus stress at 1% elongation graphs (a)<br />

600 RPM (b) 1000 RPM (c) 1400 RPM (cont. on next page)<br />

64


Stress at 1% Elongation<br />

Stress at 1% Elongation<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

(b)<br />

(c )<br />

Figure 4.27. (cont.)<br />

Calcite<br />

Fly Ash<br />

0 2 4 6 8 10 12<br />

Calcite<br />

Fly Ash<br />

Vol % <strong>of</strong> Filler<br />

0 2 4 6 8 10 12<br />

Vol % <strong>of</strong> Filler<br />

As <strong>in</strong> Figure 4.27 when the volume <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> is <strong>in</strong>rec<strong>as</strong>ed, the amount <strong>of</strong> force<br />

<strong>in</strong>re<strong>as</strong>es to stretch the film <strong>as</strong> 1% <strong>in</strong> length up to 8 % (amount <strong>of</strong> <strong>filler</strong> <strong>as</strong> <strong>in</strong> volume<br />

percentage), after this concentration mech<strong>an</strong>ical property <strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> loaded films<br />

become weaker. For calcite, PVC films which were prepared with 600 <strong>an</strong>d 1000<br />

RPM mix<strong>in</strong>g rates, only at highest concentration <strong>of</strong> calcite, the amount <strong>of</strong> force is<br />

required for the 1% elongation <strong>in</strong>cre<strong>as</strong>e. At low concentrations, the ch<strong>an</strong>ge is a little.<br />

As seen <strong>in</strong> Figure 4.27 (c), when calcite filled PVC pl<strong>as</strong>tisols mixed at 1400 RPM,<br />

prepared films from this pl<strong>as</strong>tisols, shows different mech<strong>an</strong>ical property. The stress<br />

65


value decre<strong>as</strong>ed <strong>as</strong> concentration <strong>of</strong> calcite w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed. This result may be ca<strong>use</strong>d<br />

aga<strong>in</strong> <strong>in</strong>adequate cur<strong>in</strong>g <strong>of</strong> the PVC films.<br />

4.4.2.3 Effect <strong>of</strong> Mix<strong>in</strong>g Rates <strong>of</strong> The PVC Pl<strong>as</strong>tisols To The<br />

Mech<strong>an</strong>ical Properties<br />

Mix<strong>in</strong>g rate <strong>of</strong> the PVC Pl<strong>as</strong>tisol affects the mech<strong>an</strong>ical properties <strong>of</strong> the<br />

prepared PVC film <strong>as</strong> seen <strong>in</strong> Figure 4.28.<br />

Stress at Failure, N/mm 2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

400 600 800 1000 1200 1400 1600<br />

Mix<strong>in</strong>g Rate , RPM<br />

(a)<br />

STD<br />

Calcite<br />

Fly Ash<br />

Figure 4.28. Mix<strong>in</strong>g Rate <strong>of</strong> PVC Pl<strong>as</strong>tisols versus stres at failure graphs (a) Sample<br />

1 (b) Sample 2 (c) Sample 3 (cont. on next page )<br />

66


Stress at Failure, N/mm 2<br />

Stress at Failure, N/mm 2<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

400 600 800 1000 1200 1400 1600<br />

(b)<br />

(c )<br />

Figure 4.28. (cont.)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Mix<strong>in</strong>g Rate , RPM<br />

Mix<strong>in</strong>g Rate , RPM<br />

STD<br />

CALCITE<br />

FLY ASH<br />

STD<br />

CALCITE<br />

FLY ASH<br />

0<br />

400 600 800 1000 1200 1400 1600<br />

67


Films which were prepared with the <strong>fly</strong> <strong><strong>as</strong>h</strong> had different mech<strong>an</strong>ical property<br />

th<strong>an</strong> calcite filled <strong>an</strong>d no filled <strong>material</strong>s, when the lowest concentration <strong>of</strong> <strong>filler</strong> w<strong>as</strong><br />

loaded to the PVC pl<strong>as</strong>tisol. Highest stress values were obta<strong>in</strong>ed at lowest mix<strong>in</strong>g<br />

rate, at 600 RPM. After this rate, stress value w<strong>as</strong> decrae<strong>as</strong><strong>in</strong>g up to 1000 RPM, then<br />

w<strong>as</strong> <strong>in</strong>cre<strong>as</strong><strong>in</strong>g aga<strong>in</strong>. But for the calcite filled <strong>an</strong>d no filled <strong>material</strong>s, stress value<br />

w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>es<strong>in</strong>g, when mix<strong>in</strong>g rate <strong>of</strong> the PVC pl<strong>as</strong>tisol w<strong>as</strong> <strong>in</strong>cre<strong>as</strong>ed. The most<br />

efficient mix<strong>in</strong>g rate w<strong>as</strong> 1400 RPM for calcite filled <strong>an</strong>d no filled PVC pl<strong>as</strong>tisols. In<br />

general <strong>fly</strong> <strong><strong>as</strong>h</strong> filled films showed better mech<strong>an</strong>ical property th<strong>an</strong> calcite filled <strong>an</strong>d<br />

no filled films.<br />

Same results are said for samples number 2, 7.41 % <strong>in</strong> volume, but for the<br />

highest <strong>filler</strong> concentration, 11.11 % <strong>in</strong> volume, calcite filled <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> filled films<br />

shows the same mech<strong>an</strong>ical properties.<br />

Stress at 1% Elongation<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

400 600 800 1000 1200 1400 1600<br />

(a)<br />

Mix<strong>in</strong>g Rate , RPM<br />

STD<br />

CALCITE<br />

FLY ASH<br />

Figure 4.29. Mix<strong>in</strong>g rate <strong>of</strong> PVC Pl<strong>as</strong>tisols versus stress at 1% elongation graphs (a)<br />

Sample 1 (b) Sample 2 (c) Sample 3 (cont. on next page )<br />

68


Stress at 1% Elongation<br />

Stress at 1% Elongation<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

STD<br />

CALCITE<br />

FLY ASH<br />

0,0<br />

400 600 800 1000 1200 1400 1600<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

(b)<br />

(c )<br />

Figure 4.29. (cont.)<br />

Mix<strong>in</strong>g Rate , RPM<br />

0,0<br />

400 600 800 1000 1200 1400 1600<br />

Mix<strong>in</strong>g Rate , RPM<br />

STD<br />

CALCITE<br />

FLY ASH<br />

69


When the volume percentages <strong>of</strong> <strong>filler</strong>s were 3.7 % <strong>an</strong>d 7.41 <strong>in</strong> PVC<br />

pl<strong>as</strong>tisols, calcite filled <strong>material</strong> <strong>an</strong>d no filled st<strong>an</strong>dart <strong>material</strong> exhibits similar<br />

mech<strong>an</strong>ical behaviour <strong>as</strong> shown <strong>in</strong> Figure 4.28 <strong>an</strong>d Figure 4.29. There is no much<br />

ch<strong>an</strong>g<strong>in</strong>g between mix<strong>in</strong>g ratio 600 RPM <strong>an</strong>d 1000 RPM for them, but <strong>in</strong>cre<strong>as</strong><strong>in</strong>g <strong>of</strong><br />

the force is required for the 1% elongation at 1400 RPM is observed But also <strong>fly</strong> <strong><strong>as</strong>h</strong><br />

filled <strong>material</strong> needs much more force for 1% elongation th<strong>an</strong> others.<br />

At highest concentration value, mech<strong>an</strong>ical properties <strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> filled<br />

<strong>material</strong> becomes weaker th<strong>an</strong> calcite <strong>an</strong>d similar with no filled PVC films.<br />

% Elongation at Break<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

400 600 800 1000 1200 1400 1600<br />

Mix<strong>in</strong>g Rate, RPM<br />

(a)<br />

STD<br />

CALCITE<br />

FLY ASH<br />

Figure 4.30. Mix<strong>in</strong>g rate <strong>of</strong> PVC Pl<strong>as</strong>tisols versus % elongation at break graphs (a)<br />

Sample 1 (b) Sample 2 (c) Sample 3 (cont. on next page )<br />

70


% Elongation at Break<br />

% Elongation at Break<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

STD<br />

Calcite<br />

Fly Ash<br />

0<br />

400 600 800 1000 1200 1400 1600<br />

(b)<br />

(c)<br />

Figure 4.30. (cont.)<br />

Mix<strong>in</strong>g Rate, RPM<br />

0<br />

400 600 800 1000 1200 1400 1600<br />

Mix<strong>in</strong>g Rate, RPM<br />

STD<br />

CALCITE<br />

FLY ASH<br />

As a result, <strong>fly</strong> <strong><strong>as</strong>h</strong> filled <strong>material</strong>s have better mech<strong>an</strong>ical properties. The<br />

re<strong>as</strong>on should be morphological properties <strong>of</strong> the <strong>use</strong>d <strong>filler</strong> <strong>in</strong> the PVC pl<strong>as</strong>tisols.<br />

Fly <strong><strong>as</strong>h</strong> powder, <strong>use</strong>d <strong>in</strong> this study <strong>in</strong>cluded sphere particles, but calcite particles have<br />

different morphology but not <strong>an</strong>y sphere particules.<br />

Xie w<strong>as</strong> conluded that pure PVC is brittle, but CaCO3 n<strong>an</strong>oparticles are<br />

loaded to the PVC matrix, the n<strong>an</strong>ocomposites show ductile behaviors (Xie, et al.<br />

2004).<br />

71


CHAPTER 5<br />

CONCLUSION<br />

In this study, rheological behaviour <strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> filled PVC pl<strong>as</strong>tisols <strong>an</strong>d<br />

mech<strong>an</strong>ical properties <strong>of</strong> the end products were <strong>in</strong>vestigated. Different concentration<br />

calcite <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> were loaded to the PVC pl<strong>as</strong>tisols <strong>as</strong> <strong>filler</strong>s. Rheology is import<strong>an</strong>t<br />

property for a coat<strong>in</strong>g technologies. Beca<strong>use</strong> it effect the surface properties <strong>of</strong> the<br />

polymers. Fly <strong><strong>as</strong>h</strong> ca<strong>use</strong>d difficult morphology th<strong>an</strong> calcite. Calcite is <strong>use</strong>d common<br />

<strong>filler</strong> <strong>in</strong> coat<strong>in</strong>g technologies. But us<strong>in</strong>g concentration is import<strong>an</strong>t for process<strong>in</strong>g. At<br />

higher concentrations, pl<strong>as</strong>tisols have very high viscosity levels <strong>an</strong>d this situation<br />

make difficult to procces<strong>in</strong>g.<br />

As a conclusion <strong>fly</strong> <strong><strong>as</strong>h</strong> c<strong>an</strong> be <strong>use</strong>d <strong>as</strong> a <strong>filler</strong> <strong>in</strong>stead <strong>of</strong> calcite <strong>in</strong> the<br />

pl<strong>as</strong>tisols, but not same <strong>filler</strong> concentrations <strong>as</strong> calcite beca<strong>use</strong> <strong>of</strong> difficulty <strong>of</strong><br />

rheology.<br />

Temperature ch<strong>an</strong>g<strong>in</strong>g affects the rheological behaviour <strong>as</strong>, or the st<strong>an</strong>dart<br />

pl<strong>as</strong>tisols <strong>an</strong>d for the calcite filled pl<strong>as</strong>tisols; when the temperature is <strong>in</strong>cre<strong>as</strong><strong>in</strong>g,<br />

shear stress is <strong>in</strong>cre<strong>as</strong><strong>in</strong>g. For the <strong>filler</strong>s, there is no exact relation with temperature<br />

<strong>an</strong>d rheology.<br />

Mix<strong>in</strong>g rate <strong>of</strong> the PVC pl<strong>as</strong>tisols affect the rheological behavior, but there is<br />

no regular <strong>in</strong>cre<strong>as</strong><strong>in</strong>g or decre<strong>as</strong><strong>in</strong>g accord<strong>in</strong>g to this ch<strong>an</strong>g<strong>in</strong>g.<br />

St<strong>an</strong>dart PVC pl<strong>as</strong>tisols <strong>an</strong>d calcite filled pl<strong>as</strong>tisol show the similar<br />

rheological behaviour at m<strong>in</strong>imum concentrations. But <strong>fly</strong> <strong><strong>as</strong>h</strong> filled PVC pl<strong>as</strong>tisols<br />

have more difficult rheology th<strong>an</strong> others. Concentration <strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> affect the<br />

rheological behaviour. When the concentration is <strong>in</strong>cre<strong>as</strong>ed, shear rate is <strong>in</strong>cre<strong>as</strong><strong>in</strong>g<br />

<strong>an</strong>d rheological behaviour becomes difficult.<br />

The surface roughness <strong>of</strong> the PVC films, filled with <strong>fly</strong> <strong>as</strong> have higher values<br />

th<strong>an</strong> others. High concentration <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> becomes worse the surface quality.<br />

Hardness values are <strong>in</strong>cre<strong>as</strong><strong>in</strong>g <strong>as</strong>;<br />

Std PVC film < Calcite filled PVC Film < Fly Ash filled PVC film.<br />

72


Mech<strong>an</strong>ical properties <strong>of</strong> the <strong>fly</strong> <strong><strong>as</strong>h</strong> filled PVC films are better th<strong>an</strong> others.<br />

When the concentrations <strong>of</strong> all <strong>filler</strong> type were <strong>in</strong>cre<strong>as</strong>ed, mech<strong>an</strong>ical behaviours get<br />

weaker th<strong>an</strong> before.<br />

73


REFERENCES<br />

Arkema, 2008. Lacovyl PVC Product R<strong>an</strong>ge.<br />

http://enovmag.arkema.com/pdf/lacovyl/en/TDS%20Lacovyl%20PB%201405%20E<br />

n.pdf (accessed March 16, 2010).<br />

Baba, A. 2004, Investigation <strong>of</strong> leach<strong>in</strong>g characteristics <strong>of</strong> <strong><strong>as</strong>h</strong> w<strong>as</strong>tes from<br />

thermalpower pl<strong>an</strong>ts <strong>in</strong> western Turkey. (19th World Energy Congress,<br />

Sydney,Australia).<br />

Baerlocher, 2006. Org<strong>an</strong>ot<strong>in</strong> Stabilizers.<br />

http://www.baerlocher.com/uploads/tx_trbldownload/pb_org<strong>an</strong>ot<strong>in</strong>_v2_<strong>in</strong>t.pdf<br />

(accessed March 17, 2010).<br />

Brookfield Eng<strong>in</strong>eer<strong>in</strong>g, 2005. More Solutions To Sticky Problems. (Boston), pp. 14<br />

–17.<br />

Butylbenzyl Phthalate, 2010.<br />

http://www.chemicalregister.com/NButyl_Benzyl_Phthalate/Suppliers/pid9300.htm(a<br />

ccessed April17, 2010).<br />

C<strong>an</strong>polat F., Yılmaz K., Kose M.M., Sumer M. <strong>an</strong>d Yurd<strong>use</strong>v M.A. 2004. “Use <strong>of</strong><br />

zeolite, coal bottom <strong><strong>as</strong>h</strong> <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>as</strong> replacement <strong>material</strong>s <strong>in</strong> cement<br />

production” , Cement Concrete Res. 34 (2004) 731–735.<br />

Chauvy, P.F; Madore, C., L<strong>an</strong>dolt, D. 1998. “Variable Length Scale Analysis <strong>of</strong><br />

Surface Topography: Characterisation <strong>of</strong> Tit<strong>an</strong>ium Surfaces for Biomedical<br />

Applications”, Surface <strong>an</strong>d Coat<strong>in</strong>gs Technology. Vol.110, No.1, pp. 48 – 56.<br />

Cho, Y.J, Koo, Y.P, Jeon, J.H. 2002. “Surface Pr<strong>of</strong>ile Estimation by Digital Filter<strong>in</strong>g<br />

for Wear Volume Calculation”, Wear. Vol.252, No.3, pp. 173–178.<br />

Ç<strong>an</strong>ci, B., 1998. Geochemical Assessment <strong>of</strong> Environmental Effects <strong>of</strong> Fly Ash from<br />

Seyitömer Thermal Power Pl<strong>an</strong>t, Ms. Thesis, (Ankara).<br />

Davis, E.J. <strong>an</strong>d Stout, K.J. 1982. “Stylus Me<strong>as</strong>urement Techniques: A Contribution<br />

to the Problem <strong>of</strong> Parameter Variation”, Wear. Vol.83, No.1, pp. 49 – 60.<br />

Demirb<strong>as</strong>, A. 1996. “Optimiz<strong>in</strong>g the physical <strong>an</strong>d technological properties <strong>of</strong><br />

cementsadditives <strong>in</strong> concrete mixture”, Cement Concrete Res. 26 (1996) 1737–<br />

1744.<br />

Dermat<strong>as</strong>, D. <strong>an</strong>d Meng, X. 2003. “Utilization <strong>of</strong> Fly Ash for<br />

Stabilization/Solidification <strong>of</strong> Heavy Metal Contam<strong>in</strong>ated Soils”, Eng<strong>in</strong>eer<strong>in</strong>g<br />

Geology, Vol. 70, No. 3-4, pp. 377-394.<br />

74


DiGioia, A. M. Jr. And Nuzzo, W. L. 1977. "Fly Ash <strong>as</strong> Structural Fill", Journal <strong>of</strong><br />

the Power Division, Vol. 98, No. 1, pp. 77-92.<br />

Diisononyl Pthalate, 2010<br />

http://www.chemicalregister.com/Diisononyl_Phthalate/Suppliers/pid5261.htm<br />

(accessed April17, 2010).<br />

Djuric M., R<strong>an</strong>ogajee J., Omarj<strong>an</strong> R. And Miletic S. 1996., “Sulfate corrosion <strong>of</strong> the<br />

Portl<strong>an</strong>d cement-pure <strong>an</strong>d blended with 30% <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>”, Cement Concrete 26<br />

(1996) 295–1300.<br />

D<strong>in</strong>ger, D. R. 2005. Characterization Techniques for Ceramists. (Morris<br />

Publish<strong>in</strong>g,Kearney) pp. 33 – 145<br />

Funk, J.E. <strong>an</strong>d D<strong>in</strong>ger, D.R. 1994. Predictive Process Control <strong>of</strong> Crowded<br />

ParticulateSuspensions: Applied to Ceramic M<strong>an</strong>ufactur<strong>in</strong>g. (Kluwer<br />

Academic Publishers,Dordrecht), pp. 254 – 328.<br />

Garcia J.C., Marcilla A. <strong>an</strong>d Beltr<strong>an</strong> M. 1998. “The effect <strong>of</strong> add<strong>in</strong>g processed PVC<br />

on the rheology <strong>of</strong> PVC pl<strong>as</strong>tisols”, Polymer Vol. 39 No. 11, pp. 2261-2267.<br />

Guenther, K.H., Wierer, P.G., <strong>an</strong>d Bennett, J.M. 1984. “Surface<br />

RoughnessMe<strong>as</strong>urements <strong>of</strong> Low-Scatter Mirrors <strong>an</strong>d Roughness St<strong>an</strong>dards,”<br />

Applied Optics, Vol.23, No.21, p. 3820.<br />

Hebert, 2009. Feature Article: Get the Roll Surface Right.<br />

http://www.ptonl<strong>in</strong>e.com/articles/200403fa3.html (accessed March 9, 2010).<br />

Jimenez, A., Torre, L. <strong>an</strong>d Kenny, J.M. 2000. “Thermal degradation <strong>of</strong> poly(v<strong>in</strong>yl<br />

chloride) pl<strong>as</strong>tisols b<strong>as</strong>ed on low-migration polymeric pl<strong>as</strong>ticizers”, Polymer<br />

Degradation <strong>an</strong>d Stability 73 (2001) 447–453.<br />

Kula , I., Olgun, A., Erdog<strong>an</strong>, Y. <strong>an</strong>d Sev<strong>in</strong>c, V. 2001. “Effects <strong>of</strong> colem<strong>an</strong>ite w<strong>as</strong>te,<br />

coal bottom <strong><strong>as</strong>h</strong> <strong>an</strong>d <strong>fly</strong> <strong><strong>as</strong>h</strong> on the properties <strong>of</strong> cement”, Cement Concrete Res.<br />

31 (2001) 491–494.<br />

L<strong>an</strong>dm<strong>an</strong>, A.A. 2002. “ Ph.D. Thesis, Aspects <strong>of</strong> solid state chemistry <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>an</strong>d<br />

ultramar<strong>in</strong>e pigments”, University <strong>of</strong> Pretoria.<br />

Majko, R.M. <strong>an</strong>d Pistilli, M.F. 1984. “Optimiz<strong>in</strong>g the amount <strong>of</strong> cl<strong>as</strong>s C <strong>fly</strong> <strong><strong>as</strong>h</strong> <strong>in</strong> the<br />

concrete mixture”, Cement Concrete Aggr. 6 (1984) 105–109.<br />

Malvern, 2005. Brochure: M<strong>as</strong>tersizer 2000 Particle Size Analyzer .<br />

http://www.malvern.com/common/downloads/MRK501-02_LR.pdf (accessed March<br />

02, 2010).<br />

Mark, J. E. 2006. Physical Properties <strong>of</strong> Polymers H<strong>an</strong>dbook.Spr<strong>in</strong>ger Science –<br />

Bus<strong>in</strong>ess Media, LLC. http://books.google.com.tr (accessed December 15,<br />

2009)<br />

75


McKay, G. 1996. Use <strong>of</strong> Adsorbents for the Removal <strong>of</strong> Pollunt<strong>an</strong>ts from<br />

W<strong>as</strong>tewaters. (CRC Press, USA), pp. 40 – 41.<br />

McKerall, W.C., Ledbetter W.B., <strong>an</strong>d Teague D. J. 1982. Analysis <strong>of</strong> Fly Ashes<br />

Produced <strong>in</strong> Tex<strong>as</strong>. (Tex<strong>as</strong> Tr<strong>an</strong>sportation Institute, Research Report No. 240-<br />

1, Tex<strong>as</strong> A&M University, College Station, Tex<strong>as</strong>).<br />

Meyers, J.F., Pichum<strong>an</strong>i, R. <strong>an</strong>d Kapples, S.B. 1976. Fly Ash: A Highway<br />

Construction Material. (Federal Highway Adm<strong>in</strong>istration, Report No. FHWA-<br />

IP-76-16, W<strong><strong>as</strong>h</strong><strong>in</strong>gton, DC).<br />

Mohapatra, R <strong>an</strong>d Rao, J.R. 2001. “Some <strong>as</strong>pects <strong>of</strong> characterisation, utilisation <strong>an</strong>d<br />

environmental effects <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>”, J. Chem. Technol. Biotechnol. 76 , 9–26.<br />

Murugendrappa, M.V., Kh<strong>as</strong>im, S., <strong>an</strong>d Pr<strong>as</strong>ad, A. 2005. “Synthesis, characterization<br />

<strong>an</strong>d conductivity studies <strong>of</strong> polypyrrole–<strong>fly</strong> <strong><strong>as</strong>h</strong> composites”, Bull. Mater.Sci.<br />

28 (2005) 565–569.<br />

Nath<strong>an</strong>, Y., Dvorachek, M., Pelly, I. <strong>an</strong>d Mimr<strong>an</strong>, U. 1999. “Characterization <strong>of</strong> coal<br />

<strong>fly</strong> <strong><strong>as</strong>h</strong> from Israel”, Fuel 78 (1999) 205–213.<br />

Palomo, A., Grutzeek, M.W. <strong>an</strong>d Bl<strong>an</strong>co, M.T. 1999. “Alkali-activated <strong>fly</strong> <strong><strong>as</strong>h</strong>es, a<br />

cement for future”, Cement Concrete Res. 29 (1999) 983–987.<br />

P<strong>an</strong>di<strong>an</strong>, N.S. 2004. “Fly <strong><strong>as</strong>h</strong> characterization with reference to geotechnical<br />

application”, J. Indi<strong>an</strong> Inst. Sci. 84 (2004) 189–216.<br />

Pedro, B., Monteiro, E <strong>an</strong>d Dweck, J. 2001. “PVC <strong>an</strong>d Agalmatolite composite<br />

characterization”, Polymer Test<strong>in</strong>g Volume 20, Issue 3, Pages 269-273.<br />

Pl<strong>as</strong>tay, 2010. Ürünlerimiz<br />

http://pl<strong>as</strong>tay.com/tr/di_isononil_ftalat.<strong>as</strong>p (accessed March 14, 2010).<br />

Podczek, F. 1998. “Me<strong>as</strong>urement <strong>of</strong> Surface Roughness <strong>of</strong> Tablets Made From<br />

Polyethylene Glycol Powders <strong>of</strong> Various Molecular Weight”, Pharmacy <strong>an</strong>d<br />

Pharmacology Commununications. Vol.4, pp. 179 – 182.<br />

Polat, M., Güler, E., Akar, G., Mordoğ<strong>an</strong>, H., İpekoğlu, Ü. <strong>an</strong>d Cohen, H.J. 2002. “<br />

Neutralization <strong>of</strong> acid m<strong>in</strong>e dra<strong>in</strong>age by Turkish lignitic <strong>fly</strong> <strong><strong>as</strong>h</strong>es: role <strong>of</strong><br />

org<strong>an</strong>ic additives <strong>in</strong> the fixation <strong>of</strong> toxic elements”, J. Chem. Technol.<br />

Biotechnol. 77 (2002) 372–376.<br />

Puert<strong>as</strong>, F. <strong>an</strong>d Fern<strong>an</strong>dez-Jimenez, A. 2003. “M<strong>in</strong>eralogical <strong>an</strong>d micro structural<br />

characterization <strong>of</strong> alkali-activated <strong>fly</strong> <strong><strong>as</strong>h</strong>/slag p<strong>as</strong>tes”, Cement Concrete<br />

Comp. 25(2003) 287–292.<br />

Rahm<strong>an</strong>, M. <strong>an</strong>d Brazel, C. S. 2004. “The pl<strong>as</strong>ticizer market: <strong>an</strong> <strong>as</strong>sessment <strong>of</strong><br />

traditional pl<strong>as</strong>ticizers<strong>an</strong>d research trends to meet new challenges “, Prog.<br />

Polym. Sci. 29 (2004) 1223–1248.<br />

76


Rahm<strong>an</strong>, M. 2006. “Ionic liquids: New generation stable pl<strong>as</strong>ticizers for poly(v<strong>in</strong>yl<br />

chloride)”, Polymer Degradation <strong>an</strong>d Stability 91 (2006) 3371e3382.<br />

Riippi, M., Antika<strong>in</strong>en, O., Nisk<strong>an</strong>en, T. <strong>an</strong>d Yliruusi, J. 1998. “The Effect <strong>of</strong><br />

Compression Force on Surface Structure, Crush<strong>in</strong>g Strength, Friability, <strong>an</strong>d<br />

Dis<strong>in</strong>tegration Time <strong>of</strong> Eythromyc<strong>in</strong> Acistrate Tablets”, Europe<strong>an</strong> Journal <strong>of</strong><br />

Pharmaceutics <strong>an</strong>d Biopharmaceutics. Vol.46, Issue.3, pp. 339 – 345.<br />

Rio, S.<strong>an</strong>d Delebarre, A. 2003. “Removal <strong>of</strong> Mercury <strong>in</strong> Aqueous Solution by<br />

Fluidized Bed Pl<strong>an</strong>t Fly Ash”, Fuel, Vol:82, Issue:2, pp. 153-159.<br />

Ruotsala<strong>in</strong>en, M., He<strong>in</strong>ämäki, J., Antika<strong>in</strong>en, O. <strong>an</strong>d Yliruusi, J. 2002. “Time-<br />

Dependent Dimensional Ch<strong>an</strong>ges <strong>an</strong>d Film Adhesion <strong>of</strong> Coated Tablets”, S.T.P.<br />

Pharma Sciences. Vol.12, No.6, pp. 385–389.<br />

Salako, M., Podczeck, F. <strong>an</strong>d Newton, M. 1998. “Investigations <strong>in</strong>to the<br />

Deformability<strong>an</strong>d Tensile Strength <strong>of</strong> Pellets”, International Journal <strong>of</strong><br />

Pharmaceutics. Vol.168, No.1, pp. 49 – 57.<br />

Seitavuopio, P., R<strong>an</strong>t<strong>an</strong>en, J. <strong>an</strong>d Yliruusi, J. 2003. “Tablet Surface Characterisation<br />

by Various Imag<strong>in</strong>g Techniques”, International Journal <strong>of</strong> Pharmaceutics.<br />

Vol.254, No.2, pp. 281–286.<br />

Seitavuopio, P., R<strong>an</strong>t<strong>an</strong>en, J. <strong>an</strong>d Yliruusi, J. 2005. “Use <strong>of</strong> Roughness Maps <strong>in</strong><br />

Visualisation <strong>of</strong> Surfaces”, Europe<strong>an</strong> Journal <strong>of</strong> Pharmaceutics <strong>an</strong>d<br />

Biopharmaceutics. Vol.59, No.2, pp. 351 – 358.<br />

Shaw, D.J. 1992. Introduction to Colloid <strong>an</strong>d Surface Chemistry. (Butterworth-<br />

He<strong>in</strong>em<strong>an</strong>n, M<strong>as</strong>sach<strong>use</strong>tts), pp. 244 – 251.<br />

S<strong>in</strong>gh, N., Ramach<strong>an</strong>dr<strong>an</strong>, R.D. <strong>an</strong>d Sarkar, A.K. 2003. “Qu<strong>an</strong>titative estimation <strong>of</strong><br />

constituents <strong>in</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> by lithium tetraborate fusion”, Int. J. Environ. Anal.<br />

Chem.83 891–896.<br />

S<strong>in</strong>z<strong>in</strong>ger, S.F. <strong>an</strong>d Jahns, J. 2003. Microoptics. (Wiley, We<strong>in</strong>heim), p.79 – 80.<br />

Termkhajornkit, P. <strong>an</strong>d Nawa, T. 2004. “The fluidity <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong> cement p<strong>as</strong>te<br />

conta<strong>in</strong><strong>in</strong>g naphthalene sulfonate superpl<strong>as</strong>ticizer” Cement <strong>an</strong>d Concrete Res.<br />

34(6) 1017-1024.<br />

Wagberg, P. <strong>an</strong>d Joh<strong>an</strong>sson, P.-A. 1993. “Surface Pr<strong>of</strong>ilometry—A Comparison<br />

Between Optical <strong>an</strong>d Mech<strong>an</strong>ical Sens<strong>in</strong>g on Pr<strong>in</strong>t<strong>in</strong>g Papers”, Tappi<br />

Journal,Vol.76, No.12, pp. 115–121.<br />

Weshe, K. 1991. Fly Ash <strong>in</strong> Concrete Properties <strong>an</strong>d Perform<strong>an</strong>ce Report <strong>of</strong><br />

Technical Committee 67-FAB. (Use <strong>of</strong> Fly Ash <strong>in</strong> Build<strong>in</strong>g Ritem Report 7,<br />

London, New York), pp. 5-22, 160-177.<br />

77


Wiesend<strong>an</strong>ger, R. 1994. Sc<strong>an</strong>n<strong>in</strong>g Probe Microscopy <strong>an</strong>d Spectroscopy: Methods<br />

<strong>an</strong>d Applications. (Cambridge University Press, Cambridge). p.213.<br />

Wikipedia.contributors, 2010. Hardness. Wikipedia, The Free Encyclopedia.<br />

http://en.wikipedia.org/wiki/Hardness (accessed March 27, 2010).<br />

Williamson, J.B.P. 1967 “The Microtopography <strong>of</strong> Surfaces” Proceed<strong>in</strong>gs <strong>of</strong> the<br />

Institution <strong>of</strong> Mech<strong>an</strong>ical Eng<strong>in</strong>eers. Vol.182, pp. 21 – 30.<br />

Wypych, J. 1987. Polymer Modified Textile Materials.(Wiley-Interscience: John<br />

Wiley & Sons, Inc.). p.25.<br />

Xiea, X.-L., Liua, Q.-X.,.Robert K.-Y. L., Zhoua, X.-P., Zh<strong>an</strong>gb, Q.-X., Yub, Z.-Z.<br />

<strong>an</strong>d Maib, Y.-W. 2004. “Rheological <strong>an</strong>d mech<strong>an</strong>ical properties <strong>of</strong><br />

PVC/CaCO3 n<strong>an</strong>ocomposites prepared by <strong>in</strong> situ polymerization”, Polymer 45<br />

(2004) 6665–6673.<br />

V<strong>as</strong>silev, S.V. <strong>an</strong>d V<strong>as</strong>sileva, C.G. 2005, “Methods for characterization <strong>of</strong><br />

composition <strong>of</strong> <strong>fly</strong> <strong><strong>as</strong>h</strong>es from coal-fired power stations: a critical overview”,<br />

Energy Fuels 19 1084 1098.<br />

Vlachopoulos, J. 2005. The Role <strong>of</strong> Rheology <strong>in</strong> Polymer Extrusion. (EXTRUMA,<br />

Fr<strong>an</strong>kfurt, Germ<strong>an</strong>y).<br />

78

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!