19.07.2013 Views

EUTELSAT Systems Operations Guide - Lea

EUTELSAT Systems Operations Guide - Lea

EUTELSAT Systems Operations Guide - Lea

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Issue 2.0<br />

<strong>EUTELSAT</strong>S.A.<br />

<strong>Systems</strong> <strong>Operations</strong> <strong>Guide</strong><br />

ESOG<br />

Volume I<br />

EARTH STATION VERIFICATION<br />

AND ASSISTANCE<br />

(ESVA)<br />

Module130


SYSTEMS OPERATIONS GUIDE<br />

Volume 1<br />

ESOG Module 130<br />

EARTH STATION VERIFICATION AND<br />

ASSISTANCE (ESVA)<br />

Issue 2.0 25-07-2000<br />

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

2. ESVA REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

3. TEST EQUIPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

4. SPACE SEGMENT ACCESS TEST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

5. POLARIZATION ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

6. EIRP (INCLUDING TRANSMIT GAIN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

7. TRANSMIT POLARIZATION DISCRIMINATION. . . . . . . . . . . . . . . . . . . . . 24<br />

8. TRANSMIT SIDELOBES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

9. G/T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

10. RECEIVE POLARIZATION DISCRIMINATION . . . . . . . . . . . . . . . . . . . . . . 47<br />

11. RECEIVE SIDELOBES (INCLUDING RECEIVE GAIN) . . . . . . . . . . . . . . . . 53<br />

Annex A. Request for ESVA Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

Annex B. Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

Annex C. List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

Annex D. ESVA Contact Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

Annex E. <strong>EUTELSAT</strong> Beacons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

Annex F. Frequency Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

Annex G. Measurement of Spurious Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

Annex H. Earth Station Alignment Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127


FOREWORD<br />

The <strong>EUTELSAT</strong> <strong>Systems</strong> <strong>Operations</strong> <strong>Guide</strong> (ESOG) is published to provide all <strong>EUTELSAT</strong> space<br />

segment users with information that is necessary for successful operation of earth stations within<br />

the <strong>EUTELSAT</strong> satellite system.<br />

The ESOG in its final form will consist of 2 Volumes. They contain, in modularised form, all the<br />

necessary details which are considered important for the operations of earth stations.<br />

Volume I concentrates on System Management and Policy aspects and is therefore primarily of<br />

interest to personnel engaged in these matters.<br />

Volume II is of direct concern to earth station staff who are directly involved in system operations,<br />

i.e. the initial line-up of satellite links between earth stations and the commissioning of earth<br />

stations for <strong>EUTELSAT</strong> services. The modules that are contained in this Volume relate to the<br />

services provided via <strong>EUTELSAT</strong> satellites.<br />

Regarding Issue 2.0 of Module 130:<br />

In view to the previous issue 1.1 (and DRAFT issue 2), this version includes the following<br />

enhancements:<br />

1. Antennae without angular readout (para. 8.2.2)<br />

2. More details of <strong>EUTELSAT</strong> beacons (Annex E)<br />

3. Measurement guidelines for spurious radiation (Annex G)<br />

Annex F has been updated and minor editorial changes were made to other chapters.<br />

The ESOG can now be obtained, apart from the printed version, in Acrobat format from the<br />

<strong>EUTELSAT</strong> Internet server:<br />

http://www.eutelsat.com/Satellite information/Technical & operational docs/Uplinking & Satcom<br />

Services/<strong>EUTELSAT</strong> <strong>Systems</strong> Operation <strong>Guide</strong> (ESOG).<br />

Paris, 25-07-2000


OVERVIEW ESOG MODULES<br />

VOLUME I<br />

<strong>EUTELSAT</strong> S.A. SYSTEM MANAGEMENT AND POLICIES<br />

Earth Station Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 100<br />

Earth Station Access and Approval Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 110<br />

Earth Station Type Approval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 120<br />

Earth Station Verification Assistance (ESVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 130<br />

Operational Management, Control, Monitoring & Coordination . . . . . . . . . . . . . . . . . Module 140<br />

Services and Space Segment Reservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 150<br />

VOLUME II<br />

<strong>EUTELSAT</strong> S.A. SYSTEMS OPERATIONS AND PROCEDURES<br />

TV Handbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 210<br />

SMS Handbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 220<br />

VSAT Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 230<br />

SKYPLEX Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 240<br />

DVB Television Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Module 250


page 1 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

1. INTRODUCTION<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

1<br />

1<br />

0<br />

<strong>EUTELSAT</strong> approval procedures require the submission of technical earth<br />

station data to demonstrate compliance with the relevant specifications<br />

(ESOG Vol. I, Module 100 and Module 110 refer).<br />

In general, this can be achieved by the following means:<br />

<strong>EUTELSAT</strong> ESVA facilities.<br />

Non-<strong>EUTELSAT</strong> facilities such as:<br />

• test range, boresight tower, radiostar etc.,<br />

other satellite systems.<br />

Some combination of these facilities.<br />

The purpose of conducting verification tests is to prove that the earth station<br />

and/or associated equipment will comply in all respects with the mandatory<br />

performance characteristics as set forth in the relevant specifications.<br />

Verification testing involving the use of a <strong>EUTELSAT</strong> satellite shall be<br />

conducted in cooperation with the <strong>EUTELSAT</strong> ESVA facility and/or a<br />

qualified corresponding earth station, under the direction of the <strong>EUTELSAT</strong><br />

CSC.<br />

ESVA testing, which is an efficient and inexpensive alternative to most other<br />

methods, may be required upon request from <strong>EUTELSAT</strong> or the earth station<br />

owner. The ESVA testing may generally be required:<br />

for new earth stations prior to commencement of service,<br />

for existing earth stations after major modifications (especially of the RF<br />

front end).<br />

Typical parameters which can be measured using a <strong>EUTELSAT</strong> satellite and<br />

are included in the standard program presented in this Module are:<br />

earth station EIRP,<br />

transmit gain,<br />

transmit sidelobes,<br />

transmit polarisation isolation,<br />

receive gain,<br />

G/T,<br />

receive polarisation isolation,<br />

receive sidelobe patterns.


page 2 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

The above measurements are generally conducted between an <strong>EUTELSAT</strong><br />

reference station and a distant earth station under test via the <strong>EUTELSAT</strong><br />

space segment. This enables testing of a given station at it’s true, operational<br />

configuration. For small earth stations (aperture


page 3 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

2<br />

2<br />

2. ESVA REQUIREMENTS<br />

This section includes the conditions which ensure smooth implementation of<br />

ESVA, namely:<br />

prevention of interference to existing traffic,<br />

consistency of measurement results,<br />

efficient coordination of testing.<br />

The rules given hereafter apply to all ESVA activities including full scale<br />

ESVA programmes or parts of it and repetitions.<br />

2.1. Earth Station Preparation<br />

The correct function of all relevant earth station equipment must be verified<br />

by preliminary in-station testing. Thus avoiding delay of ESVA and<br />

interference to existing traffic during the initial space segment access. As far<br />

as possible, the in-station test shall prove compliance of the equipment with<br />

the <strong>EUTELSAT</strong> specification. Additional parameters which are required for<br />

ESVA such as:<br />

antenna slew speed for azimuth and elevation,<br />

power meter coupling factor and post coupler loss for each TX chain,<br />

receive coupling factor and receive feed loss if applicable<br />

shall be measured during the preparational phase and results shall be<br />

communicated to <strong>EUTELSAT</strong>.<br />

Before the commencement of the ESVA, the SUT must be already configured<br />

for the forthcoming measurements (Figure 4.1 refers). The station shall<br />

acquire and track the satellite foreseen for testing and the equipment shall be<br />

set to parameters defined in the <strong>EUTELSAT</strong> test plan.<br />

To eliminate eventual problems at this stage, it is strongly recommended to<br />

perform a G/T and a receive sidelobe pattern test, using the satellite beacon.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 4 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

2.2. Test Coordination<br />

Planning of ESVA activities is based on the initial request for ESVA<br />

forwarded by the relevant telecommunications entity (i.e. Signatory or<br />

DATE). For new earth stations, this request is made by completion of<br />

paragraph 6 of the "APPLICATION FOR APPROVAL TO ACCESS THE<br />

<strong>EUTELSAT</strong> SPACE SEGMENT" (ESOG Module 110, Annex 1). The<br />

format of Annex 1 to this Module may be used for already approved stations.<br />

An advance notice of normally 4 weeks prior to the tentative ESVA date,<br />

should be given to ensure smooth implementation. <strong>EUTELSAT</strong> issues a test<br />

plan which includes the confirmation of the availability of the ESVA facility<br />

(i.e. space segment and reference station). It must be born in mind that due to<br />

operational needs, the test plan may be subject to changes at any time on short<br />

notice. The test plan contains the time schedule, technical and geographical<br />

parameters, contact points and notes required for preparation and execution of<br />

the subject test.<br />

Immediately after conclusion of testing, the <strong>EUTELSAT</strong> Reference Station<br />

transmits a provisional test report to the test manager of the station under test.<br />

This provisional report provides a summary of all test results. All data is<br />

subject to confirmation by <strong>EUTELSAT</strong> who will issue the final test report<br />

usually within 4 weeks following test conclusion.<br />

This final report comprises results and parameters in detail and, will be<br />

forwarded to the relevant telecommunications entity who initially requested<br />

the subject ESVA.<br />

2.3. Space Segment Access<br />

Prior to commencement of any test programme, the Station Under Test (SUT)<br />

must contact the <strong>EUTELSAT</strong> Reference Station (ERS). The reference station<br />

will then coordinate with the <strong>EUTELSAT</strong> CSC the forthcoming test<br />

activities. The reference station must obtain the approval of the CSC for space<br />

segment access before the start of testing and report to the CSC when testing<br />

is terminated or in case of significant interruptions.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 5 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Furthermore, each space segment access by a station under test must be<br />

endorsed by the <strong>EUTELSAT</strong> Reference Station. When transmitting, the<br />

Station Under Test must maintain contact with the reference station during<br />

ALL times. In particular, the SUT must ensure permanent presence of staff at<br />

the phone to guarantee instant reaction on ERS directives. If the<br />

communication link fails, the Station Under Test must immediately CEASE<br />

transmissions and attempt to re-establish contact with the reference station. It<br />

is therefore essential, that suitable telephone equipment be available and<br />

accessible at all relevant sites (e.g.: antenna hub, control room etc.)<br />

throughout testing. The appropriate phone(s) must be authorized for<br />

international connections and shall preferably be equipped with a<br />

loudspeaker. The detailed procedures compulsory to each space segment<br />

access are prescribed in paragraph 4.1 of this document.<br />

2.4. Weather Conditions<br />

Atmospherical attenuation and wind may considerably degrade the accuracy<br />

of measurements. It is therefore preferable to conduct ESVA testing during<br />

clear sky conditions where light windspeeds are not exceeded. If, due to<br />

operational needs, testing has to be performed during deteriorated weather<br />

conditions, special consideration will be given to evaluation of results. In case<br />

of discrepancies, partial or complete repetition of the test programme will be<br />

agreed.<br />

2.5. Antenna Alignment<br />

All ESVA tests are based on the perfect initial alignment of the antenna under<br />

test. Great care must be taken by the Station Under Test when optimizing the<br />

antenna pointing i.e. peaking.<br />

Peaking must be performed initially, i.e. prior to testing,<br />

1. after each antenna movement (e.g. during G/T, antenna sidelobe<br />

measurements etc...),<br />

2. after interruption of the test programme,<br />

3. before each measurement during transmissions via satellites in inclined<br />

orbit.<br />

The Station Under Test must ensure that optimized pointing is achieved<br />

during all measurements. On request, the reference station will provide<br />

assistance and guide the Station Under Test.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 6 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

2.6. Check List<br />

Completion of the following check-list by the Station Under Test, before the<br />

start of an ESVA activity will prevent delays.<br />

Earth Station equipment functions compliant to specifications<br />

Antenna, drive and tracking system<br />

HPA<br />

LNA (LNB, LNC)<br />

Up and Down-Converters<br />

Station control and waveguide switching<br />

TX chains have been checked for spurious emissions<br />

Test equipment is available, calibrated and warm-up period<br />

respected<br />

RF synthesizer (frequency drift measured)<br />

RF power meter (auto-zero, calibration factor set)<br />

Spectrum Analyser (calibration procedure completed)<br />

Plotter (connected, calibrated)<br />

TX power meter coupling factors and post coupler losses measured<br />

for each TX-chain, results sent to <strong>EUTELSAT</strong><br />

Antenna slew speed measured for azimuth and elevation, results sent<br />

to <strong>EUTELSAT</strong><br />

Satellite as per test plan acquired, antenna pointing optimized<br />

(peaking)<br />

Polarization alignment optimized<br />

Appropriate means for communication during the test are available<br />

–and optional:<br />

G/T and antenna RX-pattern measured via satellite beacon<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 7 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

3. TEST EQUIPMENT<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

3<br />

3<br />

The measurement equipment which must be available at the Station Under<br />

Test during ESVA, is summarized hereafter. Prior to the start of ESVA, the<br />

station operator shall ensure that all test equipment:<br />

functions correctly,<br />

warm-up periods are respected,<br />

calibration procedures have been carried out correctly.<br />

For completion of test records, the test equipment types shall be reported to<br />

<strong>EUTELSAT</strong>.<br />

3.1. RF Power Meter<br />

The RF power meter is required for the measurement of the transmit power<br />

and calibration of the station EIRP. At SUT equipped for pilot injection, the<br />

power meter is furthermore required for measurement of the pilot level.<br />

Generally, the dynamic range of the power sensor should be dimensioned to<br />

include the full range of transmit power required during operations and<br />

ESVA. Before measurements, the operator shall set the appropriate<br />

calibration factor and execute an "Auto-Zero" cycle to ensure accurate results.<br />

Examples 1 : Hewlett Packard 435B; 436A; 437A; 438A<br />

Hewlett Packard EPM 442A<br />

Rhode & Schwarz NRVS<br />

Gigatronix 8541, 8542<br />

Marconi RF Power Meter 6960B<br />

3.2. RF Spectrum Analyser<br />

The spectrum analyser is required for execution of the space segment access<br />

test, the measurement of the G/T ratio and the antenna receive sidelobe<br />

pattern. Furthermore, it is used for monitoring of the receive frequency range<br />

and the HPA output. To facilitate the G/T measurement, it is preferable to use<br />

an analyser which permits a direct noise level readout (noise marker). The RF<br />

and IF frequency bands of the station under test should be covered by the<br />

analyser.


page 8 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Examples 1 : Hewlett Packard 8566 A/B<br />

Hewlett Packard 8562 A<br />

Wandel & Goltermann SNA-23<br />

Ronde & Schwarz FSEM or FSEK series<br />

Ronde & Schwarz FSIQ 26 or FSP30<br />

Aritsu MS 2802A<br />

A suitable plotter/recorder is necessary for documentation of the antenna<br />

pattern test results.<br />

3.3. Signal Source<br />

For the assessment of transmit parameters, a stable signal source is required<br />

at the station under test. To prevent interference when testing is conducted via<br />

transponders bearing traffic, to obtain a maximum dynamic range and<br />

accuracy, the frequency drift, residual modulation and level variation must be<br />

kept at a minimum.<br />

The short term frequency drift measured at RF level (e.g. 14 GHz), should be<br />

less than 10 Hz per 30 minutes (typical figure: 5 x 10 -10 /day ageing rate).<br />

Therefore, a synthesized source is required for generation of the test signal.<br />

Alternatives like the operational modulator require prior endorsement by<br />

<strong>EUTELSAT</strong> and should be considered only in exceptional case:<br />

Examples 1 : Hewlett Packard 8672 A<br />

Hewlett Packard 8673 A<br />

Hewlett Packard 8341 B<br />

Rhode & Schwarz SMP22<br />

1. The test equipment list is not exhaustive. Alternative test sets e.g. of other manufacturers<br />

may be suitable to accomplish ESVA testing<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 9 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

4<br />

4<br />

4. SPACE SEGMENT ACCESS TEST<br />

4.1. Test Objectives<br />

1. To ensure the correct alignment with parameters prescribed in the<br />

<strong>EUTELSAT</strong> test plan.<br />

2. To prevent any interference to existing services.<br />

3. To evaluate basic carrier parameters as frequency drift and EIRP<br />

fluctuation in order to estimate possible impairments to test results and to<br />

adapt instrument settings at ERS accordingly.<br />

4.2. Principle<br />

Initially, the ERS transmits a marker carrier which shall be identified by the<br />

SUT to prove correct pointing. Upon authorization by the ERS, the SUT<br />

transmits at low EIRP. The ERS will check value and fluctuation of carrier<br />

level and frequency.<br />

PLOTTER<br />

MODULATOR<br />

IF / RF<br />

SPECTRUM<br />

ANALYSER<br />

DEMODULATOR<br />

UP -<br />

CONVERTER HPA TX - COUPLER<br />

RF<br />

IF<br />

RF<br />

SYNTHESIZER<br />

TX - Tests<br />

RF<br />

IF<br />

RF<br />

POWER METER<br />

In - Station<br />

Pilot Injection *<br />

DOWN -<br />

CONVERTER LNA RX - COUPLER<br />

TX - EIRP<br />

MONITOR POINT<br />

Figure 4.1 : SUT Configuration during ESVA<br />

ANTENNA<br />

Test Equipment<br />

Equiqment<br />

E/ E/S S Equipment<br />

Equiqment<br />

Not Mandatory<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 10 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

4.3. Step-by-Step Procedure<br />

A. Acquisition of Satellite<br />

Step 1: Upon successful completion of the independent in-station tests as described<br />

under para. 2.1 above and PRIOR to the transmission of ANY signal, the<br />

SUT shall identify, acquire and track the specified satellite.<br />

Step 2: SUT set the polarization angle according to the parameter provided in the<br />

<strong>EUTELSAT</strong> test plan. For further optimization, SUT shall monitor the crosspolar<br />

component of the satellite beacon signal. The, SUT shall slowly rotate<br />

the polarization plane until the level reaches a minimum.<br />

Note: Where this procedure is not applicable (e.g. for transmission on X polarization<br />

from SUT equipped with a 2-port feed), another suitable signal on the satellite<br />

may be used.<br />

B. Access Coordination<br />

Step 3: Immediately prior to the scheduled commencement of ESVA (i.e. ~ 5<br />

minutes) the SUT shall establish and maintain phone contact with ERS. SUT<br />

shall communicate sky and wind conditions and information on all details<br />

which may impair testing.<br />

Step 4: ERS ensure that the allocated frequency range is free of traffic.<br />

Step 5: ERS shall contact the <strong>EUTELSAT</strong> CSC to obtain authorization for space<br />

segment access. If required, CSC arrange for change of satellite configuration<br />

on request of ERS.<br />

Step 6: In accordance with parameters of the <strong>EUTELSAT</strong> test plan, ERS transmit a<br />

marker carrier.<br />

Step 7: On request of ERS, SUT monitor the allocated down-link frequency range.<br />

SUT reconfirm presence of the marker carrier to ERS.<br />

Step 8: ERS double-checks identification of marker carrier by SUT. Proceed to Step<br />

9 only if identification is affirmative.<br />

C. Transmission by SUT<br />

Step 9: Under direction of the ERS, SUT transmit a carrier at the assigned frequency<br />

and EIRP. (The initial EIRP is in general in the order of 50 dBW and it must<br />

never exceed 55 dBW).<br />

Note: The SUT must CEASE transmissions immediately if the communications<br />

link to the ERS fails or if the presence of staff at the SUT phone is<br />

interrupted. This rule applies to this and all following tests where the SUT<br />

transmits.<br />

Step 10: SUT notify the ERS of the activation of its carrier.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 11 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Step 11: If the ERS does not detect the carrier under test within the allocated frequency<br />

range, the SUT shall CEASE transmissions. The SUT shall again verify its<br />

set-up on:<br />

correct satellite acquisition,<br />

polarization plane alignment,<br />

transmit frequency and<br />

transmit EIRP<br />

and return to Step 8.<br />

Step 12: ERS check carrier frequency, EIRP and polarization and request corrections<br />

if necessary.<br />

Step 13: SUT monitor the receive level of its own transmitted carrier. ERS request<br />

SUT to slew SUT antenna first in azimuth and then in elevation to reconfirm<br />

correct pointing.<br />

Step 14: SUT report TX power meter reading to ERS and maintain frequency setting<br />

throughout following tests.<br />

Step 15: ERS monitor short term (~ 10 minutes) fluctuation of frequency and EIRP of<br />

carrier under test.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 12 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

4.4. Example for Spectrum Analyser Setting<br />

hp<br />

1 dB/<br />

Reference level : As applicable<br />

Attenuator : As applicable<br />

Scale : 1 dB/Division<br />

Centre frequency : SUT down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 200 Hz<br />

Resolution bandwidth : Auto<br />

Video bandwidth : Auto<br />

Video averaging : OFF<br />

Sweep time : Auto<br />

Marker noise : OFF<br />

D-Marker : OFF<br />

Trace : Clear write A<br />

Max. Hold B<br />

Display line : OFF<br />

REF - 45.0 dBm ATTEN 10 dB<br />

CENTER 11.107 000 898 GHz<br />

RES BW 10 Hz VBW 30 Hz<br />

SPAN 200 Hz<br />

SWP 6.00 sec<br />

Figure 4.2 : Spectrum Analyser Display at ERS during Space Segment Access<br />

Test (Verification of frequency stability)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 13 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

5<br />

5<br />

5. POLARIZATION ALIGNMENT<br />

5.1. Test Objectives<br />

To accomplish optimum alignment of the polarization plane of the SUT<br />

antenna with the receive antenna of the satellite, in order to guaranty accurate<br />

ESVA measurement results.<br />

For SUT equipped with 4-port feed, to evaluate orthogonality of transmit<br />

polarization planes (X and Y).<br />

5.2. Principle<br />

The SUT transmits a carrier via the co-polar channel while the ERS monitors<br />

the residual carrier level in the cross-polar channel. Under control of the ERS,<br />

the SUT slowly rotates its polarization plane. The ERS records the variation<br />

of the cross-polar level and guides the SUT to the angular position where the<br />

minimum level is detected (nulling).<br />

The following configurations must be considered:<br />

1. the down-link frequency bands of the co-polar and cross-polar channel are<br />

different.<br />

2. The down-link frequency bands are identical but the co-polar satellite<br />

channel is switched OFF.<br />

3. The down-link frequency bands are identical and the co-polar channel is<br />

ON:<br />

a) The co-polar channel is set to minimum gain and the cross-polar<br />

channel is set to maximum gain.<br />

b) Gain settings of one or both channels may not be changed.<br />

To avoid influence caused by the down-link, the polarization alignment is<br />

performed in configuration 1) or 2) above. The ERS will apply additional<br />

precautions in the evaluation of recorded data in case of configurations 3).<br />

For SUT equipped with a 4-port feed, and in order to verify the orthogonality,<br />

the alignment procedure is executed via both polarizations (X and Y). The<br />

angle indications for the optimum positions are read for X and Y polarization<br />

and then compared.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 14 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Cross-polar Level [dB]<br />

TX Polarization Angle Tilt Relative to Satellite RX Antenna [°]<br />

Figure 5.1 : Cross-polar Signal Level as Function of Polarization Plane<br />

Alignment<br />

Figure 5.2 : Schematic Representation of Polarization Alignment<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

Theoretical<br />

Actual<br />

-5 -3 -1 1 3 5<br />

C<br />

T<br />

X T X SR<br />

Satellite<br />

receive<br />

antenna<br />

C<br />

T<br />

C<br />

T<br />

X T + X SR<br />

X T<br />

Station<br />

under<br />

Test (SUT)<br />

Co - polar XDR OFF or Down - link<br />

frequency different to cross - polar XDR<br />

X - Polar XDR ON<br />

C T : Co - polar signal<br />

X T : Station under Test - X - polar component<br />

X SR : Satellite receive - X - polar component<br />

<strong>EUTELSAT</strong><br />

Reference<br />

Station (ERS)<br />

XSR XT X SR<br />

X T<br />

X T + X SR<br />

XSR XT Satellite<br />

transmit<br />

antenna


page 15 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

5.3. Step-by-Step Procedure<br />

Step 1: If required, CSC arrange for change of satellite configuration on request of<br />

ERS.<br />

Step 2: SUT set antenna tracking system to manual mode.<br />

Step 3: Under direction of ERS, SUT transmit a carrier at the frequency as established<br />

during the Satellite Access Test and set the EIRP as per test plan.<br />

Step 4: ERS record the level of the cross-polar component of the carrier under test.<br />

Step 5: In coordination with the ERS, SUT rotate slowly the polarization plane in the<br />

following way:<br />

1. Rotate towards the anti-clockwise limit. (e.g.: −5° relative to start<br />

position).<br />

2. Rotate via the optimum to the clockwise limit. (e.g.: +5° relative to start<br />

position).<br />

Note: Values of angles are positive if the rotation is clockwise as seen from the earth<br />

station towards the satellite.<br />

Step 6: ERS guide SUT to acquire the optimum position (i.e. where polarization<br />

plane of SUT and satellite receive antenna match and a minimum in crosspolar<br />

level is observed).<br />

Step 7: SUT secure feed position. ERS verify that the optimum is maintained.<br />

Step 8: SUT report the polarization angle indication to the ERS. If the SUT is not<br />

equipped with indicators, the feed position shall be marked.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 16 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

5.4. Example for Spectrum Analyser Setting<br />

Reference level : As applicable<br />

Attenuator : As applicable<br />

Scale : 5 dB/Division<br />

Centre frequency : SUT down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 0 Hz<br />

Resolution bandwidth : 100 Hz<br />

Video bandwidth : 3 Hz<br />

Sweep time : 100 s or as appropriate<br />

Marker noise : OFF<br />

∆-Marker : Disabled<br />

Trace : Clear write A<br />

Display line : Set to minimum<br />

T<br />

Freq<br />

Amptd<br />

Marker<br />

BW Swp<br />

Traces<br />

State<br />

Misc<br />

AL -17.88 dBm<br />

ATTEN 0 dB<br />

5.00 dB / DIV<br />

CENTER 11.479 005 150 GHz<br />

RB 100 Hz VB 3.00 Hz<br />

SPAN 0 Hz<br />

ST 40.00 sec<br />

MENU<br />

RES BW<br />

AutoMan<br />

VID BW<br />

AutoMan<br />

SWPTIME<br />

AutoMan<br />

CONT<br />

SWEEP<br />

SINGLE<br />

SWEEP<br />

VID AVG<br />

On Off<br />

Figure 5.3 : Spectrum Analyser Display during Polarization Plane Alignment<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 17 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

6<br />

6<br />

6. EIRP (INCLUDING TRANSMIT GAIN)<br />

6.1. Test Objectives<br />

1. To reconfirm the SUT EIRP calibration prior to commencement of<br />

operations.<br />

2. To assess the linearity of the EIRP indication at the SUT.<br />

3. To evaluate the transmit gain of the antenna at the SUT.<br />

4. To measure the maximum EIRP capability of the SUT.<br />

6.2. Principle<br />

6.2.1. Power Balance<br />

The EIRP measurement is based on the up-link power balance technique<br />

where the EIRP of the SUT is compared against an accurately calibrated EIRP<br />

radiated from the ERS. Corrections for the satellite antenna receive gain (offaxis<br />

loss), path loss and atmospherical loss due to the distant location of both<br />

stations are applied to obtain the value of the SUT EIRP. To minimize the<br />

influence of amplitude-frequency response of the satellite transponder and<br />

ERS, the difference of carrier frequencies of SUT and ERS is small (generally<br />

< 100 kHz). Carrier levels of both SUT and ERS are equal or differ by no<br />

more than 0.2 dB to avoid inaccuracies due to the non-linearity of the satellite<br />

TWT.<br />

The following formula applies:<br />

EIRP SUT = EIRP ERS<br />

+ (L oa,SUT − L oa,ERS )<br />

+ (L at,SUT − L at,ERS )<br />

+ (l fs,SUT − L fs,ERS ) − ∆<br />

where: L oa : Off-axis Loss [dB]<br />

L fs : Free space Loss [dB]<br />

L at : Atmospheric Loss [dB]<br />

∆ : Small difference between EIRP of carriers [dB]<br />

∆ is positive when: EIRP SUT < EIRP ERS<br />

∆ is small when: |∆|< 0.2 dB<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

(1)


page 18 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

L at is measured at the ERS by radiometer during the test. For SUT where no<br />

radiometer is available, 0.3 dB shall be assumed for clear sky conditions.<br />

The values of free-space loss (L fs ) and off-axis loss (L oa ) will be indicated in<br />

the relevant <strong>EUTELSAT</strong> test plan.<br />

6.2.2. EIRP Calibration<br />

At power balance condition, the SUT reads the transmit power meter. This<br />

value which corresponds to a (now) accurately known EIRP, shall be noted<br />

and used as reference for future operations.<br />

In cases where the power reading during operations will not be derived from<br />

the same test point, it is essential to include the operational test point in the<br />

calibration procedure.<br />

6.2.3. Linearity of EIRP Indication<br />

Corresponding EIRP [dBW]<br />

EIRP calibration is repeated at several (e.g. 4) different EIRP levels. The<br />

range shall include the future operational EIRP of the SUT. It shall thus<br />

provide a reliable base for determination of any EIRP value required during<br />

forthcoming SUT operations.<br />

Title<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

Measured EIRP [dBW]<br />

Mean<br />

Max. EIRP Capability of E/S<br />

-25 -20 -15 -10 -5 0<br />

Figure 6.1 : Linearity of TX Power Indication<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 19 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

6.2.4. Transmit Gain<br />

At known station EIRP the antenna TX gain of the SUT may be calculated.<br />

During ESVA preparation, TX power meter coupling factor and loss between<br />

TX coupler and antenna flange (or interface where antenna gain is defined)<br />

have to be obtained by in-station measurements.<br />

Signal Source HPA TX - Coupler<br />

(12.9)14.0 - 14.5 = 14.5 GHz(18.4)<br />

GHz<br />

Post Coupler<br />

losses<br />

Figure 6.2 : Schematic Diagram of SUT TX-Chain<br />

Using the value of EIRP SUT from equation (1) above, the TX gain is given by:<br />

where: Pm : Tx power meter reading [dBm]<br />

CTX : Tx coupling factor [dB]<br />

LTX : Post coupler Losses [dB]<br />

30 : Conversion dBW ⇒ dBm [dB]<br />

To appreciate the measurement result, it is compared to the expected value<br />

which may be computed as follows:<br />

where: G : Antenna gain [dBi]<br />

η : Efficiency (assumed at 0.65) [1]<br />

a, b : Major, minor axis of antenna<br />

reflector aperture<br />

[m]<br />

f<br />

c<br />

: Frequency<br />

: Speed of light (i.e 3 x 10<br />

[Hz]<br />

8 G 10Log10 η a b ⎛π⋅f --------- ⎞<br />

⎝ c ⎠<br />

) [m/s]<br />

2<br />

=<br />

⎛<br />

⎝<br />

⋅ ⋅ ⋅ ⎞<br />

⎠<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

C TX<br />

Pm<br />

TX - Powermeter<br />

L TX<br />

G TX = EIRP SUT − P m + 30 − C TX + L TX<br />

G TX EIRPSUT<br />

(2)<br />

(3)


page 20 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

6.2.5. Maximum EIRP Capability of SUT<br />

Under close control of the ERS, the SUT increases its TX EIRP to the<br />

maximum value defined as per test plan or until the saturation of the SUT<br />

HPA, which ever is reached first. If applicable, 2 HPAs and phase combiner<br />

shall be used during this test. The ERS conducts a power balance and logs the<br />

maximum EIRP capability of the SUT as reference for <strong>EUTELSAT</strong> records.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 21 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

6.3. Step-by-Step Procedure<br />

A. Preparation<br />

Step 1: SUT forward the following information to <strong>EUTELSAT</strong> prior to<br />

commencement of ESVA:<br />

Type of feed (2-port, 4-port).<br />

No of TX-chains.<br />

Coupling factor (C TX ) for each TX chain.<br />

Post coupling Loss (LTX ) for each TX chain.<br />

Step 2: SUT set appropriate calibration factor of TX power meter and conduct an<br />

"Auto ZERO" cycle.<br />

B. Power Balance<br />

Step 3: If required, CSC arrange for change of transponder gain setting on request of<br />

ERS. ERS transmits the reference carrier at the frequency and EIRP as<br />

specified by the ESVA test plan.<br />

Step 4: SUT adjust the EIRP setting to obtain the value specified in the ESVA test<br />

plan. Under the direction of the ERS, SUT commence transmission at the<br />

frequency established during the Satellite Access Test.<br />

Step 5: If necessary, SUT adjust the EIRP under control of ERS to balance the<br />

reference carrier. The difference in level of both carriers as monitored by the<br />

ERS shall not exceed 0.2 dB.<br />

Step 6: ERS confirm balance condition.<br />

Step 7: SUT read the TX power meter and report the value to ERS.<br />

C. Linearity<br />

Step 8: If required by the test plan, ERS increase the EIRP of the reference carrier.<br />

Under control of ERS, SUT increase the EIRP of the carrier under test.<br />

Step 9: Repeat Steps 5 through 7 for each EIRP level to be calibrated.<br />

Note: In general the EIRP calibration is performed for the following levels:<br />

1. Start EIRP.<br />

2. Start EIRP − 5 dB.<br />

3. Start EIRP − 10 dB.<br />

4. Start EIRP − 15 dB.<br />

The start EIRP is specified in the ESVA test plan.<br />

D. Maximum EIRP Capability<br />

Step 10: Carry out this step only if required by the ESVA test plan, otherwise proceed<br />

to Step 12.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 22 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Step 11: Under close control of the ERS, SUT increase slowly the EIRP. The increase<br />

shall in no case exceed the limits given in the ESVA test plan to avoid<br />

interference to traffic or over saturation of the transponder. Below the<br />

specified limits, the SUT EIRP may be increased until the SUT HPA or in<br />

case of phase combiner, the two SUT HPAs are saturated. SUT report the TX<br />

power reading to ERS. If the SUT Tx chain is equipped with several couplers,<br />

the calibration is performed using the coupler which is the nearest to the<br />

antenna feed. For cross-reference, at least 1 measurement shall be performed<br />

for each Tx chain using another coupler(s) (e.g. HPA RF power meter).<br />

Step 12: If the SUT EIRP capability is superior to the limit stated as per test plan, the<br />

ERS will request to commute the SUT TX-chain to dummy load and/or to depoint<br />

the SUT antenna far off the geostationary arc. Then, the SUT increases<br />

its power to its maximum. The corresponding powermeter reading is<br />

communicated to the ERS, which will compute the maximum SUT EIRP<br />

capability. The SUT reduces its EIRP to the nominal level and ceases<br />

transmissions. To proceed with testing, the SUT re-acquires the satellite as<br />

previously defined.<br />

Step 13: From the results of the previous power balance, ERS evaluate the maximum<br />

EIRP capability of the SUT and the SUT antenna TX gain, and if available,<br />

other power indications (e.g. output-power display of HPA).<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 23 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

6.4. Example for Spectrum Analyser Settings<br />

1 dB /<br />

SAMPLE<br />

VID AVG<br />

Reference level : As applicable<br />

Attenuator : As applicable<br />

Scale : 1 dB/Division<br />

Centre frequency : SUT down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 200 kHz<br />

Resolution bandwidth : 30 kHz<br />

Video bandwidth : Auto<br />

Video average : 20<br />

Sweep time : Auto<br />

Marker noise : OFF<br />

Marker : Peak search<br />

∆-Marker : ∆-peak search<br />

Trace : Clear write A<br />

Display line : OFF<br />

REF -15.0 dBm ATTEN 10 dB<br />

Figure 6.3 : Spectrum Analyser Display during Power Balance<br />

MKR -59.2 kHz<br />

-0.13 dB<br />

CENTER 12.708 261 GHz SPAN 20<br />

RES BW 30 kHz VBW 100 Hz SWP 500 msec<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 24 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

7<br />

7<br />

0<br />

7. TRANSMIT POLARIZATION<br />

DISCRIMINATION<br />

7.1. Objectives<br />

To measure the transmit polarization isolation of the Station Under Test at<br />

optimized TX polarization alignment. The measurement is carried out at<br />

boresight and at 8 samples within the 1 dB contour of the co-polar antenna TX<br />

pattern.<br />

In case of non-orthogonal polarization planes, the operational XPD will be<br />

lower than measured during ESVA.<br />

7.2. Principle<br />

To measure the EIRP of the SUT, a power balance is carried out via the copolar<br />

channel. Then, the ERS transmits a reference carrier (e.g. 20, 30 or 40<br />

dB below the co-polar level) via the cross-polar transponder. From the<br />

difference in level of the reference carrier and the cross-polar component of<br />

the carrier under test, the transmit XPD of the SUT is computed. Then in order<br />

to verify the performance within the co-polar -1 dB TX contour, the SUT<br />

antenna is depointed in azimuth and elevation as described in the figure below<br />

- EAST<br />

counter-clock-wise<br />

CCW<br />

WEST +<br />

Figure 7.1 : Antenna Depointing Sequence during XPD Measurements<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

+ UP<br />

- DOWN<br />

clock-wise<br />

CW


page 25 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

The angular increment for antennas with circular aperture may be estimated<br />

by the following expression:<br />

AI =<br />

3.978<br />

-----------d<br />

⋅ f<br />

where: d: Antenna diameter [m]<br />

f: Frequency [GHz]<br />

(Ref.: CCIR Handbook on Satellite Communications).<br />

Angular Increment [°]<br />

0.2<br />

0.175<br />

0.15<br />

0.125<br />

0.1<br />

0.075<br />

0.05<br />

0.025<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

A n te n n a A p e rtu re D ia m e te r [m ]<br />

Figure 7.2 : Angular Increment (AI) for TX-XPD Measurements<br />

While the SUT is depointing its antenna, the ERS monitors the variation of<br />

the co-polar carrier level and guides the SUT through the defined<br />

measurement pattern.<br />

Nine measurements of the difference between the cross-polar component of<br />

the carrier under test and the cross-polar reference carrier are taken. Then the<br />

test configuration is reversed (i.e. the cross-polar channel becomes co-polar,<br />

etc...) and the measuring sequence is repeated. A correction for differences in<br />

the up-link off-axis loss between co-polar and cross-polar channel is applied<br />

and the XPD of the SUT is computed.<br />

XPD = C SUT - X SUT<br />

f = 12.90 G Hz<br />

f = 13.75 G Hz<br />

f = 14.50 G Hz<br />

f = 18.00 G Hz<br />

f = 30.00 G Hz<br />

f = 12.90 G Hz<br />

f = 13.75 G Hz<br />

f = 14.50 G Hz<br />

f = 18.00 G Hz<br />

f = 30.00 G Hz<br />

XPD = (C ERS − X ERS ) − L OA/ERS/C + L OA/ERS/X<br />

+ L OA/SUT/C − L OA/SUT/X − D C + D X<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

(1)<br />

(2)<br />

(3)


page 26 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

(C ERS - X ERS ) : Difference in EIRP of co-polar and<br />

cross-polar reference carrier [dB]<br />

D C : Difference between co-polar reference<br />

carrier and co-polar carrier under test [dB]<br />

D X : Difference between cross-polar<br />

reference carrier and cross-polar<br />

component of carrier under test [dB]<br />

L OA : Off axis-Loss [dB]<br />

Index SUT: Station Under Test<br />

Index ERS: <strong>EUTELSAT</strong> Reference Station<br />

Index C: Co-polar<br />

Index X: Cross-polar<br />

Note: D C , D X is positive if the level of the reference is greater than the level of the<br />

signal under test.<br />

In case of a perfect power balance via the co-polar channel (i.e. D C = 0 at<br />

boresight), the values of D C are as follows:<br />

Point Nr. D C [dB]<br />

1 0<br />

2, 4, 6, 8 0.5<br />

3, 5, 7, 9 1<br />

Table 7.1: Variation of co-polar carrier level during depointing<br />

sequence<br />

To eliminate inaccuracies due to the non-perfect XPD performance of the<br />

down-link (i.e. satellite transmit antennas, ERS antenna), measurements<br />

require one of the following configurations:<br />

a) the down-link frequency bands of co-polar and cross-polar channel are<br />

different.<br />

b) the frequency bands are identical but the co-polar channel is switched<br />

OFF.<br />

c) the down-link frequency bands are identical and the co-polar channel is<br />

ON. The co-polar channel is set to minimum gain and the cross-polar<br />

channel is set to maximum gain. In this case the ERS will apply<br />

additional precautions in the evaluation of results.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 27 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

∆<br />

SUT: Cross-polar component<br />

of Carrier under Test<br />

ERS: Reference Carrier<br />

Figure 7.3 : Carrier Configuration during XPD Measurements<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 28 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

7.3. Step-by-Step Procedure<br />

Step 1: CSC arrange for change of satellite configuration (gain settings, channelized<br />

section ON/OFF) on request of ERS.<br />

Step 2: ERS transmit the reference carrier via the co-polar channel at the frequency<br />

and EIRP as specified in the <strong>EUTELSAT</strong> test plan.<br />

Step 3: SUT adjust the EIRP setting to obtain the value specified in the <strong>EUTELSAT</strong><br />

test plan. Under direction of the ERS, SUT commence transmission at the<br />

frequency established during the satellite access test.<br />

Step 4: If necessary, SUT adjust the EIRP under control of ERS to balance the<br />

reference carrier.<br />

Step 5: ERS confirm balance condition.<br />

Step 6: ERS transmit the reference carrier via the cross-polar channel at EIRP<br />

(generally 20 ... 40 dB below co-polar) and frequency as specified in the<br />

<strong>EUTELSAT</strong> test plan.<br />

Step 7: ERS measure the difference in level between the reference carrier and the<br />

cross-polar component of the carrier under test.<br />

ERS compute the value of the TX-XPD of the SUT.<br />

Step 8: In coordination with the ERS, SUT move the antenna off-boresight according<br />

to Figure 7.1. The angular increment (AI) is given in the <strong>EUTELSAT</strong> test<br />

plan. ERS monitor the variation of the co-polar level of the carrier under test.<br />

If necessary, guide the SUT to the required antenna positions.<br />

Step 9: Repeat Step 7.<br />

Step 10: Repeat Steps 8 and 9 for the remaining points.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 29 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

7.4. Example for Spectrum Analyser Settings<br />

1 dB /<br />

SAMPLE<br />

DL<br />

Co-polar Signal:<br />

Reference level : As applicable<br />

Attenuator : As applicable<br />

Scale : 1 dB/Division<br />

Centre frequency : SUT down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 200 kHz<br />

Resolution bandwidth : 10 kHz<br />

Video bandwidth : 3 kHz<br />

Video average : ON (10 samples)<br />

Sweep time : Auto<br />

Marker noise : OFF<br />

∆-Marker : ON (Marker peak search at boresight)<br />

Trace : Clear write A<br />

Display line : ON (Set to level at boresight)<br />

REF - 27.0 dBm ATTEN 10 dB<br />

CENTER 11.479 042 GHz<br />

RES BW 10 KHz<br />

VBW 3 kHz<br />

SPAN 200 kHz<br />

SWP 30.0 msec<br />

Figure 7.4 : Spectrum Analyser Display during TX-XPD Measurement<br />

(Co-polar Signal)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 30 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

T<br />

Freq<br />

Amptd<br />

Marker<br />

BW Swp<br />

Traces<br />

State<br />

Misc<br />

Cross-polar Signal:<br />

Reference level : As applicable<br />

Attenuator : As applicable<br />

Scale : 5 dB/Division<br />

Centre frequency : Centre between down-link frequencies of<br />

SUT and ERS (11 or 12 GHz range)<br />

Span : As applicable<br />

Resolution bandwidth : As applicable<br />

Video bandwidth : As applicable<br />

Video average : ON (10 samples)<br />

Sweep time : Auto<br />

Marker noise : OFF<br />

∆-Marker : ON (Marker set to ERS carrier, ∆-Marker<br />

to SUT cross-polar signal)<br />

Trace : Clear write A<br />

Display line : OFF<br />

1<br />

RL -36.06 dBm<br />

*ATTEN 0 dB<br />

5.00 dB / DIV<br />

MARKER<br />

-11.51 kHz<br />

-5.96 dB<br />

10<br />

CENTER 11.479 010 70 GHz<br />

*RB 300 Hz *VB 100 Hz<br />

MKR 1 FRQ -11.51 kHz<br />

-5.96 dB<br />

SPAN 20.00 kHz<br />

ST 2.000 sec<br />

Figure 7.5 : Spectrum Analyser Display during TX-XPD Measurement<br />

(Cross-polar Signal)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

MENU<br />

NKR NRM<br />

On Off<br />

DELTA<br />

HIGHEST<br />

PEAK<br />

NEXT<br />

PEAK<br />

CF<br />

SIG TAK<br />

On Off


page 31 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

8<br />

8<br />

0<br />

8. TRANSMIT SIDELOBES<br />

8.1. Test Objectives<br />

To record the co- and cross-polar radiation diagrams of the antenna of the<br />

station under test, the result shall enable <strong>EUTELSAT</strong> to determine the<br />

maximum permissible EIRP limits of the SUT.<br />

8.2. Principle<br />

8.2.1. General<br />

While transmitting a carrier the SUT slews its antenna in azimuth or elevation<br />

and communicates continuously the antenna position readout to the ERS. The<br />

ERS records the level of the co- and cross-polar component of the received<br />

carrier. Prior to the antenna measurement the ERS performs a calibration to<br />

compensate inaccuracies which may be caused by non-linearity of the satellite<br />

transponder or the ERS RX chain. The ERS processes angular information,<br />

calibration data and the recorded level to produce the antenna pattern. For<br />

azimuth cuts, the following correction is applied to compute the true angle<br />

from the azimuth readout.<br />

sin (Az’/2) = sin (Az/2) . cos(El)<br />

Where: Az’ : Real angle from boresight.<br />

Az : Azimuth as read from encoders.<br />

El : Elevation under which the test is performed.<br />

To facilitate the evaluation the following envelope is given in Figure 8.2.<br />

Co-polar: G = (29 − 25 Log 10 (Θ)) dBi 1° < Θ < 7°<br />

G = +8 dBi 7° < Θ < 9.2°<br />

G = (32 − 25 Log 10 (Θ)) dBi 9.2° < Θ < 48°<br />

G = −10 dBi 48° < Θ<br />

Cross-polar: G = (19 − 25 Log 10 (Θ)) dBi 1° < Θ < 7°<br />

G = -2 dBi 7° < Θ < 20°<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

(1)


page 32 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Gain [dBi]<br />

True Angle Az' [°]<br />

i.e. angle from boresight<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-10 dBi<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Azimuth Az [°] as indicated by angular encoder<br />

Figure 8.1 : True Angle (Az’) as Function of Azimuth (Az)<br />

{ 32-25log(Theta) } dBi<br />

{ 29-25log(Theta) }dBi<br />

-2dBi<br />

Figure 8.2 : Envelope for Co-polar TX Sidelobe Pattern<br />

Elevation [°]<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

+8dBi<br />

{ 19-25log(Theta) }dBi<br />

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50<br />

1°<br />

Theta [°]<br />

7°<br />

7°<br />

9.2°<br />

48°<br />

15<br />

25<br />

30<br />

35<br />

40<br />

45


page 33 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

8.2.2. Antennae without Angular Readout<br />

Sidelobe measurements for antennae that are not equipped with a pointing<br />

angle display are carried out following the same procedures as apply for<br />

standard configurations. However, the earth station operator must establish<br />

angular graduations for the azimuth and elevation axis. For elevation, this is<br />

normally achieved by placing a precise inclinometer on a convenient spot of<br />

the antenna structure. Figure 8.3 shows a simple implementation of an<br />

azimuth scale. Both azimuth and elevation scales need not be calibrated in<br />

absolute readings but they must provide sufficient resolution to allow the SUT<br />

operator to clearly indicate “marks” at each degree of antenna movement.<br />

Figure 8.3 : Schematic presentation of Earth Station Set-up for Azimuth Readout<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 34 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

8.3. Step-by-Step Procedure<br />

This procedure is applicable to earth stations equipped with motorized<br />

antenna drives.<br />

A. Preparation<br />

Step 1: During ESVA preparation, prior to commencement of testing, SUT<br />

investigate the slew speed for azimuth and elevation antenna movement and<br />

forward the values to <strong>EUTELSAT</strong>. An antenna slew speed suitable for pattern<br />

measurements is in the order of 0.1° per second. If various settings are<br />

available (e.g. SLOW and FAST), all speeds should be communicated to<br />

<strong>EUTELSAT</strong>. If these parameters are not provided by the station<br />

manufacturer, the slew speed should be measured by the method described<br />

hereafter (Steps 1.1 through 1.9).<br />

No signals shall be transmitted during this part of the test.<br />

No signals shall be transmitted during this part of the test.<br />

Step 1.1: Acquire the beacon of the satellite specified in the test plan. Optimize the<br />

antenna pointing for maximum receive signal level.<br />

Step 1.2: Move the antenna in azimuth 5° counter-clockwise.<br />

Step 1.3: Measure the time of the azimuth movement from −5° via beamcentre to +5°<br />

(i.e. clockwise antenna motion from East to West). Calculate the azimuth slew<br />

speed in degrees per second.<br />

Step 1.4: For motorized antennas which are not equipped with angular encoders, Steps<br />

1.1 through 1.3 shall be repeated at least 3 times and results shall be averaged.<br />

Step 1.5: Repeat Step 1.1.<br />

Step 1.6: Move the antenna in elevation 5° down.<br />

Step 1.7: Measure the time of the elevation movement from −5° via beamcentre to +5°<br />

(i.e. ascending antenna motion). Calculate the elevation slew speed in degrees<br />

per second.<br />

Step 1.8: If applicable, repeat Step 1.4.<br />

Step 1.9: Report results prior to commencement of ESVA to the <strong>EUTELSAT</strong> System<br />

Verification Test Section.<br />

B. Power Balance<br />

Step 2: If required, CSC arrange for change of transponder gain setting on request of<br />

ERS. ERS transmit the reference carrier at the frequency and EIRP as<br />

specified in the <strong>EUTELSAT</strong> test plan.<br />

Step 3: ERS perform a calibration of the satellite loop by recording the ERS carrier<br />

for an EIRP range of 60 dB below the initial value in 10 dB steps. Proceed<br />

with step 6 if co-polar patterns only are recorded.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 35 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Step 4: ERS transmit the reference carrier via the cross-polar channel at EIRP<br />

(generally 20.40 dB below co-polar) and frequency as specified in the<br />

<strong>EUTELSAT</strong> test plan.<br />

Step 5: ERS measure the difference in level between the reference carrier and the<br />

cross-polar component of the carrier under test. ERS compute the cross-polar<br />

antenna gain of the SUT.<br />

Step 6: SUT adjust the EIRP setting to obtain the value specified in the <strong>EUTELSAT</strong><br />

test plan. Under direction of the ERS, SUT commence transmission at the<br />

frequency established during the satellite access test.<br />

Step 7: If necessary, SUT adjust the EIRP under control of ERS to balance the<br />

reference carrier.<br />

Step 8: ERS confirm balance condition.<br />

Step 9: ERS cease transmission of the reference carrier.<br />

C. Azimuth Pattern<br />

Step 10: Considering the outcome of the Satellite Access Test, ERS optimize spectrum<br />

analyser settings for reception of the SUT carrier.<br />

Step 11: Upon request by the ERS, SUT interrupt transmission for a short interval.<br />

ERS proceed with optimization of analyse settings. SUT activate carrier on<br />

request of ERS.<br />

Step 12: Under direction of the ERS, SUT move the antenna starting from boresight to<br />

+1° clockwise (i.e. to the West). ERS verify the antenna slew speed.<br />

Step 13: In close coordination with the ERS (Figure 8.4 refers), SUT move the antenna<br />

to the "counter clockwise" limit (i.e.: from the start position via boresight to<br />

the East). The value of the East limit (e.g. −25° off beamcentre) is stated in<br />

the test plan. ERS record the pattern.<br />

Step 14: SUT switch off the carrier and return to boresight. Under the direction of the<br />

ERS, SUT recommence transmission and optimise antenna pointing for<br />

maximum receive level. SUT cease transmission if no further antenna<br />

measurements follows.<br />

Step 15: Repeat Steps 10 through 12 for the "clockwise" antenna movement, i.e. from<br />

−1° via boresight to the West limit (e.g. +25° off beamcentre).<br />

D. Elevation Pattern<br />

Step 16: Under direction of the ERS, SUT move the antenna starting from boresight to<br />

+1° up in elevation. ERS verify the antenna slew speed.<br />

Step 17: In close coordination with the ERS (Figure 8.4 refers), SUT move the antenna<br />

to the "lower" limit (i.e. from start position via boresight down). The value of<br />

the lower limit is stated in the test plan (e.g. −15° off beamcentre). ERS record<br />

the pattern.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 36 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Step 18: SUT switch off the carrier and return to boresight. Under direction of the ERS,<br />

SUT recommence transmission and optimize antenna pointing for maximum<br />

receive level. SUT cease transmission if no further antenna measurements<br />

follow.<br />

Step 19: Repeat Steps 14 through 16 for the ascending antenna movement, i.e. from<br />

−1° via boresight to the "upper" limit (e.g. +15° off beamcentre).<br />

Step 20: ERS process measurement data and produce plots of co-polar azimuth and<br />

elevation antenna TX diagrams including the appropriate masks.<br />

Figure 8.4 : Coordination Scheme during Antenna Pattern Measurements<br />

Figure 8.5 : Terminology for Azimuth Antenna Movement<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 37 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Cut<br />

Nr.<br />

Azimuth/Elevation Antenna Movement Direction<br />

1 Az +1° to CCW limit Towards East<br />

2 Az -1° to CW limit Towards West<br />

3 El +1° to lower limit Down<br />

4 El -1° to upper limit Up<br />

CW: Clockwise CCW: Counter-clockwise<br />

Table 8.1: Summary of Antenna Pattern Measurement<br />

Note: Relative azimuth angles are not corrected for non-orthogonality. They are<br />

therefore equivalent to angular encoder readout at the earth station.<br />

Note: The SUT shall drive its antenna to a start position which is offset by 0.5° to<br />

1.0° (depending on slew speed) to the actual commencement of the recorded<br />

diagram.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 38 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

8.4. Example for Spectrum Analyser Settings<br />

10 dB/<br />

DL<br />

Reference level : As applicable<br />

Attenuator : 0 dB<br />

Scale : 10 dB/Division<br />

Centre frequency : SUT down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 0 Hz<br />

Resolution bandwidth : 30 Hz (or 10 Hz)<br />

Video bandwidth : 1 Hz<br />

Sweep time : According to antenna slew speed e.g. 500 sec.<br />

Marker noise : OFF<br />

D-Marker : OFF<br />

Trace : Clear write<br />

Display line : Position to noise floor<br />

REF - 27.4 dBm ATTEN 0 dB<br />

CENTER 11.479 001 504 GHz<br />

RES BW 30 Hz VBW 1 Hz<br />

SPAN 0 Hz<br />

SWP 1000 sec<br />

Figure 8.6 : Spectrum Analyser Display during Antenna Pattern Measurement<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 39 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

9. G/T<br />

9.1. Test Objectives<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

9<br />

9<br />

0<br />

To measure the gain-to-equivalent noise temperature ratio (G/T) of the earth<br />

station receive section.<br />

Verification of correct function of the receive chain(s) by confirmation of the<br />

expected G/T value at IF interface.<br />

9.2. Principle<br />

In contrast to separate evaluation of antenna gain and system noise<br />

temperature, the following procedure implies the direct measurement of the<br />

G/T. Therefore, it is required to measure the receive level (P C ) of a reference<br />

carrier at the station under test. Then, the antenna under test is pointed to the<br />

cold sky and the noise level (P N ) is measured in a defined bandwidth. From<br />

these two values, the G/T is computed.<br />

G/T SUT = L fs,SUT + L at,SUT + B + K − EIRP SAT/SUT + R<br />

R = 10 Log 10 (10 (PC-PN)/10 − 1)<br />

if: P C − P N > 20,<br />

the expression (2) may be simplified to<br />

R = P C − P N<br />

G/T SUT : Gain to equivalent noise temperature ratio of SUT [dB/K]<br />

L fs,SUT : Free space loss towards SUT= 20*log(4.B.d.f / c) [dB]<br />

f = frequency (Hz)<br />

d = distance (m)<br />

c = 299792458 (m/s)<br />

(1)<br />

(2)<br />

(3)<br />

(4)


page 40 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

L at : Athmospheric attenuation at SUT [dB]<br />

B : Equivalent noise bandwidth [dBHz]<br />

K : Boltzmann’s constant:<br />

(1.38051 . 10 -23 Ws/K ≅ − 228.60 dBWs/K) [dBWs/K]<br />

EIRP SAT/SUT : Satellite EIRP towards SUT [dBW]<br />

P C : Carrier level (C + N) [dBm]<br />

P N : Noise level (N) [dBm]<br />

R : Power ratio ⎛C -------------<br />

+ N⎞<br />

⎝<br />

[dB]<br />

N ⎠<br />

Note: For the atmospheric attenuation, the following values are assumed under clear<br />

sky conditions: 11 GHz range: 0.20 dB<br />

12 GHz range: 0.25 dB<br />

Note: For spectrum analyser measurements, (3) must be valid at resolution<br />

bandwidth even if readout is normalized to 1 Hz.<br />

The satellite EIRP towards the SUT is computed from the measured value of<br />

satellite EIRP towards the ERS.<br />

where:<br />

EIRP SAT/SUT = EIRP SAT/ERS + L OA/ERS − L OA/SUT<br />

EIRP SAT/ERS : Satellite EIRP towards ERS [dBW]<br />

L OA/ERS : Off-axis loss towards ERS [dB]<br />

L OA/SUT : Off-axis loss towards SUT [dB]<br />

As the measurement is generally carried out by a spectrum analyser,<br />

corrections of the displayed noise level for bandwidth and detection must be<br />

applied. In modern analysers this correction is achieved by an internal routine<br />

which provides a direct readout of the normalized noise level (noise marker).<br />

Where this facility is unavailable, the operator must refer to the relevant<br />

instrument application notes (e.g. HP 8-series) to obtain the applicable values.<br />

The following figures for correction of the displayed noise level are typical:<br />

1. Translation from resolution bandwidth<br />

to noise bandwidth: ..............................................................−0.8 dB<br />

2. Combined correction for detector characteristics<br />

and logarithmic shaping:......................................................+2.5 dB<br />

The total typical correction is therefore: ..............................+1.7 dB.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

(5)


page 41 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

In this case, the actual noise level is 1.7 dB higher than the displayed figure.<br />

Therefore the "displayed" C/N is 1.7 dB better than the actual value of C/N.<br />

Care must be taken to avoid inaccuracy of the noise level measurement due to<br />

the contribution of the spectrum analyser. To confirm correct function of the<br />

whole receive chain, it is recommended to carry out the measurement at RF<br />

and IF level.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 42 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

9.3. Step-by-Step Procedure<br />

A. Transmission of Reference Carrier<br />

Step 1: If required, CSC arrange for change of transponder gain setting on request of<br />

ERS. ERS transmit the reference carrier at the frequency and EIRP as<br />

specified in the <strong>EUTELSAT</strong> test plan.<br />

Note: Disregard Step 1 if the G/T measurement is performed by the satellite beacon.<br />

B. Measurement of Carrier Level<br />

Step 2: ERS measure the satellite EIRP of the reference carrier and compute the<br />

corresponding EIRP towards the SUT.<br />

Step 3: With the antenna at boresight, SUT measure the reference carrier level at RF<br />

and IF interfaces. For beacon measurements, the applicable resolution<br />

bandwidth shall be agreed between ERS and SUT. (Figure 9.1 through 9.2).<br />

SUT report the value to the ERS.<br />

C. Measurement of Noise Level<br />

Step 4: At a small frequency offset (e.g. 100 kHz), SUT measure the noise level.<br />

Step 5: SUT move the antenna off to the satellite, preferably in azimuth by at least 5°.<br />

While slewing the antenna, SUT monitor the noise level. The antenna<br />

movement may be stopped when the noise level does no longer decrease.<br />

Step 6: SUT terminate the spectrum analyser input and read the noise level.<br />

Report the value to the ERS.<br />

Step 7: SUT connect the spectrum analyser to the RF interface. With identical<br />

settings of Steps 5, 6 above, SUT measure the noise level (Figure 9.3). SUT<br />

reports the value to the ERS.<br />

Step 8: Repeat Step 7 with the analyser connected to the IF interface.<br />

D. Evaluation<br />

Step 9: If applicable, SUT report the relevant correction factors and the bandwidth to<br />

ERS. SUT return the antenna to boresight.<br />

Step 10: ERS communicate value of the satellite EIRP to SUT and calculate the value<br />

of the G/T.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 43 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

9.4. Example for Spectrum Analyser Settings<br />

10 dB/<br />

SAMPLE<br />

ID AVG<br />

Measurement of Carrier Level (Note: ERS may advice to apply different<br />

settings)<br />

Reference level : Equal to level of reference carrier<br />

Attenuator : 0 dB<br />

Scale : 10 dB/Division<br />

Centre frequency : ERS down-link frequency as per test plan<br />

(11 or 12 GHz or IF range)<br />

Span : 500 kHz<br />

Resolution bandwidth : 10 kHz<br />

Video bandwidth : 100 Hz<br />

Video average : ON (10 samples)<br />

Sweep time : Auto (1.5s)<br />

Marker noise : OFF<br />

∆-Marker : OFF, Marker peak search<br />

Trace : Clear write A<br />

Display line : OFF<br />

REF - 12.4 dBm ATTEN 0 dB<br />

CENTER 12.541 667 000 GHz<br />

RES BW 10 kHz VBW 100 Hz<br />

MKR 12.541 667 0 GHz<br />

- 15.30 dBm<br />

SPAN 500 kHz<br />

SWP 1.50 sec<br />

Figure 9.1 : Spectrum Analyser Display during G/T Measurement<br />

(Carrier Level)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 44 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

5 dB/<br />

SAMPLE<br />

ID AVG<br />

Measurement of Beacon Level (Note: ERS may advice to apply different<br />

settings)<br />

Reference level : Equal to beacon level<br />

Attenuator : 0 dB (or different value as appropriate for given<br />

test point)<br />

Scale : 5 dB/Division<br />

Centre frequency : Beacon frequency as per test plan<br />

(11 or 12 GHz or IF range)<br />

Span : 500 kHz<br />

Resolution bandwidth : 10 kHz<br />

Video bandwidth : 100 Hz<br />

Video average : ON (10 samples)<br />

Sweep time : Auto (1.5s)<br />

Marker noise : OFF<br />

∆-Marker : OFF, Marker peak search<br />

Trace : Clear write A<br />

Display line : OFF<br />

REF - 38.3 dBm ATTEN 0 dB<br />

CENTER 11.451 09 GHz<br />

RES BW 10 kHz VBW 100 Hz<br />

MKR 11.451 095 GHz<br />

- 40.70 dBm<br />

SPAN 500 kHz<br />

SWP 1.5 sec<br />

Figure 9.2 : Spectrum Analyser Display during G/T Measurement<br />

(Beacon Level)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 45 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

10 dB/<br />

SAMPLE<br />

ID AVG<br />

Measurement of Noise Level (Note: ERS may advice to apply different<br />

settings)<br />

Reference level : 0.... 5 dB above noise floor<br />

Attenuator : 0 dB (or different value as appropriate for given<br />

test point)<br />

Scale : 10 dB/Division<br />

Centre frequency : 200 kHz below carrier/beacon frequency<br />

(11 or 12 GHz or IF range)<br />

Span : 500 kHz<br />

Resolution bandwidth : 10 kHz<br />

Video bandwidth : 100 Hz<br />

Video average : ON (10 samples)<br />

Sweep time : Auto (1.5s)<br />

Marker noise : ON<br />

∆-Marker : OFF<br />

Trace : Clear write A<br />

Display line : OFF<br />

REF - 69.9 dBm ATTEN 0 dB<br />

CENTER 12.708 109 GHz<br />

RES BW 10 kHz VBW 100 Hz<br />

MKR 112.708 108 GHz<br />

- 104.10 dBm (1 Hz)<br />

SPAN 500 kHz<br />

SWP 1.50 sec<br />

Figure 9.3 : Spectrum Analyser Display during G/T Measurement<br />

(Noise Level)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 46 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Note: The above (para. 9.4) are generally applicable if the spectrum analyser is<br />

connected to an LNA output. The attenuator setting to 0 dB may be<br />

inappropriate in case of connection to the output of a down-convertor, lineamplifier,<br />

etc. In any case, the carrier level indicated must be independent of<br />

the attenuation setting, i.e.:when changing the attenuator no change of carrier<br />

level should be observed.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 47 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

10<br />

10<br />

10. RECEIVE POLARIZATION<br />

DISCRIMINATION<br />

10.1. Objectives<br />

To measure the receive polarization isolation of the station under test at<br />

optimized TX polarization alignment. The measurement is carried out at<br />

boresight and at 8 samples within the 1 dB contour of the co-polar antenna RX<br />

pattern.<br />

Although, the measurement is not mandatory, it is recommended and it will<br />

provide additional aspects for the evaluation of the overall antenna<br />

performance.<br />

10.2. Principle<br />

The ERS transmits a carrier via an <strong>EUTELSAT</strong> satellite and maintains a<br />

constant flux. Then at optimum TX polarization alignment (paragraph 5<br />

refers), the Station Under Test measures the co-polar and the cross-polar<br />

component of the reference carrier by comparison to an injected signal. From<br />

the difference in level, the RX-XPD of the SUT is computed. To eliminate<br />

inaccuracies due to the up-link (i.e. ERS, TX-XPD, satellite RX-XPD), the<br />

cross-polar satellite channel must be switched OFF or configured to a<br />

different down-link frequency band (e.g.: measurement at 11 GHz, crosspolar<br />

channel down-link at 12 GHz).<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 48 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Angular Increment [°]<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Antenna Aperture Diameter [m]<br />

f = 10.7 GHz<br />

f = 11.7 GHz<br />

f = 12.75 GHz<br />

Figure 10.1 : Angular Increment (AI) for RX-XPD Measurements<br />

To verify the performance of the SUT antenna within the co-polar -1 dB RX<br />

contour, the SUT antenna is depointed in azimuth and elevation as described<br />

in Figure 7.1 and the measurement is conducted at each point (boresight and<br />

8 samples). The angular increment (AI) may be estimated by formula (1) of<br />

paragraph 7.2.<br />

To ensure accurate positioning of the antenna, a SUT equipped with a 4-port<br />

feed monitors the variation of the co-polar RX level of the reference carrier.<br />

For SUT equipped with a 2-port feed, the reference carrier shall be transmitted<br />

via X polarization (i.e. received via Y polarization). Hence, the SUT measures<br />

the cross-polar component of the reference carrier and monitors the variation<br />

of the satellite beacon level via the same (X) polarization.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 49 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Satellite<br />

receive<br />

antenna<br />

<strong>EUTELSAT</strong><br />

Reference<br />

Station ERS<br />

CT<br />

C T<br />

X T + X SR<br />

CX<br />

Co - polar XDR ON<br />

X - Polar XDR OFF<br />

C : Co - polar signal<br />

T<br />

C X : X - polar signal<br />

X T : Station under Test - X - polar component<br />

XST : Satellite Transmit - X - polar component<br />

Figure 10.2 : Schematic Representation of the RX-XPD Measurement<br />

10.3. Step-by-Step Procedure<br />

Note: Optimum TX-polarization alignment must be assured prior to this test. For<br />

SUT equipped with a 4-port feed the alignment of para. 4.2 remains<br />

unchanged and commutation from X to Y polarization is done by switching.<br />

Note: For SUT equipped with a 2-port feed, the optimum polarization alignment<br />

must be established for the Y-plane. If this has not been accomplished, test 4.2<br />

must be repeated prior to the following measurements.<br />

Step 1: During ESVA preparation and prior to commencement of ESVA testing, SUT<br />

check the linearity of the RX-chain(s) as follows:<br />

A test signal at stable amplitude and frequency (i.e. the in-station pilot) is<br />

injected at the input of the LNA. By means of a microwave attenuator, the<br />

pilot level is reduced in 10 dB steps and the corresponding power levels<br />

displayed on the spectrum analyser are recorded. This establishes a reference<br />

scale and a check of the linearity of the RX-chain(s) including the analyser<br />

display.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

X ST<br />

XT<br />

C T<br />

Satellite<br />

transmit<br />

antenna<br />

X T + X ST<br />

Station<br />

under<br />

test SUT


page 50 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Step 2: SUT equipped with 2-port feed proceed with Step 5.<br />

Step 3: SUT inject the pilot into one of the RX chains and measure its level.<br />

Step 4: Under consideration of differences in the RX coupling factors, inject the same<br />

pilot level into the second RX chain and measure the difference relative to the<br />

value obtained in Step 3 above. The result is the correction factor (i.e. the RX<br />

gain difference) for the following RX-XPD measurements.<br />

Step 5: If required, CSC arranges for change of satellite configuration on request of<br />

ERS.<br />

Step 6: ERS transmit the reference carrier at frequency and EIRP as specified in the<br />

<strong>EUTELSAT</strong> test plan.<br />

Note: If the SUT is equipped with a 2-port feed, the test plan shall provide a channel<br />

with X polarization in up-link and Y polarization in down-link.<br />

Step 7: SUT receive the co-polar component of the reference carrier. Set the pilot<br />

frequency close to the RX-frequency of the reference carrier (e.g. fPILOT =<br />

fREF — 200 Hz).<br />

Step 8: ERS transmit the reference carrier via the co-polar channel at the frequency<br />

and EIRP as specified in the <strong>EUTELSAT</strong> test plan.<br />

SUT equipped with 4-port feed proceed with Step 10.<br />

Step 9: SUT rotate the antenna feed by 90° and ensure that this position corresponds<br />

to the optimum TX polarization alignment established during test 4.2<br />

(compare angular readout and/or marks on feed).<br />

SUT equipped with 2-port feed proceed with Step 11.<br />

Step 10: SUT switch to orthogonal channel.<br />

Step 11: SUT lock to the cross-polar component of the reference carrier and measure<br />

the difference in level between the pilot and the cross-polar component of the<br />

reference carrier. If necessary, apply a correction (Step 3 above) and<br />

determine the XPD.<br />

Step 12: SUT lock to the co-polar component of the reference carrier (the satellite<br />

beacon for SUT equipped with 2-port feed). Move the antenna off boresight<br />

according to Figure 7.1. While moving the antenna, SUT monitor the<br />

variation of the RX level and control the movement accordingly, (Table 7.1<br />

refers).<br />

Step 13: Repeat Steps 11 and 12 for each point of the sequence described in Figure 7.1.<br />

Step 14: SUT report results to <strong>EUTELSAT</strong>.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 51 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

10.4. Example for Spectrum Analyser Settings<br />

10 dB /<br />

Co-polar Reception<br />

Reference level : As applicable<br />

Attenuator : 0 dB<br />

Scale : 5 dB or 10 dB/Division<br />

Centre frequency : ERS down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 2 kHz<br />

Resolution bandwidth : 30 Hz<br />

Video bandwidth : 30 Hz<br />

Video average : OFF<br />

Sweep time : Auto<br />

Marker noise : OFF<br />

∆-Marker : activated<br />

Trace : Max. Hold A<br />

Display line : OFF<br />

REF -10.0 dBm ATTEN 0 dB<br />

MKR -492 Hz<br />

-1.60 dB<br />

CENTER 11. 451 086 55 GHz SPAN 2 kHz<br />

RES BW 30 Hz VBW 30 Hz SWP 6.67 sec<br />

Figure 10.3 : Spectrum Analyser Display during RX-XPD Measurement<br />

Co-polar Reception<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 52 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

10 dB /<br />

Cross Polar Reception<br />

Reference level : As applicable<br />

Attenuator : 0 dB<br />

Scale : 5 dB or 10 dB/Division<br />

Centre frequency : ERS down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 2 kHz<br />

Resolution bandwidth : 30 Hz<br />

Video bandwidth : 30 Hz<br />

Video average : OFF<br />

Sweep time : Auto<br />

Marker noise : OFF<br />

∆-Marker : activated<br />

Trace : Max. Hold A<br />

Display line : OFF<br />

REF -10.0 dBm ATTEN 0 dB<br />

MKR -478 Hz<br />

-40.40 dB<br />

CENTER 11. 451 086 55 GHz SPAN 2 kHz<br />

RES BW 30 Hz VBW 30 Hz SWP 6.67 sec<br />

Figure 10.4 : Spectrum Analyser Display during RX-XPD Measurement<br />

X-pol Reception<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 53 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

11<br />

11<br />

0<br />

11. RECEIVE SIDELOBES (INCLUDING<br />

RECEIVE GAIN)<br />

11.1. Test Objectives<br />

To record the receive antenna diagram of the station under test. Although the<br />

measurement is not mandatory, it is recommended and it will provide<br />

additional aspects for the evaluation of the overall antenna performance.<br />

11.2. Principle<br />

11.2.1. Antenna Pattern<br />

The ERS transmits a carrier via an <strong>EUTELSAT</strong> satellite and maintains a<br />

constant flux. Alternatively, the station under test may lock to a satellite<br />

beacon signal. Then, the station under test records the receive level as<br />

function of the slewing angle in azimuth and elevation. Due to the nonorthogonality<br />

of the rotational axes, the azimuth angle is corrected according<br />

to formula 1 of paragraph 8.2. For evaluation of the antenna performance, the<br />

envelope of Figure 8.1 is applied.<br />

11.2.2. Receive Gain<br />

If the station under test is equipped with a receive coupler, the antenna receive<br />

gain may be calculated at known satellite EIRP. During ESVA preparation,<br />

the values of the RX coupling factor and the loss between the RX coupler and<br />

the antenna flange (or interface where the antenna gain is defined) have to be<br />

obtained by in-station measurement.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 54 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Figure 11.1 : Block Diagram of SUT RX-Chain<br />

At known satellite EIRP, the RX gain is given by:<br />

where:<br />

GRX : Antenna receive gain of SUT [dBi]<br />

LRX : RX feed Loss<br />

PPt : Level of in-station pilot at injection point<br />

CRX : RX coupling factor<br />

EIRPSAT/SUT : Satellite EIRP towards SUT<br />

Lfs/SUT : Free space loss towards SUT<br />

Lat/SUT : Athmospheric loss for reception at SUT<br />

30 : Conversion dBW ⇒ dBm<br />

[dB]<br />

[dBm]<br />

[dB]<br />

[dBm]<br />

[dB]<br />

[dB]<br />

[dB]<br />

The satellite EIRP towards the SUT is computed from the measured value of<br />

satellite EIRP towards the ERS.<br />

where:<br />

G RX<br />

RX - Feed Loss RX - Coupler LNA<br />

L RX<br />

10.95 - 12.75 GHz<br />

In-Station Pilot Injection<br />

EIRP SAT/ERS : Satellite EIRP towards ERS [dBW]<br />

L OA/ERS : Off-axis loss towards ERS [dB]<br />

L OA/SUT : Off-axis loss towards SUT [dB]<br />

To appreciate the measurement results, the theoretical expected value of the<br />

receive gain may be calculated according to (3) of para. 6.2.4.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

C RX<br />

G RX = P Pt + L RX − C RX − (EIRP SAT/SUT − L fs/SUT − L at/SUT + 30)<br />

P PT<br />

EIRP SAT/SUT = EIRP SAT/ERS + L OA/ERS − L OA/SUT<br />

RF-SPECTRUM<br />

ANALYSER<br />

(1)<br />

(2)


page 55 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

11.3. Step-by-Step Procedure<br />

A. Transmission of Reference Carrier<br />

Step 1: If required, CSC arrange for change of transponder gain setting on request of<br />

ERS. ERS transmit the reference carrier at the frequency and EIRP as<br />

specified in the <strong>EUTELSAT</strong> test plan.<br />

Note: Disregard Step 1 if the antenna measurement is performed by the satellite<br />

beacon.<br />

B. Calibration of Receive Chain<br />

Step 2: With the SUT antenna at boresight, SUT adjust the spectrum analyser and<br />

confirm linearity of receive and test equipment.<br />

If the SUT is not equipped with a receive coupler go to Step 6.<br />

Step 3: Verification of linearity may be achieved by injection of a in-station pilot via<br />

a coupler prior to the LNA input. The pilot level shall be equal to the received<br />

carrier at frequency which is approximately 10 kHz apart.<br />

Step 4: SUT communicate receive coupling factor and receive feed loss to ERS. ERS<br />

evaluate satellite EIRP towards SUT and calculate antenna receive gain.<br />

Step 5: SUT report the in-station pilot level at the LNA output and reduce the pilot in<br />

10 dB steps from relative 0 dB to −50 dB.<br />

C. Azimuth Pattern<br />

Step 6: SUT remove the in-station pilot and lock to the reference carrier. Except for<br />

the centre frequency, all analyser settings must remain unchanged from<br />

Step 5.<br />

Step 7: SUT move the antenna counter clockwise (i.e. to the East) in azimuth until the<br />

receive level is in the order of the noise floor (e.g. to −20°).<br />

Step 8: While recording the receive level, SUT slew the antenna in azimuth via<br />

boresight to the corresponding clockwise (i.e. West) position (e.g. +20°).<br />

Step 9: SUT slew the antenna to beam centre and optimize pointing for maximum<br />

receive level.<br />

D. Elevation Pattern<br />

Step 10: SUT descend the antenna in elevation until the receive level is in order of the<br />

noise floor (e.g. −15°).<br />

Step 11: While recording the receive level, SUT rise the antenna in elevation via<br />

boresight to the corresponding upper position (e.g. +15°).<br />

Step 12: SUT slew the antenna to beamcentre and optimize pointing for maximum<br />

receive level.<br />

Step 13: SUT process measurement data and produce plots of the co-polar azimuth and<br />

elevation antenna receive diagrams including the appropriate envelopes.<br />

Step 14: SUT inform ERS of measurement conclusion and forward results to<br />

<strong>EUTELSAT</strong>.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 56 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

11.4. Example for Spectrum Analyser Settings<br />

10 dB/<br />

DL<br />

Reference level : As applicable<br />

Attenuator : 0 dB<br />

Scale : 10 dB/Division<br />

Centre frequency : SUT down-link frequency as per test plan<br />

(11 or 12 GHz range)<br />

Span : 0 Hz<br />

Resolution bandwidth : 30 Hz (or 10 Hz)<br />

Video bandwidth : 1 Hz<br />

Sweep time : According to antenna slew speed e.g. 500<br />

sec.<br />

Marker noise : OFF<br />

∆-Marker : OFF<br />

Trace : Clear write<br />

Display line : Position to noise floor<br />

REF - 27.4 dBm ATTEN 0 dB<br />

CENTER 11.479 001 504 GHz<br />

RES BW 30 Hz VBW 1 Hz<br />

SPAN 0 Hz<br />

SWP 1000 sec<br />

Figure 11.2 : Spectrum Analyser Display during Antenna Pattern Measurement<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 57 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex A. Request for ESVA Format<br />

The form on the next page should be used to require ESVA for an existing<br />

earth station. After completion, it should be sent to the address indicated in<br />

Annex D of this Module.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 58 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


From: ____________________________________<br />

_________________________________________<br />

_________________________________________<br />

To : <strong>EUTELSAT</strong><br />

System Verification Test Section<br />

Fax : + 33 1 5398 3741 E-mail: fschurig@eutelsat.fr<br />

kbadalov@eutelsat.fr<br />

1. EARTH STATION UNDER TEST<br />

<strong>EUTELSAT</strong> Earth Station Verification Assistance (ESVA) is hereby requested for<br />

the following station:<br />

1.1. Earth Station Name: ...........................................................................................<br />

1.2. <strong>EUTELSAT</strong> Code: ................................................................................................<br />

2. ESVA TEST PROGRAMME<br />

3. REMARKS<br />

...............................................................................................................................<br />

...............................................................................................................................<br />

...............................................................................................................................<br />

SIGNATURE : ................................. DATE : ........................................................<br />

ã indicate as appropriate<br />

FACSIMILE / E-MAIL<br />

TRANSMISSION<br />

N°. of pages<br />

including this one : 1<br />

ESVA Request for a <strong>EUTELSAT</strong> Approved Earth Station<br />

2.1. Tests to be conducted ã : 2.2. Requested period :<br />

a) Earth Station EIRP a) Earliest start:___ / ___ / ___<br />

b) Transmit Frequency b) Finished before:___ / ___ / ___<br />

c) Polarization Alignment<br />

d) Transmit Polarization Isolation<br />

e) Earth Station G / T<br />

f) TX Sidelobe Pattern<br />

g) RX Sidelobe Pattern<br />

h) Other (describe on separate page)


page 61 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex B. Questionnaire<br />

The form on the next page is used to provide <strong>EUTELSAT</strong> with specific data<br />

relevant to any forthcoming ESVA or Earth Station Test activity. This<br />

information is required to ensure smooth implementation of measurements<br />

and is normally not part of the <strong>EUTELSAT</strong> Earth Station database. With<br />

submission of the completed form, the station operator re-confirms and<br />

guarantees his adequate preparation and readiness for test activities.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 62 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


FROM : ____________________________________________<br />

____________________________________________<br />

____________________________________________<br />

TO: <strong>EUTELSAT</strong> - Division 10<br />

System Verification Test Section Fax: + 33 (1) 53 98 37 41<br />

1) GUARANTEE<br />

Preparation of Forthcoming ESVA<br />

FACSIMILE<br />

TRANSMISSION<br />

Total N°. of Pages:<br />

This is to re-confirm that _________________________________ earth station, appropriate test equipment and staff<br />

will be ready for the ESVA test planned for ______________________________.<br />

ESOG Vol.I, Module 130 is available at the station under test.<br />

2) E/S PARAMETERS<br />

Signal Source HPA TX<br />

Coupler<br />

12.9 - 13.25 GHz (I)<br />

13.75 - 14.0 GHz (II)<br />

14.0 - 14.5 GHz (III)<br />

17.3 - 18.1 GHz (IY)<br />

29.5 - 30.0 GHz (V)<br />

EIRP Monitor Point<br />

CTX<br />

Pm<br />

TX - Powermeter<br />

Post Coupler<br />

losses<br />

LTX<br />

GTX<br />

Antenna<br />

EIRP SUT<br />

Are there other EIRP monitor points which may be used during following line-up and / or operations ?<br />

Yes No If " YES", please state details on a separate sheet.<br />

TX Chain Designation<br />

TX Coupling Factor C TX [dB]<br />

Post Coupler Loss L TX [dB]<br />

3) E/S CONFIGURATION<br />

Feed Type<br />

2-port 4-port<br />

Phase Combiner<br />

Yes No<br />

Number of LNA/B/C(s) :______________________<br />

LNANoise Temperature :_____________________°K<br />

Test Equipment Type<br />

Signal Source _______________________________<br />

Power Meter _______________________________<br />

Analyzer _______________________________<br />

Antenna Positioning<br />

Electrical Manual<br />

Number of HPA(s): ___________<br />

Antenna Slew Speed<br />

Freq. Stab. __________ Hz/min.<br />

Az. __________ °/s<br />

El. __________ °/s<br />

4) OPERATIONS<br />

Test Manager Contact during ESVA<br />

Name<br />

Phone<br />

Fax<br />

Earth station block diagram is attached Yes No<br />

5) REMARKS<br />

_________________________________________________________________________________<br />

_________________________________________________________________________________<br />

_________________________________________________________________________________<br />

SIGNATURE : ____________________ Date : ________________


page 65 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex C. List of Abbreviations<br />

AI Angular Increment<br />

C/N Carrier to Noise Ratio<br />

CCIR International Radio Consultative Committee<br />

(Comité Consultatif International de Radiocommunications)<br />

CCW Counter-Clockwise<br />

CSC <strong>EUTELSAT</strong> Communications System Control Centre<br />

CW Clockwise<br />

CW Continuous Wave (clean carrier)<br />

DATE Duly Authorized Telecommunications Entity<br />

E/S Earth Station<br />

EIRP Equivalent Isotropic Radiated Power<br />

ERS <strong>EUTELSAT</strong> Reference Station<br />

ESA European Space Agency<br />

ESOG <strong>EUTELSAT</strong> System <strong>Operations</strong> <strong>Guide</strong><br />

ESVA Earth Station Verification Assistance<br />

ETS 1A <strong>EUTELSAT</strong> Test Station (ERS at Rambouillet)<br />

ETS 1B <strong>EUTELSAT</strong> Test Station (ERS at Rambouillet)<br />

<strong>EUTELSAT</strong> European Telecommunications Satellite Organization<br />

G/T Gain to Equivalent Noise Temperature Ratio<br />

HPA High Power Amplifier<br />

IF Intermediate Frequency<br />

IPFD Input Flux Density<br />

LNA Low Noise Amplifier<br />

LNB Low Noise Block Converter<br />

LNC Low Noise Converter<br />

RF Radio Frequency<br />

RX Receive<br />

SUT Station Under Test<br />

TMS Test and Monitoring Station (ERS at Redu/Belgium)<br />

TX Transmit<br />

UTC Universal Time Coordinate<br />

(previously GMT i.e. Greenwich Mean Time)<br />

XDR Transponder<br />

XPD Cross-Polarization Discrimination<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 66 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 67 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex D. ESVA Contact Points<br />

Planning and<br />

Coordination<br />

<strong>EUTELSAT</strong><br />

System Verification Test Section<br />

70, rue Balard<br />

75502 PARIS Cedex<br />

Phone Fax<br />

+33.1.53.98.48.25<br />

+33.1.53.98.49.76<br />

+33.1.53.98.37.41<br />

ESVA Reference Station<br />

ETS 1A and 1B,<br />

Rambouillet, FRANCE<br />

Phone Fax<br />

+33.1.34.85.97.17<br />

+33.1.53.98.44.09<br />

+33.1.34.84.20.34<br />

ESVA Reference Station<br />

TMS1/4,<br />

Redu, BELGIUM<br />

Phone Fax<br />

+32.6122.9553<br />

+32.6122.9511<br />

+32.6122.9544<br />

ESVA Reference Station<br />

AUT-AFL-005<br />

Aflenz, AUSTRIA<br />

Phone Fax<br />

+43.3863.2181.0 +43.3863.2630<br />

+43.3863.2181.235 E-mail<br />

znk.efa.wien@telekom.at<br />

ESVA Reference Station<br />

UKI-GHY-008<br />

Goonhilly, UK<br />

Phone Fax<br />

+ 44.1872.325452/7<br />

+ 44.1872.325447 (day only)<br />

+44.1872.325509<br />

Space Segment Access <strong>EUTELSAT</strong> - CSC, Paris, FRANCE<br />

Phone Fax<br />

+33.1.53983411 +33.1.53 98 33 33<br />

+33.1.53983443 E-mail<br />

csc@eutelsat.fr<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 68 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 69 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex E. <strong>EUTELSAT</strong> Beacons<br />

1. Beacon Data Sheet<br />

2. Examples for Beacon Coverage areas<br />

2.1) W2, 12 GHz Beacon<br />

2.2) W2, Global Beacon<br />

2.3) <strong>EUTELSAT</strong> II-F4, 11 GHz Beacon<br />

2.4) <strong>EUTELSAT</strong> II-F4, 12 GHz Beacon<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 70 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


1) Beacon Data Sheet<br />

operational spare global steerable spare operational operational spare global X-Pol Y-Pol<br />

KA-Band<br />

X-Pol<br />

I-F4 25.5° E 11 449.650 - - - - - 17.18 - - - - -<br />

I-F5 14.8° W 11 448.950 - - - - - 17.08 - - - - -<br />

II-F1 48.0° E 11 451.091 11 451.830 - - 12 541.667 - - - - 15.55 15.50 - 14.15 - -<br />

II-F2 12.5° W 11 451.091 11 450.350 - - 12 541.667 - - - - 12.35 15.50 - 12.95 - -<br />

II-F3 35.9° E 11 451.830 11 452.570 - - 12 541.667 - - - - 14.47 15.70 - 15.17 - -<br />

II-F4 10.0° E 11 451.091 11 452.570 - - 12 541.667 - - - - 14.53 16.60 - 15.03 - -<br />

Hot BirdTM 1 13.0° E 11 449.610 11 450.350 - - - - 13.17 15.40 -<br />

Hot BirdTM 2 13.0° E 11 702.200 11 703.400 - - - - 13.37 13.40 -<br />

Hot BirdTM 3 13.0° E 11 702.800 11 704.000 - - 12 500.000 - - - - 11.67 13.00 - 15.57 - -<br />

Hot BirdTM 4 13.0° E 11 704.600 11 705.800 - - - - 12.67 14.20 -<br />

Hot BirdTM 5 13.0° E 11 701.000 11 699.800 - - - - 12.47 14.00 -<br />

Hot BirdTM Status: 07/00<br />

Beacon Frequency [MHz] Operational Beacon EIRP towards Beam Centre<br />

Satellite<br />

Orbital<br />

Position<br />

11 GHz<br />

X ( Horizontal ) Polarization<br />

12 GHz<br />

operational<br />

KA-Band<br />

Y Polarization<br />

11 GHz<br />

[dBW]<br />

12 GHz<br />

6 13.0° E 11 700.400 11 701.600 - - - - - 19 701.000 - - - - - - -<br />

W1 10.0° E 11 450.500 11 451.000 - - 12 500.250 - 12 749.750<br />

W2 16.0° E 11 698.000 11 699.200 11 199.000 - 12 501.000 - - - - 17.07 17.10 16.15 18.87 - -<br />

W3 7.0 E 11 698.600 11 699.800 11 199.500 - 12 501.000 - - - - - - 15.85 18.49 - -<br />

W4 36.0°E 11 706.850 - - - - - - - - - - - - - -<br />

EUROBIRD TM 28.5° E 11 452.570 11 451.091 - 11 200.000 12 501.000 - - - - - - - - - -<br />

ATLANTIC BIRD TM 12.5° W 11 703.400 11 704.600 - - 12 500.150 12 749.850 - - - - - - - - -<br />

SESAT 36.0°E 11 450.350 11 451.091 - 11 199.500 12 501.000 - - - - - - - - - -<br />

TELECOM 2A 8.0° W - - - - 12 502.500 - 12 501.500 - 12 500.500 - - - 25.32 16.57 -<br />

TELECOM 2D 8.0° W 11 450.500 - - - - - - - 11 452.500 - - - - - -<br />

TELSTAR 12 14.8° W 11 450.500 11 451.000 - - - - - - - - - - - - -<br />

DFS-2 KOPERNIKUS 28.5° E - - - - - - - 19 701.750 11 452.700 - - - - - -<br />

EXPRESS 3A 11.0° W - - - - - - - - 11 400.000 - - - - - -


2.1) W2 at 16°E, 12 GHz Beacon Coverage<br />

2.2) W2 at 16°E, Global Beacon Coverage


2.3) <strong>EUTELSAT</strong> II-F4 at 10°E, 11 GHz Beacon<br />

Remark: Values refer to the central spectral component (∃∅) of beacon signal<br />

2.4) <strong>EUTELSAT</strong> II-F4 at 10°E, 12GHz Beacon Coverage


page 77 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex F. Frequency Plans<br />

The next pages show the transponder configurations and frequency plans for<br />

the following satellites:<br />

<strong>EUTELSAT</strong>-I<br />

<strong>EUTELSAT</strong>-II<br />

HOT BIRD TM 1....6<br />

<strong>EUTELSAT</strong> W1....W4<br />

SESAT<br />

EUROBIRD TM<br />

ATLANTIC BIRD TM<br />

TELECOM 2A and 2D<br />

DFS 2 - KOPERNIKUS<br />

TELSTAR 12<br />

EXPRESS 3A<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 78 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


UP-LINK<br />

DOWN-LINK<br />

Transponder N°<br />

Transponder N°<br />

Transponder N°<br />

Transponder N°<br />

10 991.667<br />

14 041.667<br />

1X 2X 3X<br />

14 125.000<br />

14 208.333<br />

14.00 GHz 14.50 GHz<br />

10/14 11 12<br />

7 8 9<br />

11 075.000<br />

10/14 11 12 7 8 9<br />

4/13 5 6 1X 2X 3X<br />

11 158.333<br />

14 291.667<br />

4X<br />

4Y<br />

5X 6X<br />

5Y 6Y<br />

<strong>EUTELSAT</strong> I Transponder Frequency Plan<br />

(Frequency in MHz)<br />

11 450.000<br />

14 375.000<br />

11 575.000<br />

14 458.333<br />

11 658.333<br />

Pol. X<br />

Pol. Y<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.7 GHz 12.5 GHz 12.58 GHz<br />

1 2 3 4 5 6 13<br />

EB/SW<br />

EB/SW<br />

1Y 2Y 3Y<br />

4/13 5 6<br />

SE<br />

SE<br />

Ft=3300<br />

EB/SW<br />

EB/SW<br />

Ft=2550<br />

7 8 9 10 11 12 14<br />

Beacon<br />

1 2 3<br />

SW<br />

SW<br />

SE/SA<br />

SA<br />

Ft=1500<br />

SW<br />

SW<br />

12 541.667<br />

1S<br />

2S<br />

SMS<br />

SMS<br />

Pol. X<br />

Pol. Y<br />

<strong>EUTELSAT</strong> I LAUNCH<br />

F1* : 16.06.83<br />

F2 : 04.08.84<br />

F3 : 16.09.87<br />

F5 : 21.07.88<br />

* No transponder 13 / 14<br />

Beacon Frequencies<br />

EUT I-F4 11 449.650<br />

EUT I-F5 11 448.950<br />

BW : 72


BW : 72<br />

BW : 36<br />

UP - LINK<br />

TRANSPONDER<br />

NUMBER<br />

TRANSPONDER NUMBER<br />

TRANSPONDER NUMBER<br />

CHANNEL ID<br />

CHANNEL ID<br />

CHANNEL ID<br />

CHANNEL ID<br />

14<br />

9<br />

1 2<br />

10<br />

11<br />

e/t<br />

6 7 8<br />

3<br />

e/t<br />

W W W<br />

W<br />

14.00 14.25 14.50<br />

20 21 22<br />

45 46 37/47 38/48 39/49<br />

12<br />

e/t<br />

4<br />

e/t<br />

5<br />

e/t<br />

13<br />

e/t<br />

40 41 32/42 33/43 32/42 34/44<br />

14 021.410<br />

DOWN - LINK<br />

6 7 8<br />

15 16<br />

11e 12e 13e<br />

W<br />

W<br />

25 26 27<br />

14<br />

15<br />

W E<br />

W<br />

16<br />

20 21 22<br />

32 33<br />

9 10 11t 12t 13t<br />

3e 4e 5e 1 2 3t 4t 5t<br />

W<br />

E<br />

34 40 41 42 43 44<br />

W<br />

E W E W<br />

TRANSPONDER<br />

25 26 27<br />

37 38 39<br />

45 46 47 48 49<br />

NUMBER<br />

10.95 11.20 11.45 11.70 12.50 12.75<br />

10 991.667<br />

11 075.000<br />

14 042.160<br />

14 062.910<br />

14 083.660<br />

14 104.410<br />

14 125.160<br />

ft = 3300<br />

11 158.333<br />

14 145.910<br />

14 166.660<br />

11 GHz<br />

Beacon<br />

14 208.160<br />

14 208.333<br />

ft = 2550<br />

11 554.410<br />

14 291.667<br />

11 575.160<br />

ft = 1500<br />

11 595.910<br />

11 616.660<br />

14 375.000<br />

11 658.333<br />

11 658.160<br />

14 458.333<br />

12 521.410<br />

<strong>EUTELSAT</strong> II Frequency Plan<br />

(Frequency in MHz)<br />

12 GHz<br />

Beacon<br />

12 542.160<br />

E<br />

POLARIZATION X<br />

POLARIZATION Y<br />

12 562.910<br />

12 583.660<br />

W<br />

12 604.410<br />

12 625.160<br />

E<br />

12 645.910<br />

12 666.660<br />

W<br />

<strong>EUTELSAT</strong> II LAUNCH<br />

F1 : 31.08.90<br />

F2 : 15.01.91<br />

F3 : 07.12.91<br />

F4* : 09.07.92<br />

* Modified coverage of West TX antenna<br />

12 708.333<br />

12 708.160<br />

E<br />

W<br />

E<br />

E<br />

East antenna<br />

West antenna<br />

Beacon Frequencies<br />

II-F1 : 11451.091 / 11451.830<br />

II-F2 : 11451.830 / 11450.350<br />

II-F3 : 11452.570 / 11451.830<br />

II-F4 : 11451.091 / 11452.570<br />

12 GHz F1-F4 : 12541.667<br />

POLARIZATION X<br />

POLARIZATION Y<br />

SHU/98/012


UP- LINK<br />

DOWN- LINK<br />

12.90 GHz<br />

12 916.340<br />

11.20 GHz<br />

11 220.750<br />

12 937.090<br />

11 241.500<br />

12 957.840<br />

11 262.250<br />

12 978.590<br />

11 283.000<br />

12 999.340<br />

11 303.750<br />

13 020.090<br />

11 324.500<br />

13 040.840<br />

11 345.250<br />

13 061.590<br />

11 366.000<br />

13 082.340<br />

11 386.750<br />

13 103.090<br />

11 407.500<br />

13 123.840<br />

11 428.250<br />

13 144.590<br />

11 449.000<br />

13 167.000<br />

11 471.410<br />

13 187.750<br />

11 492.160<br />

13 208.500<br />

11 512.910<br />

13 229.250<br />

2 4 6 8 10 12 14 16<br />

1 3 5 7 9 11 13 15<br />

Beacon 11 449.610<br />

(11 450.350)<br />

1 3 5 7 9 11 13 15<br />

2 4 6 8 10 12 14 16<br />

13.25 GHz<br />

11 533.660<br />

Pol. X<br />

Pol. Y<br />

Ft = 1695.59<br />

Hot Bird TM 1 Frequency Plan<br />

(Frequency in MHz)<br />

11.70 GHz<br />

Pol. X<br />

Pol. Y<br />

Receive<br />

(up-link)<br />

Superwide<br />

(dn-link)<br />

BW : 36<br />

HOT BIRD 1 launch :<br />

29.03.95<br />

Antenna on<br />

Earth Panel<br />

Antenna on<br />

Earth Panel<br />

SHU/98/011


SHU/96/006<br />

UP - LINK<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

13.75 GHz<br />

DOWN - LINK<br />

11.45 GHz<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

D1 D3 D5<br />

13854.41<br />

13875.16<br />

13916.66<br />

13958.16<br />

37 38 39<br />

D2 D4 D6<br />

32 33 34<br />

13895.91<br />

11554.41<br />

13958.33<br />

11575.16<br />

14.00 GHz 17.30 GHz 18.10 GHz<br />

11595.91<br />

11616.66<br />

11658.33<br />

32 33 34<br />

D2 D4 D6<br />

36 38 39<br />

11658.16<br />

11727.48<br />

17327.48<br />

11.70 GHz<br />

E1 E3 E5 E7 E9 E11 E13 E15 E17<br />

11746.66<br />

E2 E4 E6 E8 E10 E12 E14 E16 E18 E20<br />

17346.66<br />

11765.84<br />

17365.84<br />

11785.02<br />

17385.02<br />

11804.20<br />

17404.20<br />

11823.38<br />

17423.38<br />

11842.56<br />

17442.56<br />

11861.74<br />

17461.74<br />

11880.92<br />

17480.92<br />

50 52 54 56 58 60 62 64 66 68<br />

11900.10<br />

17500.10<br />

11919.28<br />

17519.28<br />

11938.46<br />

17538.46<br />

11957.64<br />

17557.64<br />

11976.82<br />

Hot Bird TM 2 Frequency Plan<br />

(Frequency in MHz)<br />

17576.82<br />

11996.00<br />

17596.00<br />

12015.18<br />

17615.18<br />

12034.36<br />

17634.36<br />

12053.54<br />

17653.54<br />

12072.72<br />

17672.72<br />

E19<br />

51 53 55 57 59 61 63 65 67 69<br />

fT=2300 fT=5600<br />

Beacon<br />

11 702.200<br />

(11 703.400)<br />

51 53 55 57 59 61 63 65 67 69<br />

D1 D3 D5 E2 E4 E6 E8 E10 E12 E14 E16 E18 E20<br />

E1 E3 E5 E7 E9 E11 E13 E15 E17 E19<br />

50 52 54 56 58 60 62 64 66 68<br />

12091.90<br />

17691.90<br />

12.50 GHz<br />

Polarisation X<br />

Polarisation Y<br />

Polarisation X<br />

Polarisation Y<br />

C1 Launch :<br />

Receive<br />

(up-link)<br />

Transmit<br />

(dn-link)<br />

Wide<br />

Super<br />

21.11.1996<br />

BW : 36<br />

BW : 33<br />

BW : 72<br />

Antenna on<br />

Earth Panel<br />

Antenna<br />

West East<br />

Y X


UP - LINK<br />

Transponder N°<br />

14048.61<br />

14125.00<br />

14208.33<br />

14291.67<br />

14375.00<br />

14458.33<br />

Channel ID F2 F4 F6 B2 B4 B6<br />

E21 E23 E25 E27 E29 E31 E33 E35 E37 E39 Polarisation X<br />

Channel ID F1 F3 F5 B1 B3 B5<br />

E22 E24 E26 E28 E30 E32 E34 E36 E38 E40<br />

Polarisation Y<br />

Transponder N°<br />

14.00 GHz 14.50 GHz 17.30 GHz 18.10 GHz<br />

14041.67<br />

10991.67<br />

14125.00<br />

11075.00<br />

14208.33<br />

11158.33<br />

14291.67<br />

14375.00<br />

14458.33<br />

DOWN - LINK<br />

10.95 GHz 11.20 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

45 47 49 25 26 27 70 72 74 76 78 80 82 84 86 88<br />

40 42 44 20 21 22<br />

71 73 75 77 79 81 83 85 87 89<br />

fT=3300<br />

Switchable to Steerable Coverage (channel-by-channel)<br />

11 GHz Beacon<br />

11 702.800<br />

(11 704.000)<br />

12111.08<br />

12130.26<br />

12149.44<br />

12168.62<br />

12187.80<br />

12206.98<br />

12226.16<br />

fT=5600<br />

12245.34<br />

12264.52<br />

12283.70<br />

Hot Bird TM 3 Frequency Plan<br />

(Frequency in MHz)<br />

17711.08<br />

12302.88<br />

17730.26<br />

12322.06<br />

17749.44<br />

12341.24<br />

17768.62<br />

12360.42<br />

17787.80<br />

fT = 1 5 0 0<br />

20 21 22 71 73 75 77 79 81 83 85 87 89<br />

B1 B3 B5<br />

E22 E24 E26 E28 E30 E32 E34 E36 E38 E40<br />

B2 B4 B6 E21 E23 E25 E27 E29 E31 E33 E35 E37 E39<br />

25 26 27 70 72 74 76 78 80 82 84 86 88<br />

12379.60<br />

17806.98<br />

12398.78<br />

17826.16<br />

12417.96<br />

17845.34<br />

12437.14<br />

17864.52<br />

12465.91<br />

17883.70<br />

17902.88<br />

12475.50<br />

12 GHz Beacon<br />

17922.06<br />

12 500.000<br />

17941.24<br />

12541.67<br />

12548.61<br />

17960.42<br />

17979.60<br />

17998.78<br />

12625.00<br />

18017.96<br />

18037.14<br />

18065.91<br />

12708.33<br />

18075.50<br />

40 42 44<br />

F1 F3 F5<br />

F2 F4 F6<br />

45 47 49<br />

Pol. X<br />

Pol. Y<br />

Receive<br />

(up-link)<br />

Transmit<br />

(dn-link)<br />

Steerable<br />

Spot<br />

BW : 33<br />

BW : 49.5<br />

BW : 72<br />

C2 Launch :<br />

29/07/1996 :<br />

Antenna on<br />

Earth Panel<br />

Antenna on<br />

Earth Panel<br />

Antenna West East<br />

Wide<br />

Y X<br />

Super<br />

X<br />

BW : 60<br />

Y<br />

SHU/98/009


UP -LINK<br />

13.75 GHz 14.00 GHz 17.30 GHz 18.10 GHz<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

DOWN - LINK<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

10727.13<br />

10775.08<br />

13884.92<br />

13923.28<br />

13963.28<br />

F7 F9 F11 E27<br />

F6 F8 F10 F12<br />

13865.74<br />

10815.08<br />

13904.10<br />

10853.44<br />

13942.46<br />

10891.80<br />

13980.82<br />

10.70 GHz 10.95 GHz 11.70 GHz 12.50 GHz<br />

10719.18<br />

10757.54<br />

10795.90<br />

10930.16<br />

17826.16<br />

17864.52<br />

17883.70<br />

12283.70<br />

17902.88<br />

96 98 100 76 78 80 82 110 112 114 116 118 120 122<br />

10834.26<br />

10872.62<br />

10910.98<br />

10949.34<br />

Switchable to Steerable (channel-by-channel)<br />

12226.16<br />

17922.06<br />

12322.06<br />

17941.24<br />

E29 E31 E33<br />

E30 E32 E34 E36<br />

12264.52<br />

12302.88<br />

12341.24<br />

17960.42<br />

12360.42<br />

17998.78<br />

12398.78<br />

18119.18<br />

18127.13<br />

Hot Bird TM 4 Frequency Plan<br />

(Frequency in MHz)<br />

18157.54<br />

18175.08<br />

18195.90<br />

18215.08<br />

12615.74<br />

18234.26<br />

18253.44<br />

12654.10<br />

18272.62<br />

18291.80<br />

12692.46<br />

18310.98<br />

A1 A3 A5 A7 A9 A11 A13<br />

A2 A4 A6 A8 A10 A12<br />

95 97 99 101 79 81 83 85 111 113 115 117 119 121<br />

fT = 1 2 5 0fT=5600<br />

fT = 7 4 0 0<br />

Beacon<br />

11 704.600<br />

(11 705.800)<br />

111 113 115 117 119 121 79 81 83 85 95 97 99 101<br />

A2 A4 A6 A8 A10 A12 E30 E32 E34 E36<br />

F6 F8 F10 F12<br />

A1 A3 A5 A7 A9 A11 A13<br />

E27 E29 E31 E33 F7 F9 F11<br />

110 112 114 116 118 120 122 76 78 80 82 96 98 100<br />

SKYPLEX or Transparent Operation<br />

12634.92<br />

12673.28<br />

12713.28<br />

18330.16<br />

12730.82<br />

18349.34 18.40 GHz<br />

12.75 GHz<br />

Polarisation X<br />

Polarisation Y<br />

Polarisation X<br />

Polarisation Y<br />

Receive<br />

(up-link)<br />

Transmit<br />

(dn-link)<br />

Steerable<br />

Spot<br />

BW : 36<br />

BW : 33<br />

BW : 72<br />

C3 Launch :<br />

27.02.1998<br />

Antenna on<br />

Earth Panel<br />

Antenna on<br />

Earth Panel<br />

Antenna West East<br />

Wide<br />

Y Y<br />

Super<br />

X<br />

X<br />

SHU/98/008


UP - LINK<br />

DOWN - LINK<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

14.00 GHz 14.25 GHz 14.50 GHz<br />

14 019.18<br />

14 038.36<br />

14 057.54<br />

14 076.72<br />

14 095.90<br />

14 115.08<br />

14 134.26<br />

14 153.44<br />

14 172.62<br />

14 191.80<br />

14 210.98<br />

14 230.16<br />

14 250.66<br />

14 271.41<br />

14 292.16<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

10 971.41<br />

10 992.16<br />

11 012.91<br />

11 033.66<br />

11 054.41<br />

11 075.16<br />

11 095.91<br />

Transponder N°<br />

11 116.66<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

11 158.33<br />

123 125 127 129 131<br />

B1 B3 B5 B7 B9<br />

B2 B4 B6 B8 B10<br />

124 126 128 130 132<br />

11 179.08<br />

SKYPLEX or Transparent Operation<br />

fT=3279.25<br />

154 156 158<br />

D2 D4 D6<br />

90 92 94<br />

F1 F3 F5<br />

D1 D3 D5 D7 F2 F4 B1 B3 B5 B7 B9<br />

14 312.91<br />

14 333.66<br />

14 354.41<br />

11 565.74<br />

14 375.16<br />

11 584.92<br />

14 395.91<br />

11 604.10<br />

11 623.28<br />

14 437.58<br />

11 642.46<br />

Hot Bird TM 5 Frequency Plan<br />

(Frequency in MHz)<br />

14 458.33<br />

124 126 128 130 132<br />

B2 B4 B6 B8 B10<br />

153 155 157 159 91 93 123 125 127 129 131<br />

fT=2453.44<br />

fT=1633.60<br />

154 156 158<br />

11 661.64<br />

11 680.82<br />

153 155 157 159<br />

D1 D3 D5 D7<br />

D2 D4 D6<br />

Beacon<br />

Polarisation X<br />

Polarisation Y<br />

11 701.000<br />

(11 699.800)<br />

12 519.84<br />

12 539.02<br />

12 558.20<br />

12 577.38<br />

91 93<br />

F2 F4<br />

F1 F3 F5<br />

90 92 94<br />

12 596.56<br />

Polarisation X<br />

Polarisation Y<br />

C4 Launch :<br />

BW :33 (or 36 MHz for D channels)<br />

BW :72 MHz<br />

10.11.1998<br />

SHU/98/007


UPLINK<br />

13.75 GHz<br />

13 808.20<br />

DOWNLINK<br />

13 846.56<br />

14.00 GHz 14.25 GHz<br />

14 019.18<br />

14 038.36<br />

14 057.54<br />

14 076.72<br />

14 095.90<br />

14 115.08<br />

116 118<br />

154 156 158 90 92 94 124 126 128 130 132 134<br />

115 117 153 155 157 159 91 93 123 125 127 129 131 133<br />

13 789.02<br />

13 827.38<br />

2973.94<br />

10.70 GHz 10.95 GHz<br />

10 815.08<br />

10 853.44<br />

115 117<br />

116 118<br />

10 834.26<br />

10 872.62<br />

BW : 72<br />

BW : 36 (33)<br />

10 971.41<br />

10 992.16<br />

11 012.91<br />

11 033.66<br />

11 054.41<br />

11 075.16<br />

11 095.91<br />

11 116.66<br />

14 134.26<br />

14 153.44<br />

14 172.62<br />

3279.25<br />

11 137.41<br />

11.20 GHz 11.45 GHz<br />

11 158.16<br />

14 191.80<br />

11 178.91<br />

123 125 127 129 131 133<br />

124 126 128 130 132 134<br />

11 199.66<br />

14 210.98<br />

14 230.16<br />

14 250.66<br />

2453.44<br />

14 271.41<br />

14 292.16<br />

14 312.91<br />

14 333.66<br />

14 354.41<br />

14 375.16<br />

14 395.91<br />

11 565.74<br />

14 416.66<br />

11 584.92<br />

14 437.41<br />

11 604.10<br />

11 623.28<br />

14.50 GHz<br />

14 458.16<br />

11 642.46<br />

14 478.91<br />

11 661.64<br />

Pol. X<br />

Pol. Y<br />

11.70 GHz 12.50 GHz 12.75 GHz<br />

11 680.82<br />

153 155 157 159<br />

154 156 158<br />

(11 701.6)<br />

11 700.4<br />

HOT BIRD TM 6 FREQUENCY PLAN<br />

(Frequency in MHz)<br />

11 GHz Beacon<br />

1933.6<br />

12 519.84<br />

12 539.02<br />

12 558.20<br />

12 577.38<br />

91 93<br />

90 92 94<br />

12 596.56<br />

HOT BIRD TM 6 Launch<br />

Pol. X<br />

Pol. Y<br />

29.5 GHz 30.0 GHz<br />

29 529.18*<br />

19.7 GHz<br />

29 548.36*<br />

K154<br />

K153<br />

29 548.00<br />

19 748.00<br />

19 729.18*<br />

19701<br />

K153<br />

K154<br />

19 748.36*<br />

* Skyplex unit center frequency<br />

Possible use of Skyplex units<br />

29 625.08*<br />

K158<br />

K159<br />

19 825.08*<br />

29 644.26*<br />

29 642.00<br />

1933.6 9800<br />

KA Beacon<br />

19 844.26*<br />

19 842.00<br />

K159<br />

K158<br />

Pol. X<br />

Pol. Y<br />

20.2 GHz<br />

Pol. X<br />

Pol. Y


13.75 GHz 14.00 GHz 14.25 GHz 14.50 GHz<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz<br />

12.50 GHz 12.75 GHz<br />

10 991.670 10 991.670<br />

B1<br />

B2<br />

11 075.000 11 075.000<br />

B3<br />

B4<br />

13 773.060<br />

13 839.770<br />

11 158.330 11 158.330<br />

13 906.630<br />

13 968.880<br />

D2 D4 D6 D8<br />

D1 D3 D5 D7<br />

13 773.060<br />

13 839.770<br />

13 906.630<br />

13 968.880<br />

D2S D4S D6S D8S<br />

D1S D3S D5S D7S<br />

3.3 GHz<br />

Fixed Coverage<br />

Steerable Coverage<br />

B5<br />

B6<br />

11 450.500<br />

11 451.000<br />

B1<br />

11 473.060<br />

11 473.060<br />

14 041.670 14 041.670<br />

F2<br />

F1<br />

11 539.770<br />

11 539.770<br />

14 125.000 14 125.000<br />

F4<br />

F3<br />

11 606.630<br />

11 606.630<br />

14 208.330/<br />

14 199.330<br />

14 208.330<br />

11 668.880<br />

11 668.880<br />

14 291.670 14 291.670<br />

2.3 GHz 1.5 GHz<br />

D1 D3 D5 D7<br />

D2 D4 D6 D8<br />

F6<br />

F5<br />

D1S D3S D5S D7S<br />

D2S D4S D6S D8S<br />

B2<br />

B1<br />

14 375.000 14 375.000<br />

B4<br />

B3<br />

12 500.250 B2a<br />

W1 FREQUENCY PLAN (Former RESSAT)<br />

(Frequency in MHz)<br />

14 458.330 14 458.330<br />

B6<br />

B5<br />

12 541.670 12 541.670<br />

F1<br />

F2<br />

X<br />

Y<br />

12 625.000 12 625.000<br />

F3<br />

F4<br />

12 708.330 12 708.330<br />

F5<br />

F6<br />

Fixed or Steerable Coverage (uplink only)<br />

W1 Launch<br />

D3(S) D4(S)<br />

D5(S) D8(S)<br />

D1(S) D2(S)<br />

Fixed and/or Steerable Coverage (uplink only)<br />

B, F BW : 72<br />

12 749.750<br />

B2b<br />

X<br />

Y<br />

BW : 62<br />

BW : 54<br />

BW : 40


UP - LINK<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

DOWN - LINK<br />

13.00 GHz 13.25 GHz 13.75 GHz<br />

14.00 GHz 14.25 GHz 14.50 GHz<br />

13 001.00<br />

13 021.75<br />

13 042.50<br />

13 167.00<br />

D1 D3 D5 D7 D9 F2 F4 F6<br />

D2 D4 D6 D8 D10 F1 F3 F5<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

10 991.67<br />

13 104.75<br />

13 125.50<br />

11 075.00<br />

13 187.75<br />

13 208.50<br />

C1 C3 C5 C7 C9 C11<br />

C2 C4 C6 C8 C10 C12<br />

13 063.25<br />

13 084.00<br />

13 146.25<br />

13 229.25<br />

fT =1780.25<br />

11 158.33<br />

St. spot Beacon<br />

11 199.000<br />

B1 B3 B5<br />

B2 B4 B6<br />

Switchable to Steerable Beam<br />

11 220.75<br />

11 241.50<br />

11 262.25<br />

11 283.00<br />

13 771.41<br />

11 303.75<br />

13 792.16<br />

11 324.50<br />

13 812.91<br />

13 833.66<br />

fT = 3 3 00<br />

13 854.41<br />

13 875.16<br />

11 407.50<br />

13 895.91<br />

13 916.66<br />

C2 C4 C6 C8 C10 C12 D2 D4 D6 D8 D10<br />

C1 C3 C5 C7 C9 C11<br />

11 345.25<br />

11 366.00<br />

11 386.75<br />

11 428.25<br />

11 449.00<br />

13 958.33<br />

13 958.16<br />

<strong>EUTELSAT</strong> W2 Frequency Plan<br />

(Frequency in MHz)<br />

11 512.91<br />

14 041.67<br />

D1 D3 D5 D7<br />

11 471.41<br />

fT =2300<br />

11 492.16<br />

11 533.66<br />

11 554.41<br />

11 575.16<br />

11 595.91<br />

11 616.66<br />

14 125.00<br />

11 658.16<br />

(11 699.200)<br />

11 698.000<br />

11GHz Beacon<br />

D9<br />

11 658.33<br />

14 208.33<br />

fT = 1500<br />

12 GHz Beacon<br />

12 501.000<br />

14 291.67<br />

B2 B4 B6<br />

B1 B3 B5<br />

12 541.67<br />

14 375.00<br />

12 625.00<br />

14 458.33<br />

12 708.33<br />

F1 F3 F5<br />

F2 F4 F6<br />

W2 Launch :<br />

Polarisation X<br />

Polarisation Y<br />

Polarisation X<br />

Polarisation Y<br />

BW : 72 BW : 36<br />

05/10/1998<br />

SHU/98/005


UP - LINK<br />

13.00 GHz<br />

DOWN - LINK<br />

13 021.75<br />

10 991.67<br />

13 104.75<br />

11 075.00<br />

13 167.00<br />

13 187.75<br />

C2 C4 C6 C8 C10 C12<br />

C1 C3 C5 C7 C9 C11<br />

13 001.00<br />

13 042.50<br />

13 063.25<br />

13 084.00<br />

13 125.50<br />

13 146.25<br />

fT = 1780.250<br />

11 158.33<br />

B1 B3 B5<br />

B2 B4 B6<br />

13.25 GHz 13.75 GHz<br />

14.00 GHz 14.25 GHz 14.50 GHz<br />

11 241.50<br />

11 324.50<br />

11 407.50<br />

D9<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

Widebeam fixed or steerable coverage (channel-by-channel)<br />

Widebeam fixed coverage<br />

13 208.50<br />

13 229.25<br />

11 199.500<br />

St. spot Beacon<br />

11 220.75<br />

11 262.25<br />

13 771.41<br />

11 303.75<br />

13 792.16<br />

13 854.41<br />

13 875.16<br />

<strong>EUTELSAT</strong> W3 Frequency Plan<br />

(Frequency in MHz)<br />

13 958.16<br />

D2 D4 D6 D8 D10<br />

13 812.91<br />

13 833.66<br />

13 895.91<br />

C1 C3 C5 C7 C9 C11<br />

13 916.66<br />

13 958.33<br />

11 512.91<br />

14 041.67<br />

14 125.00<br />

F2 F4 F6<br />

F1 F3 F5<br />

11 595.91<br />

D1 D3 D5 D7<br />

C2 C4 C6 C8 C10 C12 D2 D4 D6 D8 D10<br />

11 283.00<br />

D1 D3 D5 D7<br />

fT = 3300<br />

11 345.25<br />

11 366.00<br />

11 386.75<br />

11 428.25<br />

fT = 2300<br />

11 449.00<br />

11 471.41<br />

11 492.16<br />

11 533.66<br />

11 554.41<br />

11 575.16<br />

11 616.66<br />

11 658.33<br />

D9<br />

11 658.16<br />

11 GHz Beacon<br />

(11 699.800)<br />

11 698.600<br />

14 208.33<br />

12 501.000<br />

14 291.67<br />

B2 B4 B6<br />

B1 B3 B5<br />

fT = 1500<br />

12 GHz Beacon<br />

12 541.67<br />

14 375.00<br />

12 625.00<br />

14 458.33<br />

12 708.33<br />

F1 F3 F5<br />

F2 F4 F6<br />

BW : 36 72<br />

Pol. X<br />

Pol. Y<br />

Pol. X<br />

Pol. Y<br />

W3 Launch<br />

12/04/1999<br />

SHU/98/003


UP-LINK UPLINK<br />

Vertical Polarization or LHCP<br />

DOWN-LINK<br />

DOWNLINK<br />

Horizontal Polarization or RHCP<br />

17.3 GHz 18.1 GHz<br />

17 327.48<br />

11.7 GHz<br />

11 706.850<br />

17 672.72<br />

1 19 21<br />

25 27 29 31 33 35 37 39<br />

1 19 21<br />

25 27 29 31 33 35 37 39<br />

11 727.48<br />

2 10 20 22 24<br />

17 346.66<br />

11 746.66<br />

Ft = 5600<br />

"Russian" Coverage (circular polarisation)<br />

African/Steerable Coverages (Linear polarisation)<br />

"Russian" and African or Steerable Coverage<br />

17 500.10<br />

Fixed African Coverage or Steerable Coverage ( block switched )<br />

Steerable Coverage<br />

11 900.10<br />

2 10 20 22 24<br />

12 072.72<br />

17 691.90<br />

12 091.90<br />

<strong>EUTELSAT</strong> <strong>EUTELSAT</strong> W4 Frequency W4 Frequency Plan Plan<br />

(Frequency (Frequency in MHz) in MHz)<br />

17 711.08<br />

12 111.08<br />

17 730.26<br />

12 130.26<br />

17 768.62<br />

12 168.62<br />

17 787.80<br />

12 187.80<br />

17 806.98<br />

12 206.98<br />

17 826.16<br />

12 226.16<br />

17 845.34<br />

12 245.34<br />

17 864.52<br />

12 264.52<br />

17 883.70<br />

12 283.70<br />

17 902.88<br />

12 302.88<br />

17 922.06<br />

12 322.06<br />

17 941.24<br />

26 28 30 32 34 36 38 40<br />

26<br />

28<br />

12 341.24<br />

17 960.42<br />

12 360.42<br />

17 979.60<br />

12 379.60<br />

17 998.78<br />

12.5 GHz<br />

Fixed African Coverage<br />

12 398.78<br />

18 017.96<br />

12 417.96<br />

18 037.14<br />

12 437.14<br />

18 056.32<br />

12 456.32<br />

18 075.50<br />

12 475.50<br />

30 32 34 36 38 40<br />

BW : 33<br />

W4 Launch : 24.06.2000<br />

RHCP<br />

LHCP or Y<br />

RHCP or X<br />

LHCP


UP - LINK<br />

DOWN - LINK<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

Transponder N°<br />

Channel ID<br />

Channel ID<br />

Transponder N°<br />

H4 / D4 H6 / D6<br />

H3 / D3 H5 / D5<br />

B5<br />

F2 / G2<br />

F1 / G1<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

10 991.67<br />

13.75 GHz<br />

11 075.00<br />

B1 B3<br />

B2 B4<br />

13 791.67<br />

H2 / D2<br />

H1 / D1<br />

11 158.33<br />

13 875.00<br />

11 199.500<br />

St. Spot Beacon<br />

Switchable to Steerable Coverage<br />

13 958.33<br />

fT = 33 00<br />

14.00 GHz 14.25 GHz 14.50 GHz<br />

14 041.67<br />

F4 / G4 F6 / G6<br />

F3 / G3 F5 / G5<br />

G1 / D1 G3 / D3<br />

B6 G2 / D2 G4 / D4<br />

14 125.00<br />

fT = 2 300<br />

11 GHz Beacon<br />

11 450.350<br />

(11451.091)<br />

11 491.67<br />

14 208.33<br />

fT = 1 2 5 0<br />

fT=2550<br />

11 575.00<br />

14 291.67<br />

SESAT Frequency Plan<br />

(Frequency in MHz)<br />

B2 B4 B6<br />

B1 B3 B5<br />

fT = 15 00<br />

11 658.33<br />

14 375.00<br />

G5 / D5<br />

G6 / D6<br />

14 458.33<br />

12 GHz Beacon<br />

12 501.000<br />

Polarisation X<br />

Polarisation Y<br />

12 541.67<br />

12 625.00<br />

Launch :<br />

17.04.2000<br />

12 708.33<br />

H1 / F1 H3 / F3 H5 / F5<br />

H2 / F2 H4 / F4 H6 / F6<br />

Polarisation X<br />

Polarisation Y<br />

SHU/98/002


UPLINK<br />

13.00 GHz<br />

DOWNLINK<br />

13 041.67<br />

C2 C4 C6<br />

C1 C3 C5<br />

13 041.67<br />

B5<br />

B6<br />

13.25 GHz 13.75 GHz<br />

14.00 GHz 14.25 GHz 14.50 GHz<br />

B2 B4 B6<br />

B1 B3 B5<br />

C1 C3 C5<br />

D1 D3<br />

C2 C4 C6 D2 D4<br />

F2 F4 F6<br />

F1 F3 F5<br />

F2S F4S F6S<br />

F1S F3S F5S<br />

D2 D4 D6<br />

D1 D3 D5<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

10 991.67<br />

11 075.00<br />

B1 B3<br />

B2 B4<br />

10 991.67<br />

13 125.00<br />

13 125.00<br />

11 075.00<br />

Steerable 1<br />

Steerable 2<br />

13 208.33<br />

13 208.33<br />

1.80 GHz 2.80 GHz<br />

11 158.33<br />

11 158.33<br />

Steerable - Beacon<br />

11 200.00<br />

11 241.67<br />

11 241.67<br />

13 791.67<br />

13 791.67<br />

11 325.00<br />

11 325.00<br />

13 875.00<br />

13 875.00<br />

11 408.33<br />

11 408.33<br />

11 GHz Beacon<br />

11 452.570<br />

(11 451.091)<br />

14 469.23<br />

13 958.33<br />

13 958.33<br />

11 491.67<br />

11 491.67<br />

14 041.67<br />

14 041.67<br />

11 575.00<br />

11 575.00<br />

14 125.00<br />

14 125.00<br />

11 658.33<br />

D5<br />

D6<br />

11 658.33<br />

D1S D3S D5S D7S D9S D11S<br />

D2S D4S D6S D8S D10S D12S<br />

14 538.46<br />

14 507.69<br />

14 326.92<br />

14 546.15<br />

14 615.38<br />

14 041.67<br />

14 041.67<br />

14 584.62<br />

14 653.85<br />

14 623.08<br />

14 125.00<br />

14 125.00<br />

1.50 GHz<br />

EUROBIRD TM FREQUENCY PLAN (Former W1RM)<br />

(Frequency in MHz)<br />

14 692.31<br />

14 661.54<br />

14 730.77<br />

14 208.33<br />

14 208.33<br />

14 208.33<br />

14 208.33<br />

12 GHz Beacon<br />

12 501.000<br />

14 291.67<br />

14 291.67<br />

14 288.46<br />

12 541.67<br />

12 625.00<br />

12 708.33<br />

F1 F3 F5<br />

F2 F4 F6<br />

12 541.67<br />

12 541.67<br />

14 375.00<br />

14 375.00<br />

12 625.00<br />

12 625.00<br />

14 458.33<br />

14 458.33<br />

D2S D4S D6S D8S D10S D12S<br />

12 708.33<br />

12 708.33<br />

F1S F3S F5S<br />

F2S F4S F6S<br />

12 541.67<br />

14 326.92<br />

14 365.38<br />

12 625.00<br />

14 403.85<br />

14 442.31<br />

12 708.33<br />

14 480.77<br />

Pol. X<br />

Pol. Y<br />

Pol. X<br />

D1S D3S D5S D7S D9S D11S Pol. Y<br />

14 269.23<br />

14 307.69<br />

14 346.15<br />

2.80 GHz<br />

14 384.62<br />

14 423.08<br />

14 461.54<br />

Pol. X<br />

Pol. Y<br />

Pol. X<br />

Pol. Y<br />

EUROBIRD Launch


UP-LINK<br />

DOWN-LINK<br />

B5<br />

E<br />

B6<br />

E/A<br />

F2<br />

E<br />

F1<br />

E<br />

10.95 GHz 11.20 GHz 11.45 GHz 11.70 GHz 12.50 GHz 12.75 GHz<br />

10991.67<br />

B1<br />

E<br />

B2<br />

E<br />

13.75 GHz<br />

11075.00<br />

B3<br />

E<br />

B4<br />

E/A<br />

C6<br />

E<br />

: Europe and/or America Coverage (uplink selectivity)<br />

E : European Coverage<br />

A : American Coverage<br />

(*Beacon may be commuted<br />

to Y-polarisation)<br />

11158.33<br />

13874.50<br />

C7<br />

E<br />

13895.25<br />

13916.00<br />

C8<br />

E<br />

C9<br />

E<br />

13936.75<br />

13957.50<br />

C10<br />

E<br />

14.00 GHz 14.25 GHz 14.50 GHz<br />

C11<br />

E<br />

13978.25<br />

2.55 GHz<br />

C6<br />

E<br />

11324.50<br />

11345.25<br />

C7<br />

E<br />

14031.25<br />

11386.75<br />

14093.75<br />

F4<br />

E<br />

F3<br />

E<br />

11428.25<br />

C9 C11<br />

E E<br />

C8 C10<br />

E E<br />

11366.00<br />

11407.50<br />

14156.25<br />

F6<br />

E<br />

F5<br />

E<br />

D6<br />

A<br />

D5<br />

A<br />

14218.75<br />

F8<br />

E<br />

F7<br />

E<br />

D8<br />

A<br />

D7<br />

A<br />

2.55 GHz<br />

11606.25<br />

D5<br />

A<br />

D6<br />

A<br />

14291.67<br />

B2<br />

E/A<br />

B1<br />

E/A<br />

11668.75<br />

D7<br />

A<br />

D8<br />

A<br />

ATLANTIC BIRD<br />

ATLANTIC BIRDTM 1 - FREQUENCY PLAN<br />

(Frequency in MHz)<br />

TM 1 – FREQUENCY PLAN<br />

14375.00<br />

B4<br />

E/A<br />

B3<br />

E/A<br />

3.30 GHz<br />

1.50 GHz<br />

11 GHz Beacon 1<br />

11 703.4<br />

(11 704.6)<br />

12 GHz Beacon 1<br />

12 500.15<br />

14458.33<br />

B6<br />

E/A<br />

B5<br />

E/A<br />

12531.25<br />

F1<br />

E<br />

F2<br />

E<br />

Pol. X<br />

Pol. Y<br />

12593.75<br />

F3<br />

E<br />

F4<br />

E<br />

4 Networking Couples: D5 - F5, D6 - F6<br />

D7 - F7, D8 - F8<br />

12656.25<br />

F5<br />

E<br />

F6<br />

E<br />

12718.75<br />

F7<br />

E<br />

F8<br />

E<br />

12 GHz Beacon 2<br />

12 749.85<br />

Pol. X<br />

Pol. Y


UPLINK<br />

14.00 GHz<br />

14 022.00<br />

DOWNLINK<br />

12.50 GHz<br />

Beacon Y<br />

12 500.5<br />

Beacon X<br />

12 502.5<br />

12 522.00<br />

14 043.00<br />

12 543.00<br />

14 064.00<br />

12 564.00<br />

14 085.00<br />

12 585.00<br />

14 106.00<br />

12 606.00<br />

14 127.00<br />

12 627.00<br />

14 148.00<br />

12 648.00<br />

14 169.00<br />

12 669.00<br />

14 190.00<br />

12 690.00<br />

14 211.00<br />

12 711.00<br />

14.25 GHz<br />

14 232.00<br />

K1 K2 K3 K4 K5 K6<br />

K7 K8 K9 K10 K11<br />

1.5 GHz<br />

K7 K8 K9 K10 K11<br />

K1 K2 K3 K4 K5 K6<br />

Pol. X<br />

Pol. Y<br />

12.75 GHz<br />

12 732.00<br />

Pol. X<br />

Pol. Y<br />

TELECOM 2 FREQUENCY PLAN (Ku-band channels)<br />

(Frequency in MHz)<br />

BW : 36<br />

TELECOM 2 Launch<br />

2A : 16/12/1991<br />

2B : 15/04/1992<br />

2C : 06/12/1995


UP-LINK<br />

DOWN-LINK<br />

14.250 GHz<br />

11.25 GHz<br />

14 293.00<br />

14 314.00<br />

14 335.00<br />

14 356.00<br />

14 377.00<br />

14 398.00<br />

14 419.00<br />

14 440.00<br />

11 598.00<br />

14 461.00<br />

K7 K8 K9 K10 K11<br />

K1 K2 K3 K4 K5 K6<br />

14 272.00<br />

Beacon X<br />

11 450.500<br />

Beacon Y<br />

11 452.500<br />

11 472.00<br />

11 493.00<br />

11 514.00<br />

11 535.00<br />

11 556.00<br />

11 577.00<br />

14.500 GHz<br />

11 619.00<br />

14 482.00<br />

2.8 GHz<br />

11 640.00<br />

K1 K2 K3 K4 K5<br />

K2 K3 K4 K5 K6<br />

Pol. X<br />

Pol. Y<br />

11.70 GHz<br />

11 661.00<br />

Pol. X<br />

Pol. Y<br />

TELECOM 2D FREQUENCY PLAN (Ku-band channels)<br />

(Frequency in MHz)<br />

11 682.00<br />

K6<br />

BW : 36<br />

TELECOM 2 Launch<br />

2D : 08/08/1996


TRANSPONDER NUMBER<br />

CHANNEL ID<br />

CHANNEL ID<br />

TRANSPONDER NUMBER<br />

TRANSPONDER NUMBER<br />

CHANNEL ID<br />

CHANNEL ID<br />

TRANSPONDER NUMBER<br />

14 024.500<br />

14 091.500<br />

14 158.500<br />

14 225.500<br />

14 000 14 250 14 500<br />

1 3 5 7<br />

2 4 6<br />

A<br />

14 058.000<br />

14 125.000<br />

14 192.000<br />

14 300.000<br />

14 375.000<br />

B<br />

C I<br />

14 450.000<br />

DFS 2 Kopernikus Frequency Plan<br />

(Frequency in MHz)<br />

29 500 29 660<br />

29 580.000<br />

POLARIZATION X<br />

POLARIZATION Y<br />

11 450 11 700 12 500 12 750 19 700 19.780.000<br />

19 860<br />

KU Beacon<br />

11 452.700<br />

11 500.000<br />

A C 2 4 6<br />

I<br />

B<br />

11 575.000 ft = 2800<br />

11 650.000<br />

ft = 1500<br />

12 524.500<br />

12 558.000<br />

1 3 5 7<br />

12 591.500<br />

12 625.000<br />

12 658.500<br />

12 692.000<br />

12 725.500<br />

KA Beacon<br />

19 701.750<br />

ft = 9800<br />

POLARIZATION X<br />

POLARIZATION Y<br />

DSF - LAUNCH<br />

F1 : 05.06.89 (eol : 11/95)<br />

F2 : 24.07.90<br />

F3 : 12.10.92<br />

Usable BW<br />

90<br />

44<br />

SHU/98/012


P = Pan American Uplink Only<br />

E = Europe Uplink Only<br />

S = Switchable Uplink<br />

C = Combinable Uplink<br />

2800<br />

Europe + South Africa Europe + South Africa Pan-America<br />

Europe + South Africa<br />

10.95 GHz 11.20 GHz 11.45 GHz<br />

11.70 GHz<br />

12.20 GHz 12.50 GHz<br />

12.75 GHz<br />

17 18 19<br />

20 21 22<br />

UPLINK<br />

13.75 GHz 14.00 GHz 14.25 GHz 14.50 GHz<br />

13<br />

5<br />

E E E<br />

20 21 22<br />

17<br />

E<br />

: Europe and/or Pan-America Coverage in uplink<br />

DOWNLINK<br />

14<br />

6<br />

18 19<br />

E E<br />

15<br />

7<br />

16<br />

8<br />

C C<br />

1 &/or 23 2 &/or 24 3<br />

E<br />

4<br />

E E<br />

27<br />

S<br />

6 or 28 7<br />

E<br />

8<br />

E<br />

X<br />

9 &/or 31 10 &/or 32<br />

C C<br />

11<br />

E<br />

12<br />

E<br />

35<br />

E<br />

14 or 36 15 or 37<br />

S S<br />

16<br />

E<br />

Y<br />

C C<br />

9 &/or 3110 &/or 32<br />

1 &/or 23 2 &/or 24<br />

C C<br />

23<br />

31<br />

2300<br />

24<br />

32<br />

P<br />

33<br />

25<br />

P<br />

25<br />

33<br />

P<br />

34<br />

26<br />

P<br />

26<br />

34<br />

P S S P<br />

13 14 or 36 15 or 37 38<br />

5 6 or 28 29<br />

P S P<br />

27<br />

35<br />

Telstar 12 Frequency Plan<br />

(Frequency in MHz)<br />

28<br />

36<br />

29<br />

37<br />

30<br />

P<br />

30<br />

38<br />

X<br />

Y<br />

Europe Uplink<br />

Europe + South Africa Uplink<br />

Pan-America Uplink<br />

Europe Europe Pan-America<br />

Europe<br />

1500<br />

9<br />

1<br />

10<br />

2<br />

BW : 54<br />

11<br />

3<br />

Telstar Launch<br />

13/12/99<br />

12<br />

4<br />

X<br />

Y<br />

pdftelstar.dsf


UP-LINK<br />

DOWN-LINK<br />

14.250 GHz<br />

11.40 GHz<br />

Beacon<br />

11 400.000<br />

14 275.00<br />

14 325.00<br />

14 375.00<br />

14 425.00<br />

14 475.00<br />

22 12 24 20 26<br />

11 475.00<br />

2.8 GHz<br />

22 12 24 20 26<br />

11 525.00<br />

11 575.00<br />

11 625.00<br />

14.500 GHz<br />

11.70 GHz<br />

11 675.00<br />

Pol. X<br />

Pol. Y<br />

Pol. X<br />

Pol. Y<br />

EXPRESS 3A FREQUENCY PLAN (Ku-band channels)<br />

(Frequency in MHz)<br />

BW : 36<br />

EXPESS 3A Launch<br />

24.06.2000


page 119 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex G. Measurement of Spurious Radiation<br />

G.1. Test Objectives<br />

To confirm compliance with spurious radiation specifications.<br />

To prevent any interference to existing services.<br />

G.2. Principle<br />

The SUT transmits at nominal power to dummy load or clear sky (i.e. far off<br />

the geostationary arc) at operational configuration. Using a calibrated<br />

measurement point of the station transmit (TX) chain, the output signal is<br />

examined within a suitable frequency range for the presence of spurious and<br />

intermodulation products.<br />

The following procedure is intended to provide sufficient indication of<br />

presence of spurious emissions. Further investigation (e.g.: zooming into the<br />

frequency band where a suspect spurious signal occurs) will be required if<br />

spurious signals are detected during this measurement.<br />

G.3. Summary of Requirements<br />

Although the specifications vary following E/S standard, a reasonably simple<br />

way to check compliance is to take spectrum analyser dumps of the frequency<br />

range of interest. It is however required that SUT provides at least a way to<br />

keep a copy of the trace (plotter, screen snapshot, computer file), copy which<br />

shall be forwarded (fax or e-mail) to ERS/<strong>EUTELSAT</strong> for evaluation.<br />

Furthermore, the SUT shall record the relevant levels observed using the<br />

spectrum analyser marker functions.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 120 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

<strong>EUTELSAT</strong><br />

Specification<br />

E/S<br />

standard<br />

G.4. Test conditions:<br />

Spurious excluding<br />

Intermodulation<br />

outside alloc. BW inside alloc. BW<br />

level meas<br />

BW<br />

level meas<br />

BW<br />

HPA to dummy load or antenna pointed to clear sky.<br />

Intermodulation<br />

Products<br />

Signal generated by the operational modulator, routed through the<br />

operational up-converter. (SUT in operational configuration).<br />

SUT HPAs to operate at standardized input back off.<br />

level meas<br />

BW<br />

Spectral<br />

Sidelobes<br />

level meas<br />

BW<br />

(dBW) (kHz) (dBW) (kHz) (dBW) (kHz) (dBW) (kHz)<br />

EESS 200 T-2 4 4 n.a. n.a. 12 4<br />

EESS 203 I 4 4 TX<br />

carrier<br />

-50 dB<br />

4 12 4<br />

EESS 400 L 4 4 7 4<br />

EESS 500 S 4 4 TX<br />

carrier<br />

-50 dB<br />

EESS 502 M 4 4 TX<br />

carrier<br />

-50 dB<br />

12 4 12 4<br />

42 12500 42 12500<br />

Test Equipment (S.A.) connected to a test point which has been calibrated<br />

during ESVA.<br />

HPA power set using a powermeter at the calibrated test point. (Use of the<br />

S.A. would be inaccurate since it is usually connected through an<br />

uncalibrated cable).<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000<br />

12<br />

TX<br />

carrier<br />

-50 dB


page 121 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

G.5. Potential Pitfalls:<br />

Linearity of S.A. log amplifier, as a wide dynamic range is used.<br />

Noise floor of S.A.: with the typical levels observed in most stations, this will<br />

not usually cause trouble.<br />

Noise response of S.A log amplifier/detector: see point 1.9 below.<br />

Long sweep time (15s) for 4kHz measurements: some brief events may be lost<br />

possible remedy: let at least 10 sweeps accumulate data in max. hold mode.<br />

Limited 1000 or 400 points frequency resolution (4kHz measurements).<br />

Position of the measurement point in the up-link chain (if an up-link bandpass<br />

filter is present).<br />

SUT signal modulation may be incompatible with the above S.A. settings.<br />

The actions to take here depend obviously upon the modulation spectral<br />

characteristics and are to be solved on a case by case basis.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 122 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

G.6. Step-by-Step Procedure<br />

Step 1: SUT switches to dummy load or depoints the antenna to cold sky (SUT to<br />

consider potential danger when commuting switches at high EIRP settings).<br />

Step 2: SUT configures the signal path as for operational transmission, i.e.: The<br />

signal is generated by the operational modulator and routed through the<br />

operational upconverter. No modulation is applied (see test conditions<br />

below).<br />

Step 3: SUT adjusts the EIRP to obtain the nominal transmit EIRP value, using the<br />

calibrated test point (see EIRP test). SUT records the EIRP and level readings.<br />

Step 4: Keeping the HPA power constant, SUT substitutes the spectrum analyser<br />

cable to the power sensor and sets the spectrum analyser (refer to<br />

recommended settings below).<br />

Step 5: SUT records the peak signal level on the analyser and deduces the cable loss<br />

(which should typically not exceed 5 dB).<br />

Step 6: SUT sets the spectrum analyser following the guidelines of table 1.7.1 below<br />

then activates the max. hold mode. After at least 10 sweeps, SUT freezes<br />

(‘view’) and records the trace (plotter / printer).<br />

Note: Assuming a 1000-point plot, each point represents a 500 kHz slice of the<br />

spectrum, which is 50 times larger than the resolution bandwidth. It is<br />

therefore recommended to zoom on visible spurious using a 10 MHz span,<br />

keeping same reference level, RBW and VBW.<br />

Step 7: Maintaining the above analyser settings, the SUT disconnects the spectrum<br />

analyser and records the level of the noise floor.<br />

Step 8: As step 6 but SUT uses the settings defined by table 1.7.2 below (The required<br />

data accumulation time will exceed 2 minutes).<br />

Step 9: SUT ceases transmission and forwards the results (copy of spectrum plots<br />

including corresponding EIRP levels of spurious signals and noise floor) to<br />

<strong>EUTELSAT</strong> and ERS.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 123 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

G.7. Spectrum Analyser Settings:<br />

Measurements for Detection of Spurious within 4 kHz Bandwidth:<br />

Frequency : 14.25 GHz (Centre of the transmit band of interest or<br />

SUT carrier frequency)<br />

Span : 500 MHz<br />

Resolution<br />

Bandwidth<br />

Video<br />

Bandwidth<br />

: 10 kHz (For HP S.A. equivalent Noise Bandwidth<br />

equals 10 x 1.2 = 12 kHz). See note*<br />

: 10 kHz See note*<br />

Sweep Time : 15 sec Automatic (coupled)<br />

RF Attenuator : 10 dB (Depends on level at nominal power. To<br />

optimize the dynamic range, it is<br />

recommended to set the attenuator to 0dB at<br />

test points with low level)<br />

Max. Ref level : 0 dBm (Depends on RF attenuation)<br />

Max. hold : On<br />

Max. hld noise : -73 dBm (With HP8566A/B and 10dB RF input<br />

attenuation. At 0dB input attenuation: -83)<br />

10 dB/<br />

max hold<br />

REF - 13.3 dBm ATTEN 0 dB<br />

CENTER 14 250 000 GHz<br />

RES BW 10 kHz VBW 10 kHz<br />

"up-converter humb"<br />

∆MKR -48 MHz<br />

- 68.9 dB<br />

SPAN 500 MHz<br />

SWP 15.0 sec<br />

* Since the RBW is larger than the specified 4 kHz, noise-like spurious will have<br />

to be corrected, as they appear too high by about 4.77 dB (ratio of 12 kHz/4<br />

kHz). Assuming 60 dBW nominal EIRP, the required dynamic range to read<br />

4 dBW levels with a 10 dB noise margin is >66 dB. In the typical frequent case<br />

of a 0 dBm level at measurement point for 60 dBW, this requirement is satisfied<br />

(noise is at -73 dBm).<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 124 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Measurements for Detection of Spurious within 4 kHz Bandwidth:<br />

Frequency : 14.25 GHz (Centre of the transmit band of interest or<br />

SUT carrier frequency)<br />

Span : 500 MHz<br />

Resolution<br />

Bandwidth<br />

Video<br />

Bandwidth<br />

: 3 MHz (For HP S.A. equivalent Noise Bandwidth<br />

equals 3x 1.2 = 3.6 MHz). See note*<br />

: 3 MHz See note*<br />

Sweep Time : 20 ms Automatic (coupled)<br />

RF Attenuator : 10 dB (Depends on level at nominal power. To<br />

optimize the dynamic range, it is<br />

recommended to set the attenuator to 0dB at<br />

test points with low level)<br />

Max. Ref level : 0 dBm (Depends on RF attenuation)<br />

Max. hold : On<br />

Max. hld noise : -48 dBm (With HP8566A/B and 10dB RF input<br />

attenuation. At 0dB input attenuation: -58)<br />

10 dB/<br />

max hold<br />

REF 0.0 dBm ATTEN 10 dB<br />

CENTER 14 250 000 GHz<br />

RES BW 3 MHz VBW 3 MHz<br />

∆MKR 59 MHz<br />

- 48.4 dB<br />

SPAN 500 MHz<br />

SWP 20.0 msec<br />

* Since the RBW is narrower than the specified 12.5 MHz, spurious which behave<br />

like noise will have to be corrected, as they appear too low by about 5.4<br />

dB (ratio of 12.5 MHz/3.6 MHz). Assuming 60 dBW nominal EIRP, the required<br />

dynamic range to read 40 dBW levels with a 10 dB noise margin is >30<br />

dB. In the typical frequent case of a 0 dBm level at measurement point for 60<br />

dBW, this requirement is satisfied (noise level at -48 dBm).<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 125 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

G.8. SUT Test Report:<br />

Level at the calibration point when HPA power has been set.<br />

Level at the powermeter probe and corresponding EIRP.<br />

Corresponding S.A level in the configuration used for measurement (with<br />

cable inserted) or S.A. connecting cable losses value in the frequency<br />

range.<br />

Spectrum analyser plots in max. hold mode with the above recommended<br />

settings.<br />

(Including values of RBW,VBW,Freq.,Span,Sweep time...).<br />

Level/frequency of the highest peaks observed (especially if the plot is a<br />

snapshot).<br />

Level at analyser noise floor.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 126 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Page<br />

intentionally<br />

blank<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 127 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Annex H. Earth Station Alignment Verification<br />

H.1. Objectives<br />

a): To re-confirm:<br />

correct earth station alignment in azimuth elevation and polarization,<br />

correct setting of operational station EIRP and frequency.<br />

b): To prevent any interference to existing traffic.<br />

H.2. Principles<br />

Initially, the earth Station Under Test (SUT) proceeds with transmission of its<br />

modulated operational carrier whereas the <strong>EUTELSAT</strong> Reference Station<br />

(ERS) transmits a clean reference carrier. Upon authorization by the ERS, the<br />

SUT disables carrier modulation. The ERS verifies the SUT antenna pointing<br />

(azimuth, elevation, polarization) and, if necessary, guides the antenna under<br />

test to the optimized position.<br />

The ERS verifies the SUT transmit frequency.<br />

ERS and SUT carry out a power balance to establish the operational transmit<br />

EIRP as defined by the relevant <strong>EUTELSAT</strong> transmission plan.<br />

Operational<br />

Modulator<br />

set to<br />

CW mode<br />

Up - Converter HPA<br />

IF<br />

RF<br />

HPA<br />

RF Output Power Monitor Point<br />

RF Power<br />

Meter<br />

Antenna<br />

Figure H.1 : SUT TX Chain Configuration during Earth Station Alignment<br />

Verification (EAV)<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 128 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

H.3. Step-by-step procedure<br />

H.3.1. Access Coordination<br />

Step 1: Immediately prior to the scheduled commencement of EAV (i.e. ~ 5<br />

minutes) the SUT shall establish and maintain phone contact with ERS. SUT<br />

shall communicate sky and wind conditions and information on all details<br />

which may impair testing.<br />

Step 2: ERS ensure that the allocated frequency range (for the reference carrier) is<br />

free of traffic.<br />

Step 3: ERS shall contact the <strong>EUTELSAT</strong> CSC to obtain authorization for space<br />

segment access and reconfirmation of actual gain setting.<br />

Step 4: In accordance with parameters of the <strong>EUTELSAT</strong> test plan, ERS transmit the<br />

reference carrier.<br />

H.3.2. Transmission by SUT<br />

Step 5: Under direction of the ERS, SUT disable the modulation of the operational<br />

carrier at the assigned frequency and EIRP. The SUT CW - carrier shall be<br />

generated by the operational TX-chain with the modulator set to CW mode.<br />

SUT equipped with an automatic tracking system, shall disable auto-track<br />

mode.<br />

Note: The SUT must CEASE transmissions immediately if the communications link<br />

to the ERS fails or if the presence of staff at the SUT phone is interrupted. This<br />

rule applies to this and all following tests where the SUT transmits.<br />

Step 6: SUT report TX power meter reading to ERS. If available, SUT also report the<br />

applicable TX coupling factor and post coupler loss to the ERS.<br />

Step 7: ERS take a plot of the spectrum and check carrier frequency, EIRP and<br />

polarization and request corrections if necessary.<br />

Step 8: Under the direction of the ERS, SUT depoint its antenna first in azimuth and<br />

then in elevation. ERS record the corresponding variation of RX levels and<br />

guide the SUT to boresight. If applicable, SUT report azimuth and elevation<br />

readouts otherwise, SUT secure the antenna and mark appropriately the<br />

antenna position.<br />

Step 9: Under the direction of the ERS, SUT rotate slowly the antenna feed. ERS<br />

advise on the sense of rotation.<br />

Step 10: ERS guide the SUT to acquire the optimum position (i.e. where polarization<br />

plane of the SUT and satellite receive antenna match and a minimum in crosspolar<br />

level is observed).<br />

Step 11: SUT secure feed position. ERS verify that the optimized position is<br />

maintained.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


page 129 EARTH STATION VERIFICATION AND ASSISTANCE (ESVA)<br />

Step 12: SUT report the polarization angle indication of the ERS. If the SUT is not<br />

equipped with indicators, the feed position shall be marked.<br />

Step 13: ERS monitor short term (~ 5 minutes) fluctuation of frequency and EIRP of<br />

carrier under test.<br />

Step 14: Under the direction of the ERS, SUT adjust its EIRP to balance the reference<br />

carrier.<br />

Step 15: ERS confirm balance condition.<br />

Step 16: SUT read the TX power meter and report the value to the ERS. SUT record<br />

the reading of the transmit power meter and the corresponding station EIRP<br />

and maintain this EIRP at all times during operational transmissions, and<br />

carefully note this value for future transmissions as the nominal EIRP.<br />

Step 17: SUT equipped with an automatic tracking system, shall enable auto-track<br />

mode.<br />

Step 18: SUT enable carrier modulation.<br />

Step 19: ERS take a plot of the spectrum.<br />

Step 20: ERS cease transmissions.<br />

Step 21: ERS advise the <strong>EUTELSAT</strong> CSC of test completion and request instructions<br />

for further proceedings.<br />

Step 22: ERS forward CSC directions to the SUT (e.g. cessation of transmissions, start<br />

of IFLU, immediate commencement of traffic).<br />

Step 23: ERS forward the completion report to <strong>EUTELSAT</strong>.<br />

ESOG Volume 1 Module 130 Issue 2.0, 25-07-2000


<strong>EUTELSAT</strong> S.A. OPERATIONS CONTACT POINTS<br />

<strong>EUTELSAT</strong> S.A. CSC<br />

e-mail: csc@eutelsat.fr<br />

<strong>Systems</strong> <strong>Operations</strong> Division<br />

Earth Station Approval and<br />

Line-up Office<br />

e-mail: esapproval@eutelsat.fr<br />

ESVA<br />

Operational Planning Division<br />

e-mail (SMS Section):<br />

dsvplan@eutelsat.fr<br />

e-mail (LT Section):<br />

ltplan@eutelsat.fr<br />

<strong>EUTELSAT</strong> S.A. Booking Office<br />

e-mail: booking@eutelsat.fr<br />

MAILING ADDRESS<br />

<strong>EUTELSAT</strong> S.A. WEB<br />

on operational issues<br />

<br />

Voice: +33-1-45.57.06.66<br />

Fax: +33-1-45.75.07.07<br />

Voice: +33-1-53.98.48.12<br />

Fax: +33-1-53.98.37.41<br />

Voice: +33-1-53.98.39.25<br />

+33-1-53.98.46.13<br />

Voice: +33-1-53.98.48.25<br />

+33-1-53.98.49.76<br />

Voice: +33-1-53.98.48.28<br />

Fax: +33-1-53.98.30.00<br />

Voice: +33-1-53.98.47.48<br />

+33-1-53.98.47.78<br />

+33-1-53.98.47.45<br />

+33-1-53.98.39.48<br />

Fax: +33-1-53.98.37.37<br />

<strong>EUTELSAT</strong> S.A.<br />

70, rue Balard<br />

F-75502 PARIS Cedex 15<br />

FRANCE<br />

"http://services.eutelsat.com" or<br />

"http://www.eutelsat.com/<br />

Satellite information/Technical &<br />

operational docs/Uplinking &<br />

Satcom Services"<br />

02-07-2001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!