18.07.2013 Views

Status of inflation - KICP Workshops

Status of inflation - KICP Workshops

Status of inflation - KICP Workshops

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Status</strong> <strong>of</strong> <strong>inflation</strong><br />

<strong>Status</strong> <strong>of</strong> <strong>inflation</strong><br />

<strong>Status</strong> <strong>of</strong> <strong>inflation</strong><br />

Marco Peloso,<br />

Marco Peloso, University <strong>of</strong> Minnesota<br />

Gumrukcuoglu, Contaldi, MP, JCAP ’07<br />

Marco Peloso, University University<strong>of</strong> <strong>of</strong> Minnesota<br />

University <strong>of</strong> Minnesota<br />

Gumrukcuoglu, K<strong>of</strong>man, MP, JCAP ’08<br />

• Basics<br />

Gumrukcuoglu, Contaldi, MP, JCAP ’07<br />

Himmetoglu, Contaldi, MP, PRL ’09; PRD ’09; PRD ’09<br />

Gumrukcuoglu, Himmetoglu, MP, PRD ’10<br />

• Models Gumrukcuoglu, ↔ Observations K<strong>of</strong>man, MP, JCAP ’08<br />

Monday, June 21, 2010<br />

Himmetoglu, Contaldi, MP, PRL ’09; PRD<br />

Gumrukcuoglu, Himmetoglu, MP, PRD ’10


Homogeneous / isotropic / flat universe is a very unnatural stat<br />

Homogeneous / isotropic / flat universe is a very unnatural state<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Monday, June 21, 2010


Homogeneous / isotropic / flat universe is a very unnatural stat<br />

Homogeneous / isotropic / flat universe is a very unnatural state<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Homogeneous / isotropic / flat universe is a very unnatural state<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Matter / radiation universe<br />

Faster (accelerated) expansion<br />

at t ≪ 1 s<br />

An accelerated expansion also<br />

Flattens the universe (explaining why Ωk,0 < 1%)<br />

Monday, June 21, 2010


Homogeneous / isotropic / flat universe is a very unnatural stat<br />

Homogeneous / isotropic / flat universe is a very unnatural state<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Homogeneous / isotropic / flat universe is a very for the unnatural universe. state Problem <strong>of</strong> initial conditions<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Matter / radiation universe<br />

Faster (accelerated) expansion<br />

An accelerated expansion also<br />

at t ≪ 1 s<br />

An accelerated expansion also<br />

Homogeneous / isotropic / flat universe is<br />

for Homogeneous the universe. / isotropic Problem/ flat <strong>of</strong> initial universe conditi is a v<br />

Matter / radiation universe<br />

Big-bang cosmology<br />

Faster (accelerated) expansio<br />

Faster (accelerated) expansion<br />

at t ≪ 1 s<br />

at t ≪ 1 s<br />

An accelerated expansion also<br />

Flattens the universe (explaining w<br />

Flattens the universe (explaining why<br />

Dilutes away unwanted relics (<br />

Dilutes away unwanted relics (gr<br />

Flattens the universe (explaining why Ωk,0 < 1%)<br />

Monday, June 21, 2010


Homogeneous / isotropic / flat universe is a very unnatural stat<br />

Homogeneous / isotropic / flat universe is a very unnatural state<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Homogeneous / isotropic / flat universe is a very for the unnatural universe. state Problem <strong>of</strong> initial conditions<br />

for the universe. Problem <strong>of</strong> initial conditions Guth ’80<br />

Matter / radiation universe<br />

Faster (accelerated) expansion<br />

An accelerated expansion also An accelerated expansion also<br />

at t ≪ 1 s<br />

Homogeneous / isotropic / flat universe is<br />

for Homogeneous the universe. / isotropic Problem/ flat <strong>of</strong> initial universe conditi is a v<br />

Matter / radiation universe<br />

Big-bang cosmology<br />

Faster (accelerated) expansio<br />

Homogeneous / isotropic / / flat flat universe is is a very a very unnatural state state<br />

for the universe. Problem Problem<strong>of</strong><strong>of</strong> initial conditions conditionsGuth Guth ’80 ’80<br />

An accelerated expansion also<br />

Faster (accelerated) expansion<br />

at t ≪ 1 s<br />

at t ≪ 1 s<br />

An accelerated expansion also<br />

Flattens the universe (explaining why Ωk,0 < 1%)<br />

Flattens the universe (explaining w<br />

Flattens the universe (explaining why<br />

Dilutes away unwanted relics (gravitinos, monopoles,...)<br />

An accelerated expansion also Dilutes away unwanted relics (<br />

Allows for large entropy (generated at reheating)<br />

Dilutes away unwanted relics (gr<br />

Flattens the universe (explaining why Ωk,0 < 1%)<br />

Monday, June 21, 2010


∼<br />

6000<br />

180<br />

θ<br />

TT /2! [µK 2 ]<br />

5000<br />

4000<br />

ce: for any given k<br />

3000<br />

l(l+1)C l<br />

2000<br />

1000 illate in phase<br />

0<br />

10 50<br />

100 500 1000<br />

Multipole moment l<br />

. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset <strong>of</strong> the Silk damping tail<br />

well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh2 = 0.02270, Ωch2 = 0.1107,<br />

38, τ= 0.086, ns= 0.969, ∆2 R = 2.38 × 10−9 , and ASZ= 0.52. The plotted errors include instrument noise, but not the small,<br />

d contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A complete error<br />

t is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with increasing l;<br />

anges are included in the 7-year data release.<br />

LSS<br />

. The high-l TT spectrum measured by WMAP, showing<br />

ovement with 7 years <strong>of</strong> data. The points with errors use<br />

ata set while the boxes show the 5-year results with the<br />

ning. The TT measurement is improved by >30% in the<br />

f the third acoustic peak (at l ≈ 800), while the 2 bins<br />

1000–1200 are new with the 7-year data analysis.<br />

(Most <strong>of</strong> the cosmological parameters reported<br />

paper were fit using a preliminary source correc-<br />

10 3 Aps = 11 ± 1 µK 2 sr. We have checked that<br />

ting the final result has a negligible effect on the<br />

ter fits.) After this source model is subtracted<br />

ch band, the spectra are combined to form our<br />

imate <strong>of</strong> the CMB signal, shown in Figure 1.<br />

-year power spectrum is cosmic variance limited,<br />

mic variance exceeds the instrument noise, up to<br />

. (This limit is slightly model dependent and can<br />

a few multipoles.) The spectrum has a signal-<br />

!<br />

, m ≡ orientation<br />

to-noise ratio greater than one per l-mode up to l = 919,<br />

and in band-powers <strong>of</strong> width ∆l = 10, the signal-to-noise<br />

ratio exceeds unity up to l = 1060. The largest improvement<br />

in the 7-year spectrum occurs at multipoles l > 600<br />

where the uncertainty is still dominated by instrument<br />

noise. The instrument noise level in the 7-year spectrum<br />

is 39% smaller than with the 5-year data, which makes it<br />

worthwhile to extend the WMAP spectrum estimate up<br />

to l = 1200 for the first time. See Figure 2 for a comparison<br />

<strong>of</strong> the 7-year error bars to the 5-year error bars. The<br />

third acoustic peak is now well measured and the onset<br />

<strong>of</strong> the Silk damping tail is also clearly seen by WMAP.<br />

As we show in §4, this leads to a better measurement<br />

<strong>of</strong> Ωmh 2 and the epoch <strong>of</strong> matter-radiation equality, zeq,<br />

which, in turn, leads to better constraints on the effective<br />

!<br />

T =<br />

WMAP 7<br />

<br />

∆TCMB with high coherence<br />

aℓm Yℓm ℓm<br />

T = <br />

number <strong>of</strong> relativistic species, Neff, and on the primor-<br />

dial helium abundance, YHe. The improved sensitivity<br />

at high l is also important for higher-resolution CMB<br />

experiments that use WMAP as a primary calibration<br />

source.<br />

2.4. Temperature-Polarization (TE, TB) Cross Spectra<br />

The 7-year temperature-polarization cross power spectra<br />

were formed using the same methodology as the 5year<br />

spectrum (Page et al. 2007; Nolta et al. 2009). For<br />

l ≤ 23 the cosmological model likelihood is estimated di-<br />

rectly from low-resolution temperature and polarization<br />

maps. The temperature input is a template-cleaned, coadded<br />

V+W band map, while the polarization input is a<br />

template-cleaned, co-added Ka+Q+V band map (Gold<br />

〈a ∗ ℓm aℓ ′ m ′〉 = C ℓ ∼<br />

ℓ δℓℓ ′ δmm ′<br />

1800<br />

ℓm,<br />

m ≡ orientation<br />

θ<br />

ℓ<br />

Coherence: for Cℓ ∝any<br />

given |aℓm| k2<br />

m=−ℓ<br />

all δ k oscillate in phase<br />

ax / min at same t) Acoustic peaks<br />

Monday, June 21, 2010<br />

aℓm Yℓm<br />

(reach max ℓ ∼ / min at same t) Acoustic pe<br />

1800<br />

, m ≡ orientation<br />

θ<br />

Acoustic peaks<br />

Peebles and Yu, ’70 Sunyaev, and Zel’dovich ’70<br />

Coherence: All δ k with the<br />

same k but = orientations


∼<br />

6000<br />

180<br />

θ<br />

TT /2! [µK 2 ]<br />

5000<br />

4000<br />

ce: for any given k<br />

3000<br />

l(l+1)C l<br />

2000<br />

1000 illate in phase<br />

0<br />

10 50<br />

100 500 1000<br />

Multipole moment l<br />

. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset <strong>of</strong> the Silk damping tail<br />

well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh2 = 0.02270, Ωch2 = 0.1107,<br />

38, τ= 0.086, ns= 0.969, ∆2 R = 2.38 × 10−9 , and ASZ= 0.52. The plotted errors include instrument noise, but not the small,<br />

d contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A complete error<br />

t is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with increasing l;<br />

anges are included in the 7-year data release.<br />

LSS<br />

. The high-l TT spectrum measured by WMAP, showing<br />

ovement with 7 years <strong>of</strong> data. The points with errors use<br />

ata set while the boxes show the 5-year results with the<br />

ning. The TT measurement is improved by >30% in the<br />

f the third acoustic peak (at l ≈ 800), while the 2 bins<br />

1000–1200 are new with the 7-year data analysis.<br />

(Most <strong>of</strong> the cosmological parameters reported<br />

paper were fit using a preliminary source correc-<br />

10 3 Aps = 11 ± 1 µK 2 sr. We have checked that<br />

ting the final result has a negligible effect on the<br />

ter fits.) After this source model is subtracted<br />

ch band, the spectra are combined to form our<br />

imate <strong>of</strong> the CMB signal, shown in Figure 1.<br />

-year power spectrum is cosmic variance limited,<br />

mic variance exceeds the instrument noise, up to<br />

. (This limit is slightly model dependent and can<br />

a few multipoles.) The spectrum has a signal-<br />

!<br />

, m ≡ orientation<br />

to-noise ratio greater than one per l-mode up to l = 919,<br />

and in band-powers <strong>of</strong> width ∆l = 10, the signal-to-noise<br />

ratio exceeds unity up to l = 1060. The largest improvement<br />

in the 7-year spectrum occurs at multipoles l > 600<br />

where the uncertainty is still dominated by instrument<br />

noise. The instrument noise level in the 7-year spectrum<br />

is 39% smaller than with the 5-year data, which makes it<br />

worthwhile to extend the WMAP spectrum estimate up<br />

to l = 1200 for the first time. See Figure 2 for a compari-<br />

son <strong>of</strong> the 7-year error bars to the 5-year error bars. The<br />

third acoustic peak is now well measured and the onset<br />

<strong>of</strong> the Silk damping tail is also clearly seen by WMAP.<br />

As we show in §4, this leads to a better measurement<br />

<strong>of</strong> Ωmh2 and the epoch <strong>of</strong> matter-radiation equality, zeq,<br />

which, in turn, leads to better constraints on the effective<br />

number <strong>of</strong> relativistic species, Neff, and on the primor-<br />

dial helium abundance, YHe. The improved sensitivity<br />

at high l is also important for higher-resolution CMB<br />

experiments that use WMAP as a primary calibration<br />

source.<br />

2.4. Temperature-Polarization (TE, TB) Cross Spectra<br />

The 7-year temperature-polarization cross power spectra<br />

were formed using the same methodology as the 5year<br />

spectrum (Page et al. 2007; Nolta et al. 2009). For<br />

l ≤ 23 the cosmological model likelihood is estimated di-<br />

rectly from low-resolution temperature and polarization<br />

maps. The temperature input is a template-cleaned, coadded<br />

V+W band map, while the polarization input is a<br />

template-cleaned, co-added Ka+Q+V band map (Gold<br />

.5 Monday, June 21, 2010<br />

0 0.5 1<br />

!<br />

T =<br />

WMAP 7<br />

<br />

∆TCMB with high coherence<br />

aℓm Yℓm ℓm<br />

T = <br />

〈a ∗ ℓm aℓ ′ m ′〉 = Cℓ δℓℓ ′<br />

ℓ ∼ 1800<br />

〈a<br />

, m ≡ orie<br />

θ<br />

∗ ℓm aℓ ′ m ′〉 = C ℓ ∼<br />

ℓ δℓℓ ′ δmm ′<br />

1800<br />

ℓm,<br />

m ≡ orientation<br />

θ<br />

ℓ<br />

Coherence: for Cℓ ∝any<br />

given |aℓm| k2<br />

m=−ℓ<br />

all δk oscillate Acoustic in peaks phase<br />

ax / min at same t) Acoustic peaks<br />

aℓm Yℓm<br />

Peebles and Yu, ’70 Sunyaev, an<br />

(reach max / min at same t) Acoustic pe<br />

Acoustic peaks<br />

ℓ ∼ 1800<br />

θ<br />

, m ≡ orientation<br />

Coherence: All δ k with the<br />

same k but = orientations<br />

Peebles and Yu, ’70 Sunyaev, and Zel’dovich ’70<br />

must oscillate in phase<br />

Coherence: All δ k with the<br />

same k but = orientations


∼<br />

6000<br />

180<br />

θ<br />

TT /2! [µK 2 ]<br />

5000<br />

4000<br />

ce: for any given k<br />

3000<br />

l(l+1)C l<br />

2000<br />

1000 illate in phase<br />

0<br />

10 50<br />

100 500 1000<br />

Multipole moment l<br />

. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset <strong>of</strong> the Silk damping tail<br />

well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh2 = 0.02270, Ωch2 = 0.1107,<br />

38, τ= 0.086, ns= 0.969, ∆2 R = 2.38 × 10−9 , and ASZ= 0.52. The plotted errors include instrument noise, but not the small,<br />

d contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A complete error<br />

t is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with increasing l;<br />

anges are included in the 7-year data release.<br />

LSS<br />

. The high-l TT spectrum measured by WMAP, showing<br />

ovement with 7 years <strong>of</strong> data. The points with errors use<br />

ata set while the boxes show the 5-year results with the<br />

ning. The TT measurement is improved by >30% in the<br />

f the third acoustic peak (at l ≈ 800), while the 2 bins<br />

1000–1200 are new with the 7-year data analysis.<br />

(Most <strong>of</strong> the cosmological parameters reported<br />

paper were fit using a preliminary source correc-<br />

10 3 Aps = 11 ± 1 µK 2 sr. We have checked that<br />

ting the final result has a negligible effect on the<br />

ter fits.) After this source model is subtracted<br />

ch band, the spectra are combined to form our<br />

imate <strong>of</strong> the CMB signal, shown in Figure 1.<br />

-year power spectrum is cosmic variance limited,<br />

mic variance exceeds the instrument noise, up to<br />

. (This limit is slightly model dependent and can<br />

a few multipoles.) The spectrum has a signal-<br />

!<br />

, m ≡ orientation<br />

to-noise ratio greater than one per l-mode up to l = 919,<br />

and in band-powers <strong>of</strong> width ∆l = 10, the signal-to-noise<br />

ratio exceeds unity up to l = 1060. The largest improvement<br />

in the 7-year spectrum occurs at multipoles l > 600<br />

where the uncertainty is still dominated by instrument<br />

noise. The instrument noise level in the 7-year spectrum<br />

is 39% smaller than with the 5-year data, which makes it<br />

worthwhile to extend the WMAP spectrum estimate up<br />

to l = 1200 for the first time. See Figure 2 for a comparison<br />

<strong>of</strong> the 7-year error bars to the 5-year error bars. The<br />

third acoustic peak is now well measured and the onset<br />

<strong>of</strong> the Silk damping tail is also clearly seen by WMAP.<br />

As we show in §4, this leads to a better measurement<br />

<strong>of</strong> Ωmh2 and the epoch <strong>of</strong> matter-radiation equality, zeq,<br />

which, in turn, leads to better constraints on the effective<br />

number! <strong>of</strong> relativistic species, Neff, and on the primordial<br />

helium abundance, YHe. The improved sensitivity<br />

at high l is also important for higher-resolution CMB<br />

experiments that use WMAP as a primary calibration<br />

source.<br />

2.4. Temperature-Polarization (TE, TB) Cross Spectra<br />

The 7-year temperature-polarization cross power spectra<br />

were formed using the same methodology as the 5year<br />

spectrum (Page et al. 2007; Nolta et al. 2009). For<br />

l ≤ 23 the cosmological model likelihood is estimated directly<br />

from low-resolution temperature and polarization<br />

maps. The temperature input is a template-cleaned, co-<br />

added V+W band map, while the polarization input is a<br />

template-cleaned, co-added Ka+Q+V band map (Gold<br />

.5 Monday, June 21, 2010<br />

0 0.5 1<br />

WMAP 7<br />

〈a ∗ ℓm aℓ ′ m ′〉 = Cℓ δℓℓ ′<br />

ℓ ∼ 1800<br />

T =<br />

, m ≡ orie<br />

θ<br />

<br />

aℓm Yℓm ℓm<br />

〈a ∗ ℓm aℓ ′ m ′〉 = C ℓ ∼<br />

ℓ δℓℓ ′ δmm ′<br />

1800<br />

∆TCMB with high coherence<br />

T =<br />

, m ≡ orientation<br />

θ<br />

Coherence: for any given k<br />

<br />

aℓm Yℓm<br />

ℓm<br />

ℓ<br />

Cℓ ∝ |aℓm| 2<br />

ℓm<br />

ℓ<br />

Cℓ ∝ |aℓm|<br />

m=−ℓ<br />

2<br />

ℓ ∼ 1800<br />

Cℓ ∝ |aℓm|<br />

m=−ℓ<br />

, m ≡ orientation<br />

θ<br />

2<br />

ℓ ∼ 1800<br />

, m ≡ orientation<br />

θ<br />

Acoustic peaks<br />

m=−ℓ<br />

all δk oscillate Acoustic in peaks phase<br />

ax / min at same t) Acoustic peaks<br />

Peebles and Yu, ’70 Sunyaev, an<br />

(reach max ℓ ∼ / min at same t) Acoustic pe<br />

Coherence: All δ with the<br />

k 1800 Coherence: All δk with the<br />

, m ≡ orientation<br />

Coherence: θ All δk with the<br />

same k but = orientations<br />

Acoustic peaks<br />

Acoustic Peebles, peaks Yu, ’70; Sunyaev, Zel’dovich ’7<br />

Peebles, Yu, ’70; Sunyaev, Zel’dovich ’70<br />

same kkbut but = = orientations<br />

Peebles and Yu, must ’70oscillate Sunyaev, inand phase Zel’dovich ’70<br />

must oscillate in phase<br />

must oscillate in phase<br />

No acoustic peaks if perturbation<br />

Coherence: All δk with the<br />

No acoustic peaks if perturbations<br />

actively sourced by defects<br />

same k but = orientations<br />

actively sourced by defects


CMB gets polarized during scatterings; direct probe <strong>of</strong> what<br />

present on the LSS (ignore reionization)<br />

present on the LSS (ignore reionization)<br />

Hu and White ’97<br />

Hu and White ’97<br />

Net polarization in the direction<br />

Net polarization in the direction<br />

from which fewer photons arrived<br />

from which fewer photons arrived<br />

Monday, June 21, 2010


CMB gets polarized during scatterings; direct probe <strong>of</strong> what<br />

CMB gets polarized on<br />

Hu and White ’97<br />

Any correlation at θ > 10 No appreciable perturbations expected at θ > 1<br />

is a cor<br />

scales on the LSS. Prediction 〈T E<br />

Coulson, Crittenden, Turok ’94<br />

0 No appreciable perturbations expected at θ > 1<br />

(the size <strong>of</strong> the<br />

horizon on the LSS) in models active models. If present, signal<br />

that “something” has caused super-horizon perturbations<br />

0 No appreciable perturbations expected at θ > 1<br />

(the size <strong>of</strong> the<br />

horizon on the LSS) in active models. If present, signal that<br />

“something” has caused super-horizon perturbations<br />

0 present on the LSS (ignore reionization)<br />

present on the LSS (ignore reionization)<br />

(the size <strong>of</strong> the<br />

horizon on the LSS) in active models. If present, signal that<br />

Hu and White ’97<br />

Hu and White ’97<br />

“something” has caused super-horizon perturbations<br />

Net polarization in the direction<br />

Net polarization in the direction<br />

WMAP<br />

WMAP 7,<br />

stacked<br />

images<br />

<strong>of</strong> <strong>of</strong> <strong>of</strong><br />

hot hot hot<br />

spots spots<br />

≡ ≡ horizon<br />

horizon today<br />

Spergel, Zaldarriaga ’97<br />

from which fewer photons arrived<br />

(• from ≡ horizon whichsize fewer at earlier photons times) Net arrived polarization in the<br />

(• ≡ horizon size at earlier times)<br />

Any correlation at θ > 10 Any correlation at θ > 1 is a correlation on super-horizon<br />

0 Any correlation at θ > 1 is a correlation on super-horizon<br />

0 is a correlation on super-horizon<br />

from which fewer photo<br />

scales scales on the LSS. Negligible signal from active models<br />

No appreciable correlation at θ > 10 No appreciable correlation at θ > 1 in defect models<br />

0 No appreciable correlation at θ > 1 in defect models<br />

0 in defect models<br />

for for which which no correlation on on super-horizon scales scales<br />

Coulson, Coulson, Crittenden, Turok Turok ’94 ’94<br />

Monday, June 21, 2010


Photons are reaching your eyes from it<br />

CMB gets polarized during scatterings; direct probe <strong>of</strong> what<br />

More γ<br />

— E < 0 E > 0<br />

Negative correlation on<br />

scales first acoustic peak<br />

WMAP Net polarization<br />

WMAP 7, stacked images in the<br />

<strong>of</strong> <strong>of</strong> direction<br />

hot hotspots spots<br />

atsu et al.<br />

Komatsu et al.<br />

WMAP 7, stacked images <strong>of</strong> hot spots<br />

WMAP 7, stacked images <strong>of</strong> hot Spergel, spots Zaldarriaga ’97<br />

WMAP SEVEN-YEAR OBSERVATIONS: POWER<br />

Active sources Seljak, Pen, Turok, 2.0 ’97 ℓ<br />

(• 1.5<br />

(• from ≡ ≡ horizon horizon which size fewer at earlier photons times) arrived<br />

scales on the LSS. Negligible signal from 0.0 active models<br />

-0.5<br />

No appreciable correlation at θ > 10 in defect models<br />

TE 2<br />

(l+1)Cl /2! [µK ]<br />

CMB gets polarized on<br />

Hu and White ’97<br />

Any correlation at θ > 10 No appreciable perturbations expected at θ > 1<br />

is a cor<br />

scales on the LSS. Prediction 〈T E<br />

Coulson, Crittenden, Turok ’94<br />

0 No appreciable perturbations expected at θ > 1<br />

(the size <strong>of</strong> the<br />

horizon on the LSS) in models active models. If present, signal<br />

that “something” has caused super-horizon perturbations<br />

0 No appreciable perturbations expected at θ > 1<br />

(the size <strong>of</strong> the<br />

horizon on the LSS) in active models. If present, signal that<br />

“something” has caused super-horizon perturbations<br />

0 present on the LSS (ignore reionization)<br />

present on the LSS (ignore reionization)<br />

(the size <strong>of</strong> the<br />

horizon on the LSS) in active models. If present, signal that<br />

Hu and White ’97<br />

Hu and White ’97<br />

“something” has caused super-horizon perturbations<br />

Net polarization in the direction<br />

≡ ≡ horizon<br />

horizon today<br />

from which fewer photons arrived<br />

Net polarization in the<br />

Any correlation at θ > 10 Any correlation at θ > 1 is a correlation on super-horizon<br />

0 Any correlation at θ > 1 is a correlation on super-horizon<br />

0 is a correlation on super-horizon<br />

1.0<br />

from which fewer photo<br />

scales on the LSS. Negligible signal from active models<br />

No appreciable correlation at θ > 10 No appreciable correlation at θ > 1in defect models<br />

0 in defect models<br />

for for which which no correlation on on super-horizon scales scales<br />

Coulson, Coulson, Crittenden, Turok Turok ’94 ’94<br />

Monday, June 21, 2010<br />

0.5<br />

-1.0<br />

10 50 100 500 1000<br />

Multipole moment l<br />

Figure 3. The 7-year temperature-polarization (TE) cross-power<br />

spectrum measured by WMAP. The second trough (TE


• Super-horizon correlations on the LSS<br />

• Inflation provides a causal mechanism for them<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

Monday, June 21, 2010


• Super-horizon • Super-horizon correlations correlations on the on the LSS LSS<br />

• Super-horizon correlations on the LSS<br />

Inflation<br />

• Inflation<br />

gives<br />

provides gives<br />

a causal<br />

a causal<br />

mechanism<br />

a causal mechanism<br />

for the<br />

mechanism for<br />

formation<br />

for thethem formation<br />

<strong>of</strong> perturbations leading to these correlations<br />

• Alternative <strong>of</strong> perturbations to <strong>inflation</strong> leading exist, to but these less correlations<br />

complete<br />

quantum fluctuations<br />

quantum fluctuations<br />

!<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

Monday, June 21, 2010<br />

d H<br />

Matter / Radiation<br />

Inflation<br />

!<br />

d<br />

H<br />

Matter / Radiation


• Super-horizon • Super-horizon correlations correlations on the on the LSS LSS<br />

• Super-horizon correlations on the LSS<br />

Inflation<br />

• Inflation<br />

gives<br />

provides gives<br />

a causal<br />

a causal<br />

mechanism<br />

a causal mechanism<br />

for the<br />

mechanism for<br />

formation<br />

for thethem formation<br />

<strong>of</strong> perturbations leading to these correlations<br />

• Alternative <strong>of</strong> perturbations to <strong>inflation</strong> leading exist, to but these less correlations<br />

complete<br />

quantum fluctuations<br />

quantum fluctuations<br />

!<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

Monday, June 21, 2010<br />

d H<br />

Matter / Radiation<br />

• Super-horizon correlations on the L<br />

Inflation<br />

• Inflation gives a causal mechanism for their form<br />

quantum fluctuations<br />

!<br />

• Alternative to <strong>inflation</strong> exist, but less com<br />

d<br />

H<br />

Matter / Radiation


• Super-horizon • Super-horizon correlations correlations on the on the LSS LSS<br />

• Super-horizon correlations on the LSS<br />

Inflation<br />

• Inflation<br />

gives<br />

provides gives<br />

a causal<br />

a causal<br />

mechanism<br />

a causal mechanism<br />

for the<br />

mechanism for<br />

formation<br />

for thethem formation<br />

<strong>of</strong> perturbations leading to these correlations<br />

• Alternative <strong>of</strong> perturbations to <strong>inflation</strong> leading exist, to but these less correlations<br />

complete<br />

quantum fluctuations<br />

quantum fluctuations<br />

!<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

d H<br />

Matter / Radiation<br />

• Super-horizon correlations on the LSS<br />

• Super-horizon correlations on the L<br />

Inflation<br />

• Inflation gives a causal mechanism for their form<br />

quantum fluctuations<br />

Inflation gives a causal mechanism for their formation<br />

• Alternative to <strong>inflation</strong> exist, but less com<br />

• Alternative to <strong>inflation</strong> exist, but less complete<br />

Monday, June 21, 2010<br />

!<br />

d<br />

H<br />

Matter / Radiation


Slow<br />

Slow<br />

roll<br />

roll<br />

<strong>inflation</strong><br />

<strong>inflation</strong><br />

Slow roll <strong>inflation</strong><br />

Slow roll <strong>inflation</strong><br />

Linde<br />

Linde<br />

’82<br />

’82<br />

Albrecht<br />

Albrecht<br />

and<br />

and<br />

Steinhradt<br />

Steinhradt<br />

’82<br />

’82<br />

Slow roll <strong>inflation</strong><br />

Linde ’82 Albrecht and Steinh<br />

Linde ’82 Albrecht and Steinhradt ’82<br />

Scalar field slowly rolling due to Hubble friction<br />

Scalar Slowfield rollslowly <strong>inflation</strong> rolling due to Hubble friction<br />

ll <strong>inflation</strong><br />

Potential energy slowly changes → a ≈ eH t<br />

Potential Linde ’82 energy Albrecht slowlyand changes Steinhradt → a ≈’82 eH t<br />

82 Albrecht and Steinhradt ’82<br />

Scalar field slowly rolling due to Hubble friction<br />

ld slowly rolling due to Hubble friction<br />

¨φ + 3 H ˙φ + dV<br />

¨φ + 3 H ˙φ +<br />

dφ dV<br />

H t<br />

dφ<br />

Potential energy slowly changes → a ≈ e<br />

l energy slowly changes → a ≈ e<br />

H t<br />

1/2<br />

= 0 1/2<br />

0<br />

, H ∝ V ¨φ + 3 H ˙φ + dV ¨φ + 3 H ˙φ + 1/2<br />

= 0 , H ∝ V<br />

dφ dV<br />

1/2<br />

= 0 , H ∝ V<br />

dφ<br />

Monday, June 21, 2010<br />

Requires ɛ ≡ M 2 p<br />

2<br />

<br />

V ′ 2<br />

V<br />

≪ 1 , η ≡ M 2 p<br />

V ′′<br />

V<br />

V<br />

≪ 1<br />

!


Requires ɛ ≡ M 2 p<br />

2<br />

<br />

V ′ 2<br />

V<br />

(Mp 10 GeV)<br />

≪ 1 , η ≡ M 2 p<br />

V ′′<br />

V<br />

≪ 1<br />

1<br />

Pscalar =<br />

24 π2 M 4 V<br />

p ɛ | hor. cross. ∼ 5 · 10 −52 Ptensor = 2<br />

3 π2 V<br />

M 4 (Mp 10<br />

| hor. cross. unmeasured<br />

p<br />

• Small<br />

• Nearly scale invariant<br />

18 GeV)<br />

1<br />

Pscalar =<br />

24 π2 M 4 V<br />

p ɛ | hor. cross. ∼ 5 · 10 −52 Ptensor = 2<br />

3 π2 V<br />

M 4 • • Small<br />

• Small<br />

| hor. cross. unmeasured<br />

• Small Nearly scale invariant p<br />

• Nearly scale invariant • Nearly scale invariant<br />

• Nearly scale invariant<br />

• Suppressed tensor (to be rigorous, enhanced scalar)<br />

Ps ∝ k ns<br />

Ps ∝ k<br />

, ns 1 + 2η − 6ɛ<br />

ns , ns 1 + 2η − 6ɛ Ps ∝ k ns , ns 1<br />

Ps ∝ k ns−1<br />

, ns − 1 2η − 6ɛ<br />

• Suppressed tensor Enhanced (to bescalar rigorous, •power Suppressed enhanced tensor scalar) (to be rig<br />

• Suppressed tensor (to be rigorous, enhanced scalar)<br />

• • Unknown scale scale<strong>of</strong> <strong>of</strong> <strong>inflation</strong> ! (the ! • (the Unknown smaller smaller scale the scale, <strong>of</strong> <strong>inflation</strong><br />

•<br />

the<br />

Unknown<br />

scale,<br />

scale <strong>of</strong> <strong>inflation</strong> ! (the smaller the scale,<br />

the flatter V )<br />

the flatter V )<br />

the flatter V )<br />

• the Suppressed flatter V tensors ) (actually, enhanced • Suppressed scalars) tensors (actuall<br />

Monday, June 21, 2010<br />

V<br />

!


Pscalar =<br />

1<br />

24 π2 M 4 p<br />

Ptensor = 2<br />

3 π2 V<br />

Ps ∝ k , ns 1 + 2η − 6ɛ<br />

M 4 p<br />

V<br />

ɛ | hor. cross.<br />

| hor. cross.<br />

∼ 5 · 10 −5 2<br />

• Suppressed tensor (to be rigorous, enhanced scalar)<br />

ɛ ≡<br />

V ′<br />

unmeasured<br />

• Unknown scale <strong>of</strong> <strong>inflation</strong> ! Need to detect tensors<br />

• Suppressed tensors (actually, enhanced scalars)<br />

mall<br />

early scale invariant<br />

uppressed tensor V(to be rigorous, enhanced scalar)<br />

1/4 = 10 16 r ≡ Pt/Ps<br />

Larger r → larger V →• Larger larger ɛr → lar Infl<br />

• Scale <strong>of</strong> <strong>inflation</strong> from tensors (GW). Scalar > Tensor<br />

<br />

r<br />

<br />

r ≡ Pt/Ps<br />

1/4<br />

• Larger r → larger ɛ → Inflaton GeV moves more<br />

∆φ<br />

• Suppressed tensors (actually, 0.01 enhanced sc<br />

• Larger r → larger ɛ → Inflaton moves more<br />

Enhanced scalar power<br />

∆φ > ∼ Mp<br />

Large field models<br />

∆φ > ∼ Mp<br />

Large field models<br />

r<br />

V<br />

2<br />

V 1/4 = 10 16 GeV<br />

Measure GW, know V<br />

Monday, June 21, 2010<br />

0.01<br />

r<br />

0.01<br />

1/2<br />

1/2<br />

≪ 1<br />

r<br />

0.01<br />

ɛ ∝<br />

V ′<br />

r ≡ Pt/Ps<br />

Lyth ’96<br />

1/4<br />

V<br />

2<br />

0.01<br />

≪ 1<br />

• Scale <strong>of</strong> <strong>inflation</strong> from tensors (GW). Scala<br />

• Suppressed tensors (actually, e<br />

Large field mod<br />

Measure GW, kn<br />

Small field mode


Pscalar =<br />

1<br />

24 π2 M 4 p<br />

Ptensor = 2<br />

3 π2 V<br />

Ps ∝ k , ns 1 + 2η − 6ɛ<br />

M 4 p<br />

V<br />

ɛ | hor. cross.<br />

| hor. cross.<br />

∼ 5 · 10 −5 2<br />

• Suppressed tensor (to be rigorous, enhanced scalar)<br />

ɛ ≡<br />

V ′<br />

unmeasured<br />

r ≡ Pt/Ps<br />

• Unknown scale <strong>of</strong> <strong>inflation</strong> ! Need to detect tensors<br />

• Suppressed tensors (actually, enhanced scalars)<br />

V<br />

2<br />

≪ 1<br />

0.01<br />

mall<br />

early scale invariant<br />

uppressed tensor V(to be rigorous, enhanced scalar)<br />

Enhanced scalar power<br />

1/4 = 10 16 r ≡ Pt/Ps<br />

Larger r → larger V →• Larger larger ɛr → lar Infl<br />

• Scale Larger • Larger <strong>of</strong> <strong>inflation</strong> r → larger from ɛ →ɛtensors Inflaton → Inflaton (GW). moves Scalar more moves > Tensor more<br />

<br />

r<br />

<br />

r ≡ Pt/Ps<br />

1/4<br />

• Larger r → larger ɛ → Inflaton GeV moves more<br />

• Suppressed tensors (actually, 0.01 enhanced∆φ sc<br />

r 1/2<br />

∆φ ><br />

• Larger r → larger∼ Mp ɛ → Inflaton 0.01 moves more<br />

r 1/2<br />

Lyth ’96<br />

Lyth ’96<br />

∆φ > ∼ Mp<br />

∆φ ><br />

∼ Mp<br />

Large field models<br />

Large field models<br />

∆φ > ∼ Mp<br />

r<br />

Large field models<br />

Large Measure field models GW, know V<br />

V 1/4 = 10 16 GeV<br />

Measure GW, know V<br />

r ≡ Pt/Ps<br />

0.01<br />

r<br />

Measure GW, know V<br />

Monday, June 21, 2010<br />

r ≡ Pt/Ps<br />

0.01<br />

1/2<br />

1/2<br />

0.01<br />

r<br />

0.01<br />

ɛ ∝<br />

V ′<br />

1/4<br />

V<br />

2<br />

≪ 1<br />

• Scale <strong>of</strong> <strong>inflation</strong> from tensors (GW). Scala<br />

• Suppressed tensors (actually, e<br />

Large field mod<br />

Measure GW, kn<br />

Small field mode


Pscalar =<br />

1<br />

24 π2 M 4 p<br />

Ptensor = 2<br />

3 π2 V<br />

Ps ∝ k , ns 1 + 2η − 6ɛ<br />

M 4 p<br />

V<br />

ɛ | hor. cross. • Larger r →ɛ ∝larger<br />

ɛ≪ →1 I<br />

• Suppressed tensor (to be rigorous, enhanced scalar) V<br />

ɛ ≡<br />

| hor. cross.<br />

V ′<br />

∼ 5 · 10 −5 2<br />

unmeasured<br />

r ≡ Pt/Ps<br />

• Unknown scale <strong>of</strong> <strong>inflation</strong> ! Need to detect tensors<br />

V<br />

0.01<br />

• Larger r → larger ɛ →<br />

2 ≪ 1<br />

• Suppressed tensors (actually, enhanced scalars)<br />

mall<br />

early scale invariant<br />

uppressed tensor V(to be rigorous, enhanced scalar)<br />

Enhanced scalar power<br />

1/4 = 10 16 Larger r → larger V → larger ɛ → Infl<br />

• Scale <strong>of</strong> <strong>inflation</strong> from tensors (GW). Scalar > Tensor<br />

<br />

r<br />

1/4 GeV<br />

• Suppressed tensors (actually, 0.01 enhanced sc<br />

V 1/4 = 10 16 ∆φ ><br />

r ≡ Pt/Ps<br />

• Larger ∼ Mp<br />

r → lar<br />

• Larger • Larger r → larger ɛ →ɛInflaton → Inflaton moves more ∆φ > 0<br />

moves more ∼ Mp<br />

• Larger r → larger r ≡ Pt/Ps<br />

Lyth ’96<br />

ɛ → Inflaton moves more<br />

∆φ<br />

r 1/2 Large field models<br />

∆φ ><br />

• Larger r → larger∼ Mp ɛ → Inflaton moves Large field models<br />

0.01 more<br />

r 1/2<br />

∆φ > <br />

r 1/2<br />

Lyth ’96<br />

∆φ > ∼ Mp<br />

∼ Mp 0.01 Measure GW, know V<br />

Lyth ’96<br />

0.01<br />

<br />

r 1/2 r Large 1/4field<br />

mod<br />

∆φ ><br />

∼ Mp GeV<br />

Large 0.01<br />

Large<br />

Largefield field<br />

field<br />

models<br />

models<br />

Small field models<br />

models Small field 0.01models<br />

Measure GW, kn<br />

Large Measure field models GW, know V<br />

Measure GW, know V<br />

Measure GW, know V<br />

Monday, June 21, 2010<br />

r ≡ Pt/Ps<br />

r ≡ Pt/Ps<br />

<br />

• Suppressed tensors (actually, e<br />

Bad luck !<br />

Bad luck !<br />

V ′<br />

2<br />

• Scale <strong>of</strong> <strong>inflation</strong> from tensors (GW). Scala<br />

<br />

Small field mode


Examples<br />

Examples Examples<strong>of</strong> <strong>of</strong> <strong>of</strong> large<br />

large field<br />

field field models<br />

models<br />

Examples <strong>of</strong> large field models<br />

Examples <strong>of</strong> large field models<br />

(Mathematically) simplest, single field / single scale models<br />

Examples <strong>of</strong> large field models<br />

Chaotic <strong>inflation</strong>:<br />

V = 1<br />

2 m2 φ 2 , λ<br />

4 φ4 Chaotic <strong>inflation</strong>:<br />

, . . .<br />

V = 1<br />

2 m2 φ 2 , λ<br />

4 φ4 Chaotic <strong>inflation</strong>:<br />

, . . .<br />

V = 1<br />

2 m2 φ 2 , λ<br />

4 φ4 , . . .<br />

V = 1<br />

Chaotic <strong>inflation</strong>:<br />

V = 1<br />

2 m2 φ 2 , λ<br />

4 φ4 Examples <strong>of</strong> large field models<br />

(Mathematically) simplest, single field / single scale models<br />

, . . .<br />

Chaotic <strong>inflation</strong>:<br />

2 m2 φ 2 , λ<br />

4 φ4 , . . .<br />

Chaotic <strong>inflation</strong>:<br />

Natural <strong>inflation</strong>:<br />

Natural <strong>inflation</strong>: V = 1<br />

Natural <strong>inflation</strong>:<br />

V = V0<br />

Natural <strong>inflation</strong>:<br />

<br />

1 − cos φ <br />

f<br />

2 <br />

<br />

m2 φ 2 , λ<br />

4 φ4 , . . .<br />

V = V0<br />

V = V0<br />

V = V0<br />

1 − cos φ<br />

1 − cos f<br />

φ<br />

<br />

f<br />

Hill-top (symm. breaking):<br />

Hill-top (symm. breaking): <br />

pφ V = V0 1 −φ<br />

V = V0 1 − f<br />

Monday, June 21, 2010<br />

<br />

1 − cos φ<br />

f<br />

f<br />

p <br />

+ . . .<br />

<br />

+ . . .


Examples <strong>of</strong> small field models<br />

Examples <strong>of</strong> small field models<br />

Examples <strong>of</strong> small field models<br />

Hybrid Examples <strong>inflation</strong>: <strong>of</strong> large field models<br />

Hybrid <strong>inflation</strong>:<br />

Hybrid <strong>inflation</strong>:<br />

id <strong>inflation</strong>:<br />

<br />

σ 2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

(Mathematically) simplest, single field / single scale models<br />

Examples <strong>of</strong> large field models<br />

V = λ<br />

4<br />

V = λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

V = λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

Chaotic <strong>inflation</strong>:<br />

V = 1<br />

2 m2 φ 2 , λ<br />

4 φ4 V = Supergravity: , . . .<br />

λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

V = λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

(Mathematically) simplest, single field / single scale models<br />

Chaotic <strong>inflation</strong>:<br />

Natural <strong>inflation</strong>: 4<br />

<br />

<br />

φ4 Realized in supergravity (no large<br />

, . . .<br />

exp K = exp ∂φi<br />

φ2<br />

M 2 Realized in supergravity (no large exp K = exp<br />

terms)<br />

p<br />

and in D−brane <strong>inflation</strong> (string theory)<br />

φ2<br />

M 2 terms)<br />

p<br />

and in D−brane <strong>inflation</strong> (string theory)<br />

Natural <strong>inflation</strong>:<br />

Supergravity:<br />

V = 1<br />

2 m2 φ 2 , λ<br />

Supergravity: V = V0<br />

V = V0<br />

<br />

Examples <strong>of</strong> small field models<br />

Hybrid <strong>inflation</strong>:<br />

1 − cos φ<br />

f<br />

V = λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

K = φi φ ∗ i ⇒ V = VD+VF , VF = e K<br />

M 2 p<br />

∂W<br />

1 − cos φ<br />

K<br />

M<br />

e f2<br />

p 1 for φ ≪ Mp , Vhybrid typical VD+VF !<br />

+ φ ∗ <br />

<br />

i W <br />

<br />

2<br />

−<br />

"<br />

<br />

3|W |2<br />

Hill-top (symm. breaking):<br />

Hill-top (symm. breaking):<br />

p <br />

p <br />

K = φi φ φ φ<br />

V = V0 V = 1 −V0<br />

1 −+<br />

. . . + . . f. ≪ Mp<br />

f f<br />

∗ i ⇒ V = VD+VF , VF = e K<br />

M2 ∂W<br />

p + φ<br />

∂φi<br />

∗ <br />

2<br />

i W <br />

3|W |2<br />

−<br />

M 2 <br />

K = φi φ<br />

p<br />

∗ i ⇒ V = VD+VF , VF = e K<br />

M2 ∂W<br />

p + φ<br />

∂φi<br />

∗ <br />

2<br />

i W <br />

3|W |<br />

−<br />

M 2 p<br />

Monday, June 21, 2010<br />

M 2 p


−2.7<br />

σ8 0.801 ± 0.030 0.796 ± 0.036<br />

Ωb 0.0449 ± 0.0028 0.0441 ± 0.0030<br />

Ωc 0.222 ± 0.026 0.214 ± 0.027<br />

3196 +134<br />

3176 +151<br />

Where we stand<br />

zeq<br />

−133<br />

WMAP 7<br />

−150<br />

zreion 10.5 ± 1.2 11.0 ± 1.4<br />

a Models fit to WMAP data only. See Komatsu et al. (2010)<br />

for additional constraints.<br />

WMAP only<br />

WMAP7 + ACBAR + QUaD: ns = 0.979±0.018 , r < 0.33 (95% CL)<br />

WMAP only<br />

WMAP7 + ACBAR + QUaD: ns = 0.979±0.0<br />

WMAP7 + BAO + H0 : ns = 0.973±0.014 , r < 0.24 (95% CL)<br />

WMAP7 + BAO + H0 : ns = 0.973±0.0<br />

e 10. Gravitational wave constraints from the 7-year WMAP data, expressed in terms <strong>of</strong> the tens<br />

rs show the 68% and 95% confidence regions for r compared to each <strong>of</strong> the 6 ΛCDM parameters us<br />

rs are<br />

WMAP7 WMAP the corresponding<br />

+ ACBAR 7 5-year results. We do not detect gravitational waves with the new data; w<br />

parameters the 7-year limit is + r QUaD: < 0.36 (95% ns CL), = 0.979±0.018 compared to the 5-year , r < limit 0.33 <strong>of</strong>(95% r < 0.43 CL) (95% C<br />

P data are combined with H0 and BAO constraints (Komatsu et al. 2010).<br />

n etWMAP7 al. 2006; Komatsu + BAO + etH0 al. : 2009). ns = The 0.973±0.014 relative , the r < curvaton 0.24 (95% model. CL) For the<br />

itude <strong>of</strong> its power spectrum is parameterized by α, vention in which anticorrelati<br />

WMAP7 + BAO + H0 : ns = 0.973±0.014 low, multipoles r < 0.24 (95% (Komatsu CL) et al<br />

α PS(k0)<br />

Monday, June 21, 2010<br />

≡ , (14) The constraints on both typ<br />

constraints from the 7-year WMAP data, expressed in terms <strong>of</strong> the tensor-to-scalar ratio, r. The red


Quest for r<br />

v = ∇φ + ∇ × A = electric + magnetic<br />

v = ∇φ + ∇ × A = elec<br />

Monday, June 21, 2010<br />

Scalar perturbations<br />

Tensor perturbations<br />

E−mode polarization<br />

B−mode polarization<br />

WMAP 5<br />

r < 0.36 WMAP7, r < 0.33 WMAP7<br />

r < 0.24 WMAP7 + BAO + H0, r


v = ∇φ + ∇ × v = A = electric + magnetic<br />

∇φ + ∇ × A = electric + magnetic Tensor perturbations<br />

v = ∇φ + ∇ × A = elec<br />

Scalar perturbations<br />

Tensor perturbations<br />

E−mode polarization<br />

B−mode polarization<br />

Monday, June 21, 2010<br />

Quest for rScalar<br />

perturbations<br />

Scalar perturbations E−mode polarization<br />

Tensor perturbations<br />

B−mode polarization<br />

E−mode polarization<br />

B−mode polarization<br />

WMAP 5<br />

r < 0.36 WMAP7, r < 0.33 WMAP7<br />

r < 0.24 WMAP7 + BAO + H0, r


v = ∇φ + ∇ × v = A = electric + magnetic<br />

∇φ + ∇ × v =<br />

A = electric + magnetic Tensor perturbations<br />

Scalar perturbations<br />

E−mode polarization<br />

∇φ + ∇ × A = electric + magnetic Tensor perturbations<br />

v =<br />

Scalar perturbations<br />

E−mode polarization<br />

∇φ + ∇ × A = elec<br />

Scalar perturbations<br />

Tensor perturbations<br />

Tensor perturbations<br />

E−mode polarization<br />

E−mode polarization<br />

B−mode polarization<br />

B−mode polarization<br />

Monday, June 21, 2010<br />

Scalar perturbations<br />

Quest for rScalar<br />

perturbations<br />

B−mode polarization<br />

Tensor perturbations<br />

B−mode polarization<br />

E−mode polarization<br />

B−mode polarization<br />

WMAP 5<br />

r < 0.36 WMAP7, r < 0.33 WMAP7<br />

r < 0.24 WMAP7 + BAO + H0, r


v = ∇φ + ∇ × v = A = electric + magnetic<br />

∇φ + ∇ × v =<br />

A = electric + magnetic Tensor perturbations<br />

Scalar perturbations<br />

E−mode polarization<br />

∇φ + ∇ × A = electric + magnetic Tensor perturbations<br />

v =<br />

Scalar perturbations<br />

E−mode polarization<br />

∇φ + ∇ × A = elec<br />

Scalar perturbations<br />

Tensor perturbations<br />

Tensor perturbations<br />

E−mode polarization<br />

E−mode polarization<br />

B−mode polarization<br />

B−mode polarization<br />

Scalar perturbations<br />

Quest for rScalar<br />

perturbations<br />

v = ∇φ + ∇ × A = elec<br />

Scalar perturbations<br />

B−mode polarization<br />

Tensor perturbations<br />

B−mode polarization<br />

12 Komatsu et al.<br />

E−mode polarization<br />

B−mode polarization<br />

WMAP 5<br />

Tensor perturbations<br />

E−mode polarization<br />

B−mode polarization<br />

WMAP 5<br />

r < 0.36 WMAP7, r < 0.33 WMAP7<br />

r < 0.24 WMAP7 + BAO + H0, r <<br />

Fig. 2.— How the WMAP temperature and polarization data constrain the tensor-to-scalar ratio, r. (Left) The con<br />

95% CL. The gray region is derived from the low-l polarization data (TE/EE/BB at l ≤ 23) only, the red region from t<br />

Monday, June 21, 2010<br />

plus the high-l TE data at l ≤ 450, and the blue region from the low-l polarization, the high-l TE, and the low-l


Planck (bluebook)<br />

Planck (bluebook)<br />

Planck (bluebook)<br />

• Launched<br />

Launched 5/2009<br />

5/2009<br />

• Launched 5/2009<br />

• Launched 5/2009<br />

•Planck •<br />

First<br />

First sky<br />

sky<br />

survey<br />

survey<br />

1/2010<br />

1/2010<br />

• First sky survey 1/2010<br />

• First sky survey 1/2010<br />

• Second<br />

Second sky<br />

sky<br />

survey<br />

survey<br />

7/2010<br />

7/2010<br />

•Launched Second sky survey 5/2009 7/2010<br />

• Second sky survey 7/2010 First sky survey 1/2010<br />

•Second • First-year sky release survey 7/2012 7/2010 Release first-year<br />

• First-year release 7/2012<br />

• First-year release 7/2012<br />

res. 7/2012<br />

DT<br />

DT DT cosmic-variance cosmic-variance<br />

l l<br />

2000 2000<br />

for for for<br />

polarization:<br />

polarization:<br />

DT small cosmic-variance l 2000 for polarization:<br />

small scales<br />

only only<br />

slight slight<br />

help help<br />

with with<br />

parameters,<br />

parameters,<br />

but allows important consistency cross-check<br />

but (lessallows important consistency cross-check<br />

(less SZ<br />

in in<br />

EE)<br />

(less SZ in EE)<br />

small but PLOT allows scales SPECTRA important only slightconsistency helpFROM with parameters, cross-check BLUE BOOK<br />

DT cosmic-variance l 2000 for polarization:<br />

r 0.1<br />

0.1 in<br />

14<br />

months<br />

r r<br />

0.05<br />

in in<br />

28 28<br />

months<br />

r 0.1 in 14 months r 0.05 in 28 months<br />

(Efstathiou, (Efstathiou, small (Efstathiou, scales Gratton only 09) slight help with parameters,<br />

(Efstathiou, Gratton 09)<br />

but allows important consistency cross-check<br />

(less SZ in EE)<br />

Monday, June 21, 2010


Planck (bluebook)<br />

Planck (bluebook)<br />

Planck (bluebook)<br />

• Launched<br />

Launched 5/2009<br />

5/2009<br />

• Launched 5/2009<br />

• •Launched Launched 5/2009<br />

•Planck •<br />

First<br />

First sky<br />

sky<br />

survey<br />

survey<br />

1/2010<br />

1/2010<br />

• First sky survey 1/2010<br />

• •First First sky skysurvey survey 1/2010<br />

• Second<br />

Second sky<br />

sky<br />

survey<br />

survey<br />

7/2010<br />

7/2010<br />

• Second sky survey 7/2010<br />

2.3 Cosmological Parameters from Planck 33<br />

0<br />

•Launched Second sky survey 5/2009 7/2010<br />

10 50<br />

• Second sky survey 7/2010 First sky survey 1/2010<br />

Multipole moment l<br />

•Second • First-year sky release survey 7/2012 7/2010 Release first-year<br />

• First-year release 7/2012<br />

the bin ranges are included in the 7-year data release.<br />

• First-year release 7/2012<br />

res. 7/2012<br />

• First-year release 7/2012<br />

DT<br />

DT DT cosmic-variance cosmic-variance<br />

l l<br />

2000 2000<br />

for for for<br />

polarization:<br />

polarization:<br />

TT DT small cosmic-variance l 2000 for polarization:<br />

small scales<br />

only only<br />

slight slight limited<br />

help help ℓ <<br />

∼<br />

with with 2000<br />

parameters,<br />

parameters,<br />

but allows important consistency cross-check<br />

for but polarization: allows important small scales consistency only slight<br />

(less cross-check help<br />

(less SZ<br />

in in<br />

EE)<br />

with (lessparameters, SZ in EE) but allows important consistency<br />

cross-check (less SZ in EE)<br />

small but PLOT allows scales SPECTRA important only slightconsistency helpFROM with parameters, cross-check BLUE BOOK<br />

(small anisotropy<br />

For simplicity, take unive<br />

WMAP 5 years (<br />

100 500 1000<br />

Groeneboom and Erikse<br />

Planck 2012<br />

mask. (Most <strong>of</strong> the cosmological parameters reported<br />

DT cosmic-variance l 2000 for polarization:<br />

in this paper were fit using a preliminary source correc-<br />

r 0.1<br />

0.1 in<br />

14<br />

months<br />

r r<br />

0.05<br />

in in<br />

28 28<br />

months<br />

tion <strong>of</strong> 10<br />

r 0.1 in 14 months r 0.05 in 28 months<br />

(Efstathiou, (Efstathiou, small (Efstathiou, scales Gratton only 09) slight help with parameters,<br />

(Efstathiou, Gratton 09)<br />

but allows important consistency cross-check<br />

and angular resolution <strong>of</strong> Planck.<br />

(less SZ in EE)<br />

3Aps = 11 ± 1 µK2 sr. We have checked that<br />

substituting the final result has a negligible effect on the<br />

parameter fits.) After this source model is subtracted<br />

from each band, the spectra are combined to form our<br />

best estimate <strong>of</strong> the CMB signal, shown in Figure 1.<br />

The 7-year power spectrum is cosmic variance limited,<br />

i.e., cosmic variance exceeds the instrument noise, up to<br />

l = 548. (This limit is slightly model dependent and can<br />

vary by a few multipoles.) The spectrum has a signal-<br />

TT 2<br />

l(l+1)Cl /2! [µK ]<br />

FIG 2.8.—The left panel shows a realisation <strong>of</strong> the CMB power spectrum <strong>of</strong> the concordance ΛCDM model (red<br />

line) after 4 years <strong>of</strong> WMAP observations. The right panel shows the same realisation observed with the sensitivity<br />

since the fluctuations could not, according to this naive argument, have been in causal contact<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Figure 1. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset <strong>of</strong> the Silk dam<br />

are now well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh2 = 0.02270, Ωch2 ΩΛ= 0.738, τ= 0.086, ns= 0.969, ∆2 R = 2.38 × 10−9 , and ASZ= 0.52. The plotted errors include instrument noise, but not<br />

correlated contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A comp<br />

treatment is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with inc<br />

Figure 2. The high-l TT spectrum measured by WMAP, showing<br />

the improvement with 7 years <strong>of</strong> data. The points with errors use<br />

the full data set while the boxes show the 5-year results with the<br />

same binning. The TT measurement is improved by >30% in the<br />

vicinity <strong>of</strong> the third acoustic peak (at l ≈ 800), while the 2 bins<br />

from l = 1000–1200 are new with the 7-year data analysis.<br />

r 0.1 in 14 months r 0.05 in 28 months<br />

(Efstathiou, Gratton 09)<br />

Monday, June 21, 2010<br />

WMAP 2010 Pla<br />

to-noise ratio greater than one per l-mode up to<br />

and in band-powers <strong>of</strong> width ∆l = 10, the signal<br />

ratio exceeds unity up to l = 1060. The largest<br />

ment in the 7-year spectrum occurs at multipoles<br />

where the uncertainty is still dominated by ins<br />

noise. The instrument noise level in the 7-year s<br />

is 39% smaller than with the 5-year data, which<br />

worthwhile to extend the WMAP spectrum esti<br />

to l = 1200 for the first time. See Figure 2 for a c<br />

son <strong>of</strong> the 7-year error bars to the 5-year error b<br />

third acoustic peak is now well measured and t<br />

<strong>of</strong> the Silk damping tail is also clearly seen by<br />

As we show in §4, this leads to a better meas<br />

<strong>of</strong> Ωmh 2 and the epoch <strong>of</strong> matter-radiation equa<br />

which, in turn, leads to better constraints on the<br />

number <strong>of</strong> relativistic species, Neff, and on the<br />

dial helium abundance, YHe. The improved se<br />

at high l is also important for higher-resolutio<br />

experiments that use WMAP as a primary ca<br />

source.<br />

2.4. Temperature-Polarization (TE, TB) Cross<br />

The 7-year temperature-polarization cross pow<br />

tra were formed using the same methodology a<br />

year spectrum (Page et al. 2007; Nolta et al. 20<br />

l ≤ 23 the cosmological model likelihood is estim<br />

rectly from low-resolution temperature and pola<br />

maps. The temperature input is a template-clea<br />

added V+W band map, while the polarization in<br />

template-cleaned, co-added Ka+Q+V band ma


Planck (bluebook)<br />

Planck (bluebook)<br />

6000<br />

Planck (bluebook)<br />

•• •<br />

Launched<br />

Launched 5/2009<br />

5/2009<br />

5000<br />

• Launched 5/2009<br />

• Launched 5/2009<br />

4000<br />

• •Launched Launched 5/2009<br />

3000<br />

• •Planck First<br />

•First First sky<br />

Firstsky sky<br />

skysurvey survey survey1/2010 1/2010<br />

1/2010<br />

2000<br />

• First sky survey 1/2010<br />

• •First First sky skysurvey survey 1/2010<br />

1000<br />

• •Second •Second Second sky<br />

Second sky skysurvey survey survey7/2010 7/2010<br />

7/2010<br />

• Second sky survey 7/2010<br />

• First-year release 7/2012<br />

• First-year release 7/2012<br />

• First-year release 7/2012<br />

TT DTcosmic-variance DT DT cosmic-variance cosmic-variance cosmic-variancelimited l l<br />

2000 2000 2000ℓ <<br />

TT cosmic-variance limited<br />

∼<br />

for for for 2000<br />

ℓ <<br />

polarization:<br />

polarization:<br />

TT DT small cosmic-variance l 2000 for polarization:<br />

small scales<br />

only only<br />

slight slight limited<br />

help help ℓ <<br />

∼<br />

with with 2000 ∼ 2000<br />

parameters,<br />

parameters,<br />

EE and TE c.v. lim. ℓ <<br />

but allows important consistency ∼ 1000<br />

cross-check<br />

for EE<br />

but polarization: and TE c.v.<br />

(lessallows important small lim. scales ℓ <<br />

consistency ∼ 1000 only slight cross-check help<br />

(less SZ<br />

in in<br />

EE)<br />

with<br />

(less parameters,<br />

SZ in EE)<br />

but allows important consistency<br />

(less SZcross-check in EE) (less SZ in EE)<br />

2.3 Cosmological Parameters from Planck 33<br />

0<br />

•Launched Second sky survey 5/2009 7/2010<br />

10 50<br />

• Second sky survey 7/2010 First sky survey 1/2010<br />

Multipole moment l<br />

•Second • First-year sky release survey 7/2012 7/2010 Release first-year<br />

• First-year release 7/2012<br />

the bin ranges are included in the 7-year data release.<br />

• First-year release 7/2012<br />

res. 7/2012<br />

small but PLOT allows scales SPECTRA important only slightconsistency helpFROM with parameters, cross-check BLUE BOOK<br />

(small anisotropy<br />

For simplicity, take unive<br />

WMAP 5 years (<br />

100 500 1000<br />

Groeneboom and Erikse<br />

Planck 2012<br />

mask. (Most <strong>of</strong> the cosmological parameters reported<br />

DT cosmic-variance l 2000 for polarization:<br />

in this paper were fit using a preliminary source correc-<br />

r 0.1<br />

0.1 in<br />

14<br />

months<br />

r r<br />

0.05<br />

in in<br />

28 28<br />

months<br />

tion <strong>of</strong> 10<br />

r 0.1 in 14 months r 0.05 in 28 months<br />

(Efstathiou, (Efstathiou, small (Efstathiou, scales Gratton only 09) slight help with parameters,<br />

(Efstathiou, Gratton 09)<br />

but allows important consistency cross-check<br />

and angular resolution <strong>of</strong> Planck.<br />

(less SZ in EE)<br />

3Aps = 11 ± 1 µK2 sr. We have checked that<br />

substituting the final result has a negligible effect on the<br />

parameter fits.) After this source model is subtracted<br />

from each band, the spectra are combined to form our<br />

best estimate <strong>of</strong> the CMB signal, shown in Figure 1.<br />

The 7-year power spectrum is cosmic variance limited,<br />

i.e., cosmic variance exceeds the instrument noise, up to<br />

l = 548. (This limit is slightly model dependent and can<br />

vary by a few multipoles.) The spectrum has a signal-<br />

TT 2<br />

l(l+1)Cl /2! [µK ]<br />

Figure 1. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset <strong>of</strong> the Silk dam<br />

are now well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh2 = 0.02270, Ωch2 ΩΛ= 0.738, τ= 0.086, ns= 0.969, ∆2 R = 2.38 × 10−9 , and ASZ= 0.52. The plotted errors include instrument noise, but not<br />

correlated contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A comp<br />

treatment is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with inc<br />

Figure 2. The high-l TT spectrum measured by WMAP, showing<br />

the improvement with 7 years <strong>of</strong> data. The points with errors use<br />

the full data set while the boxes show the 5-year results with the<br />

same binning. The TT measurement is improved by >30% in the<br />

vicinity <strong>of</strong> the third acoustic peak (at l ≈ 800), while the 2 bins<br />

from l = 1000–1200 are new with the 7-year data analysis.<br />

for polarization: small scales only slight help<br />

r 0.1 in 14 months r 0.05 in 28 months<br />

with parameters, but allows important con-<br />

(Efstathiou, Gratton 09)<br />

sistency cross-check (less SZ in EE)<br />

for polarization: small scales only slight help<br />

with parameters, but allows important consistency<br />

cross-check (less SZ in EE)<br />

Monday, June 21, 2010<br />

WMAP 2010 Pla<br />

to-noise ratio greater than one per l-mode up to<br />

and in band-powers <strong>of</strong> width ∆l = 10, the signal<br />

ratio exceeds unity up to l = 1060. The largest<br />

ment in the 7-year spectrum occurs at multipoles<br />

where the uncertainty is still dominated by ins<br />

noise. The instrument noise level in the 7-year s<br />

is 39% smaller than with the 5-year data, which<br />

worthwhile to extend the WMAP spectrum esti<br />

to l = 1200 for the first time. See Figure 2 for a c<br />

son <strong>of</strong> the 7-year error bars to the 5-year error b<br />

third acoustic peak is now well measured and t<br />

<strong>of</strong> the Silk damping tail is also clearly seen by<br />

As we show in §4, this leads to a better meas<br />

<strong>of</strong> Ωmh 2 and the epoch <strong>of</strong> matter-radiation equa<br />

which, in turn, leads to better constraints on the<br />

number <strong>of</strong> relativistic species, Neff, and on the<br />

dial helium abundance, YHe. The improved se<br />

at high l is also important for higher-resolutio<br />

experiments that use WMAP as a primary ca<br />

source.<br />

2.4. Temperature-Polarization (TE, TB) Cross<br />

The 7-year temperature-polarization cross pow<br />

tra were formed using the same methodology a<br />

year spectrum (Page et al. 2007; Nolta et al. 20<br />

l ≤ 23 the cosmological model likelihood is estim<br />

rectly from low-resolution temperature and pola<br />

maps. The temperature input is a template-clea<br />

added V+W band map, while the polarization in<br />

template-cleaned, co-added Ka+Q+V band ma<br />

FIG 2.8.—The left panel shows a realisation <strong>of</strong> the CMB power spectrum <strong>of</strong> the concordance ΛCDM model (red<br />

line) after 4 years <strong>of</strong> WMAP observations. The right panel shows the same realisation observed with the sensitivity<br />

since the fluctuations could not, according to this naive argument, have been in causal contact


Planck (bluebook)<br />

Planck (bluebook)<br />

6000<br />

Planck (bluebook)<br />

• Launched<br />

Launched 5/2009<br />

5/2009<br />

5000<br />

• Launched 5/2009<br />

4000<br />

• Launched 5/2009<br />

3000<br />

•Planck •<br />

First<br />

First sky<br />

sky<br />

survey<br />

survey<br />

1/2010<br />

1/2010<br />

2000<br />

• First sky survey 1/2010<br />

• First sky survey 1/2010<br />

1000<br />

• Second<br />

Second sky<br />

sky<br />

survey<br />

survey<br />

7/2010<br />

7/2010<br />

0<br />

• Launched Second sky survey<br />

Second sky survey 5/2009 7/2010<br />

10 50<br />

7/2010 First sky survey 1/2010<br />

Multipole moment l<br />

•Second • First-year sky release survey 7/2012 7/2010 Release first-year<br />

• First-year release 7/2012<br />

the bin ranges are included in the 7-year data release.<br />

• First-year release 7/2012<br />

res. 7/2012<br />

DT<br />

DT DT cosmic-variance cosmic-variance<br />

l l<br />

2000 2000<br />

for for for<br />

polarization:<br />

polarization:<br />

DT small cosmic-variance l 2000 for polarization:<br />

small scales<br />

only only<br />

slight slight<br />

help help<br />

with with<br />

parameters,<br />

parameters,<br />

small but PLOT scales SPECTRA only slight helpFROM with parameters, BLUE BOOK<br />

but allows<br />

important<br />

consistency<br />

cross-check<br />

but (lessallows important consistency cross-check<br />

(less SZ<br />

in in<br />

EE)<br />

Figure 2. The high-l TT spectrum measured by WMAP, showing<br />

the improvement with 7 years <strong>of</strong> data. The points with errors use<br />

the full data set while the boxes show the 5-year results with the<br />

same binning. The TT measurement is improved by >30% in the<br />

(less SZ in EE)<br />

vicinity <strong>of</strong> the third acoustic peak (at l ≈ 800), while the 2 bins<br />

from l = 1000–1200 are new with the 7-year data analysis.<br />

mask. (Most <strong>of</strong> the cosmological parameters reported<br />

DT cosmic-variance l 2000 for polarization:<br />

in this paper were fit using a preliminary source correc-<br />

r 0.1<br />

0.1 in<br />

14<br />

months<br />

r r<br />

0.05<br />

in in<br />

28 28<br />

months<br />

tion <strong>of</strong> 10<br />

r 0.1 in 14 months r 0.05 in 28 months<br />

(Efstathiou, (Efstathiou, small (Efstathiou, scales Gratton only 09) slight help with parameters,<br />

(Efstathiou, Gratton 09)<br />

but allows important consistency cross-check<br />

and angular resolution <strong>of</strong> Planck.<br />

(less SZ in EE)<br />

3Aps = 11 ± 1 µK2 • Launched 5/2009<br />

09<br />

/2010<br />

Planck (bluebook)<br />

• •Launched Launched Second sky 5/2009<br />

survey• First 7/2010 sky survey 1/2010<br />

1/2010<br />

y 7/2010<br />

• Launched 5/2009 • Second sky survey 7/2010<br />

vey• • 7/2010<br />

•First First First-year sky survey release 1/2010<br />

7/2012<br />

7/2012 • First sky survey 1/2010 • First-year release 7/2012<br />

se • 7/2012 TT Second cosmic-variance sky<br />

sky<br />

survey<br />

survey<br />

7/2010<br />

7/2010<br />

limited ℓ <<br />

∼ 2000<br />

e limited • Secondℓ <<br />

∼sky 2000 survey 7/2010 TT cosmic-variance limited ℓ <<br />

∼ 2000<br />

nce• limited EE First-year andℓ <<br />

• First-year ∼TE 2000 release c.v. lim. 7/2012 ℓ <<br />

release 7/2012 ∼ 1000<br />

. •ℓ First-year <<br />

∼ 1000 release 7/2012 EE and TE c.v. lim. ℓ <<br />

∼ 1000<br />

lim. TT (less ℓ <<br />

∼cosmic-variance 1000 SZ in EE) limited ℓ <<br />

TT cosmic-variance limited<br />

∼ 2000<br />

(less SZ ℓ <<br />

TT cosmic-variance limited ℓ < in<br />

∼ 2000 ∼EE) 2000<br />

EE forand polarization: TE c.v. lim. small ℓ <<br />

∼ 1000<br />

for EEpolarization: and TE c.v. small lim. for<br />

scales ℓ < polarization: scales only<br />

∼ 1000 small slight scales helponly<br />

slight help<br />

with parameters, but allows<br />

only slight<br />

important<br />

help<br />

con-<br />

small<br />

all scales<br />

withscales only<br />

parameters, only<br />

slight<br />

slight<br />

help with parameters, but allows important con-<br />

(less SZ in EE)<br />

but help allows important con-<br />

ut sistency cross-check (less SZ in EE)<br />

but allows<br />

sistency (less allowsimportant SZcross-check important consistency cross-check (less SZ in EE)<br />

in EE) (less con- SZ in EE)<br />

keck (less (lessSZ SZinin EE)<br />

sr. We have checked that<br />

substituting the final result has a negligible effect on the<br />

parameter fits.) After this source model is subtracted<br />

for r > polarization: smallr scales<br />

><br />

only from each slight band, the spectra help are combined to form our<br />

r 0.1 ∼ 0.1 in 14 months∼ 0.1<br />

r > in 14 months r ><br />

in 14 months r 0.05 ∼ 0.05 in 28 months ∼ 0.05 in 28 months<br />

in 28 best estimate months<br />

<strong>of</strong> the CMB signal, shown in Figure 1.<br />

for polarization: small scales only The 7-year power slight spectrum is cosmic help variance limited,<br />

with parameters, but allows important i.e., cosmic variance exceeds con- the instrument noise, up to<br />

nths s l = 548. (This limit is slightly model dependent and can<br />

(Efstathiou, r > r ><br />

∼ 0.05 inGratton 28 months 09)<br />

vary by a few multipoles.) The spectrum has a signalsistency<br />

with<br />

∼ 0.05 in 28 months<br />

Efstathiou,<br />

parameters, cross-check Gratton<br />

butEfstathiou, (less 09<br />

allows SZ inimportant Gratton 09<br />

EE) con-<br />

Monday, sistency June 21, 2010cross-check<br />

(less SZ in EE)<br />

TT 2<br />

l(l+1)Cl /2! [µK ]<br />

WMAP 2010 Pla<br />

(small anisotropy<br />

For simplicity, take unive<br />

WMAP 5 years (<br />

2.3 Cosmological Parameters from Planck 33<br />

100 500 1000<br />

Groeneboom and Erikse<br />

Figure 1. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset <strong>of</strong> the Silk dam<br />

are now well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh2 = 0.02270, Ωch2 ΩΛ= 0.738, τ= 0.086, ns= 0.969, ∆2 R = 2.38 × 10−9 , and ASZ= 0.52. The plotted errors include instrument noise, but not<br />

correlated contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A comp<br />

treatment is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with inc<br />

Planck 2012<br />

to-noise ratio greater than one per l-mode up to<br />

and in band-powers <strong>of</strong> width ∆l = 10, the signal<br />

ratio exceeds unity up to l = 1060. The largest<br />

ment in the 7-year spectrum occurs at multipoles<br />

where the uncertainty is still dominated by ins<br />

noise. The instrument noise level in the 7-year s<br />

is 39% smaller than with the 5-year data, which<br />

worthwhile to extend the WMAP spectrum esti<br />

to l = 1200 for the first time. See Figure 2 for a c<br />

son <strong>of</strong> the 7-year error bars to the 5-year error b<br />

third acoustic peak is now well measured and t<br />

<strong>of</strong> the Silk damping tail is also clearly seen by<br />

As we show in §4, this leads to a better meas<br />

<strong>of</strong> Ωmh 2 and the epoch <strong>of</strong> matter-radiation equa<br />

which, in turn, leads to better constraints on the<br />

number <strong>of</strong> relativistic species, Neff, and on the<br />

dial helium abundance, YHe. The improved se<br />

at high l is also important for higher-resolutio<br />

experiments that use WMAP as a primary ca<br />

source.<br />

2.4. Temperature-Polarization (TE, TB) Cross<br />

The 7-year temperature-polarization cross pow<br />

tra were formed using the same methodology a<br />

year spectrum (Page et al. 2007; Nolta et al. 20<br />

l ≤ 23 the cosmological model likelihood is estim<br />

rectly from low-resolution temperature and pola<br />

maps. The temperature input is a template-clea<br />

added V+W band map, while the polarization in<br />

template-cleaned, co-added Ka+Q+V band ma<br />

FIG 2.8.—The left panel shows a realisation <strong>of</strong> the CMB power spectrum <strong>of</strong> the concordance ΛCDM model (red<br />

line) after 4 years <strong>of</strong> WMAP observations. The right panel shows the same realisation observed with the sensitivity<br />

since the fluctuations could not, according to this naive argument, have been in causal contact


Ω c h 2<br />

n run<br />

τ<br />

n s<br />

log[10 10 A s ]<br />

H 0<br />

0.12<br />

0.0210.0230.025<br />

0.1<br />

0.15<br />

0.1<br />

0.05<br />

0.0210.0230.025<br />

0.0210.0230.025<br />

1.1<br />

1.1<br />

1<br />

0.9<br />

0.05<br />

0.0210.0230.025<br />

0<br />

−0.05 −0.05<br />

0.0210.0230.025<br />

3.2<br />

3.2<br />

3.1<br />

3<br />

0.0210.0230.025<br />

0.15<br />

0.1<br />

0.05<br />

1<br />

0.9<br />

0.05<br />

0<br />

3.1<br />

3<br />

Ω h<br />

b 2<br />

85<br />

85<br />

80<br />

80<br />

75<br />

75<br />

70<br />

70<br />

65<br />

65<br />

0.0210.0230.025<br />

0.1 0.12<br />

0.1 0.12 0.05 0.1 0.15<br />

1.1<br />

0.1 0.12<br />

0.9 1 1.1<br />

−0.05 −0.05<br />

0.1 0.12 0.05 0.1 0.15 0.9 1 1.1−0.05<br />

0 0.05<br />

3.2<br />

3.2<br />

3.2<br />

0.1 0.12<br />

Ω h<br />

c 2<br />

0.1 0.12<br />

1<br />

0.9<br />

0.05<br />

0<br />

3.1<br />

3<br />

0.05 0.1 0.15<br />

0.05 0.1 0.15<br />

0.05<br />

0<br />

3.1<br />

3<br />

0.9 1 1.1−0.05<br />

0 0.05<br />

85<br />

85<br />

85<br />

80<br />

80<br />

80<br />

75<br />

75<br />

75<br />

70<br />

70<br />

70<br />

65<br />

65<br />

65<br />

0.05 0.1 0.15<br />

τ<br />

0.9 1 1.1−0.05<br />

0 0.05<br />

n s<br />

3.1<br />

3<br />

Efstathiou, Gratton 09<br />

WMAP4 vs. Planck1<br />

n run<br />

85<br />

80<br />

75<br />

70<br />

65<br />

3 3.1 3.2<br />

3 3.1 3.2<br />

log[10 10 A s ]<br />

65 75 85<br />

H 0<br />

Monday,<br />

FIG 2.18.—Forecasts June 21, 2010<br />

<strong>of</strong> 1 and 2σ contour regions for various cosmological parameters when the spectral index


Non-gaussianity<br />

R ∼ 10−5 single field slow roll <strong>inflation</strong> (potential Models extremely with flat) mu<br />

Non-gaussianity<br />

flation,<br />

Noninteracting inflaton → gaussianity. At Models least with gravity. multiple Tiny fields (∼ 10(many fie<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

flation,<br />

Salopek, Bond ’9<br />

Komatsu, Spergel Salopek, ’00 Bond ’90 Maldacena ’02<br />

Gaussian prediction forMaldacena nonintercting ’02 inflaton All models at least<br />

−6 )<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R ∼ 10−5 Noninteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

−6 )<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R ∼ 10−5 ⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

Monday, June 21, 2010<br />

Non-gaussianity<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

Komatsu, Spergel ’00<br />

Komatsu, Spergel ’00<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

bations conversion outside horizon, where gradients are irrele-<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Inflaton with nonstandard kinetic term: k −<br />

<strong>inflation</strong><br />

Models<br />

modulated<br />

with<br />

perturbations)<br />

multiple fields<br />

have<br />

(multiple<br />

isocurvature<br />

fields<br />

→<br />

<strong>inflation</strong>,<br />

curvature<br />

curvaton,<br />

pertur-<br />

modulated<br />

bations conversion<br />

perturbations)<br />

outside<br />

have<br />

horizon,<br />

isocurvature<br />

where gradients<br />

→ curvature<br />

are<br />

perturirrele-<br />

bationsvant. Predicted conversion nongaussianity outside horizon, <strong>of</strong> thewhere local type. gradients are irrele-<br />

Salopek, Bond ’90<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.


Non-gaussianity<br />

Non-gaussianity<br />

R ∼ 10−5 single field slow roll <strong>inflation</strong> (potential Models extremely with flat) mu<br />

Non-gaussianity<br />

flation,<br />

Noninteracting inflaton → gaussianity. At Models least with gravity. multiple Tiny fields (∼ 10(many fie<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

flation,<br />

Salopek, Bond ’9<br />

Komatsu, Spergel Salopek, ’00 Bond ’90 Maldacena ’02<br />

Gaussian prediction forMaldacena nonintercting ’02 inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

−6 )<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R ∼ 10−5 Noninteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

Komatsu, Spergel ’00<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

−6 )<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R ∼ 10−5 ⇒ fNL ∼ 10 means nongaussianity R ∼at 10 0.01% level<br />

Komatsu, Spergel ’00<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

−5 Non-gaussianity<br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π)<br />

⇒ fNL ∼ 10 means nongaussian<br />

Komatsu, Spergel ’00<br />

3 δ (3) (k1 + k2 + k3) BR (k1, k2, k3)<br />

Phenomenological parametrization<br />

R ∼ 10−5 non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π)<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

Komatsu, Spergel ’00<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

3 δ (3) (k1 + k2 + k3) BR (k1, k2, k3)<br />

Phenomenological parametrization<br />

R (x) = Rg (x)+ 3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

Komatsu, Spergel ’00<br />

R ∼ 10−5 Phenomenological parametrization<br />

R (x) = Rg (x)+<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

Komatsu, Spergel ’00<br />

Since local in space, called local non-gaussianity<br />

R ∼ 10−5 R (x) = Rg (x)+<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

Komatsu, Spergel ’00<br />

Since local in space, called local non-gaussianity<br />

( since R ∼ 10−5 , ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

nteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10 −6 )<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

modulated Gaussian prediction perturbations) for nonintercting have isocurvature inflaton → curvature All models pertur- at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

bationssingle conversion single field slow outside field roll <strong>inflation</strong> horizon, slow(potential where roll <strong>inflation</strong> extremely gradientsflat) (potential extremely flat)<br />

gravitational Gaussian interaction. prediction Nongaussianity for nonintercting is small (fNL∼0.05)<br />

are irrele- for inflaton All models at least<br />

vant. Predicted single nongaussianity field slow <strong>of</strong> the vant. roll localPredicted <strong>inflation</strong> type. nongaussianity (potential extremely <strong>of</strong> the local flat) type.<br />

single Models field with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

gravitational slow roll <strong>inflation</strong> interaction. (potential extremely Nongaussianity flat)<br />

is small (fNL∼0.05) for<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Inflaton with nonstandard kinetic term: k −<br />

bations single conversion fieldoutside slowhorizon, roll <strong>inflation</strong> where gradients (potential are irrele- extremely flat)<br />

<strong>inflation</strong>Models<br />

modulated<br />

with<br />

perturbations)<br />

multiple fields<br />

have<br />

(multiple<br />

isocurvature<br />

fields<br />

→<br />

<strong>inflation</strong>,<br />

curvature<br />

curvaton,<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

pertur-<br />

bations conversion outside horizon, where gradients are irrele-<br />

Inflaton with nonstandard kinetic term: k −<br />

<strong>inflation</strong><br />

Salopek, modulated<br />

bations Bond ’90 conversion<br />

perturbations)<br />

outside<br />

have<br />

horizon,<br />

isocurvature<br />

where gradients<br />

→ curvature<br />

are<br />

perturirrele-<br />

Maldacena bationsvant. ’02Predicted<br />

conversion nongaussianity outside horizon, <strong>of</strong> thewhere local type. gradients are irrele-<br />

Monday, June 21, 2010<br />

Salopek, Bond ’90<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.


Non-gaussianity<br />

Non-gaussianity<br />

R ∼ 10−5 single field slow roll <strong>inflation</strong> (potential Models extremely with flat) mu<br />

Non-gaussianity<br />

flation,<br />

Noninteracting inflaton → gaussianity. At Models least with gravity. multiple Tiny fields (∼ 10(many fie<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

flation,<br />

Salopek, Bond ’9<br />

−6 Noninteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

)<br />

−6 Non-gaussianity<br />

nteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

)<br />

−6 )<br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π)<br />

(k1 + k2 + k3) BR (k1, k2, k3)<br />

3 δ (3) Phenomenological parametrization<br />

(k1 + k2 + k3) BR (k1, k2, k3)<br />

R (x) = Rg (x)+ 3 <br />

local<br />

f Rg (x) 2 − 〈Rg (x) 2 〉 <br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R (x) = Rg (x)+<br />

Phenomenological parametrization<br />

3 <br />

f<br />

local<br />

NL Rg (x)<br />

5 2<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R ∼ 10−5 R (x) = Rg (x)+ ⇒ fNL ∼ 10 means nongaussian<br />

3<br />

Komatsu, Spergel ’00<br />

Since local in space, called local no<br />

Komatsu, Spergel Salopek, ’00 Bond ’90 Maldacena ’02<br />

R ∼ 10 Gaussian prediction forMaldacena nonintercting ’02 inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

−5 R ∼ 10<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

Komatsu, Spergel ’00<br />

−5 Phenomenological ⇒parametrization fNL ∼ 10 means nongaussianity at 0.01% level<br />

R ∼ 10<br />

Komatsu, Spergel ’00<br />

Komatsu, Spergel ’00<br />

−5 Phenomenological parametrization<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

R (x) = Rg (x)+<br />

Komatsu, Spergel ’00<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

R (x) = Rg (x)+<br />

Komatsu, Spergel ’00<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

<br />

local<br />

fNL Rg (x)<br />

Komatsu, 5 Spergel ’00<br />

Komatsu, Spergel ’00<br />

Since local in space, called local non-gaussianity<br />

2 − 〈Rg (x) 2 〉 <br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) (k1 + k2 + k3)<br />

Komatsu, Spergel ’00<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

single field<br />

R ∼ 10<br />

slow roll <strong>inflation</strong> (potential extremely flat)<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

−5 Since local in space, called local non-gaussianity<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

R ∼ 10−5 ( since R⇒ fNL ∼ 10 ∼ 10 means nongaussianity at 0.01% level<br />

−5 Since local in space, called local non-gaussianity<br />

, ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

RModels ∼ 10Gaussian with multiple prediction fields for nonintercting (multiple modulated fields inflaton <strong>inflation</strong>, All perturbations) models curvaton, at least have isocurvature → curvature pertur-<br />

−5 , ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

modulated Gaussian gravitational prediction perturbations) interaction. for nonintercting have Nongaussianity isocurvature inflaton →is curvature small All models (fNL∼0.05) pertur- at least for<br />

5<br />

NL<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

bations conversion outside horizon, where gradients are irrelebationssingle<br />

conversion single field slow outside field roll <strong>inflation</strong> horizon, slow(potential where roll <strong>inflation</strong> extremely gradientsflat) are(potential irrele- extremely flat)<br />

gravitational Gaussian interaction. prediction Nongaussianity for nonintercting is small (fNL∼0.05) for inflaton All models at least<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

3 δ (3) <br />

<br />

(k1 + k2 + k3) BR (k1, k2, k3) T (x) T (y) T (z)<br />

vant. Predicted single nongaussianity field slow <strong>of</strong> theroll local <strong>inflation</strong> type.<br />

single Models field with multiple fields (multiple fields <strong>inflation</strong>, curvaton, (potential extremely flat)<br />

gravitational slow roll <strong>inflation</strong> interaction. (potential extremely Nongaussianity flat)<br />

is small (fNL∼0.05) for<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Inflaton with nonstandard kinetic term: k −<br />

bations single conversion fieldoutside slowhorizon, roll <strong>inflation</strong> where gradients (potential are irrele- extremely flat)<br />

<strong>inflation</strong>Models<br />

modulated<br />

with<br />

perturbations)<br />

multiple fields<br />

have<br />

(multiple<br />

isocurvature<br />

fields<br />

→<br />

<strong>inflation</strong>,<br />

curvature<br />

curvaton,<br />

From vant. *, and Predicted from nongaussianity scale invariant <strong>of</strong> the local type. power spectrum,<br />

pertur-<br />

Inflaton with nonstandard kinetic term: k −<br />

<strong>inflation</strong><br />

Salopek, modulated<br />

bations Bond ’90 conversion<br />

perturbations)<br />

outside<br />

have<br />

horizon,<br />

isocurvature<br />

where gradients<br />

→ curvature<br />

are<br />

perturirrele-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Maldacena bationsvant. ’02Predicted<br />

conversion nongaussianity outside horizon, <strong>of</strong> thewhere local type. gradients are irrele-<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Salopek, Bond ’90<br />

bations conversion outside horizon, where gradients are irrele-<br />

Monday, June 21, 2010<br />

( since R ∼ 10 −5 , ⇒ fNL ∼ 10 means nongaussianity at<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.


Komatsu, Spergel ’00<br />

Non-gaussianity<br />

Non-gaussianity<br />

R ∼ 10−5 single field slow roll <strong>inflation</strong> (potential Models extremely with flat) mu<br />

Non-gaussianity<br />

flation,<br />

Noninteracting inflaton → gaussianity. At Models least with gravity. multiple Tiny fields (∼ 10(many fie<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

flation,<br />

Salopek, Bond ’9<br />

Salopek, Bond ’90 Maldacena ’02<br />

−6 Noninteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

)<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

−6 Non-gaussianity<br />

nteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

)<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

−6 )<br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π)<br />

(k1 + k2 + k3) BR (k1, k2, k3)<br />

3 δ (3) Phenomenological parametrization<br />

(k1 + k2 + k3) BR (k1, k2, k3)<br />

R (x) = Rg (x)+ 3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R (x) = Rg (x)+<br />

Phenomenological parametrization<br />

3 <br />

f<br />

local<br />

NL Rg (x)<br />

5 2<br />

Since local in space, called local non-gaussianit<br />

Komatsu, Spergel ’00<br />

Komatsu, Spergel ’00<br />

R ∼ 10−5 Phenomenological parametrization<br />

R<br />

Phenomenological<br />

(x) = Rg (x)+ ⇒parametrization fNL ∼ 10 means nongaussianity at 0.01% level<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

R (x) = Rg (x)+ 3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

e R ∼ 10−5 , ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

R ∼ 10−5 R ∼ 10<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

−5 Since local in⇒ space, fNL ∼ 10called means nongaussian local no<br />

Komatsu, Spergel ’00<br />

R ∼ 10 Gaussian prediction forMaldacena nonintercting ’02 inflaton All models at least<br />

gravitational interaction. Nongaussianity Komatsu, is Spergel small (fNL∼0.05) ’00 for<br />

Komatsu, Spergel ’00<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Komatsu, Spergel ’00<br />

−5 ⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

R (x) = Rg (x)+<br />

Komatsu, Spergel ’00<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

Komatsu, Spergel ’00<br />

Komatsu, SinceSpergel local’00 in space, called local 〈 non-gaussianity<br />

Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) From *, and from scale invariant power spectrum,<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

(k1 + k2 + k3)<br />

Komatsu, Spergel ’00<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

single field<br />

R ∼ 10<br />

slow roll <strong>inflation</strong> (potential extremely flat)<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

−5 Since local in space, called local non-gaussianity<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

R ∼ 10−5 ( since R⇒ fNL ∼ 10 ∼ 10 means nongaussianity at 0.01% level<br />

−5 Since local in space, called local non-gaussianity<br />

, ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

RModels ∼ 10Gaussian with multiple prediction fields for nonintercting (multiple modulated fields inflaton <strong>inflation</strong>, All perturbations) models curvaton, at least have isocurvature → curvature pertur-<br />

−5 , ⇒ fNL ∼ 10 means nongaussianity at shape 0.01% level )<br />

modulated Gaussian gravitational prediction perturbations) interaction. for nonintercting have Nongaussianity isocurvature inflaton →is curvature small All models (fNL∼0.05) pertur- at least for<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

bations conversion outside horizon, where gradients are irrelebationssingle<br />

conversion single field slow outside field roll <strong>inflation</strong> horizon, slow(potential where roll <strong>inflation</strong> extremely gradientsflat) are(potential irrele- extremely flat)<br />

gravitational Gaussian interaction. prediction Nongaussianity for nonintercting is small (fNL∼0.05) for inflaton All models at least<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

3 δ (3) From *, and from scale invariant power spectrum,<br />

<br />

<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

(k1 + k2 + k3) BR (k1, k2, k3) T (x) T (y) T (z)<br />

vant. Predicted single nongaussianity field slow <strong>of</strong> theroll local <strong>inflation</strong> type.<br />

single Models field with multiple fields (multiple fields <strong>inflation</strong>, curvaton, (potential extremely flat)<br />

gravitational slow roll <strong>inflation</strong> interaction. (potential extremely Nongaussianity flat)<br />

is small (fNL∼0.05) for<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Inflaton with nonstandard kinetic term: k −<br />

single field slow roll <strong>inflation</strong> (potential extremely<br />

1<br />

flat)<br />

bations conversion outside horizon, where gradients are irrele-<br />

<strong>inflation</strong>Models<br />

modulated<br />

with<br />

perturbations)<br />

multiple Inflatonfields with have<br />

(multiple nonstandard BR ∝<br />

isocurvature<br />

fields<br />

→<br />

<strong>inflation</strong>, + kinetic curvature<br />

curvaton,<br />

From vant. *, and Predicted from nongaussianity scale invariant <strong>of</strong> the local type. power spectrum, (k1 k2)<br />

3 term: pertur- k −<br />

<strong>inflation</strong><br />

1<br />

+<br />

(k1 k2)<br />

3 1<br />

(k1 k2) 3<br />

From *, and from scale invariance<br />

Salopek, modulated<br />

bations Bond ’90 conversion<br />

perturbations)<br />

outside<br />

have<br />

horizon,<br />

isocurvature<br />

where gradients<br />

→ curvature<br />

are<br />

perturirrele-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Maldacena bationsvant. ’02Predicted<br />

conversion nongaussianity outside horizon, <strong>of</strong> thewhere local type. gradients are irrele-<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Salopek, Bond ’90<br />

bations conversion outside horizon, where gradients are irrele-<br />

( since R ∼ 10 −5 , ⇒ fNL ∼ 10 means nongaussianity at<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

bations conversion outside horizon, where gradients are irrele-<br />

shape<br />

B ∝<br />

Monday, June 21, 2010<br />

1 + 1 + 1<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton<br />

modulated perturbations) have isocurvature → curvature pertur<br />

bations conversion outside horizon, where gradients are irrele<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.


Komatsu, Spergel ’00<br />

Non-gaussianity<br />

Non-gaussianity<br />

R ∼ 10−5 single field slow roll <strong>inflation</strong> (potential Models extremely with flat) mu<br />

Non-gaussianity<br />

flation,<br />

Noninteracting inflaton → gaussianity. At Models least with gravity. multiple Tiny fields (∼ 10(many fie<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

flation,<br />

Salopek, Bond ’9<br />

Salopek, Bond ’90 Maldacena ’02<br />

−6 Noninteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

)<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

−6 Non-gaussianity<br />

nteracting inflaton → gaussianity. At least gravity. Tiny (∼ 10<br />

)<br />

non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

−6 )<br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) non-gaussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π)<br />

(k1 + k2 + k3) BR (k1, k2, k3)<br />

3 δ (3) Phenomenological parametrization<br />

(k1 + k2 + k3) BR (k1, k2, k3)<br />

R (x) = Rg (x)+ 3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

aussianity for single field slow roll <strong>inflation</strong> (flat potential)<br />

R (x) = Rg (x)+<br />

Phenomenological parametrization<br />

3 <br />

f<br />

local<br />

NL Rg (x)<br />

5 2<br />

3.5<br />

Since local in space, called local non-gaussianit 1.0<br />

Komatsu, Spergel ’00<br />

0.75<br />

Komatsu, Spergel ’00<br />

R ∼ 10−5 Phenomenological parametrization<br />

R<br />

Phenomenological<br />

(x) = Rg (x)+ ⇒parametrization fNL ∼ 10 means nongaussianity at 0.01% level<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

R (x) = Rg (x)+ 3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

e R ∼ 10−5 , ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

0<br />

R ∼ 10−5 R ∼ 10<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

−5 Since local in⇒ space, fNL ∼ 10called means nongaussian local no<br />

Komatsu, Spergel ’00<br />

R ∼ 10 Gaussian prediction forMaldacena nonintercting ’02 inflaton All models at least<br />

gravitational interaction. Nongaussianity Komatsu, is Spergel small (fNL∼0.05) ’00 for<br />

Komatsu, Spergel ’00<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Komatsu, Spergel ’00<br />

−5 ⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

R (x) = Rg (x)+<br />

Komatsu, Spergel ’00<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

3 <br />

local<br />

fNL Rg (x)<br />

5 2 − 〈Rg (x) 2 〉 <br />

Komatsu, Spergel ’00<br />

Komatsu, SinceSpergel local’00 in space, called local 〈 non-gaussianity<br />

Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) 0.0<br />

From *, and from scale invariant power 0.5 spectrum, 1.0<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

(k1 + k2 + k3)<br />

0.5<br />

x3<br />

Komatsu, Spergel ’00<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

single field<br />

R ∼ 10<br />

slow roll <strong>inflation</strong> (potential extremely flat)<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

−5 Since local in space, called local non-gaussianity<br />

⇒ fNL ∼ 10 means nongaussianity at 0.01% level<br />

R ∼ 10−5 ( since R⇒ fNL ∼ 10 ∼ 10 means nongaussianity at 0.01% level<br />

−5 Since local in space, called local non-gaussianity<br />

, ⇒ fNL ∼ 10 means shapenongaussianity<br />

at 0.01% level )<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

RModels ∼ 10Gaussian withgravitational multiple prediction fields for nonintercting (multiple interaction. modulated fields inflaton <strong>inflation</strong>, All perturbations) models Nongaussianity curvaton, at least have isocurvature is small (fNL∼0.05) → curvaturefor pertur-<br />

modulated Gaussian gravitational prediction perturbations) interaction. for nonintercting have Nongaussianity isocurvature inflaton →is curvature small All models (fNL∼0.05) pertur- at least for<br />

gravitational interaction. bations conversion Nongaussianity outside horizon, is small where gradients (fNL∼0.05) arefor irrelebationssingle<br />

conversion single field slow outside field roll <strong>inflation</strong> horizon, slow(potential where roll <strong>inflation</strong> extremely gradientsflat) are(potential irrele- extremely flat)<br />

gravitational Gaussian interaction. prediction Nongaussianity for nonintercting is small (fNL∼0.05) for inflaton All models at least<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

−5 , ⇒ fNL ∼ 10 means nongaussianity at 0.01% level )<br />

〈 Rk1<br />

Rk2<br />

Rk3 〉 = (2π) 3 δ (3) shape<br />

bations conversion outside horizon, where gradients are irrele-<br />

From *, and from scale invariance<br />

From *, and from scale invariant power spectrum,<br />

<br />

<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

(k1 + k2 + k3) BR (k1, k2, k3) T (x) T (y) T (z)<br />

vant. Predicted single nongaussianity field slow <strong>of</strong> theroll local <strong>inflation</strong> type.<br />

single Models field with multiple fields (multiple fields <strong>inflation</strong>, curvaton, (potential extremely flat)<br />

gravitational slow roll <strong>inflation</strong> interaction. (potential extremely Nongaussianity flat)<br />

is small (fNL∼0.05) for<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

Inflaton with nonstandard kinetic term: k − 1<br />

single field slow roll <strong>inflation</strong> (potential extremely<br />

1<br />

BR ∝ + flat)<br />

3 1<br />

+<br />

3 1<br />

bations conversion outside horizon, where gradients are irrele-<br />

<strong>inflation</strong>Models<br />

with multiple Inflatonfields with(multiple nonstandard BR ∝ fields <strong>inflation</strong>, +<br />

modulated perturbations) have isocurvature → kinetic curvature<br />

curvaton,<br />

From vant. *, and Predicted from nongaussianity scale invariant <strong>of</strong> the local type. power spectrum, (k1 k2)<br />

3 term: pertur- k −<br />

modulated perturbations) <strong>inflation</strong><br />

Salopek, bations Bond ’90 conversion outside<br />

have<br />

horizon,<br />

isocurvature<br />

where gradients<br />

→ curvature<br />

are<br />

pertur-<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton,<br />

irrele-<br />

1<br />

+<br />

(k1 k2)<br />

3 1<br />

(k1 k2) 3<br />

From *, and from scale invariance<br />

(k1 k2) (k1 k2) (k1 k2)<br />

squeezed<br />

3<br />

Enhanced for k1 ≪ k2 k3<br />

Maldacena bationsvant. ’02Predicted<br />

conversion nongaussianity outside horizon, <strong>of</strong> thewhere local type. gradients are irrele-<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

Salopek, Bond ’90<br />

( since R ∼ 10 −5 , ⇒ fNL ∼ 10 means nongaussianity at<br />

modulated perturbations) have isocurvature → curvature pertur-<br />

shape<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton<br />

modulated perturbations) have isocurvature → curvature pertur<br />

bations conversion outside horizon, where gradients are irrele<br />

bations conversion outside horizon, where Models gradients with multiple are irrele- fields (multiple fields <strong>inflation</strong>, curvaton,<br />

B ∝<br />

Monday, June 21, 2010<br />

Figure 29: 3D plots <strong>of</strong> the local and equ<br />

rescaled momenta k2/k1 and<br />

x2 < 1 and satsify the triangle<br />

1 + 1 + 1<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.<br />

1.0<br />

vant. Predicted nongaussianity <strong>of</strong> the local type.


Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

have<br />

have<br />

isocurvature<br />

isocurvature<br />

→<br />

curvature<br />

curvature<br />

perturbations<br />

perturbations<br />

conversion<br />

conversion<br />

outside<br />

outside<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where wheregradients gradientsare areirrelevant irrelevant →→local local nongaussianity<br />

nongaussianity<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Gaussian prediction predictionfor for nonintercting noninterctinginflaton inflaton All All models models at at least least<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity Nongaussianityis issmall small (fNL∼0.05) for for<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat) flat)<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Inflaton<br />

Inflaton<br />

Inflaton with<br />

with<br />

withnonstandard nonstandard<br />

nonstandardkinetic kinetic<br />

kineticterm: k −<br />

term:<br />

term:<br />

k<br />

k<br />

−<br />

−<br />

<strong>inflation</strong><br />

<strong>inflation</strong><br />

Salopek,<br />

Salopek, Bond ’90<br />

Bond ’90 ’90<br />

Maldacena<br />

Maldacena<br />

’02<br />

’02<br />

Monday, June 21, 2010


Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

have<br />

have<br />

have<br />

have<br />

isocurvature<br />

isocurvature<br />

isocurvature<br />

isocurvature<br />

→ →<br />

curvature<br />

curvature<br />

perturbations<br />

perturbations<br />

conversion<br />

conversion<br />

outside<br />

outside<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where where where gradients gradients are are irrelevant irrelevant → → local local nongaussianity<br />

nongaussianity<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Gaussian Detection prediction <strong>of</strong> f for for nonintercting noninterctinginflaton inflaton All All models models at at least least<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity Nongaussianityis issmall small (fNL∼0.05) for for<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat) flat)<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

local<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

local<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Creminelli, Zaldarriaga ’04<br />

Inflaton<br />

Inflaton<br />

Inflaton with nonstandard kinetic term: k −<br />

with<br />

with<br />

nonstandard<br />

nonstandard<br />

kinetic<br />

kinetic<br />

term:<br />

term:<br />

k<br />

k<br />

−<br />

−<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

<strong>inflation</strong><br />

<strong>inflation</strong><br />

<strong>inflation</strong><br />

Gaussian prediction for nonintercting inflaton InflatonAll with models nonstandard at least kineti<br />

gravitational interaction. Nongaussianity Nongaussianityisis small (fNL∼0.05) for for<br />

single field slow roll <strong>inflation</strong> (potential (potentialextremely Salopek, extremely Bond flat) flat) ’90<br />

Salopek,<br />

Salopek, Bond ’90<br />

Bond ’90 ’90<br />

Models with multiple fields (multiple fields infl<br />

have isocurvature → curvature perturbations c<br />

horizon, where gradients are irrelevant → local<br />

Detection <strong>of</strong> f local<br />

Maldacena<br />

Inflaton with ’02<br />

nonstandard kinetic term: kk− −<br />

Maldacena ’02<br />

<strong>inflation</strong><br />

Monday, June 21, 2010<br />

NL<br />

> 1 in the squeeze limit w<br />

Gaussian prediction for nonintercting inflaton A<br />

gravitational interaction. Nongaussianity is sm<br />

single field slow roll <strong>inflation</strong> (potential extrem<br />

Maldacena ’02


.0 0.5<br />

1.0<br />

Models<br />

Models<br />

with<br />

with multiple<br />

multiple<br />

fields<br />

fields<br />

(multiple<br />

(multiple<br />

fields<br />

fields<br />

<strong>inflation</strong>,<br />

<strong>inflation</strong>,<br />

curvaton)<br />

curvaton)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

have<br />

have<br />

haveisocurvature isocurvature<br />

isocurvature → curvature<br />

curvature<br />

perturbations<br />

perturbations<br />

conversion<br />

conversion<br />

outside<br />

outside<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where where gradients are are irrelevant → local local nongaussianity<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Gaussian Detection prediction <strong>of</strong> f for for nonintercting noninterctinginflaton inflaton All All models models at at least least<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity Nongaussianityis issmall small (fNL∼0.05) for for<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat) flat)<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

local<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

local<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

local<br />

1.0<br />

0.75 Detection x2 <strong>of</strong> f x2<br />

0.75<br />

0.0<br />

0.0<br />

0.5<br />

0.5<br />

1.0 NL<br />

x3<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

local<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where gradients NL are irrelevant → local nongaussianity<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Detection <strong>of</strong> f<br />

Creminelli, Zaldarriaga ’04<br />

local<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

local<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

Inflaton<br />

Inflaton<br />

Inflaton with nonstandard kinetic term: k −<br />

with<br />

with<br />

some<br />

some<br />

specific<br />

specific<br />

with<br />

with<br />

nonstandard features, nonstandard features,<br />

maximal<br />

maximal<br />

kinetic non-gaussianity kinetic non-gaussianity<br />

term:<br />

term: when<br />

when<br />

k<br />

k<br />

−<br />

−<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

<strong>inflation</strong><br />

<strong>inflation</strong><br />

k1 ∼ k2 ∼ k3<br />

<strong>inflation</strong><br />

Gaussian prediction for nonintercting inflaton InflatonAll with models nonstandard at least kineti<br />

d gravitational k1 ∼ k2 ∼ k3 interaction. Nongaussianity equilateral is is small (fNL∼0.05) for for<br />

single field slow roll <strong>inflation</strong> (potential (potentialextremely Salopek, extremely Bond flat) flat) ’90<br />

Moral: Non-gaussianty allows to to discriminate between between different different<br />

Salopek,<br />

Salopek, Bond ’90<br />

Bond ’90 ’90<br />

Models with multiple fields (multiple fields infl<br />

have isocurvature → curvature perturbations c<br />

horizon, where gradients are irrelevant → local<br />

> 1 in the squeeze limit w<br />

d equilateral bispectra. The coordinates x2 and x3 are the<br />

and k3/k1, respectively. Momenta are order such that x3 <<br />

Nonstandard kinetic term (k−, ghost, Gaussian DBI prediction <strong>inflation</strong>), for nonintercting or poten<br />

inflaton A<br />

iangle inequality x2 + x3 > 1.<br />

gravitational interaction. Nongaussianity is sm<br />

single field slow roll <strong>inflation</strong> (potential extrem<br />

Maldacena ’02<br />

models (→ different level, and shape), and to rule out models<br />

Maldacena<br />

Inflaton with ’02<br />

nonstandard kinetic term: kk− −<br />

Maldacena that ’02<br />

<strong>inflation</strong><br />

that have havean an acceptable acceptable2 2point point function function<br />

<strong>inflation</strong><br />

elongat<br />

x3<br />

> 1 in the squeeze limit would rule out<br />

with some specific feature, maximal non-gaussianity when<br />

k1 ∼ k2 ∼ k3<br />

models (→ different level, and shape), and to rule out models<br />

Monday, June 21, 2010<br />

celes


Models<br />

Models<br />

with<br />

with multiple<br />

multiple<br />

fields<br />

fields<br />

(multiple<br />

(multiple<br />

fields<br />

fields<br />

<strong>inflation</strong>,<br />

<strong>inflation</strong>,<br />

curvaton)<br />

curvaton)<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

have<br />

have<br />

haveisocurvature isocurvature<br />

isocurvature → curvature<br />

curvature<br />

perturbations<br />

perturbations<br />

conversion<br />

conversion<br />

outside<br />

outside<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where where gradients are are irrelevant → local local nongaussianity<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Gaussian Detection prediction <strong>of</strong> f for for nonintercting noninterctinginflaton inflaton All All models models at at least least<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity Nongaussianityis issmall small (fNL∼0.05) for for<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

single field slow roll <strong>inflation</strong> (potential extremely flat) flat)<br />

single field slow roll <strong>inflation</strong> (potential extremely flat)<br />

Inflaton with nonstandard kinetic term: k −<br />

Inflaton<br />

Inflaton<br />

with<br />

with<br />

nonstandard<br />

nonstandard<br />

kinetic<br />

kinetic<br />

term:<br />

term:<br />

k<br />

k<br />

−<br />

−<br />

<strong>inflation</strong><br />

<strong>inflation</strong><br />

local<br />

Models with multiple fields (multiple fields <strong>inflation</strong>, curvaton)<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

local<br />

have isocurvature → curvature perturbations c<br />

horizon, where gradients are irrelevant → local<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Gaussian prediction for nonintercting inflaton All models at least<br />

gravitational interaction. Nongaussianity is small (fNL∼0.05) for<br />

local<br />

.0 NL<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

single field slow roll <strong>inflation</strong> (potential extrem<br />

Inflaton with nonstandard kineti<br />

<strong>inflation</strong><br />

0.5<br />

1.0<br />

1.0<br />

0.75 Detection x2 <strong>of</strong> f x2<br />

0.75<br />

0.0<br />

0.0<br />

0.5<br />

0.5<br />

1.0<br />

x3<br />

d equilateral bispectra. The coordinates x2 and x3 are the<br />

and k3/k1, respectively. Momenta are order such that x3 <<br />

iangle inequality x2 + x3 > 1.<br />

d equilateral<br />

local<br />

have isocurvature → curvature perturbations conversion outside<br />

NL > 1 in the squeeze limit would rule out<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Detection <strong>of</strong> f<br />

Creminelli, Zaldarriaga ’04<br />

with some specific feature, maximal non-gaussianity when<br />

k1 ∼ k2 ∼ k3<br />

local<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

with some specific features, maximal non-gaussianity when<br />

local<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

NL > 1 in the squeeze limit would rule out all<br />

Detection <strong>of</strong> f<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

with some specific features, maximal non-gaussianity when<br />

k1 ∼ k2 ∼ k3<br />

local<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

Detection <strong>of</strong> f<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

with some specific feature, maximal non-gaussianity when<br />

local<br />

have isocurvature → curvature perturbations conversion outside<br />

horizon, where gradients are irrelevant → local nongaussianity<br />

NL > 1 in the squeeze limit would rule out all<br />

Detection <strong>of</strong> f<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

with some specific feature, maximal non-gaussianity when<br />

local<br />

NL > 1 in the squeeze limit would rule out all<br />

single field models <strong>of</strong> <strong>inflation</strong><br />

Creminelli, Zaldarriaga ’04<br />

Nonstandard kinetic term (k−, ghost, DBI <strong>inflation</strong>), or potential<br />

with some specific features, maximal non-gaussianity when<br />

Models with multiple fields (multiple fields infl<br />

> 1 in the squeeze limit w<br />

Nonstandard kinetic term (k−, ghost, Gaussian DBI prediction <strong>inflation</strong>), for nonintercting or poten<br />

inflaton A<br />

k1 k1 ∼ k2 k2 ∼ k3<br />

k1 ∼ k2 ∼ k3<br />

k1 ∼ k2 ∼ k3<br />

gravitational interaction. Nongaussianity is sm<br />

single field slow roll <strong>inflation</strong> (potential (potentialextremely Salopek, extremely Bond flat) flat) ’90<br />

Salopek, Bond ’90<br />

Salopek, Moral: Non-gaussianty Bond ’90 ’90 allows to to discriminate between between different different<br />

Moral:<br />

Moral:<br />

Non-gaussianty<br />

Non-gaussianty<br />

allows<br />

allows<br />

to<br />

to<br />

discriminate<br />

discriminate<br />

between<br />

between<br />

different<br />

different<br />

Moral: Non-gaussianty allows to discriminate Maldacena between ’02 different<br />

models (→ different level, and and shape), and and to rule to rule out out models models<br />

models models (→ (→ different differentlevel, level, and andshape), shape), and andtoto rule ruleout outmodels models<br />

models (→ different level, and shape), and to rule out models<br />

Maldacena<br />

Inflaton with ’02<br />

nonstandard kinetic term: kk− −<br />

Maldacena that ’02<br />

<strong>inflation</strong><br />

that have havean an acceptable acceptable2 2point point function function<br />

that <strong>inflation</strong> have an an acceptable acceptable22point pointfunction function<br />

elongat<br />

x3<br />

that have an acceptable 2 point function<br />

Monday, June 21, 2010<br />

celes


048<br />

! f NL<br />

WMAP7 : −10 < f local<br />

10<br />

10 equil<br />

< 74 −254 < f<br />

NL<br />

LSS − SDSS : − 29 < f local<br />

CMBPol<br />

! f NL<br />

100<br />

! f NL<br />

10<br />

1<br />

1<br />

100<br />

Planck<br />

Local<br />

Local<br />

NL<br />

256 512 1024 2048<br />

CMBPol<br />

Equilateral<br />

l max<br />

T+E combined T+E combined<br />

TTT NL TTT<br />

EEE EEE<br />

10<br />

256 512 512 1024 2048 2048<br />

l max<br />

l max<br />

! f NL<br />

NL<br />

Planck<br />

< 70 at 95% C.L.<br />

17<br />

! f NL<br />

1<br />

100<br />

Local<br />

LSS − SDSS : − 29 < f<br />

< 306 at 95% C.L.<br />

Slosar et al ’08<br />

256 512 1024 2048<br />

l max<br />

Planck<br />

Equilateral<br />

10<br />

512 1024 2048<br />

l max<br />

Yadav, Wandelt ’10<br />

T+E combined<br />

TTT<br />

EEE<br />

m detectable fNL (at 1 σ) as a function <strong>of</strong> maximum multipole ℓmax. Upper panels are for the local<br />

uilateral model. Left panels shows an ideal experiment, middle panels are for CMBPol like experiment<br />

cmin and beam FWHM σ = 4 ′ and right panels are for Planck like satellite with and noise sensitivity<br />

σ = 5 ′ T+E combined<br />

Yadav, Wandelt ’10TTT<br />

EEE<br />

100<br />

Secondary . In all the panels, astrophysical the solid lines non-gaussianity: represent temperature and ∆polarization f combined analysis;<br />

y analysis; dot-dashed lines represent polarization only analysis.<br />

local<br />

Yadav, Wandelt ’10<br />

Secondary astrophysical non-gaussianity: ∆ fNL ∼ 10<br />

local<br />

NL ∼ 10<br />

! f NL<br />

WMAP7 : −10 < f local<br />

equil<br />

WMAP7 : −10 < f < 74 −254 < f < 306 at 95% C.L.<br />

local<br />

equil<br />

< 74 −254 < f < 306 at 95% C.L.<br />

Planck<br />

ordial bispectrum Equilateral in consideration, some secondary bispectra are more dangerous than others.<br />

κ peaks10at the “local” configurations, hence is more dangerous for local primordial shape<br />

512 1024 2048<br />

ape. Monday, For June example 21, 2010<br />

for the Planck satellite local if the secondary local bispectrum is not incorporated<br />

l<br />

NL<br />

LSS − SDSS : − 29 < f local<br />

LSS − SDSS : − 29 < f < 70 at 95% C.L.<br />

local<br />

< 70 at 95% C.L.<br />

Slosar et al ’08<br />

NL<br />

Second order Boltzmann ∆ f local<br />

Second order Boltzmann ∆ fNL ∼ 5 local ∼ 5<br />

NL


Conclusions<br />

Conclusions<br />

• Inflation most complete paradigm<br />

Conclusions<br />

• Inflation most complete paradigm for the very early universe<br />

• Makes falsifiable predictions be<br />

acoustic peaks, large scale T E, EE<br />

• Inflation most complete paradigm for the very early universe<br />

•Conclusions Makes • Inflation falsifiable most predictions complete paradigm beyond its fororiginal the very motivation: early unive<br />

acoustic •<br />

Conclusions<br />

Conclusions<br />

Makes peaks, falsifiable largepredictions scale T E, beyond EE its original motivations:<br />

• Inflation • Makesmost falsifiable complete predictions paradigm for beyond the very itsearly original universe motivat<br />

acoustic peaks, large scale T E, EE<br />

• Most • •acoustic Inflation likely, peaks, most very complete high largeenergy scale paradigm paradigm Tscale, E, for EE atthe for which very the very early we do early universe notuniverse have<br />

other • Makes<br />

• Most tests falsifiable<br />

likely, <strong>of</strong> very physics. predictions<br />

high energy Hard to beyond<br />

scale, find at what its original<br />

which thewe right motivations:<br />

do not model have <strong>of</strong><br />

<strong>inflation</strong> acoustic • Makes<br />

other • Most peaks, falsifiable<br />

tests is, likely, and large predictions<br />

<strong>of</strong> physics. not very unlimited scale highT E,<br />

Hardenergy number EE beyond its original motivations:<br />

• Makes falsifiable predictions to find beyond scale, what <strong>of</strong> observations,<br />

its at theoriginal which right model we motivation do <strong>of</strong> not<br />

acoustic peaks, large scale T E, EE<br />

<strong>inflation</strong> acoustic other is, tests peaks, and<strong>of</strong> not large physics. unlimited scaleHard number T E, EE to <strong>of</strong> find observations, what the right mod<br />

• Most likely, very high energy scale, at which we do not have<br />

<strong>inflation</strong> is, and not unlimited number <strong>of</strong> observations,<br />

other<br />

• Most<br />

tests<br />

likely,<br />

<strong>of</strong> physics.<br />

very high<br />

Hard<br />

energy<br />

to<br />

scale,<br />

find what<br />

at which<br />

the<br />

we<br />

right<br />

do not<br />

model<br />

have<br />

<strong>of</strong><br />

<strong>inflation</strong><br />

other • Most tests likely,<br />

is, and<br />

<strong>of</strong><br />

not<br />

physics. very high<br />

unlimited<br />

Hard energy<br />

number<br />

to find scale,<br />

<strong>of</strong><br />

what at<br />

observations,<br />

the which rightwe model do not <strong>of</strong> ha<br />

<strong>inflation</strong> other tests is, and <strong>of</strong> not physics. unlimited Hard number to find <strong>of</strong> observations,<br />

what the right model<br />

<strong>inflation</strong> is, and not unlimited number <strong>of</strong> observations,<br />

Monday, June 21, 2010<br />

• Most likely, very high energy sc<br />

other tests <strong>of</strong> physics. Hard to<br />

<strong>inflation</strong> is, and not unlimited num


Monday, June 21, 2010


Horizon problem<br />

Horizon problem<br />

dt<br />

dH (t) = a (t)<br />

0<br />

• Light travels finite distance in finite time<br />

• Light travels finite distance in finite time<br />

′<br />

a (t ′ Guth ’80<br />

∼ H−1<br />

)<br />

Horizon pbm. rephrased<br />

Scales > dH (t) cannot be causally connected.<br />

t<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 • Since a/H<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

−1 δρλ causally generated when λ ≪ dH. = a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe<br />

Q.<br />

now<br />

M. origin<br />

consists<br />

→ classical<br />

<strong>of</strong> sev-<br />

statistics as λ ≫ dH eral regions which were still not communicating<br />

in the past (1100Polarski, such regions Starobinsky in CMB) ’95<br />

t 0<br />

t rec<br />

><br />

Monday, June 21, 2010<br />

d h (t 0)<br />

><br />

t<br />

><br />

(a r/<br />

a 0)<br />

d (t r)<br />

d (t r)<br />

h<br />

h<br />

d (t r)<br />

h<br />

d h (t 0)<br />

d H (t) ∼ t


Horizon problem<br />

Horizon problem<br />

• Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 • Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dH (t) ∼ t<br />

dH (t) ∼ t<br />

In a matter + radiation = a H decreases, universe, horizon physical∝dis t grows faster<br />

tances (∝ a) increase more slowly than dH. than ⇒ physical the sky scales we observe ∝ a (∝now t consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

><br />

2/3 , t1/2 dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

)<br />

2/3 , t1/2 Guth ’80<br />

Horizon pbm. rephrased<br />

δρλ causally generated when λ ≪ dH. )<br />

Q. M. origin → classical statistics as λ ≫ dH Polarski, Starobinsky ’95<br />

Monday, June 21, 2010<br />

d h (t 0)<br />

><br />

t<br />

><br />

(a r/<br />

a 0)<br />

d (t r)<br />

d (t r)<br />

h<br />

h<br />

d (t r)<br />

h<br />

d h (t 0)


Horizon problem<br />

Horizon problem<br />

• Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 • Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dH (t) ∼ t<br />

dH (t) ∼ t<br />

In a matter + radiation = a H decreases, universe, horizon physical∝dis t grows faster<br />

tances (∝ a) increase more slowly than dH. Region we see<br />

than ⇒ physical the sky scales we observe ∝ a (∝now t consists <strong>of</strong> sev-<br />

today<br />

eral regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

d H<br />

><br />

2/3 , t1/2 dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

)<br />

2/3 , t1/2 Guth ’80<br />

Horizon pbm. rephrased<br />

δρλ causally generated when λ ≪ dH. )<br />

Q. M. origin → classical statistics as λ ≫ dH Polarski, Starobinsky ’95<br />

Monday, June 21, 2010<br />

d h (t 0)<br />

><br />

t<br />

><br />

(a r/<br />

a 0)<br />

d (t r)<br />

d (t r)<br />

h<br />

h<br />

d (t r)<br />

h<br />

d h (t 0)


Horizon problem<br />

Horizon problem<br />

• Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 • Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dH (t) ∼ t<br />

dH (t) ∼ t<br />

In a matter + radiation = a H decreases, universe, horizon physical∝dis t grows faster<br />

tances (∝ a) increase more slowly than dH. Region we see<br />

than ⇒ physical the sky scales we observe ∝ a (∝now t consists <strong>of</strong> sev-<br />

today<br />

eral regions which were still not communicating<br />

in the past (1100 d such regions in CMB)<br />

H<br />

t 0<br />

t rec<br />

d H<br />

Same region at earlier times<br />

><br />

2/3 , t1/2 dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

)<br />

2/3 , t1/2 Guth ’80<br />

Horizon pbm. rephrased<br />

δρλ causally generated when λ ≪ dH. )<br />

Q. M. origin → classical statistics as λ ≫ dH Polarski, Starobinsky ’95<br />

Monday, June 21, 2010<br />

d h (t 0)<br />

><br />

t<br />

><br />

(a r/<br />

a 0)<br />

d (t r)<br />

d (t r)<br />

h<br />

h<br />

d (t r)<br />

h<br />

d h (t 0)


Horizon problem<br />

Horizon problem<br />

• Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 • Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 = a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. Region we see<br />

⇒ the sky we observe now consists <strong>of</strong> sev-<br />

today<br />

eral regions which were still not communicating<br />

in the past (1100 d such regions in CMB)<br />

H<br />

t 0<br />

t rec<br />

d H<br />

In a matter + radiation Same region universe, at earlier times<br />

horizon ∝ H<br />

><br />

−1 grows faster<br />

In a matter + radiation universe, horizon ∝ H<br />

than physical scales ∝ a<br />

−1 dH (t) ∼ t<br />

dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

grows faster<br />

than physical scales ∝ a<br />

2/3 , t1/2 dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

)<br />

2/3 , t1/2 Guth ’80<br />

Horizon pbm. rephrased<br />

δρλ causally generated when λ ≪ dH. )<br />

Q. M. origin → classical statistics as λ ≫ dH Polarski, Starobinsky ’95<br />

Earlier time<br />

Earlier time<br />

d h (t 0)<br />

t CMB 380, 000 yrs<br />

t CMB 380, 000 yrs<br />

Monday, June 21, 2010<br />

><br />

t<br />

><br />

(a r/<br />

a 0)<br />

d (t r)<br />

d (t r)<br />

h<br />

h<br />

d (t r)<br />

h<br />

d h (t 0)


Horizon problem<br />

t<br />

Horizon problem<br />

• Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 • Light travels finite distance in finite time<br />

t dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

><br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 dt<br />

dH (t) = a (t)<br />

0<br />

= a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. ⇒ the sky we observe now consists <strong>of</strong> several<br />

regions which were still not communicating<br />

in the past (1100 such regions in CMB)<br />

t 0<br />

t rec<br />

><br />

′<br />

a (t ′ ∼ H−1<br />

)<br />

Scales > dH (t) cannot be causally connected.<br />

• Since a/H−1 = a H decreases, physical distances<br />

(∝ a) increase more slowly than dH. Region we see<br />

⇒ the sky we observe now consists <strong>of</strong> sev-<br />

today<br />

eral regions which were still not communicatthan<br />

physical scales ∝ a<br />

than physical scales ∝ a<br />

ing in the past (1100 d such regions in CMB)<br />

H<br />

t 0<br />

t rec<br />

than physical scales ∝ a d H<br />

Earlier time<br />

Earlier time<br />

Earlier time<br />

In a matter + radiation Same region universe, at earlier times<br />

horizon ∝ H<br />

tCMB 380, 000 yrs<br />

><br />

tCMB 380, 000 yrs<br />

tSharp CMB contrast 380, 000with yrs the<br />

d (t r)<br />

h Sharp contrast with the<br />

Sharp observed contrast T0 2.73K with the<br />

d h (t 0)<br />

(a r/<br />

a 0)<br />

d h (t 0)<br />

observed T0 2.73K<br />

observed everywhere T0 2.73K<br />

−1 grows faster<br />

In a matter + radiation universe, horizon ∝ H<br />

than physical scales ∝ a<br />

Earlier time<br />

−1 dH (t) ∼ t<br />

dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

grows faster<br />

than physical scales ∝ a<br />

Earlier time<br />

tCMB 380, 000 yrs<br />

2/3 , t1/2 dH (t) ∼ t<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

than physical scales ∝ a (∝ t<br />

)<br />

2/3 , t1/2 Guth ’80<br />

Horizon pbm. rephrased<br />

δρλ causally generated when λ ≪ dH. )<br />

Q. M. origin → classical statistics as λ ≫ dH Polarski, Starobinsky ’95<br />

t CMB 380, 000 yrs<br />

Monday, June 21, 2010<br />

d (t r)<br />

d (t r)<br />

h<br />

h<br />

In a matter + radiation universe, horizo<br />

In a matter + radiation universe, hor<br />

In a matter + radiation universe, horiz<br />

everywhere<br />

everywhere


Solved by a period in which physical scales<br />

Solved if physical scales (a) grew faster<br />

grow much faster than the horizon<br />

than horizon (t)<br />

than horizon (t)<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

Monday, June 21, 2010


Solved if bywhich a period physical in which scales physical (a) grow scales faster<br />

than horizon (a/˙a)<br />

than Solved<br />

grow horizon if physical<br />

much faster (a/˙a) scales (a) grew faster<br />

than the horizon<br />

than horizon (t)<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

Flatness problem<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

than horizon (t)<br />

Need ä > 0, acceleration acceleration≡ ≡ <strong>inflation</strong><br />

Flatness problem<br />

Flatness problem<br />

˙a 2<br />

a<br />

˙a 2 8π<br />

=<br />

2<br />

3M 2 p<br />

8π<br />

=<br />

a2 3M 2 p<br />

ρM<br />

<br />

ρM<br />

a3 + ρR a4 a3 + ρR a4 <br />

− k<br />

− k<br />

a 2<br />

a 2<br />

Curvature ≤ 1% today. Must have been ≤ 10 −18 at BBN.<br />

Monday, June 21, 2010


Solved if bywhich a period physical in which scales physical (a) grow scales faster<br />

than horizon (a/˙a)<br />

than Solved<br />

grow horizon if physical<br />

much dfaster (a/˙a) scales (a) grew faster<br />

H (t) ∼than t the horizon<br />

than horizon (t)<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

Solved dH (t) ∼if t physical scales (a) grew faster<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

Flatness problem<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

than horizon (t) (t)<br />

Need ä > 0, acceleration acceleration≡ ≡ <strong>inflation</strong><br />

than physical scales ∝ a (∝ t<br />

Flatness problem<br />

2/3 , t1/2 than physical scales ∝ a (∝ t<br />

)<br />

Solved if physical scales (a) grew faster<br />

2/3 , t1/2 )<br />

Solved if physical scales (a) grew faster<br />

d H (t) ∼ t<br />

Idea: than Flatness horizon what (t) problem if, in the past,<br />

˙a 2<br />

˙a 2<br />

than horizon (t)<br />

8π<br />

=<br />

2<br />

8π<br />

than physical scales a ∝ a (∝ t =<br />

a2 2/3 , t1/2 Idea: what if, in the past, )<br />

ρM<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

Solved if physical scales (a) grew faster<br />

<br />

ρM<br />

a3 + ρR a4 3M 2 3M<br />

p<br />

2 Idea: what p if, in the past,<br />

a3 + ρR a4 <br />

− k<br />

− k<br />

a 2<br />

a 2<br />

Curvature ≤ 1% today. Must have been ≤ 10−18 at BBN.<br />

˙a 2 8π<br />

=<br />

a2 3M 2 ρX −<br />

p<br />

k<br />

a2 than horizon (t)<br />

a 3M<br />

Idea: what if, in the past,<br />

2 p a2 ˙a 2 8π<br />

=<br />

a2 3M 2 ρX −<br />

p<br />

k<br />

a2 ˙a 2<br />

˙a 2<br />

8π<br />

= ρ<br />

a2 X − k<br />

a2 Universe “flattens out” while X dominates<br />

3M 2 p<br />

2 = 8π<br />

with ρX decreasing slower than a −2 , and then X → M, R<br />

ρ X − k<br />

with ρX decreasing slower than a −2 , and then X → M, R<br />

Monday, June 21, 2010


Solved if bywhich a period physical in which scales physical (a) grow scales faster<br />

than horizon (a/˙a)<br />

than Solved<br />

grow horizon if physical<br />

much dfaster (a/˙a) scales (a) grew faster<br />

H (t) ∼than t the horizon<br />

than horizon (t)<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

Solved dH (t) ∼if t physical scales (a) grew faster<br />

Idea: what if, in the past,<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

Flatness problem<br />

Need ä > 0, acceleration ≡ <strong>inflation</strong><br />

than horizon (t) (t)<br />

Need ä > 0, acceleration acceleration≡ ≡ <strong>inflation</strong><br />

than physical scales ∝ a (∝ t<br />

Flatness problem<br />

2/3 , t1/2 than physical scales ∝ a (∝ t<br />

)<br />

Solved if physical scales (a) grew faster<br />

2/3 , t1/2 )<br />

Solved if physical scales (a) grew faster<br />

d H (t) ∼ t<br />

Idea: than Flatness horizon what (t) problem if, in the past,<br />

˙a 2<br />

˙a 2<br />

3M 2 <br />

ρM<br />

p a3 + ρR a4 8π<br />

<br />

=<br />

2 3M 2 than horizon (t)<br />

8π<br />

=<br />

p2<br />

8π<br />

than physical scales a ∝ a (∝ t =<br />

a2 2/3 , t1/2 Idea: what if, in the past, )<br />

ρM<br />

In a matter + radiation universe, horizon ∝ t grows faster<br />

Solved if physical scales (a) grew faster<br />

a3 + ρR a4 3M 2 p<br />

<br />

− k<br />

Idea: what if, in the past,<br />

− k<br />

˙a 2<br />

ρX − k<br />

with ρX decreasing slower than a−2 , and then X → M, R<br />

a 2<br />

a 2<br />

Curvature ≤ 1% today. Must have been ≤ 10−18 at BBN.<br />

˙a 2 8π<br />

=<br />

a2 3M 2 ρX −<br />

p<br />

k<br />

a2 than horizon (t)<br />

a 3M<br />

Idea: what if, in the past,<br />

2 p a2 ˙a 2 8π<br />

=<br />

a2 3M 2 ρX −<br />

p<br />

k<br />

a2 ˙a 2<br />

8π<br />

= ρ<br />

a2 X − k<br />

a2 Universe “flattens out” while X dominates<br />

3M 2 p<br />

˙a 2<br />

2 = 8π<br />

with ρX decreasing slower than a −2 , and then X → M, R<br />

a<br />

ρ X − k<br />

a 2<br />

with ρX decreasing slower than a −2 , and then X → M, R<br />

Universe “flattens out” while X dominate<br />

This ⇒ a 2 ρX is growing ⇒ ä > 0, <strong>inflation</strong><br />

Monday, June 21, 2010


Most immediate idea is that perturbations are actively sourced,<br />

Most<br />

Most<br />

immediate<br />

immediate idea<br />

idea<br />

is<br />

is<br />

that<br />

that<br />

perturbations<br />

perturbations<br />

are<br />

are<br />

actively<br />

actively<br />

sourced,<br />

sourced,<br />

e.g. by topological defects. Some uncertainty in the evolution<br />

e.g.<br />

e.g.<br />

by<br />

by<br />

topological<br />

topological defects.<br />

defects.<br />

Some<br />

Some<br />

uncertainty<br />

uncertainty<br />

in<br />

in<br />

the<br />

the<br />

evolution<br />

evolution<br />

(numerical simulations), but most likely incoherent<br />

(numerical simulations), but but most most likely likelyincoherent incoherent<br />

No acoustic peaks<br />

No acoustic peaks<br />

Pen, Seljak, Turok ’97<br />

Pen, Seljak, Turok ’97<br />

portance <strong>of</strong> vector and tensor modes will be described<br />

elsewhere [4].) The large amplitude <strong>of</strong> vector modes and<br />

Alternative: No perturbations on L<br />

network <strong>of</strong> defects. Causal, active,<br />

No acoustic peaks<br />

Counter-example: One can mathematically construct a coherent<br />

active<br />

Counter-example: source that reproduces One can mathematically<br />

acoustic peaks, construct<br />

Turok ’97 aa coherent<br />

active source that reproduces acoustic peaks, Turok ’97 ’97<br />

≡ horizon today<br />

≡ horizon today<br />

(• ≡ horizon size at earlier times)<br />

(• ≡ horizon size at earlier times)<br />

CMB gets polarized on the LSS<br />

CMB gets polarized on the LSS<br />

FIG. 3. Comparison <strong>of</strong> defect model predictions to current<br />

Huexperimental and White data. All ’97 models were COBE normalised at<br />

l = 10. Hu and White ’97<br />

Alternative: No perturbations on LSS. Later<br />

Pen, Seljak, Turok ’97<br />

network <strong>of</strong> defects. Causal, active, most like<br />

No acoustic peaks<br />

Pen, Seljak, Turok ’97<br />

FIG. 4. Matter power spectra computed fro<br />

mann code summed over the eigenmodes. The<br />

shows the standard cold dark matter (sCDM)<br />

trum. The defects generally have more power o<br />

than large scales relative to the adiabatic sCDM<br />

data points show the mass power spectrum as<br />

Any correlation at θ > 10 Any correlation at θ > 1 is a correlation on super-horizon<br />

0 Any correlation at θ > 1<br />

is a correlation on super-horizon<br />

0 is a correlation on super-horizon<br />

Monday, June 21, 2010


Most immediate idea is that perturbations are actively sourced,<br />

Most<br />

Most<br />

immediate<br />

immediate idea<br />

idea<br />

is<br />

is<br />

that<br />

that<br />

perturbations<br />

perturbations<br />

are<br />

are<br />

actively<br />

actively<br />

sourced,<br />

sourced,<br />

e.g. by topological defects. Some uncertainty in the evolution<br />

e.g.<br />

e.g.<br />

by<br />

by<br />

topological<br />

topological defects.<br />

defects.<br />

Some<br />

Some<br />

uncertainty<br />

uncertainty<br />

in<br />

in<br />

the<br />

the<br />

evolution<br />

evolution<br />

(numerical simulations), but most likely incoherent<br />

(numerical simulations), but but most most likely likelyincoherent incoherent<br />

No acoustic peaks<br />

No acoustic peaks<br />

Pen, Seljak, Turok ’97<br />

Pen, Seljak, Turok ’97<br />

portance <strong>of</strong> vector and tensor modes will be described<br />

elsewhere [4].) The large amplitude <strong>of</strong> vector modes and<br />

Alternative: No perturbations on L<br />

network <strong>of</strong> defects. Causal, active,<br />

Alternative: No perturbations on LSS. Later generation by<br />

No acoustic peaks<br />

topological defects. Causal, active, most likely incoherent<br />

Counter-example: One can mathematically construct a coherent<br />

active<br />

Counter-example: source that reproduces One can mathematically<br />

acoustic peaks, construct<br />

Turok ’97 aa coherent<br />

active source that reproduces acoustic peaks, Turok ’97 ’97<br />

No acoustic peaks<br />

≡ horizon today<br />

≡ horizon today<br />

(• ≡ horizon size at earlier times)<br />

(• Pen, ≡ horizon Seljak, size Turok at earlier ’97 times)<br />

CMB gets polarized on the LSS<br />

CMB gets polarized on the LSS<br />

FIG. 3. Comparison <strong>of</strong> defect model predictions to current<br />

Huexperimental and White data. All ’97 models were COBE normalised at<br />

l = 10. Hu and White ’97<br />

Alternative: No perturbations on LSS. Later<br />

Pen, Seljak, Turok ’97<br />

network <strong>of</strong> defects. Causal, active, most like<br />

No acoustic peaks<br />

Pen, Seljak, Turok ’97<br />

FIG. 4. Matter power spectra computed fro<br />

mann code summed over the eigenmodes. The<br />

shows the standard cold dark matter (sCDM)<br />

trum. The defects generally have more power o<br />

than large scales relative to the adiabatic sCDM<br />

data points show the mass power spectrum as<br />

Counter-example: One can mathematically construct a coherent<br />

active source that reproduces acoustic peaks, Turok ’97<br />

Any correlation at θ > 10 Any correlation at θ > 1 is a correlation on super-horizon<br />

0 Any correlation at θ > 1<br />

is a correlation on super-horizon<br />

0 is a correlation on super-horizon<br />

Monday, June 21, 2010


Cosmic strings<br />

Cosmic strings<br />

Cosmic strings<br />

May form at the end <strong>of</strong> hybrid, and D−brane <strong>inflation</strong><br />

Can give <<br />

∼ 10% contribution to anisotropies: G µ <<br />

∼ few × 10−7 Cosmic strings<br />

Cosmic<br />

Cosmic<br />

strings<br />

strings<br />

May<br />

May Cosmic form<br />

formstrings at the end <strong>of</strong> hybrid, and D−<br />

at the end <strong>of</strong> hybrid, and D−<br />

May form at the end <strong>of</strong> hybrid, and D−<br />

Can give <<br />

Can Maygive form< ∼<br />

Can give < ∼<br />

at<br />

10%<br />

10% the<br />

contribution<br />

contribution end <strong>of</strong> hybrid,<br />

to anisotr<br />

to anisotro and D<br />

∼ 10% contribution to anisotro<br />

Wyman, Pogosian, Wasserman ’06<br />

Wyman, Can give Pogosian, < Wasserman ’06<br />

Wyman, Pogosian, ∼ 10% contribution to aniso<br />

Wasserman ’06<br />

Seljak, Slosar, McDonald ’06<br />

Cosmic<br />

Seljak, Wyman, strings<br />

Slosar, Pogosian, McDonald Wasserman ’06 ’06<br />

Bevis, Hindmarsh, Kunz, Urrestilla ’07<br />

May form Seljak, at the Slosar, end McDonald <strong>of</strong> hybrid, and ’06 D−bran<br />

May form at the end <strong>of</strong> hybrid, and D−brane <strong>inflation</strong><br />

Can give a subdominant, < 10%, contribution to anisotropies:<br />

G µ <<br />

∼ few × 10−7 parison <strong>of</strong> the B-mode polarization generated by tensor modes during <strong>inflation</strong><br />

Monday, June 21, 2010<br />

Can give Bevis, <<br />

∼ 10% Hindmarsh, contribution Kunz, toUrrestilla anisotropie ’0<br />

Wyman, Characteristic Pogosian, Wasserman and efficient ’06<br />

Seljak, B-mode Slosar, McDonald polarization’06<br />

Bevis, from Hindmarsh, vector Kunz, perturbations Urrestilla ’07<br />

Characteristic (1% contribution B-mode polarization detectable by fromCMB vec<br />

(1% contribution detectable by CMBPol)


COLD<br />

Quadrupole<br />

Anisotropy<br />

HOT<br />

e –<br />

Thomson<br />

Scattering<br />

Linear<br />

Polarization<br />

mson scattering <strong>of</strong> radiation with a quadrupole anisotropy generates linear polariza-<br />

[52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)<br />

radiation.<br />

Monday, June 21, 2010<br />

Region with<br />

23<br />

!T > 0<br />

e<br />

Spergel, Zaldarriaga ’97<br />

Hu and White ’97<br />

Seljak, Pen, Turok, ’97<br />

Spergel, Zaldarriaga ’97<br />

If present, quadrupole ∆T distributions on LSS polarizes CMB<br />

Net polarization in the direction<br />

from which fewer photons arrived<br />

LSS<br />

Net polarization in the direction<br />

from which fewer photons arrived


COLD<br />

Quadrupole<br />

Anisotropy<br />

HOT<br />

e –<br />

Thomson<br />

Scattering<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Linear<br />

Polarization<br />

mson scattering <strong>of</strong> radiation with a quadrupole anisotropy generates linear polariza-<br />

[52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)<br />

radiation.<br />

Monday, June 21, 2010<br />

Photons areLSS reaching your eyes from it<br />

Region with<br />

23<br />

More γ<br />

!T > 0<br />

— e<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Photons are reaching your eyes from it<br />

More γ<br />

Spergel, Zaldarriaga ’97<br />

Hu and White ’97<br />

Seljak, Pen, Turok, ’97<br />

Spergel, Zaldarriaga ’97<br />

Net polarization in the direction<br />

If present, quadrupole ∆T distributions on LSS polarizes CMB<br />

from which fewer photons arrived<br />

Net polarization in the direction<br />

from which fewer photons arrived


This page represents a portion<br />

rep<br />

COLD<br />

Photons are rea<br />

This page<br />

More<br />

Photons are reaching your eye<br />

Quadrupole<br />

Anisotropy<br />

ons are reachin<br />

More γ<br />

More γ<br />

—<br />

Photons are reaching your eyes from it<br />

More γ<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Photons areLSS reaching your eyes from it<br />

This page represents a portio<br />

—<br />

—<br />

Region with<br />

More γ<br />

!T > 0<br />

— e<br />

—<br />

Photons are reaching your eyes fro<br />

—<br />

HOT<br />

e –<br />

More γ<br />

Thomson<br />

Scattering<br />

Linear<br />

Polarization<br />

mson scattering <strong>of</strong> radiation with a quadrupole anisotropy generates linear polariza-<br />

[52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)<br />

radiation.<br />

Monday, June 21, 2010<br />

23<br />

This page represents a portion <strong>of</strong> the LSS.<br />

More γ<br />

Photons are reaching your eyes from it<br />

More γ<br />

Spergel, Zaldarriaga ’97<br />

Hu and White ’97<br />

Seljak, Pen, Turok, ’97<br />

Spergel, Zaldarriaga ’97<br />

If present, quadrupole ∆T distributions on LSS polarizes CMB<br />

Net polarization in the direction<br />

from which fewer photons arrived<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Photons are reaching your eyes from it<br />

—<br />

More γ<br />

—<br />

— E < 0<br />

Net polarization in the direction<br />

from which fewer photons arrived


This page represents a portion<br />

rep<br />

COLD<br />

Photons are rea<br />

This page<br />

More<br />

Photons are reaching your eye<br />

Quadrupole<br />

Anisotropy<br />

ons are reachin<br />

More γ<br />

More γ<br />

—<br />

Photons are reaching your eyes from it<br />

More γ<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Photons areLSS reaching your eyes from it<br />

This page represents a portio<br />

—<br />

—<br />

Region with<br />

More γ<br />

!T > 0<br />

— e<br />

—<br />

Photons are reaching your eyes fro<br />

—<br />

HOT<br />

e –<br />

More γ<br />

Thomson<br />

Scattering<br />

Linear<br />

Polarization<br />

mson scattering <strong>of</strong> radiation with a quadrupole anisotropy generates linear polariza-<br />

[52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)<br />

radiation.<br />

Monday, June 21, 2010<br />

23<br />

This page represents a portion <strong>of</strong> the LSS.<br />

More γ<br />

Photons are reaching your eyes from it<br />

More γ<br />

Spergel, Zaldarriaga ’97<br />

Hu and White ’97<br />

Seljak, Pen, Turok, ’97<br />

Spergel, Zaldarriaga ’97<br />

If present, quadrupole ∆T distributions on LSS polarizes CMB<br />

Net polarization in the direction<br />

from which fewer photons arrived<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Photons are reaching your eyes from it<br />

—<br />

More γ<br />

—<br />

— E < 0<br />

Net polarization in the direction<br />

from which fewer photons arrived<br />

! T < 0<br />

e


More<br />

This page<br />

— Photons are rea<br />

presents This a page portion represents <strong>of</strong> the LSS. a portion <strong>of</strong><br />

More γ<br />

ns are reaching Photons your eyes are reaching from it your eyes from it<br />

—<br />

More γ More γ<br />

—<br />

—<br />

This page represents a portion<br />

rep<br />

COLD<br />

Photons are reaching your eye<br />

Quadrupole<br />

Anisotropy<br />

ons are reachin<br />

More γ<br />

Photons are reaching your eyes from it<br />

More γ<br />

This page represents<br />

Photons<br />

a portion<br />

are<br />

<strong>of</strong><br />

reaching<br />

the LSS.<br />

Phot y<br />

Photons areLSS reaching your eyes from it<br />

This page represents a portio<br />

—<br />

—<br />

Photons are reaching your eyes fro<br />

—<br />

HOT<br />

e –<br />

More γ<br />

Thomson<br />

Scattering<br />

Linear<br />

Polarization<br />

Region with<br />

More γ<br />

!T > 0<br />

— e<br />

This page represents a portion <strong>of</strong> the LSS.<br />

More γ<br />

Photons are reaching your eyes from it<br />

More γ<br />

This page represents a portion <strong>of</strong> the LSS.<br />

Photons This are page reaching represents your eyes a portion from it<strong>of</strong><br />

the LSS.<br />

—<br />

More γ<br />

More γ<br />

— E < 0<br />

—<br />

This page represents Thisapage portion represents <strong>of</strong> the LS a<br />

Photons are reaching Photons your are eyesreaching from it y<br />

mson scattering <strong>of</strong> radiation with a quadrupole anisotropy generates linear polariza-<br />

[52]. Red colors (thick lines) represent hot radiation, and blue colors (thin lines)<br />

radiation.<br />

Monday, June 21, 2010<br />

23<br />

Spergel, Zaldarriaga ’97<br />

Hu and White ’97<br />

Seljak, Pen, Turok, ’97<br />

Spergel, Zaldarriaga ’97<br />

Net polarization in the direction<br />

This page represents This a<br />

If present, quadrupole ∆T distributions on LSS polarizes CMB<br />

from which fewer photons arrived<br />

Net polarization in the direction<br />

More γ<br />

from which fewer photons arrived<br />

More γ<br />

—<br />

More γ<br />

—<br />

This page represents Thisa page portion rep<br />

! T < 0<br />

Photons are reaching your eyes from it<br />

— E < 0 E > 0<br />

—<br />

e<br />

Mo<br />

Photons are reaching Photons your are eyesreachin from<br />

More γ More γ<br />

—<br />

—<br />


Examples <strong>of</strong> small field models<br />

Examples <strong>of</strong> small field models<br />

id <strong>inflation</strong>:<br />

Hybrid <strong>inflation</strong>:<br />

Hybrid <strong>inflation</strong>:<br />

Supergravity:<br />

V = λ<br />

4<br />

<br />

σ 2 − v 2 2 + g 2<br />

2 φ2 σ 2<br />

V = λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

V = λ <br />

σ<br />

4<br />

2 − v 22 g<br />

+ 2<br />

2 φ2 σ 2<br />

Supergravity:<br />

K = φi φ ∗ i ⇒ V = V K<br />

M<br />

D+e<br />

2 ⎡<br />

<br />

p ⎣∂W<br />

+ φ<br />

∂φi<br />

∗ i W<br />

<br />

2<br />

3|W |2<br />

−<br />

M 2 Supergravity:<br />

K = φi φ<br />

⎤<br />

⎦<br />

p<br />

∗ i ⇒ V = VD+VF , VF = e K<br />

M2 ∂W<br />

p + φ<br />

∂φi<br />

∗ <br />

2<br />

i W <br />

3|W |2<br />

−<br />

M 2 <br />

p<br />

∂W<br />

+ φ<br />

∂φi<br />

∗ <br />

2<br />

i W <br />

3|W |2<br />

−<br />

M 2 K<br />

M<br />

e<br />

<br />

p<br />

2 K = φi φ<br />

p 1 for φ ≪ Mp , V<br />

∗ i ⇒ V = VD+VF , VF = e K<br />

M2 p + φ<br />

∂φi<br />

∗ 2<br />

i W <br />

−<br />

M 2 p<br />

K<br />

M<br />

e<br />

2 p 1 for φ ≪ Mp , Vhybrid typical VD+VF +VF , VF = e K<br />

M 2 p<br />

K<br />

M<br />

e<br />

2 p 1 for φ ≪ Mp , Vhybrid typical VD+VF Mp , V hybrid typical V D+V F<br />

Monday, June 21, 2010<br />

Supergravity:<br />

K = φi φ ∗ i ⇒ V = VD+VF , VF<br />

<br />

∂W<br />

3|W |2<br />

!<br />

"


me <strong>of</strong> the compactified space, σ → ∞. The lifetime <strong>of</strong> metastable<br />

ually is much greater than the lifetime <strong>of</strong> the universe.<br />

Inflation in string theory<br />

V<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

!<br />

100 150 200 250 300 350 400<br />

T potential as a function <strong>of</strong> the volume <strong>of</strong> extra dimensions σ = T + ¯ Inflation in string theory<br />

Kachru, Kallosh, Linde, Trivedi ’03<br />

ON INFLATION IN STRING THEORY 5<br />

K = −3 ln(T +<br />

T<br />

. 2<br />

e numerous ways to find flux vacua in string theory, with all<br />

es <strong>of</strong> the cosmological constant. This is known as the landscape<br />

ua [8, 6, 9]. The concept <strong>of</strong> the landscape has already changed<br />

settings in particle physics phenomenology. The first and most<br />

ple is that <strong>of</strong> the split supersymmetry [44] where the new ideas<br />

metry breaking where consistently realized without a requirement<br />

mmetry has to protect the smallness <strong>of</strong> the Higgs mass.<br />

s <strong>of</strong> particle phenomenology in the context <strong>of</strong> supergravity and<br />

lization were developed in [45, 46, 47, 48, 49, 3, 50, 51, 52], leading<br />

ew predictions for the spectrum <strong>of</strong> particles to be detected in the<br />

rogress in dS vacuum stabilization in string theory influenced<br />

nomenology by demonstrating that metastable vacua are quite<br />

his triggered a significant new trend in supersymmetric model<br />

rting with the work [53]. The long-standing prejudice, that the<br />

namical supersymmetry breaking must have no supersymmetric<br />

¯ T ) , W = W0 + Ae −aT . (1)<br />

Here W0 in the superpotential originating from fluxes stabilizing the axiondilaton<br />

and complex structure moduli. The exponential term comes from<br />

gaugino condensation or wrapped brane instantons. This scenario requires<br />

in addition some mechanism <strong>of</strong> uplifting <strong>of</strong> the AdS vacua to a de Sitter space<br />

C<br />

with a positive CC <strong>of</strong> the form δV = (T + ¯ T ) n . In all known cases this procedure<br />

always leads to metastable de Sitter vacua, see Fig. 1 for the simplest<br />

case <strong>of</strong> the original KKLT model. In addition to the dS minimum at some<br />

finite value <strong>of</strong> the volume modulus σ = T + ¯ Inflation in string theory Inflation in string theory uplift from gaugino conde<br />

Inflation in string Kachru, theory Kallosh, Linde, Trivedi ’03<br />

or wrapped brane instanto<br />

Inflation in string theory<br />

Inflation in string theory Kachru, Kallosh, Linde, Trivedi ’03<br />

Inflation in string theory<br />

Inflation in string theory<br />

(σ theory = T + ¯T volume modul<br />

Inflation<br />

Kachru, Inflation Kachru, in string Moduli stabilization from fluxes (W0) → AdS vacuum<br />

Kachru, Kallosh, in inKallosh, string theory<br />

Kachru, Kallosh, Linde, theory Linde, Trivedi ’03<br />

Kallosh, Linde, Trivedi<br />

Linde, Trivedi ’03<br />

Inflation in string theory<br />

Trivedi ’03 Moduli stabilization from fluxes (W0) →<br />

’03<br />

Kachru, Kallosh, Models tuned:<br />

Kallosh, Linde, explicitly<br />

Linde, Trivedi deal<br />

Trivedi ’03with<br />

Kachru, ’03<br />

Kachru, Moduli Kallosh,<br />

Kallosh, stabilization Kallosh, Linde,<br />

Linde, Trivedi from Trivedi ’03 fluxes ’03 (W0) → AdS vacuum Kachru, Kallosh, Linde, T<br />

Moduli Moduli stabilization stabilization Moduli stabilization from from fluxes from fluxes (W0) fluxes (W0) uplift (W0) → → →AdS from AdS vacuum<br />

Moduli<br />

AdS vacuum gaugino vacuum<br />

stabilization condensation<br />

(1) Brane-(anti)brane infl<br />

Moduli stabilization<br />

from<br />

from<br />

fluxes<br />

fluxes<br />

(W0)<br />

Moduli stabilization stabilization from (W0)<br />

uplift from from fluxes<br />

gaugino fluxes (W0)<br />

condensation (W0) → →AdS → AdS vacuum vacuum Moduli stabilization from<br />

uplift from gaugino condensation<br />

(2) Modular <strong>inflation</strong><br />

uplift from upliftgaugino from gaugino condensation<br />

or wrapped upliftbrane from gaugino instantons<br />

uplift condensation<br />

uplift uplift from from gaugino gaugino or wrapped condensation condensation<br />

brane instantons uplift from gaugino uplift condensation<br />

from gaugino conde<br />

or wrapped brane instantons<br />

(1) Kachru, Kallosh, Lind<br />

or wrapped or wrapped brane brane instantons<br />

or wrapped brane(σ instantons<br />

= instantons<br />

T + ¯T volume modulus) (σ = T or + wrapped ¯T volumebrane modulus) or wrapped instantons brane instanto<br />

or wrapped brane instantons<br />

or wrapped braneDBI instantons<br />

(relativistic motion) A<br />

(σ = T + ¯T volume<br />

(σ = T + ¯T<br />

modulus)<br />

volume modulus)<br />

(σ = (σ T = + T ¯T ¯T + volume ¯T modulus)<br />

(σ = T + ¯T<br />

(σ = T + ¯T volume modulus) Models tuned: explicitly deal with Volume QFT <strong>of</strong> internal volume<br />

assumptio space modu<br />

odels<br />

els<br />

Models tuned: tuned: explicitly explicitly deal deal with with QFT QFTassumption assumptionUV UVisis Models under under control tuned: control<br />

Models ls tuned: tuned: explicitly explicitly deal<br />

deal with<br />

with QFT QFT QFT assumption assumption (1) UVBrane-(anti)brane UV isUV under is UV is under is<br />

control Monodromy explicitly (= potential deal with<br />

under control control <strong>inflation</strong><br />

(1) Brane-(anti)brane <strong>inflation</strong><br />

T (1) Silverstein, Brane-(anti)brane Westphal ’08 infl<br />

(1) Brane-(anti)brane (1) Brane-(anti)brane <strong>inflation</strong> <strong>inflation</strong><br />

2 , there is always a Dine-Seiberg<br />

(1) Brane-(anti)brane Minkowski <strong>inflation</strong> vacuum corresponding<br />

(2) Modular<br />

to an infinite<br />

<strong>inflation</strong><br />

ten-dimensional space with an<br />

(2) Modular (2)<br />

(2)<br />

(2) Modular<br />

Modular<br />

Modular <strong>inflation</strong> <strong>inflation</strong><br />

<strong>inflation</strong><br />

(2) Blanco-Pillado Modular <strong>inflation</strong> et al ’04<br />

infinite <strong>inflation</strong>volume<br />

<strong>of</strong> the compactified space, σ → ∞. The lifetime <strong>of</strong> metastable<br />

(2) Modular <strong>inflation</strong><br />

(1) Kachru, Kallosh, Lind<br />

(1) Kachru, (1) Kachru, Kallosh, Kallosh, dS vacua Linde, Linde, usually Maldacena, is muchMcAllister, greater McAllister, than Trivedi the Trivedi lifetime ’03 ’03 <strong>of</strong> the universe.<br />

(1)<br />

(1)<br />

Kachru,<br />

Kachru,<br />

Kallosh,<br />

Kallosh,<br />

Linde,<br />

Linde,<br />

Maldacena,<br />

Maldacena,<br />

McAllister,<br />

McAllister,<br />

Trivedi<br />

Trivedi<br />

’03<br />

’03<br />

DBI (relativistic motion)<br />

DBI (relativistic motion) motion) Alishahiha, Alishahiha, Silverstein, Silverstein, Tong Tong ’04 Tong ’04 ’04<br />

V<br />

Volume <strong>of</strong> internal space<br />

Silverstein, Volume Volume<strong>of</strong> <strong>of</strong>internal Tong internal ’03 space limits limits φ ≪φMp ≪ (small Mp (small r) r)<br />

1.2<br />

Monodromy (= potential<br />

Monodromy Silverstein, (= potential Westphal after 1 ’08 a closed circular motion) Silverstein, Westphal ’08<br />

0.8<br />

Monday, June Silverstein, 21, 2010<br />

Westphal ’08<br />

0.6<br />

Kachru, Kallosh, Linde, T<br />

Moduli stabilization from


dns/d ln k = −0.041 We give a summary tion <strong>of</strong> state, <strong>of</strong> ourw limits (Spero<br />

rameters in Table WMAP+BAO+H0, 4.<br />

we<br />

5.1. Constant Equationw <strong>of</strong>= State: −1.1<br />

In a flat universe, which improves Ωk = 0, to an wac<br />

Spatial curvature vs. equation <strong>of</strong> st<br />

Spatial curvature tion <strong>of</strong>vs. H0equation helps improve <strong>of</strong> state adark limit energ on<br />

Spatial curvature vs. equation we add <strong>of</strong> state the dark time-delay energy<br />

tion <strong>of</strong> state, B1608+656 w (Spergel et (Suyu al. 2003; et a<br />

Flat:<br />

WMAP+BAO+H0, limits are we find independent<br />

WMAP + BAO + H0 w<br />

The<br />

= −1.10<br />

high-z<br />

± 0.14<br />

superno<br />

WMAP + BAO + H0<br />

(68%<br />

gent limit on w. Us<br />

Spatial WMAP curvature + BAO which vs. + improves SNequation<br />

w = to−0.980±0.053 w <strong>of</strong>= state −1.08 dar (68 ±<br />

we add the time-delay systematicdistance errors in outsu<br />

Flat:<br />

B1608+656 (Suyu to the etstatistical al. 2009a, see error Se<br />

limits are independent 2009b); <strong>of</strong> thus, high-z theType erro<br />

The high-zissupernova about a data half provid <strong>of</strong> t<br />

WMAP + BAO gent + H0 limit onWMAP+BAO+H0+D w. Using WMAP+B<br />

w = −0.980±0.053 The(68% cluster CL). abundan The err<br />

WMAP + BAO systematic + SN errors<br />

comoving<br />

in supernovae,<br />

volume elem<br />

whi<br />

to the statistical error (Kessler et al.<br />

and growth <strong>of</strong> matter d<br />

2009b); thus, the error in w from W<br />

c.c.:<br />

2001). By combining<br />

is about a half <strong>of</strong> that from WM<br />

WMAP+BAO+H0+D∆t.<br />

the 5-year WMAP dat<br />

The cluster<br />

w<br />

abundance<br />

= −1.08±0.15<br />

data are<br />

(stat)<br />

sen<br />

comoving volume universe. element, By adding angularBA<br />

and growth <strong>of</strong> matter density fluctuat<br />

2001). By combining the cluster ab<br />

the 5-year WMAP data, Vikhlinin et<br />

w = −1.08±0.15 (stat)±0.025 (syst)<br />

+0.022<br />

−0.023 .<br />

dns/d ln k: improvements in a goodness-<strong>of</strong>-fit relative<br />

to a power-law model (equation (29)) are<br />

∆χ2 = −2 ln(Lrunning/Lpower−law) = −1.2, −2.6, and<br />

−0.72 for the WMAP-only, WMAP+ACBAR+QUaD,<br />

and WMAP+BAO+H0, respectively. See Table 7 for<br />

the case where both r and dns/d ln k are allowed to vary.<br />

A simple power-law primordial power spectrum without<br />

tensor modes continues to be an excellent fit to the<br />

data. While we have not done a non-parametric study<br />

<strong>of</strong> the shape <strong>of</strong> the power spectrum, recent studies after<br />

the 5-year data release continue to show that there is no<br />

convincing deviation from a simple power-law spectrum<br />

(Peiris & Verde 2009; Ichiki et al. 2009; Hamann et al.<br />

2009).<br />

4.3. Spatial Curvature<br />

While the WMAP data alone cannot constrain the spatial<br />

curvature parameter <strong>of</strong> the observable universe, Ωk,<br />

very well, combining the WMAP data with other distance<br />

indicators such as H0, BAO, or supernovae can<br />

constrain Ωk (e.g., Spergel et al. 2007).<br />

Assuming a ΛCDM model (w = −1), we find<br />

−0.0133 < Ωk < 0.0084 (95% CL),<br />

from WMAP+BAO+H0. 20 α0 < 0.077 (95% CL) an<br />

while with WMAP+BA<br />

0.064 (95% CL) and α−1 <<br />

The limit on α0 has an<br />

ion dark matter. In partic<br />

to a limit on the tensor-t<br />

Beltran et al. 2007; Sikivie<br />

2008). The explicit formul<br />

Komatsu et al. (2009b) as<br />

4.7 × 10−12<br />

r =<br />

θ<br />

However, the limit weakens<br />

significantly if dark energy is allowed to be dynamical,<br />

w = −1, as this data combination, WMAP+BAO+H0,<br />

cannot constrain w very well. We need additional infor-<br />

10/7<br />

<br />

Ωch<br />

γ<br />

a<br />

where Ωa ≤ Ωc is the axio<br />

phase <strong>of</strong> the Pecci-Quinn fi<br />

verse, and γ ≤ 1 is a “dilu<br />

amount by which the axi<br />

would have been diluted d<br />

tropy production by, e.g.,<br />

heavy particles, between 2<br />

cleosynthesis, 1 MeV.<br />

Where does this formula<br />

text <strong>of</strong> the “misalignment”<br />

there are two observables<br />

the axion properties: the<br />

They are given by (e.g., Ka<br />

references therein)<br />

α0(k)<br />

1 − α0(k) = Ω2a Ω2 c θ2 Flat<br />

Closed<br />

Spatial curvature vs. equation <strong>of</strong> state dark energy<br />

Early<br />

WMAP + BAO + H0 Open<br />

ISW Late<br />

Flat<br />

Observer<br />

Wayne Hu<br />

a(f<br />

Spatial Nonecurvature <strong>of</strong> these vs. data equation combinations <strong>of</strong> state require dark energy<br />

ical Interpretation 23<br />

Fig. 12.— Joint two-dimensional marginalized constraint on the<br />

time-independent (constant) dark energy Flat: equation <strong>of</strong> state, w, and<br />

the curvature parameter, Ωk. The contours show the 68% and<br />

95% CL from WMAP+BAO+H0 (red), WMAP+BAO+H0+D∆t<br />

(black), and WMAP+BAO+SN (purple).<br />

the supernova data <strong>of</strong> Davis et al. (2007), they found<br />

w = −0.991 ± 0.045 (stat) ± 0.039 (syst) (68% CL).<br />

These results using the cluster abundance data (also see<br />

Mantz et al. 2009c) agree well with our corresponding<br />

WMAP+BAO+H0 and WMAP+BAO+SN limits.<br />

5.2. Constant Equation <strong>of</strong> State: Curved Universe<br />

Monday, June 21, 2010<br />

Last Scattering Surface<br />

sound horizon


R<br />

ns<br />

r a slight neghe<br />

joint cons<br />

significantly<br />

he 7-year conspectrum<br />

Linear combinations de-<br />

<strong>of</strong> fluctuations <strong>of</strong> = species that do not create δR<br />

a Models fit to 7-year WMAP data only. See Komatsu et al. (2010) for additional constraints.<br />

Sc,γ ≡ δρc<br />

−<br />

ρc<br />

3δργ<br />

Isocurvature perturbations<br />

Isocurvature perturbations<br />

combinations <strong>of</strong> fluctuations <strong>of</strong> = species that do not create δR<br />

ear combinations <strong>of</strong> fluctuations <strong>of</strong> = species that do not create δR<br />

Multi fields during <strong>inflation</strong><br />

Multi fields during <strong>inflation</strong><br />

α PS(k0)<br />

For CDM and photons,<br />

(13) ≡<br />

4ργ<br />

1 − α PR(k0) ,<br />

amplitude <strong>of</strong> its power spectrum is pa<br />

α PS(k0)<br />

≡<br />

1 − α PR(k0) ,<br />

0.982 +0.020<br />

−0.019<br />

1.027 +0.050<br />

−0.051<br />

1.076 ± 0.065<br />

τ 0.091 ± 0.015 0.092 ± 0.015 0.096 ± 0.016<br />

r < 0.36 (95% CL) · · · < 0.49 (95% CL)<br />

dns/d ln k · · · −0.034 ± 0.026 −0.048 ± 0.029<br />

Derived parameters<br />

t0 13.63 ± 0.16 Gyr 13.87 +0.17<br />

−0.16 Gyr 13.79 ± 0.18 Gyr<br />

H0 73.5 ± 3.2 km/s/Mpc 67.5 ± 3.8 km/s/Mpc 69.1 +4.0<br />

−4.1 km/s/Mpc<br />

ducing a curvature. These entropy, Figure or10. isocurvature Gravitational perwave<br />

constraints from the 7-ye<br />

turbations<br />

Isocurvature Isocurvature have a measurable<br />

perturbations perturbations<br />

effect contours on the showCMB theFigure 68% by shift- and 10. 95% Gravitational confidencewave regions constraint for r c<br />

ing the acoustic peaks in the power contours spectrum. are the corresponding contours For cold show the 5-year 68% results. and 95% We confidence do not d<br />

dark matter and photons, we define ΛCDMthe parameters field contours the 7-year are the limit corresponding is r < 0.36 (95% 5-yearCL), resul<br />

WMAP data are ΛCDM combined parameters with H0 the and7-year BAOlimit constraints is r < 0(<br />

WMAP data are combined with H0 and BA<br />

(Bean et al. 2006; Komatsu et al. 2009). The re<br />

amplitude <strong>of</strong> its (Bean power etspectrum al. 2006; is Komatsu parameterized et al. 20<br />

σ8 0.787 ± 0.033 0.818 ± 0.033 0.808 ± 0.035<br />

Table 5<br />

Constraints on Isocurvature Modes a<br />

with k0 = 0.002 Mpc−1 .<br />

Parameter ΛCDM b ΛCDM+anti-correlated c ΛCDM+uncorrelated d<br />

Fit parameters<br />

Ωbh 2 0.02258 +0.00057<br />

−0.00056<br />

0.02293 +0.00060<br />

−0.00061<br />

Ωch 2 0.1109 ± 0.0056 0.1058 +0.0057<br />

−0.0058<br />

0.02315 +0.00071<br />

−0.00072<br />

0.1069 +0.0059<br />

−0.0060<br />

ΩΛ 0.734 ± 0.029 0.766 ± 0.028 0.758 ± 0.030<br />

∆ 2 R (2.43 ± 0.11) × 10 −9 (2.24 ± 0.13) × 10 −9 (2.38 ± 0.11) × 10 −9<br />

ns 0.963 ± 0.014 0.984 ± 0.017 0.982 ± 0.020<br />

τ 0.088 ± 0.015 0.088 ± 0.015 0.089 ± 0.015<br />

α−1 · · · < 0.011 (95% CL) · · ·<br />

α0 · · · · · · < 0.13 (95% CL)<br />

Derived parameters<br />

with k0 = 0.002 Mpc −1 .<br />

We consider two<br />

We<br />

types<br />

consider<br />

<strong>of</strong> isocurvature<br />

two types <strong>of</strong><br />

modes:<br />

isocurva<br />

which are completely which are uncorrelated completely with uncorrelated the curv w<br />

modes (with amplitude modes (with α0), amplitude motivated α0), with motivat the<br />

model, and those model, which andare those anti-correlated which are anti-corre with th<br />

curvature modes curvature (with amplitude modes (with α−1), amplitude motivated α−<br />

t0 13.75 ± 0.13 Gyr 13.58 ± 0.15 Gyr 13.62 ± 0.16 Gyr<br />

H0 71.0 ± 2.5 km/s/Mpc 74.5 +3.1<br />

−3.0 km/s/Mpc 73.6 ± 3.2 km/s/Mpc<br />

σ8 0.801 ± 0.030 0.784 +0.033<br />

−0.032<br />

0.785 ± 0.032<br />

a Models fit to 7-year WMAP data only. See Komatsu et al. (2010) for additional constraints.<br />

b Repeated from Table 3 for comparison.<br />

Monday, June 21, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!