16.10.2012 Views

Presentation - POWER TRANSFORMERS: Saturation ...

Presentation - POWER TRANSFORMERS: Saturation ...

Presentation - POWER TRANSFORMERS: Saturation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>POWER</strong> <strong>TRANSFORMERS</strong>:<br />

<strong>Saturation</strong> Compensation Modeling,<br />

Simulation, and Experiments<br />

John Thomas, Dr. David Cope<br />

Engineering Matters, Inc.<br />

23 Farwell Street<br />

Newton, MA 02460<br />

www.engineeringmatters.com<br />

14 October 2003<br />

1


Engineering Matters ®<br />

Short Form Resume<br />

• Incorporated 1998<br />

• Woman-Owned Small Business<br />

• Won several Phase I and Phase II SBIRs<br />

• Electromechanical Focus<br />

– Specialty motors, robotics, electromagnetic<br />

signature control and analysis<br />

• Direct drive force feedback joysticks<br />

– Several patents received<br />

– Three high-performance versions available<br />

• Ansoft user since 1984.<br />

Engineering Matters ® 2


Engineering Matters ®<br />

Design & Analysis Expertise<br />

• Electromagnetics<br />

– Motors<br />

– Actuators<br />

– Sensors<br />

• Electrical design<br />

– Power<br />

– Analog and digital<br />

design<br />

• Systems integration<br />

• Mechanical design<br />

– Prototype<br />

– Design for<br />

Manufacturing<br />

• Software design<br />

– Firmware<br />

– GUI/API<br />

– Computer interfacing<br />

• Control design.<br />

Engineering Matters ® 3


Power Transformer <strong>Saturation</strong><br />

Progression<br />

• Large scale common mode transformer currents, through<br />

a series of physical interactions, cause many deleterious<br />

effects. In some notable cases, these effects have led to<br />

total system collapse.<br />

SMD<br />

EMP<br />

ESP<br />

σ<br />

SMD = Solar Magnetic Disturbance<br />

EMP = Electromagnetic Pulse<br />

ESD = Earth Surface Potential<br />

GIC = Ground-Induced Currents<br />

VAR = Volts-Amps Reactive<br />

GIC<br />

Harmonics<br />

Engineering Matters ® 4<br />

B<br />

HEAT<br />

VAR<br />

H


Reasons for interest in<br />

transformer saturation<br />

• Transformer DC current<br />

causes half-cycle<br />

saturation, generation of<br />

harmonics, over-heating,<br />

increased audible noise,<br />

and mechanical stress.<br />

• Results in decreased<br />

transformer life.<br />

DC Flux<br />

Offset<br />

φ(t)<br />

t 1 t 2 t 3<br />

t 4 t 5 t 6<br />

Engineering Matters ® 5<br />

t<br />

t 1<br />

t 2<br />

t 3<br />

B(H)<br />

t 4<br />

t 5<br />

t 6<br />

t<br />

H<br />

I mag


Ground-Induced Currents (GIC)<br />

• Solar Coronal Mass<br />

Ejections (CME) affect<br />

utility operations<br />

– Generates an Earth-surface<br />

potential (1-10 V/km)<br />

– Drives a quasi-DC ground<br />

current (10-100A DC)<br />

– Duration 2-4 hours.<br />

• HEMP effects are more<br />

intense than CME effects<br />

– 10X voltage (10-100 V/km)<br />

– 10X current (~1000A DC)<br />

– 10-15 minutes/burst.<br />

Two Causes:<br />

Image credit: NASA<br />

I<br />

I/3 I/3<br />

I/3<br />

Engineering Matters ® 6<br />

I<br />

I/3 I/3<br />

I/3<br />

I


Solar Magnetic Disturbances<br />

• Solar magnetic<br />

disturbances<br />

(SMD) emit<br />

coronal mass<br />

ejections (CME)<br />

that interact with<br />

the earth’s<br />

magnetic field.<br />

Image credit: NASA<br />

Engineering Matters ® 7


SMDs follow the<br />

11 Year Sunspot Cycle<br />

Measurement<br />

period<br />

March 2003<br />

Image credit: Meteorological Satellite<br />

Applications Branch, Air Force Weather Agency.<br />

Engineering Matters ® 8


Overall Electrical Schematic for<br />

Source<br />

Energy<br />

Storage<br />

60 Hz Filter<br />

GIC Compensation<br />

3φ Generator<br />

a b c<br />

GSU XFMR<br />

Y-Y XFMR<br />

Transmission Line<br />

GIC injection<br />

(simulated)<br />

GIC injection<br />

(simulated)<br />

GIC injection<br />

(simulated)<br />

Earth ground<br />

Single<br />

Phase<br />

XFMR<br />

Single<br />

Phase<br />

XFMR<br />

Single<br />

Phase<br />

XFMR<br />

Phase A<br />

Load<br />

Tertiary Winding<br />

Phase B<br />

Load<br />

Tertiary Winding<br />

Phase C<br />

Load<br />

Tertiary Winding<br />

GIC Compensation<br />

GIC<br />

Compensation<br />

GIC Compensation<br />

Engineering Matters ® 9


Ansoft Maxwell ® & Simplorer ®<br />

• Three cases:<br />

(1) No GIC (before),<br />

(2) GIC (during),<br />

(3) GIC with<br />

compensation (after)<br />

• Maxwell 2D<br />

nonlinear Model<br />

• Simplorer Model<br />

– Block diagram &<br />

circuit simulation<br />

– Post processing<br />

analysis.<br />

Modeling<br />

Engineering Matters ® 10


Maxwell-Simplorer Linkages<br />

Nonlinear Transformer Model<br />

Engineering Matters ® 11


Simplorer Block Diagram<br />

Functionality of three circuits<br />

(PLL, time delay switch, op-amps)<br />

Engineering Matters ® 12


Simplorer Results: <strong>Saturation</strong><br />

Compensation Control<br />

Engineering Matters ® 13


Simplorer Results: Closed-loop<br />

Error Signal & Correction Current<br />

Engineering Matters ® 14


Simplorer Results:<br />

Post-processing FFT<br />

Before GIC<br />

I 2n ~0<br />

During GIC,<br />

large I 2n<br />

After GIC with<br />

Compensation<br />

I 2n ~0<br />

Engineering Matters ® 15


Maxwell 2D Results:<br />

Transformer |B| plots<br />

Before GIC During GIC<br />

After GIC with<br />

Compensation<br />

Engineering Matters ® 16


Sub-scale Mock-up Demo Unit<br />

• Sub-scale<br />

demonstration unit<br />

built & tested<br />

• Experimental<br />

measurements<br />

compared with<br />

simulation results<br />

Transmission<br />

Lines<br />

GIC<br />

Injection<br />

GSU XFMR<br />

Filter<br />

Filter<br />

Step-down<br />

XFMR<br />

Generator<br />

Load<br />

Compensation<br />

Circuits<br />

Engineering Matters ® 17


Sub-scale Unit Measurements:<br />

Error Signal & Compensation Current<br />

Engineering Matters ® 18


Sub-scale Unit Measurements:<br />

Primary currents for three cases<br />

Before GIC<br />

During GIC<br />

After GIC with<br />

Compensation<br />

Engineering Matters ® 19


Sub-scale Unit Measurements:<br />

FFT Harmonic Amplitudes<br />

Engineering Matters ® 20


Transformer <strong>Saturation</strong><br />

Compensation Summary<br />

• Natural & man-made events can cause transformer<br />

saturation which threatens power electric system<br />

stability and reliability<br />

• Regained transformer stability by automated<br />

measurement and compensation<br />

• Achieved very good comparison between<br />

simulations and experiments<br />

• Future work will extend SMPS capabilities to<br />

higher power and voltage. More modeling and<br />

simulation are needed.<br />

Engineering Matters ® 21


Additional Projects of Interest<br />

(designed with Maxwell® 3D)<br />

• Force Feedback<br />

Joystick (Direct drive,<br />

wide bandwidth, very<br />

rugged)<br />

• MEMS OXC actuator<br />

Engineering Matters ® 22


Robotic Design and System Integration—Power<br />

Electronics, Vehicle design, Test Plan; RC, Motor<br />

and Battery selection<br />

Engineering Matters ® 23


Acknowledgements<br />

The GIC-compensation project was<br />

developed with funding from the<br />

United States Army Space &<br />

Missile Defense Command<br />

Contract numbers DASG60-01-<br />

C-0017 and DASG60-02-C-0066.<br />

Engineering Matters ® 24


Unconventional Alternative<br />

• Geothermal<br />

• Wave-action<br />

• Human-effort<br />

Power Applications<br />

Engineering Matters ® 25


Bill Powell working out in<br />

Icelandic geothermal pool<br />

Engineering Matters ® 26


References<br />

• Introduction to Geomagnetic Fields, Wallace Campbell, Cambridge<br />

University Press, NY, 1997.<br />

• “Geomagnetic Storms and Their Impact on Power System,”<br />

Kappenman, John, G., IEEE Power Engineering Review, May 1996, p.<br />

5.<br />

• “Comparison of SS-GIC and MHD-EMP-GIC effects on power<br />

systems,” Meliopoulos, A.P.S.; Glytsis, E.N.; Cokkinides, G.J.;<br />

Rabinowitz, M. Georgia Inst. of Technol., Atlanta, GA, USA Power<br />

Delivery, IEEE Transactions on, Pages: 194-207 Jan. 1994 Vol. 9<br />

Issue: 1 ISSN: 0885-8977.<br />

• "Geomagnetically induced Currents during Magnetic Storms", R.<br />

Pirjola, Plasma Science, IEEE Transaction on, Vol. 28, No. 6, Dec.<br />

2000, p. 1867.<br />

Engineering Matters ® 27


Significant Power System<br />

Outages (GIC & Other)<br />

• GIC Storms:<br />

– February 1986, March<br />

1989, March 1991,<br />

November 1991 and May<br />

1992.<br />

• GIC-Utility Events (place,<br />

people affected, duration):<br />

– North America: April 1940,<br />

Sept. 1989, March 1991,<br />

Oct 1991<br />

– Quebec March 1989, 6M, 9<br />

hr. massive outage<br />

• General Outages (place,<br />

people affected, duration):<br />

– US August 2003, 50M, 16-<br />

20 hr.<br />

– London August 2003,<br />

1.5M, 1 hr.<br />

– Denmark & Sweden<br />

September 2003, 5M, 4 hr.<br />

– Italy September 2003, 57M,<br />

9 hr.<br />

Engineering Matters ® 28


March 13, 1989 GIC-related<br />

Image credit: Kappenman<br />

‘Events’<br />

Engineering Matters ® 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!