LTE Tutorial part 1 LTE Basics

LTE Tutorial part 1 LTE Basics LTE Tutorial part 1 LTE Basics

kang.nt.e.technik.tu.darmstadt.de
from kang.nt.e.technik.tu.darmstadt.de More from this publisher
17.07.2013 Views

Marius Pesavento - marius.pesavento@mimoOn.de Willem Mulder - willem.mulder@mimoOn.de LTE Tutorial part 1 LTE Basics Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn 1

Marius Pesavento - marius.pesavento@mimoOn.de<br />

Willem Mulder - willem.mulder@mimoOn.de<br />

<strong>LTE</strong> <strong>Tutorial</strong> <strong>part</strong> 1<br />

<strong>LTE</strong> <strong>Basics</strong><br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

1


Agenda<br />

Part 1, <strong>LTE</strong> <strong>Basics</strong> 9:30 – 10:30<br />

Introduction to <strong>LTE</strong><br />

FDD/TDD frame structures and reference signals<br />

Physical channels, logical channels<br />

PHY signal processing architecture<br />

H-ARQ processing, H-ARQ timing<br />

UE categories<br />

Part 2, Advanced topics in <strong>LTE</strong> 11:00 – 12:30<br />

The <strong>LTE</strong> MIMO modes<br />

Codebook-based precoding<br />

Closed loop operation<br />

CQI reporting modes<br />

Using antenna port 5 (SDMA) techniques<br />

Simulation results<br />

Outlook <strong>LTE</strong> Advanced<br />

Q & A 12:30 – 13:00<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

2


3G Evolution<br />

HSPA evolution<br />

Gradually improved performance at low additional cost in 5MHz spectrum<br />

allocation<br />

Next step: dual carrier allocation (10MHz)<br />

<strong>LTE</strong><br />

<strong>LTE</strong> is new Radio Access Network (RAN)<br />

significantly improved performance in up to 20MHz allocation<br />

Peak data rates up to 300Mbps<br />

<strong>LTE</strong>-Advanced<br />

natural evolution of <strong>LTE</strong>, next major step<br />

toward IMT-Advanced<br />

support spectrum aggregation up to 100MHz and data rate up to 1Gbps<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

3<br />

SPRING<br />

2011


<strong>LTE</strong> Targets<br />

Cell-capacity (Control plane): 200 user per cell in 5MHz<br />

Peak data rate<br />

DL: 300MBit/s<br />

UL: 75 MBit/s<br />

Control plane latency: 50/100ms (idle to active)<br />

User Plane Latency:


E-UTRA frequency bands<br />

UMTS band<br />

extension band<br />

E-UTRA<br />

Band<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

...<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

1920 MHz<br />

1850 MHz<br />

1710 MHz<br />

1710 MHz<br />

2500 MHz<br />

1749.9MHz<br />

1710 MHz<br />

1427.9MH<br />

z<br />

[TBD]<br />

1900 MHz<br />

2010 MHz<br />

1850 MHz<br />

1930 MHz<br />

1910 MHz<br />

2570 MHz<br />

1880 MHz<br />

2300 MHz<br />

Uplink (UL)<br />

eNode B receive<br />

UE transmit<br />

FUL_low – FUL_high 824 MHz<br />

830 MHz<br />

880 MHz<br />

777 MHz<br />

788 MHz<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

-<br />

-<br />

1980 MHz<br />

1910 MHz<br />

1785 MHz<br />

1755 MHz<br />

849 MHz<br />

840 MHz<br />

2570 MHz<br />

915 MHz<br />

1784.9 MHz<br />

1770 MHz<br />

1452.9 MHz<br />

[TBD]<br />

787 MHz<br />

798 MHz<br />

1920 MHz<br />

2025 MHz<br />

1910 MHz<br />

1990 MHz<br />

1930 MHz<br />

2620 MHz<br />

1920 MHz<br />

2400 MHz<br />

Downlink (DL)<br />

eNode B transmit<br />

UE receive<br />

FDL_low – FDL_high 2110 MHz<br />

1930 MHz<br />

1805 MHz<br />

2110 MHz<br />

869 MHz<br />

875 MHz<br />

2620 MHz<br />

925 MHz<br />

1844.9MHz<br />

2110 MHz<br />

1475.9MHz<br />

746 MHz<br />

758 MHz<br />

1900 MHz<br />

2010 MHz<br />

1850 MHz<br />

1930 MHz<br />

1910 MHz<br />

2570 MHz<br />

1880 MHz<br />

2300 MHz<br />

2400 MHz<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

[TBD]<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

-<br />

-<br />

2170 MHz<br />

1990 MHz<br />

1880 MHz<br />

2155 MHz<br />

894MHz<br />

885 MHz<br />

2690 MHz<br />

960 MHz<br />

1879.9 MHz<br />

2170 MHz<br />

1500.9 MHz<br />

[TBD]<br />

756 MHz<br />

768 MHz<br />

1920 MHz<br />

2025 MHz<br />

1910 MHz<br />

1990 MHz<br />

1930 MHz<br />

2620 MHz<br />

1920 MHz<br />

UL-DL Band<br />

separation<br />

F DL_low- F UL_high<br />

130 MHz<br />

20 MHz<br />

20 MHz<br />

355 MHz<br />

20 MHz<br />

35 MHz<br />

50 MHz<br />

10 MHz<br />

60 MHz<br />

340 MHz<br />

23 MHz<br />

[TBD]<br />

21<br />

20<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

N/A<br />

Duplex<br />

Mode<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

FDD<br />

TDD<br />

TDD<br />

TDD<br />

TDD<br />

TDD<br />

TDD<br />

TDD<br />

TDD<br />

5


Basic Transmission Schemes<br />

Transmission<br />

Bandwidth<br />

Sampling<br />

Frequency<br />

1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz<br />

1.92 MHz 3.84 MHz 7.68 MHz<br />

15.36<br />

MHz<br />

23.04<br />

MHz<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

30.72 MHz<br />

FFT Size 128 256 512 1024 1536 2048<br />

#RBs<br />

(12 subcarrier)<br />

6 15 25 50 75<br />

100<br />

(110)<br />

6


Frame Structure Type 1<br />

Frame Structure Type 1<br />

one slot, T slot = 15360*T S = 0.5 ms<br />

#0 #1 #2 #3 #18 #19<br />

one subframe<br />

Transmission Time Interval<br />

(TTI)= 1ms<br />

one radio frame, T f = 307200*T S = 10 ms<br />

frame structure type 1 is applicable to FDD (frequency division<br />

duplex), full-duplex and half-duplex<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

T S<br />

basic time unit corresponding<br />

to sampling frequency 30.72MHz<br />

7


Slot Structure<br />

normal cyclic prefix<br />

160*TS 144*TS 144*TS 144*TS 144*TS 144*TS 2048*TS 2048*TS 2048*TS 2048*TS 2048*TS 2048*TS normal cyclic prefix #1<br />

extended cyclic prefix, ∆f = 15 KHz<br />

512*T S<br />

slot<br />

normal cyclic prefix #2<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

144*T S 2048*TS<br />

#0 #6<br />

2048*T S<br />

512*T S<br />

2048*T S<br />

512*T S<br />

2048*T S<br />

512*T S<br />

2048*T S<br />

512*T S<br />

2048*T S<br />

512*T S<br />

2048*T S<br />

#0 #5<br />

slot<br />

extended cyclic prefix<br />

8


DL<br />

#0<br />

subframe<br />

1 ms<br />

Frame Structure Type 2: TDD<br />

one radio frame, T f = 307200*T S = 10 ms<br />

SSS<br />

RS and<br />

Control<br />

S<br />

#1<br />

UL<br />

#2<br />

special subframe:<br />

DL to UL switching<br />

PSS<br />

0 1 2<br />

S<br />

#1 or #6<br />

DwPTS<br />

UL/DL<br />

#3<br />

GP UpPTS<br />

Downlink<br />

subframe<br />

UL/DL<br />

#4<br />

Uplink<br />

subframe<br />

S/DL<br />

#6<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

DL<br />

#5<br />

Special guard<br />

subframe for<br />

DL to UL switch<br />

Special guard<br />

subframe or<br />

Downlink SF<br />

UL/DL<br />

#7<br />

DwPTS: DL pilot time slot<br />

shortend DL subframe<br />

(3,8,9,10,11, or 12 OFDM symbols)<br />

reference signals, primary sync and control, PDSCH<br />

GP: Guard period<br />

(1,2,3,4,7,8,9,10 OFDM symbols)<br />

UpPTS: UL pilot time slot<br />

(1 or 2 OFDM symbols)<br />

sounding reference or RACH<br />

Uplink or<br />

Downlink<br />

subframe<br />

UL/DL<br />

#8<br />

9<br />

UL/DL<br />

#9


Tx<br />

Rx<br />

Tx<br />

Rx<br />

Frame Structure Type 2: TDD<br />

DL<br />

DL<br />

DL Tx<br />

#0<br />

DL<br />

path<br />

delay<br />

DwPTS<br />

DwPTS<br />

DwPTS<br />

DwPTS<br />

GP<br />

GP<br />

GP<br />

UpPTS<br />

GP<br />

UpPTS<br />

UpPTS<br />

UpPTS<br />

UL Tx<br />

#2<br />

UL Rx<br />

#2<br />

path<br />

delay<br />

UL Tx<br />

#3<br />

UL Rx<br />

#3<br />

DL Tx<br />

#4<br />

DL Rx<br />

#4<br />

UL/DL switching<br />

must be accomplished<br />

within the CP length<br />

(e.g. if path delay is zero)<br />

DL Tx<br />

#5<br />

DL Rx<br />

#5<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

DL Tx<br />

#6<br />

DL Rx<br />

#6<br />

10


DwPTS, GP, UpPTS length<br />

(in OFDM symbols)<br />

Format<br />

Normal CP Extended CP<br />

DwPTS GP UpPTS DwPTS GP UpPTS<br />

0 3 10<br />

1 9 4 8 3<br />

1<br />

2 10 3 9 2<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

3<br />

8<br />

666.7µs<br />

200Km<br />

3 11 2 10 1<br />

4 12 1 3 7<br />

5 3 9<br />

8 2<br />

6 9 3 9 1<br />

2<br />

7 10 2 - - -<br />

8 11 1 - - -<br />

1<br />

2<br />

11


Resource Blocks<br />

frame structure 1<br />

normal cyclic prefix<br />

∆f = 15 KHz<br />

7 OFDM symbols<br />

12 subcarriers<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

DC<br />

DL<br />

1 RB −<br />

resource block<br />

N<br />

all subframes<br />

resource block 0<br />

12


Physical Channels<br />

Downlink (DL)<br />

Physical Broadcast Channel (PBCH)<br />

System Information (Master Information Block<br />

MIB) approx. every 40 ms<br />

Physical Downlink Control Channel (PDCCH)<br />

DL Control Information Format (DCI-format), DLgrants<br />

(current TTI), UL-grants (+4 TTI), uplink<br />

power control<br />

Physical DL Shared Channel (PDSCH)<br />

DL transport blocks (TBs), DL Control Information,<br />

System Information Block (SIB), Paging Channel<br />

(PCH), Multicast Channel (MCH)<br />

Physical Control Format Indicator Channel (PCFICH)<br />

location of the PDCCH<br />

Physical Hybrid ARQ Indicator Channel (PHICH)<br />

UL ACK/NACK<br />

Physical Multicast Channel (PMCH)<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

13


Physical Channels<br />

Uplink (UL)<br />

Physical Random Access Channel (PRACH)<br />

UL timing estimation (path delay), UL<br />

scheduling request (SR)<br />

Physical Uplink Control Channel (PUCCH)<br />

Channel Quality Indicater (CQI),<br />

Precoding Matrix Indicator (PMI), Rank<br />

Indicator (RI), ACK/NACK, SR<br />

Physical Uplink Shared Channel (PUSCH)<br />

UL TBs, ACK/NACK, CQI, PMI, RI, SR<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

14


PHY Signals<br />

Downlink<br />

Primary and Secondary Synchronization Signal<br />

cell-search, DL-frame synchronization, time, frequency, drift,<br />

Cell-specific reference signals (antenna port 0 - 3),<br />

orthogonal (non-overlapping) in time-frequency-domain<br />

MIMO channel estimation, fine frequency estimation, UL-CQI<br />

estimation<br />

UE-specific reference signals<br />

implicit signaling of DL-transmit beamforming weights<br />

Uplink<br />

Demodulaton Reference Signal<br />

Sounding Reference Signal<br />

UL wideband CQI estimation<br />

Random-Access Sequence<br />

for UL timing synchronization<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

15


Cell-Specific Reference Signals<br />

Tx<br />

Port 0<br />

one antenna port<br />

(frame structure 1,<br />

normal cyclic prefix)<br />

reference signal 0<br />

carrier frequency: 2.6GHz<br />

<strong>LTE</strong> requirement<br />

max speed: 350km/h<br />

max Doppler frequency: 843Hz<br />

Clarke's model<br />

coherence time: T > 9/(16π f m)<br />

slot approx. 3 OFDM symbols slot slot<br />

Port 0<br />

Port 1<br />

two antenna ports<br />

(frame structure 1,<br />

normal cyclic prefix)<br />

reference signal 0<br />

reference signal 1<br />

not used for transmission<br />

on this antenna port<br />

pilot spacing in frequency<br />

coherence bandwidth B ≥ 6x15KHz<br />

B ¼ 1 / (2 π τ)<br />

⇒delay spead τ :<br />

τ ¼ 1 / (2 π B) =1.77µsec<br />

(¼ 54 smpls; corresp. to 531 meter )<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

Tx<br />

16


Cell-Specific Reference Signals<br />

slot slot even slot odd slot even slot odd slot<br />

four antenna ports<br />

(frame structure 1,<br />

normal cyclic prefix)<br />

reference signal 0<br />

reference signal 1<br />

reference signal 2<br />

reference signal 3<br />

not used for transmission<br />

on this antenna port<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

Tx<br />

Port 0<br />

Port 1<br />

Port 2<br />

Port 3<br />

17


DL time-frequency structure<br />

•DL payload on DL Shared Channel<br />

•Primary synchronization signal<br />

•Secondary synchronization signal<br />

•Broadcast Channel<br />

•DL Control Channel<br />

•Reference signal<br />

20MHz 30.72MHz<br />

guard band<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

18


frequency<br />

UL time-frequency structure<br />

time / OFDM symbol number<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

demodulation<br />

reference<br />

signal (DRS)<br />

sounding<br />

reference<br />

signal (SRS)<br />

PUSCH<br />

PUCCH<br />

19


MAC<br />

PDU<br />

number of<br />

streams<br />

PDSCH Tx<br />

TB CRC<br />

Layer<br />

Mapping<br />

MIMO<br />

Precoding<br />

CB Segmentation<br />

number of<br />

antennas<br />

CB CRC<br />

Channel Coding<br />

Turbo<br />

P/S Sync<br />

Signals<br />

Ref<br />

Signal<br />

HARQ Support<br />

& Rate Matching<br />

•HARQ hard buffer for S1,<br />

P1, P2<br />

• Subblock interleaver<br />

number of<br />

Transport Blocks (TBs)<br />

•Rate Matcher, RVs Scrambling<br />

Frame<br />

Builder<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

IFFT<br />

CB<br />

Concatenation<br />

CP<br />

Adding<br />

Pulse<br />

Shape<br />

Modulation<br />

to<br />

DACs<br />

20


From<br />

ADCs<br />

MAC<br />

PDU<br />

PDSCH Rx<br />

TB CRC<br />

Rotator<br />

Freq. Off.<br />

CB Concatenation<br />

CP<br />

Removal<br />

Measurements<br />

Downsampling<br />

filter<br />

CB CRC<br />

Turbo<br />

Decoder<br />

FFT<br />

P/S-Sync<br />

Processing<br />

frame/RB<br />

demapper<br />

Channel<br />

Estimation<br />

HARQ Support & Rate<br />

Matching:<br />

•HARQ soft buffer for S1, P1,<br />

P2,<br />

•Subblock interleaver<br />

antenna ports<br />

smple drift<br />

Rotator<br />

Samp.D.<br />

Fine<br />

Frequency<br />

estimation<br />

CB sementation:<br />

transition from<br />

OFDM wise to<br />

CB-wise<br />

processing<br />

•Soft-Combiner 8 bit, RVs Descrambling<br />

Layer<br />

Demapper<br />

MIMO Detector<br />

other CWs<br />

Soft<br />

Demodulator<br />

8 bit<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

21


MAC<br />

PDU<br />

PUSCH Tx<br />

TB CRC<br />

CQI and/or<br />

PMI report<br />

CQI > 11 bit<br />

CB Segmentation<br />

Transform<br />

Precoding<br />

Mixed-Radix DFT<br />

to reduce PAPR<br />

CB CRC<br />

CB CRC<br />

Demod.<br />

Ref.<br />

Signal<br />

RB<br />

Resource<br />

Mapper<br />

Sound.<br />

Ref.<br />

Signal<br />

Channel<br />

Conv.<br />

Coding<br />

Channel<br />

Turbo Coding<br />

Rotator<br />

Samp.<br />

Drift<br />

CQI and/or PMI report<br />

CQI


MAC<br />

PDU<br />

From<br />

ADCs<br />

TB CRC<br />

PUSCH Rx<br />

CB CRC<br />

CB Concatenation<br />

Frame<br />

timing<br />

CP<br />

Removal<br />

Measurements<br />

CB CRC<br />

Turbo<br />

Decoder<br />

FFT<br />

Viterbi<br />

frame/RB<br />

Demapper<br />

HARQ Support & Rate<br />

Matching:<br />

•HARQ soft buffer for S1, P1,<br />

P2,<br />

•Subblock interleaver<br />

•Soft-Combiner 8 bit, RVs<br />

Demod. Ref.<br />

Channel Estimation<br />

Sounding Ref.<br />

Processing<br />

Rate DeMatching:<br />

•Subblock interleaver<br />

•Soft-Combiner 8 bit, RVs<br />

Block decoder<br />

control<br />

(32,11)<br />

TS36.212Figure<br />

5.2.2-1<br />

CB Segmentation:<br />

Transition from<br />

OFDM- to CB-wise<br />

processing<br />

Multi-<br />

Antenna<br />

Receiver<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

Data & Control<br />

Demux<br />

ACK RI<br />

Channel<br />

deinterleaver<br />

Descrambling<br />

Soft<br />

demodulator<br />

8.bit<br />

Tranform<br />

(De)Precoding<br />

(mixed-Radix<br />

DFT)<br />

23


Downlink Control Indicator Format<br />

(DCI format)<br />

DCI format 0 is used for the transmission of UL-SCH assignments<br />

DCI format 1 is used for the transmission of DL-SCH assignments<br />

for single antenna operation<br />

DCI format 1A is used for a compact transmission of DL-SCH<br />

assignments for single antenna operation<br />

DCI format 1B is used to support closed-loop single-rank<br />

transmission with possibly contiguous resource allocation<br />

DCI format 1C is for downlink transmission of paging, RACH<br />

response and dynamic BCCH scheduling<br />

DCI format 2 is used for the transmission of DL-SCH assignments<br />

for MIMO operation<br />

DCI format 3 is used for the transmission of TPC commands for<br />

PUCCH and PUSCH with 2-bit power adjustments<br />

DCI format 3A is used for the transmission of TPC commands for<br />

PUCCH and PUSCH with single bit power adjustments<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

24


DCI<br />

User specific<br />

search space<br />

(aggregation level)<br />

1-CCE (2x6attempts)<br />

2-CCE (2x6attempts)<br />

4-CCE (2x2attempts),<br />

8-CCE (2x2attempts)<br />

Cell specific<br />

search space<br />

(aggregation level)<br />

4-CCE (2x4attempts)<br />

8-CCE (2x2attempts)<br />

PDCCH processing chain<br />

DCI<br />

CRC<br />

generation<br />

L=16<br />

other DL<br />

channels<br />

Resource Mapper,<br />

(mapping to RE groups)<br />

time first – then frequency<br />

IFFT and<br />

CP attachment<br />

code bit extraction<br />

CRC calculation<br />

CRC extraction<br />

XOR<br />

CRC scrambling<br />

with RNTI /<br />

(UE Tx port)<br />

specific<br />

MIMO<br />

channel<br />

Viterbi<br />

decoder<br />

RNTI<br />

tail bit<br />

convolutional<br />

encoder, rate 1/3<br />

sub-block interleaver<br />

(on quadruples of modulated<br />

symbols), remove <br />

elements<br />

FFT and<br />

CP removal,<br />

frequency and<br />

timing correction<br />

ratedematching,<br />

deinterleaving<br />

antenna<br />

ports 0,...,3<br />

44 PDCCH<br />

candidates<br />

other DCIs<br />

interleaver,<br />

rate-matching<br />

layer mapping,<br />

pre-coding:<br />

single antenna<br />

port or transmit<br />

diversity<br />

Resource demapper<br />

(1-3 OFDM symbols,<br />

according to CFI)<br />

44 blind decoding<br />

attempts (commonandUE-specificsearch-space),<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

PDCCH<br />

multiplexing element<br />

insertion<br />

QPSK<br />

modulation<br />

sub-block<br />

de-interleaver<br />

cell specific<br />

descrambling<br />

25<br />

cell-specific<br />

scrambling<br />

equalizer,<br />

MIMO detector,<br />

(requires channel<br />

estimation)<br />

softdemodulator<br />

skip some decodes if RNTI is found<br />

RNTI: radio network temporary identifier


CQI, PMI,<br />

RI report (2)<br />


PUCCH processing Rx<br />

format 2, 2a, 2b<br />

CP<br />

removal<br />

FFT (2048)<br />

Resource<br />

de-mapper<br />

(k,l,slot#)<br />

format 2,2a,2b<br />

(CQI,PMI,RI)<br />

resource index<br />

determines cyclic shift α<br />

multiplication<br />

with<br />

conjugate of<br />

N<br />

( α )<br />

ru , v<br />

( n)<br />

PUCCH<br />

seq<br />

= 12<br />

(2)<br />

nPUCCH<br />

format 1,1a,1b<br />

ACK/NCK w or w/o SR<br />

(see next page)<br />

multiplication<br />

with<br />

conjugate of<br />

N<br />

( α )<br />

ru , v<br />

( n)<br />

PUCCH<br />

seq<br />

= 12<br />

resource index (2)<br />

nPUCCH<br />

determines cyclic shift α<br />

IDFT length 12<br />

IDFT length 12<br />

separate<br />

users<br />

according<br />

to cyclic<br />

shift in<br />

timedomain<br />

user m<br />

matched<br />

filtering<br />

with<br />

tap M<br />

coef.<br />

vector<br />

channel estimation<br />

separate users according<br />

to cyclic shift in timedomain<br />

tap M(


CP<br />

removal<br />

FFT (2048)<br />

PUCCH processing Rx<br />

format 1<br />

Resource<br />

de-mapper<br />

(k,l,slot#)<br />

on SR<br />

resource<br />

format 1,1a,1b<br />

(SR and ACK/NACK)<br />

multiplication<br />

with<br />

conjugate of<br />

N<br />

( α )<br />

ru , v<br />

( n)<br />

PUCCH<br />

seq<br />

resource index<br />

= 12<br />

format 2,2a,2b<br />

(CQI,PMI,RI)<br />

(2)<br />

nPUCCH<br />

determines cyclic shift α<br />

multiplication<br />

with<br />

conjugate of<br />

N<br />

( α )<br />

ru , v<br />

( n)<br />

PUCCH<br />

seq<br />

= 12<br />

resource index (2)<br />

nPUCCH<br />

determines cyclic shift α<br />

IDFT length 12<br />

IDFT length 12<br />

separate<br />

users<br />

according<br />

to cyclic<br />

shift in<br />

timedomain<br />

user m<br />

channel<br />

estimation 1<br />

separate users<br />

according to<br />

cyclic shift in<br />

time-domain<br />

tap M(


CP<br />

removal<br />

FFT (2048)<br />

PUCCH processing Rx<br />

format 1a, 1b<br />

Resource<br />

de-mapper<br />

(k,l,slot#)<br />

on<br />

ACK/NACK<br />

resource<br />

format 1,1a,1b<br />

(SR and ACK/NACK)<br />

multiplication<br />

with<br />

conjugate of<br />

N<br />

resource index<br />

determines cyclic shift α<br />

( α )<br />

ru , v<br />

( n)<br />

PUCCH<br />

seq<br />

= 12<br />

format 2,2a,2b<br />

(CQI,PMI,RI)<br />

multiplication<br />

with<br />

conjugate of<br />

N<br />

( α )<br />

ru , v<br />

( n)<br />

PUCCH<br />

seq<br />

= 12<br />

resource index (2)<br />

nPUCCH<br />

determines cyclic shift α<br />

(2)<br />

nPUCCH<br />

IDFT length 12<br />

IDFT length 12<br />

separate<br />

users<br />

according<br />

to cyclic<br />

shift in<br />

timedomain<br />

user m<br />

channel<br />

estimation 1<br />

separate users<br />

according to<br />

cyclic shift in<br />

time-domain<br />

tap M(


Demodulation reference signals<br />

for PUCCH format 2<br />

(2)<br />

NRB<br />

(1)<br />

Ncs<br />

Pseudo-Random<br />

sequence generator<br />

cell<br />

c = N<br />

init<br />

ID<br />

cell<br />

ncs s<br />

input sequence for format 1<br />

input sequence for format 2<br />

( n , l)<br />

for<br />

mapping<br />

to outer<br />

RBs<br />

for<br />

mapping<br />

to in<br />

RBs<br />

UE specific<br />

cell specific<br />

scrambling<br />

spreading<br />

with<br />

sequence<br />

)<br />

( n)<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

N<br />

( α<br />

ru , v<br />

PUCCH<br />

seq<br />

= 12<br />

12 symbols<br />

spreading<br />

with<br />

orthogonal<br />

sequence<br />

( )<br />

N<br />

resource index<br />

modulation:<br />

d(0),…d(19)<br />

on QPSK<br />

36.211, 7.1<br />

d(20), d(21)<br />

according to<br />

36.211, Table<br />

5.4.2-1<br />

w n<br />

oc i<br />

PUCCH<br />

SF<br />

(1)<br />

resource index nPUCCH<br />

determines cyclic shift<br />

and orthogonal sequence<br />

= 4<br />

(2)<br />

nPUCCH<br />

determines cyclic shift α<br />

N<br />

spreading<br />

with<br />

sequence<br />

( α )<br />

ru , v<br />

PUCCH<br />

seq<br />

( n)<br />

= 12<br />

12 symbols<br />

30<br />

Resourcem<br />

apper<br />

(k,l,slot#)<br />

IFFT<br />

CP attach


ACK/NACK<br />

1 bit<br />

PHICH<br />

(DL HARQ)<br />

3 x<br />

repetition<br />

ACK/NACK<br />

1 bit<br />

3bit<br />

BPSK<br />

(I or Q)<br />

other<br />

ACK/NACK<br />

1 bit<br />

Selection depends on the<br />

index of the first RB of<br />

the corresponding PUSCH<br />

transmission<br />

3 symbols 12 symbols<br />

symbol level<br />

Spreading,<br />

length 4<br />

orthogonal<br />

sequence<br />

Max. 8 different<br />

sequences<br />

matched filter<br />

length(12)<br />

other<br />

ACK/NACK<br />

1 bit<br />

super-position<br />

of different<br />

ACK/NACKS<br />

descrambling<br />

scrambling<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

12 symbols<br />

MIMO detector<br />

layer mapper<br />

SISO or MIMO TD<br />

resource<br />

demapper<br />

Location depends on the<br />

index of the first RB of<br />

the corresponding PUSCH<br />

transmission<br />

resource mapper,<br />

PHICH group is<br />

mapped to 3 groups<br />

of 4 REs<br />

31<br />

FFT / CP<br />

insertion<br />

MIMO<br />

channel<br />

CP<br />

removal/IFFT


PBCH<br />

MIB<br />

CRC attach<br />

CRC mask<br />

tail bit<br />

convolutional<br />

encoder, rate 1/3<br />

MIMO<br />

channel<br />

CP removel<br />

FFT<br />

After successful reception of<br />

PBCH, UE can read D-BCH in<br />

PDSCH (including PCFICH and<br />

PDCCH) which carries system<br />

information not including in PBCH<br />

antenna<br />

config<br />

interleaver,<br />

rate-matching<br />

IFFT<br />

CP inclusion<br />

channel estimates<br />

Equalization<br />

(SISO, MISO, or TD)<br />

antenna<br />

config<br />

PBCH carries important PHY information:<br />

system bandwidth, number of transmit antennas,<br />

PHICH configuration and system frame number,…<br />

cell specific<br />

scrambling<br />

resource<br />

mapping<br />

soft<br />

demodulator<br />

(QPSK)<br />

scrambling<br />

precoding<br />

SFD<br />

rate matching<br />

buffer<br />

code bit<br />

extraction, CRC<br />

computation<br />

CRC extaction<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

MIB<br />

XOR<br />

masked<br />

CRC<br />

mask<br />

frame no<br />

0,1,2,3<br />

QPSK<br />

modulation<br />

layer mapping for<br />

single antenna or<br />

transmit diversity<br />

Viterbi decoder<br />

32


RACH sequence extends over several slots<br />

possible cell specific<br />

root-sequences,(conjugate)<br />

Multiplication<br />

IDFT 1024<br />

(results in<br />

change of<br />

sampling rate)<br />

PRACH<br />

Zadoff-Chu sequence (L=839),<br />

selectec from set of 64 sequences),<br />

different root-sequences or different<br />

cyclic shifts, Create in 839 sequence in<br />

frequency domain<br />

DFT 1024<br />

Peak dection,<br />

path delay<br />

estimation<br />

Zero<br />

padding<br />

to 1024<br />

decimation<br />

1/24<br />

correlation (convolution) in time domain<br />

replaced by multiplication in frequency domain<br />

IDFT of<br />

length<br />

1024<br />

LP filter<br />

1/24<br />

Upsampling<br />

by 24,<br />

LP filtering<br />

UL Tx signal in time domain:<br />

PUSCH, PUCCH,DRS,SRS,<br />

including CP<br />

RACH sequence, associated timing-advance<br />

RACH sequence, associated timing-advance<br />

Rotator,<br />

frequency<br />

shift<br />

phase rotation,<br />

(mixing,frequency<br />

shift to DC)<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

CP inclusion<br />

(3168, 21024,<br />

6240)<br />

add to OFDM<br />

frame in time<br />

domain<br />

Channel<br />

33


2 bits<br />

PCFICH<br />

DL Control Format<br />

block code<br />

L=16<br />

number of<br />

OFDM symbols<br />

reserve for control<br />

1,2,3<br />

scambling<br />

cell and<br />

subframe<br />

dependent<br />

modulator<br />

QPSK<br />

block<br />

detection<br />

layer<br />

mapping<br />

descrambling<br />

precoding<br />

SISO or<br />

Tx diversity<br />

demodulator<br />

power control<br />

power<br />

boosting<br />

MIMO<br />

detection<br />

cell ID<br />

resource<br />

mapper<br />

(4 blocks of<br />

4REs = 1RE<br />

group)<br />

resource<br />

demap<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

FFT / CP<br />

insertion<br />

CP<br />

removalII<br />

FFT<br />

34<br />

MIMO<br />

channel


systematic<br />

parity 1<br />

parity 2<br />

Rate matching and HARQ processing<br />

write-in row-wise<br />

sub-block<br />

interleaver<br />

column permutation<br />

read-out column-wise S1<br />

P1<br />

P2<br />

MUX<br />

RV0<br />

RV3<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

S1<br />

P1/P2<br />

RV1<br />

35<br />

RV2


HARQ timing<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

36


UE Categories<br />

synchronous HARQ in UL, ACK/NACK in 4 TTI after UL reception,<br />

re-transmission (UL) in 8 TTI after initial transmission, total of 8 HARQ processes<br />

asynchronous HARQ in DL, ACK/NACK in 4 TTI after DL reception, retransmission<br />

with DL scheduling grant, total number of 8 HARQ processes<br />

Downlink physical layer parameter values set by UE Category<br />

UE Category<br />

Maximum number of DL-SCH<br />

transport block bits received<br />

within a TTI<br />

Maximum number of bits<br />

of a DL-SCH transport<br />

block received within a TTI<br />

Total number<br />

of soft<br />

channel bits<br />

Category 1 10296 10296 250368 1<br />

Category 2 51024 51024 1237248 2<br />

Category 3 102048 75376 1237248 2<br />

Category 4 150752 75376 1827072 2<br />

Category 5 302752 151376 3667200 4<br />

Uplink physical layer parameter values set by UE Category<br />

UE<br />

Category<br />

Maximum number of bits of an UL-SCH<br />

transport block transmitted within a TTI<br />

Category 1 5160 No<br />

Category 2 25456 No<br />

Category 3 51024 No<br />

Category 4 51024 No<br />

Category 5 75376 Yes<br />

Support for 64QAM in UL<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

Maximum number of<br />

supported layers for<br />

spatial multiplexing in DL<br />

≈ 8HARQ buffer<br />

x(3(S1,P1,P2)x10296+<br />

12(termination))<br />

37


UE Categories<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

38


TDD:<br />

DL grants and ACK/NACK reporting<br />

FDD: only one DL (and one UL) grant per TTI.<br />

Corresponding DL TBs need to be ACK/NACK 4 TTIs<br />

after reception (1 or 2 bits).<br />

TDD: ACK/NACK required for detected PDSCH and for<br />

DL SPS release on PDCCH.<br />

TDD: usually one DL grant (but up to 2 DL grants, in<br />

special case of UL-DL config. 0) can be received<br />

within one TTI.<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

39


DL<br />

#0<br />

subframe<br />

1 ms<br />

TDD ACK/NACK<br />

Recall: Frame Structure Type 2: TDD<br />

one radio frame, T f = 307200*T S = 10 ms<br />

SSS<br />

RS and<br />

Control<br />

S<br />

#1<br />

UL<br />

#2<br />

special subframe:<br />

DL to UL switching<br />

PSS<br />

0 1 2<br />

S<br />

#1 or #6<br />

DwPTS<br />

UL/DL<br />

#3<br />

GP UpPTS<br />

Downlink<br />

subframe<br />

UL/DL<br />

#4<br />

Uplink<br />

subframe<br />

S/DL<br />

#6<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

DL<br />

#5<br />

Special guard<br />

subframe for<br />

DL to UL switch<br />

Special guard<br />

subframe or<br />

Downlink SF<br />

UL/DL<br />

#7<br />

DwPTS: DL pilot time slot<br />

shortend DL subframe<br />

(3,8,9,10,11, or 12 OFDM symbols)<br />

reference signals, primary sync and control, PDSCH<br />

GP: Guard period<br />

(1,2,3,4,7,8,9,10 OFDM symbols)<br />

UpPTS: UL pilot time slot<br />

(1 or 2 OFDM symbols)<br />

sounding reference or RACH<br />

Uplink or<br />

Downlink<br />

subframe<br />

UL/DL<br />

#8<br />

40<br />

UL/DL<br />

#9


TDD: UE ACK/NACK procedure<br />

(PUSCH transmission and PHICH reception)<br />

UE Rx Perspective<br />

•ACK/NACK received on PHICH<br />

in subframe i<br />

•for UL transmission in subframe i - k,<br />

where the values for k are given in<br />

the table.<br />

k for TDD configurartion 0-6<br />

TDD UL/DL<br />

Configuration<br />

subframe number i<br />

0 1 2 3 4 5 6 7 8 9<br />

0 6,7 4 6,7 4<br />

1 4 6 4 6<br />

2 6 6<br />

3 6 6 6<br />

4 6 6<br />

5 6<br />

6 6 4 7 4 6<br />

UE Tx Perspective<br />

•for UL transmission in subframe i,<br />

•ACK/NACK received on PHICH in subframe<br />

i + k, where the values for k are given in<br />

the table.<br />

k for TDD configurartion 0-6<br />

TDD UL/DL<br />

Configuration<br />

subframe number i<br />

0 1 2 3 4 5 6 7 8 9<br />

0 4 7 6 4 7 6<br />

1 4 6 4 6<br />

2 6 6<br />

3 6 6 6<br />

4 6 6<br />

5 6<br />

6 4 6 6 4 7<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

41


TDD<br />

UL/DL<br />

Config.<br />

DL control issues in TDD DL HARQ<br />

UE Rx Perspective UE Tx Perspective<br />

•reception of PDSCH in subframe n<br />

•ACK/NACK on PUSCH or PUCCH in<br />

subframe n + k<br />

k for TDD configurartion 0-6<br />

DL subframe number n<br />

0 1 2 3 4 5 6 7 8 9<br />

0 4 6 4 6<br />

1 7 6 4 7 6 4<br />

2 7 6 4 8 7 6 4 8<br />

3 4 11 7 6 6 5 5<br />

4 12 11 8 7 7 6 5 4<br />

5 12 11 9 8 7 6 5 4 13<br />

6 7 7 7 7 5<br />

•ACK/NACK on PUSCH or PUCCH in subframe n<br />

•for reception of PDSCH insubframe n - k<br />

k for TDD configurartion 0-6<br />

TDD<br />

UL/DL<br />

Config.<br />

DL subframe number n<br />

0 1 2 3 4 5 6 7 8 9<br />

0 6 4 6 4<br />

1 7,6 4 7,6 4<br />

2 8,7,4,6 8,7,4,6<br />

3 7,6,11 6,5 5,4<br />

4 12,8,7,11 6,5,4,7<br />

5 13,12,9,8,7,5,4,11<br />

6 7 7 5 7 7<br />

Multiple ACK/NACK in one subframe:<br />

Requieres ACK/NACK bundling (logical AND of codewords) or ACK/NACK multiplexing.<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

42


TDD: Downlink Assignment Index DAI<br />

to prevent ACK/NACK errors due to bundling<br />

k‘ for TDD configurartion 0-6 and DAI in DCI format 0 (UL assignments)<br />

TDD<br />

UL/DL<br />

Config.<br />

DL subframe number n<br />

0 1 2 3 4 5 6 7 8 9<br />

0 DAI 6 4 DAI 6 4<br />

1 DAI 6 4 DAI DAI 6 4 DAI<br />

2 4 DAI 4 DAI<br />

3 DAI 4 4 4 DAI DAI<br />

4 4 4 DAI DAI<br />

5 4 DAI<br />

6 DAI DAI 7 7 5 DAI DAI 7 7 DAI<br />

k for TDD configurartion 0-6 and DAI in DCI formats 1/1A/1B/1D/2/2A (DL)<br />

TDD<br />

UL/DL<br />

Config.<br />

DL subframe number n<br />

0 1 2 3 4 5 6 7 8 9<br />

0 DAI DAI 6 4 DAI DAI 6 4<br />

1 DAI 7,6 4 DAI DAI 7,6 4 DAI<br />

2 8,7,4,6 DAI 8,7,4,6 DAI<br />

3 DAI 7,6,11 6,5 5,4 DAI DAI<br />

4 12,8,7,11 6,5,4,7 DAI DAI<br />

5 13,12,9,8,7,5,4,11 DAI<br />

6 DAI DAI 7 7 5 DAI DAI 7 7 DAI<br />

•DAI indicates the number of subframes with<br />

PDSCH receptions and SPS releases detected<br />

within n-k and n (k 2 K) that need to be bundeled in<br />

the UL ACK/NACK signaling.<br />

•DAI is used only for TDD<br />

DAI<br />

MSB,<br />

LSB<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

0,0<br />

0,1<br />

1,0<br />

1,1<br />

UL<br />

VDAI<br />

or<br />

1<br />

2<br />

3<br />

4<br />

DL<br />

VDAI<br />

Number of subframes<br />

with PDSCH<br />

transmission<br />

1 or 5 or 9<br />

2 or 6<br />

3 or 7<br />

0 or 4 or 8<br />

43


End of Part 1<br />

Thank you!!!<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

44


Backup slides<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

45


3GPP <strong>LTE</strong> roadmap<br />

Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!