16.07.2013 Views

Agroecology, scaling and interdisciplinarity - Global Restoration ...

Agroecology, scaling and interdisciplinarity - Global Restoration ...

Agroecology, scaling and interdisciplinarity - Global Restoration ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Indlæg til seminarrækken<br />

“Bedriftsstudier, systemteori og systemisk forskning”, tirsdag den 2/4 2003<br />

Bedriften som udgangspunkt for opskalering<br />

Af Tommy Dalgaard, JPM-RUKA<br />

Mit foredrag vil tage udgangspunkt i den teoretiske ramme for opskalering, der er<br />

gennemgået i vedlagte artikel til Agriculture, Ecosystems & Environment.<br />

Med bagrund heri vil jeg gennemgå et eksempel på scenarier for<br />

drikkev<strong>and</strong>sbeskyttelse, hvor bedriften, og bedriftsmodellen FASSET, er anvendt som<br />

udgangspunkt for opskalering af l<strong>and</strong>brugets kvælstoftab i et v<strong>and</strong>opl<strong>and</strong> omkring<br />

Tyrebækken syd for Bjerringbro. I vedlagte, skriftlige indlæg, der stammer fra<br />

afslutnings-seminar-rapporten for projektet ”Arealanvendelse og l<strong>and</strong>skabsudvikling<br />

belyst ved scenariestudier” (ARLAS), fås et indtryk af den anvendte metodik, der<br />

danner baggrund for det eksempel, der bliver præsenteret i nærværende seminarrække<br />

den 2/4 2003.<br />

<strong>Agroecology</strong>, <strong>scaling</strong> <strong>and</strong> <strong>interdisciplinarity</strong><br />

Tommy Dalgaard a , Nicholas J. Hutchings a , John R. Porter b<br />

a<br />

Danish Institute of Agricultural Sciences, Department of <strong>Agroecology</strong>, Box 50. DK-<br />

8830 Tjele, Denmark<br />

b<br />

The Royal Veterinary <strong>and</strong> Agricultural University. Department of Agricultural<br />

Sciences. Agrovej 10, DK-2630 Taastrup, Denmark<br />

1 Introduction<br />

A major challenge facing the world is how a 21 st century population of perhaps nine<br />

billion people will feed themselves in a sustainable manner (Evans, 1998). During the<br />

20 th century, a doubled population was fed via the so-called Green Revolution, with<br />

its introduction of pesticides, synthetic fertilisers <strong>and</strong> new high-yielding cultivars.<br />

With the reduction in the proportion of hungering people from more than fifty percent<br />

of the total population after World War II to under twenty percent today (Grigg,<br />

1993), the success of this revolution is indisputable. However, there are still<br />

malnourished people <strong>and</strong> the impacts of intensive agriculture on natural resource<br />

degradation <strong>and</strong> the environment may not be sustainable (Brown, 2000). The<br />

proposed role of agroecology is to facilitate the design <strong>and</strong> management of sustainable<br />

food production systems (Gliessman, 1998), <strong>and</strong> to investigate possible synergisms<br />

that can help alleviate the above problems (Altieri, 1980). However, agroecology has<br />

not fully matured as a scientific discipline. In this paper, the definition <strong>and</strong> scientific<br />

method of agroecology, its credentials as a scientific discipline <strong>and</strong> the challenges that<br />

face it are considered. The intention is to establish a general framework for the<br />

integration of information within agroecology, <strong>and</strong> for the communication of this<br />

1


information to the decision-makers targeted. Here it is recognised that the rationale for<br />

agroecology is currently the need to develop sustainable systems of food production<br />

<strong>and</strong> this requires that knowledge must be effectively delivered to the people who are<br />

in a position to take appropriate action.<br />

2 A history of agroecology<br />

The term agroecology was in parallel proposed by German zoologists (Friederichs,<br />

1930), <strong>and</strong> American crop physiologists (Hanson, 1939) as a synonym for the<br />

application of ecology within agriculture. At that time, ecologists had relatively<br />

narrow foci but with a trend towards a more integrative view of ecosystems. The early<br />

population ecology school of Henry Gleason investigated plant populations seen from<br />

the organism’s perspective, thereby focussing on the hierarchical levels of the<br />

organism (Figure 1). In contrast, the community ecology school of Frederic Clements<br />

viewed plant populations from the l<strong>and</strong>scape perspective, thereby also including<br />

higher hierarchical levels than the organism (O’Niell et al., 1986). However, the true<br />

roots of agroecology probably lie in the school of process ecology as typified by<br />

Arthur Tansley (1935), whose worldview included both biotic entities <strong>and</strong> their<br />

environment (Figure 1). It was from this school of process ecology that the<br />

agroecosystem concept emerged (Harper, 1974), <strong>and</strong> the foundations for modern<br />

agroecology were laid.<br />

****** Figure 1 around here ******<br />

2.1 “Hard” agroecology<br />

According to Hecht (1995), the hard branch of agroecology (physical-analytical <strong>and</strong><br />

natural science based) was initiated by works such as “Silent Spring” (Carson, 1964),<br />

“The Population Bomb” (Ehrlich, 1966), “Tragedy of the commons” (Hardin, 1968)<br />

<strong>and</strong> “The Limits to Growth” (Meadows et al., 1972). The gloomy predictions of these<br />

<strong>and</strong> similar polemical writings have largely not come to pass, mainly because the<br />

speed of technological developments was underestimated. However, hard agroecology<br />

has shown that badly managed agriculture can lead to the degradation of agricultural<br />

l<strong>and</strong> (Waldon et al., 1998), undesirable changes in semi-natural ecosystems (Lambert<br />

et al., 1990) <strong>and</strong> the depletion <strong>and</strong> pollution of natural resources (e.g. Molenaar,<br />

1990). Consequently, the focus of agricultural science has changed over the past 20-<br />

30 years from the maximisation of food <strong>and</strong> fibre production towards underst<strong>and</strong>ing<br />

the mechanisms linking costs (nutrient losses, loss of biodiversity <strong>and</strong> l<strong>and</strong>scape<br />

degradation) to the benefits of agriculture (production, wealth generation <strong>and</strong><br />

l<strong>and</strong>scape maintenance). To underst<strong>and</strong> these linkages required a combination of<br />

ecology, agronomy <strong>and</strong> economy (Reijntjes et al., 1992) that may be considered<br />

“hard” agroecology. Such hard systems thinking, integrating various disciplines<br />

within natural sciences <strong>and</strong> economy, was significantly developed during the 1980’es<br />

<strong>and</strong> 1990’es, but remains the approach of an engineer or an classical economist<br />

(Checkl<strong>and</strong>, 1999). This means that the resources entering <strong>and</strong> leaving agricultural<br />

systems are considered to be finite capital measured in physical or monetary units<br />

(Pearce, 1996). Furthermore, the position of the observer <strong>and</strong> scientist are thought of<br />

as external to the systems under study, which as we will see is not necessarily the case<br />

of soft agroecology.<br />

2


2.2 ‘Soft’ agroecology<br />

There has been a debate whether hard system optimisation of agriculture alone could<br />

solve the problem of feeding an exp<strong>and</strong>ing world population. It is increasingly felt<br />

that this is not the case <strong>and</strong> that a much broader view of the structure, function <strong>and</strong><br />

role of agroecosystems is called for (Conway, 1987). Such a vision addresses ‘hard’<br />

issues such as the flows of energy <strong>and</strong> matter through agroecosystems but also<br />

includes the role of humans <strong>and</strong> society, <strong>and</strong> the empowerment of citizens for<br />

developing their own food systems, <strong>and</strong> thereby feeding themselves. The exploration<br />

of the interaction between these human activity systems <strong>and</strong> the hard agroecosystem<br />

is here defined as ‘soft’ agroecology. According to this soft-system thinking<br />

(Checkl<strong>and</strong>, 1999), the capital entering <strong>and</strong> leaving agricultural systems is not only<br />

measured in physical units but also includes cultural knowledge, human experiences,<br />

potentials for technological developments etc. In contrast to hard capital, this soft<br />

capital is flexible (Pearce, 1996) <strong>and</strong> can even to some degree substitute hard capital.<br />

For example, knowledge of traditional farming systems inherited from their<br />

forefathers may help future farmers to save physical inputs (Gliessman, 1990a).<br />

However, a major problem is that the disciplines of rural sociology <strong>and</strong> economics,<br />

which deal with this area of soft agroecology, tend to operate at higher hierarchical<br />

levels than the hard disciplines of agronomy <strong>and</strong> ecology. This means that the soft<br />

disciplines often work at the farm or the regional level, while the hard disciplines<br />

often work at the plot or the field level. Furthermore, some soft systems researchers<br />

work as accomplices to the farmer, both giving <strong>and</strong> receiving knowledge, unlike their<br />

hard systems colleagues who work as external observers to the system under study.<br />

This is a consequence of the inclusion of interactions between humans within the<br />

window of agroecology (Figure 1). They argue that all people dealing with food<br />

production- <strong>and</strong> consumption systems, including scientists, are intimately <strong>and</strong><br />

subjectively involved in the activities of the growing of food <strong>and</strong> that to study this<br />

process is to become a part of it (Longino, 1990).<br />

2.3 Where is agroecology now?<br />

Recognising that agroecology is still developing, a survey of the published literature<br />

was conducted to establish its current status. The survey was conducted by<br />

interrogating electronic databases (CAB, 2001; AGRICOLA, 2001; ISIS-SCI, 2001;<br />

SSCI, 2001; ECONLIT, 2001), reading literature reviews (Carls, 1988, 1989, 1990)<br />

<strong>and</strong> visiting The <strong>Agroecology</strong> Library, University of California, Santa Cruz. In<br />

agreement with Carroll et al. (1990), most references were related to natural sciences<br />

within the fields of agronomy <strong>and</strong> ecology (e.g. the work in Gliessman, 1990b).<br />

However, references were also found within the social sciences (e.g. Francis <strong>and</strong><br />

King, 1997; Thomas <strong>and</strong> Kevan, 1993), economics (e.g. Allen, 1999; Rosset, 1996),<br />

or in combination of two or more areas (e.g. Edwards et al., 1993). To quantify this<br />

distribution, the number of references to “agroecology” or “agro-ecology” (with a<br />

hyphen) in literature databases of natural sciences (ISIS-SCI, 2001), resulting in 94<br />

references, social sciences (SSCI, 2001) <strong>and</strong> economics (ECONLIT, 2001) were<br />

compared. The majority (66%) of the references were only found in the natural<br />

science databases, with 13% only in social science database, <strong>and</strong> 5% only in economic<br />

3


literature. No references were in the databases from all three fields of science. The<br />

remaining references were found in two out of the three fields, with 2% in social <strong>and</strong><br />

natural sciences, none in social sciences <strong>and</strong> economics, <strong>and</strong> 16% in a combination<br />

between natural sciences <strong>and</strong> economics (Figure 2).<br />

****** Figure 2 around here ******<br />

Compared to the total number of references in the searched databases, relatively few<br />

referred to agroecology. For example CAB (2001) refers to 1195 abstracts including<br />

the term agroecology out of the more than 2 million references in total. In<br />

comparison, more than 300,000 references referred to animal nutrition. Using the<br />

definition of agroecology stated in the next section, we could have redefined a number<br />

of additional <strong>and</strong> often earlier studies as agroecological, even though the authors<br />

chose not to describe them as such at the time. However, the point of the survey was<br />

not to determine what work was being done but rather whether the scientists involved<br />

considered the studies to be agroecological.<br />

2.4 A definition of agroecology<br />

In this paper, agroecology is defined as “the study of the interactions between plants,<br />

animals, humans <strong>and</strong> the environment within food production- <strong>and</strong> consumption<br />

systems”. <strong>Agroecology</strong> as a discipline therefore covers integrative studies within<br />

agronomy, ecology, sociology <strong>and</strong> economics (Figure 1). Most authors acknowledge<br />

agroecology as a discipline of integration, but define it in other terms, for example as<br />

‘the application of ecological science to design <strong>and</strong> management of sustainable<br />

agroecosystems’ (Gliessman, 1998). Thereby, the upper part of the window of<br />

agroecology in Figure 1 is excluded. Clearly there is still not one, finally<br />

acknowledged definition of agroecology, indicating the ongoing development within<br />

the discipline.<br />

The historical development of agroecology shows that it began originally as a part of<br />

crop physiology, agricultural zoology, <strong>and</strong> ecology but the term was adopted by a<br />

movement which wished to promote the development of sustainable agriculture<br />

through the integration of ideas <strong>and</strong> methods from other disciplines (Altieri, 1995).<br />

Now agroecology departments exist at a number of universities across the world but<br />

particularly in the USA <strong>and</strong> Europe. This implies that at least some people think that<br />

agroecology has made the transition from a proposition to a separate scientific<br />

discipline. In the next section, the case for considering agroecology as a separate<br />

scientific discipline is examined.<br />

3 <strong>Agroecology</strong> as a separate, scientific discipline<br />

3.1 A separate discipline<br />

To be considered a separate discipline, agroecology must be distinguishable from<br />

existing disciplines. The argument is that agroecology is distinguished from its<br />

parental disciplines of agronomy, ecology <strong>and</strong> socio-economics by its integration<br />

between these disciplines <strong>and</strong> across scales. The agroecology-related studies found in<br />

the literature survey were characterised by an integrative approach, where information<br />

4


from single disciplines was collected <strong>and</strong> combined to solve problems at a higher<br />

scale. An additional indication that agroecology is a separate discipline is that the<br />

numbers of references to agroecology have increased in recent years, indicating that<br />

more scientists feel that their work lies sufficiently far from the existing scientific<br />

disciplines that an alternative term is necessary.<br />

3.2 A scientific discipline<br />

The assessment of agroecology as a scientific discipline was made using the norms of<br />

science as defined by the sociologist Robert King Merton (Merton, 1973). This<br />

approach was inspired by a recent attempt by the physicist John Ziman (Ziman, 2000)<br />

to define science in terms of what it is <strong>and</strong> what it means.<br />

The first Mertonian norm of science is communalism, meaning that the outcomes of<br />

academic science are delivered to the public in the broadest sense, including other<br />

scientific colleagues <strong>and</strong> the wider public. Scientists differ in the weight they assign to<br />

the importance of these dissemination routes. These can vary from scientific papers in<br />

specialist journals to popular television programmes. <strong>Agroecology</strong> values<br />

communalism. It is probably the case that many agroecologists place as much<br />

emphasis on sharing results with society as with their scientific colleagues.<br />

The second norm is that science should be universal <strong>and</strong> open to contributions from<br />

all, irrespective of race, gender, nationality, religion etc. The only things that should<br />

wither, <strong>and</strong> be excluded from science, are ideas <strong>and</strong> theories not meeting with<br />

experimental verification or observation. Agroecologists would try to maintain the<br />

norm of universality in the Mertonian sense, as is evidenced by the papers refereed to<br />

in section 2.3 above. However, universality in agroecology can often be very broad<br />

<strong>and</strong> may deliberately include other stakeholders, so that agroecology sometimes<br />

borders on being a socio-political movement. <strong>Agroecology</strong> faces a paradox when<br />

moving its focus to higher <strong>and</strong> thereby more aggregated levels of hierarchy (Figure 1,<br />

Figure 3). At the highest hierarchical levels, local context can so swamp generality<br />

that research in, for example, rural sociology often ends as a series of case studies<br />

from which it is impossible to draw general conclusions.<br />

Disinterestedness in the reporting of science is the third norm. Science reporting is<br />

unusual principally because of its impersonal manner, conveying an impression of<br />

non-prejudice <strong>and</strong> disinterestedness from the reported work. Thus, the impersonality<br />

<strong>and</strong> care taken in reporting science stems from the knowledge that results <strong>and</strong><br />

conclusions are likely to be challenged by others. It is thus part of a scientist’s duty to<br />

facilitate this examination in the interests of the wider scientific enterprise. With<br />

respect to disinterestedness, agroecology does not differ from any other scientific<br />

discipline. Thus, experiments are reported, models can be verified, <strong>and</strong> social <strong>and</strong><br />

economic analyses are sometimes but not always repeatable. An important interaction<br />

between these norms is that the communalism of science acts as a control on<br />

science’s disinterestedness (Ziman, 2000) – the value of an objective scientific<br />

observation or experiment assessed via the social process of peer review. Thus,<br />

science <strong>and</strong> agroecology are disinterested attempts to search for objective truths that<br />

are paradoxically mediated by socially constructed controls <strong>and</strong> evaluation processes.<br />

5


Originality is the fourth norm. The tried <strong>and</strong> tested route to making an original<br />

scientific contribution, in the sense of a ‘new’ piece of knowledge, is to plough the<br />

furrow ever deeper. Thus, it is a rational scientific response to focus on ever more<br />

detail in the hope of developing a fragment of the scientific story for oneself. In<br />

supplement, agroecology’s originality also stems from synthesis as well as from<br />

thinking outside the commonly accepted thesis of the existing knowledge base.<br />

Marching under the twin banners of synthesis <strong>and</strong> <strong>interdisciplinarity</strong>, agroecology, in<br />

line with disciplines like anthropology, psychology <strong>and</strong> sociology, is at odds with<br />

what is commonly termed ‘basic’, natural research with its clear defined boundaries<br />

for research, theoretical framework <strong>and</strong> sense of coherence. However, science is<br />

perhaps moving towards the agroecological model, where the constructed <strong>and</strong> the<br />

objective aspects of science are both recognised. For example, disciplines such as<br />

climatology <strong>and</strong> some aspects of geosciences appear to becoming more integrative<br />

<strong>and</strong> less reductionist. This trend is evident, for example, when the activities of humans<br />

are seen as within the system of study rather than external to it. An example would be<br />

the role that human activities play in l<strong>and</strong> use change or as drivers of biogeochemical<br />

processes such as the global carbon <strong>and</strong> nitrogen cycles. Nowadays, these originally<br />

natural cycles cannot be studied <strong>and</strong> understood without underst<strong>and</strong>ing <strong>and</strong><br />

integrating the human role. In this ‘post-academic’ science (Ziman, 2000) the cultural<br />

<strong>and</strong> social context of science as a process of knowledge creation is explicit.<br />

Doubt is the restraint on originality in science <strong>and</strong> its application, via scepticism, is<br />

the fifth Mertonian norm. This enters in at least two stages in the scientific process.<br />

New ideas <strong>and</strong> theories are evaluated against a sceptical starting point – the null<br />

hypothesis. Having successfully cleared this obstacle, a new piece of scientific<br />

knowledge is then subjected to further doubt by anonymous referees who act on<br />

behalf of the scientific community. In agroecology, the first of these steps sometimes<br />

differs from the above scientific norm. Some agroecological studies do not start with a<br />

classical null hypothesis but include semi-quantitative surveys, rapid rural<br />

assessments <strong>and</strong> studies closely linked to agricultural development. These can be <strong>and</strong><br />

are subjected to the second level of doubt. However, no method of collecting data<br />

should preclude the need for an explicit underlying hypothesis, question or<br />

assumption that is being tested.<br />

In summary, agroecology meets many of the Mertonian norms of science <strong>and</strong> where it<br />

differs it does so in a way that perhaps anticipates the manner <strong>and</strong> the direction in<br />

which the social position of science is changing. Having concluded this, the next two<br />

sections consider two of the main issues that face agroecologists; scale <strong>and</strong><br />

<strong>interdisciplinarity</strong> (Marceau, 1999).<br />

4 Scale<br />

The issue of scale means that there is a gap between the scale at which most<br />

agroecological information is currently generated <strong>and</strong> the scale at which most<br />

decisions concerning food production- <strong>and</strong> consumption systems are made. The<br />

results of agroecological studies, generated on the plot, field or farm level, cannot<br />

always readily be generalised to the regional, national or global level relevant for<br />

decision-makers. Because of this gap, the results are often misinterpreted or not used<br />

6


in the decision-making process (Lerl<strong>and</strong> et al., 2000). Scaling issues have been<br />

addressed for many years in sciences such as physics (Crutchfield, 1994) or<br />

economics (Cropper <strong>and</strong> Oates, 1992). Until recently, there has been relatively little<br />

focus on methods to convey information between scales in the environmental sciences<br />

of ecology (Rastetter et al., 1992) or agronomy (Bierkens et al., 2000; Stein et al.,<br />

2001), although within theoretical ecology there are some references from the 1970s<br />

<strong>and</strong> 1980s (e.g. O’Neill et al., 1986). Consequently, agroecologists tend to use <strong>scaling</strong><br />

procedures that are too simple (Grace et al., 1997) <strong>and</strong> that are poorly suited to global<br />

problems e.g. green house gas emissions (Flavin <strong>and</strong> Dunn, 1998). However, recent<br />

advances in <strong>scaling</strong> have responded to the need to translate environmental <strong>and</strong> socioeconomic<br />

indicators from the scale of observation or collection to that of individual<br />

operator or national policy. This has led to several new statistical developments, <strong>and</strong><br />

the application of geostatistics in particular (Riley, 2001).<br />

4.1 Hierarchy <strong>and</strong> scale<br />

Shown below are the classical examples of the hierarchy within natural (1) or<br />

agricultural systems (2, 3) (Odum, 1971), where the lower levels of organisation or<br />

complexity are to the left, <strong>and</strong> the higher levels to the right:<br />

1) cell ↔ organism ↔ population ↔ community ↔ ecosystem ↔ l<strong>and</strong>scape<br />

2) plot ↔ field ↔ farm ↔ watershed ↔ region ↔ nation ↔ union ↔ globe<br />

3) cell ↔ organ ↔ animal/plant ↔ herd/field ↔ farm ↔ region<br />

These hierarchies represents levels of organizational complexity ranked by category<br />

or class, <strong>and</strong> are the basic structural units of the system investigated (Whyte et al.,<br />

1969). Often hierarchical levels are nested, so that high level units consist of lower<br />

level units (Fresco, 1995; Figure 3). The boundary between hierarchical levels may be<br />

visible, such as the skin of an organism or the shoreline of a lake, or intangible in the<br />

case of for instance of populations <strong>and</strong> species. There are two dimensions of scale:<br />

spatial <strong>and</strong> temporal (Figure 3). Consequently, the term scale relates to space <strong>and</strong> time<br />

period (e.g. a regional scale study of a 100 km 2 area in four years). In this paper, the<br />

colloquial definition of scale is used (Curran et al., 1997), meaning that large scale<br />

studies cover large areas <strong>and</strong>/or time spans <strong>and</strong> small scale studies the reverse.<br />

4.2 Linear, non-linear <strong>and</strong> hierarchical <strong>scaling</strong><br />

Even though hierarchies <strong>and</strong> scales are connected, so that high level hierarchies are<br />

normally studied on larger temporal <strong>and</strong> spatial scales, they are not synonymous<br />

(Figure 3). The range over which a single level in a hierarchy can extend has<br />

consequences for describing the behaviour of higher hierarchical levels because there<br />

may be scale-dependent processes present within one or more levels of a hierarchy.<br />

***** Figure 3 around here *****<br />

For example the total diesel fuel use Ftotal (l) can be calculated at the hierarchical level<br />

of the field (Equation 1), <strong>and</strong> aggregated to the farm level (Equation 2). In this very<br />

7


simplified example, derived from the Dalgaard et al (2001) model, Fn is the average<br />

fuel use per ha on field n, An is the field area in ha, <strong>and</strong> N is the number of fields on<br />

the farm.<br />

Ftotal = Fn<br />

•An<br />

F<br />

=<br />

N<br />

total ∑<br />

n=<br />

1<br />

F<br />

n •<br />

A<br />

n<br />

With a linear <strong>scaling</strong> procedure (also called simple <strong>scaling</strong>, Grace et al., 1997), Fn is<br />

constant, e.g. Fn=100 L/ha for all fields, <strong>and</strong> the fuel use is an identical, linear<br />

function of both field <strong>and</strong> farm area. With a non-linear <strong>scaling</strong> procedure, Fn is a nonlinear<br />

function of the field area. For example, if Fn=103 An – An 2 , when An< 3 ha, Fn><br />

100 L/ha, whereas if An> 3 ha, Fn


***** Table 2 around here *****<br />

In the following, an application of this simplified framework is illustrated with a<br />

simple example, with one group of decision-makers. However, in reality there are<br />

often many different actors, stakeholders <strong>and</strong> decision-makers in many hierarchies<br />

<strong>and</strong> scales, making application of the framework more complicated. In the present<br />

example, the criteria of the framework of hierarchy <strong>and</strong> scale are indicated with<br />

numbers in brackets. The targeted decision-makers were Danish politicians who after<br />

the Rio-Conference in 1992 dem<strong>and</strong>ed information on how agriculture could<br />

contribute to reduce the Danish energy use <strong>and</strong> greenhouse gas emissions by the<br />

promised 20%. Specifically, they wanted to know whether three different scenarios<br />

for conversion to organic farming might help to reduce the energy use (Bichelcommittee,<br />

1999). The time scale was a 12-year period (Danish Ministry of<br />

Environment, 1995), <strong>and</strong> the spatial scale was the 27,000 km 2 agricultural area of<br />

Denmark (criteria 1 in Table 2). As the existing figures on energy use were sampled<br />

on the field <strong>and</strong> animal housing level (criteria 2), the question was how to upscale<br />

these data to the national level. The simplest option would have been a linear <strong>scaling</strong><br />

procedure, where the average energy uses for different field crops <strong>and</strong> livestock<br />

housings is multiplied with national crop <strong>and</strong> livestock figures (criteria 3). However,<br />

because of scale dependent non-linearities <strong>and</strong> significant emerging factors, a linear<br />

<strong>scaling</strong> procedure was too simple for the up<strong>scaling</strong> (criteria 4). For reasons discussed<br />

in section 4.2 a non-linear <strong>scaling</strong> procedure (criteria 3) was also too simple to predict<br />

fuel use (criteria 4), <strong>and</strong> a hierarchical <strong>scaling</strong> procedure was needed (criteria 3). In<br />

this case, a two-step application of the hierarchy-scale framework was tested. Step<br />

one was from the field to the farm level <strong>and</strong> step two was the final national level<br />

generalisation.<br />

4.3.1 Step one<br />

Measurements revealed a 47% deficiency in farm level fuel use compared to field<br />

level literature values linearly upscaled to the farm level (Refsgaard et al., 1998), <strong>and</strong><br />

extended sampling on the field <strong>and</strong> farm level was initiated (criteria 4). A new model<br />

for calculation of farm level fossil energy was made (Dalgaard et al., 2001) including<br />

fuel use as a function of the amount of inputs used, yield <strong>and</strong> the soil type on each<br />

field (criteria 3). Also, the above-mentioned emergent factors of fuel use for transport<br />

between fields <strong>and</strong> the farm <strong>and</strong> between the farm, fodder stocks <strong>and</strong> feedstuff<br />

businesses were included. Finally, the new model was verified (criteria 4) with<br />

samples of fuel use divided by crop-type <strong>and</strong> farm level <strong>and</strong> the observed - simulated<br />

difference was found to be insignificant.<br />

4.3.2 Step two<br />

The derived model was used in the final national level generalisation of the fossil<br />

energy use in the primary Danish agricultural sector. A linear <strong>scaling</strong> procedure was<br />

used, where the estimated average energy use for each crop <strong>and</strong> animal type was<br />

multiplied by the areas of crops <strong>and</strong> the number of animals according to national<br />

agricultural statistics (criteria 3). The simulated <strong>and</strong> lineally upscaled energy use<br />

9


embedded in each of the accounted energy carriers was similar to the expected energy<br />

use according to national statistics, with a total difference of less than 3% (Dalgaard et<br />

al., 2001). In this case, it was concluded that the applied linear <strong>scaling</strong> procedure was<br />

sufficient for the step two generalisation (criteria 4).<br />

5 Interdisciplinarity<br />

Interdisciplinary means working across traditional disciplinary boundaries. For<br />

science in general, this can lead to creative breakthroughs, the identification of<br />

oversights, <strong>and</strong> provide more holistic solutions than work within single disciplines<br />

(Nissani, 1997). For agroecology, the specific issue is its continued growth from its<br />

roots in agriculture <strong>and</strong> ecology to include relevant aspects in sociology <strong>and</strong><br />

economics. This development is desirable both because humans are an integral <strong>and</strong><br />

important part of food producing systems <strong>and</strong> because it is necessary if decisionmakers<br />

are to act on the basis of both ecological, social <strong>and</strong> economic principles<br />

(Wood, 1998).<br />

Achieving <strong>interdisciplinarity</strong> will require the removal of the barriers to the flow of<br />

information between the disciplines relevant to agroecology. These barriers include<br />

mind set <strong>and</strong> communication, where science has developed into increasingly<br />

specialised disciplines, talking different languages <strong>and</strong> having different areas of<br />

interest. Ideally, one could call upon scientists with a more generalist background to<br />

assist in communication between specialists but institutional barriers within modern<br />

science mean there is no encouragement for such creatures to flourish. These barriers<br />

are both physical <strong>and</strong> organisational. The physical barrier is that scientists from the<br />

different disciplines that interact with agroecology are normally in different institutes<br />

or departments, often in different physical locations. With the developments in<br />

information technologies <strong>and</strong> infrastructures this barrier may be less than it once was<br />

but the lack of social interaction will continue to be an obstacle to collaboration. The<br />

organisational barrier relates to the way in which science reward researchers via the<br />

provision of resources <strong>and</strong> career advancement. This depends heavily on the<br />

publication of papers in peer-reviewed scientific journals. Here the researchers within<br />

agroecology are faced with new opportunities but also several problems. The<br />

challenge of <strong>scaling</strong> is encouraging the development of novel experimental<br />

methodologies, e.g. through the combined use of modelling, observational science <strong>and</strong><br />

advanced statistical mapping procedures (Riley, 2001). However, for the more<br />

reductionist scientists, integration to higher hierarchical levels, e.g. from the field to<br />

the farm level, means fewer opportunities for controlled experiments, experiments of<br />

greater duration <strong>and</strong> more time spent communicating with scientists from other<br />

disciplines. The experiments are likely to provide results that are more difficult to<br />

generalise than is common for more reductionist disciplines. However, as discussed<br />

earlier, the norms <strong>and</strong> social position of science are changing as the presumption that<br />

science is sacrosanct withers <strong>and</strong> scientists increasingly have to argue their value to<br />

human endeavour. As agriculture is a mature science, compared to other disciplines<br />

such as biotechnology or microelectronics, agroecologists may find themselves in the<br />

forefront of this development.<br />

10


6 Procedures <strong>and</strong> strategies to address agroecological questions<br />

at different scales<br />

It is argued here that studies of how to cross the barriers of <strong>scaling</strong> <strong>and</strong><br />

<strong>interdisciplinarity</strong> should be central issues for future agroecogical research projects.<br />

For soil sciences, Bouma (1997) drew similar conclusions <strong>and</strong> appealed for new<br />

methods to deal with the issues <strong>and</strong> proposed a seven-step procedure for research in<br />

sustainable management of agricultural soils (Bouma et al. 1998). This procedure was<br />

found useful to address agroecological questions (Wagenet, 1998) but problems were<br />

encountered in integrating socio-economic information <strong>and</strong> in the issues of hierarchy<br />

<strong>and</strong> scale (Dumanski et al., 1998). The framework presented here (Table 2) builds<br />

upon Bouma et al.’s (1998) procedure <strong>and</strong> corresponds to the application of the<br />

scientific method of natural sciences - observing, measuring <strong>and</strong> interpreting -<br />

stressed in the introduction to the agroecology book by Carrol et al. (1990). The<br />

difference is that the framework presented here was extended to distinguish between<br />

hierarchy <strong>and</strong> scale in the form of the defined linear, non-linear or hierarchical <strong>scaling</strong><br />

procedures. In addition, the present framework included a test (criteria four) in the<br />

defined <strong>scaling</strong> procedure <strong>and</strong> an iterative exploration of <strong>scaling</strong> functions that<br />

proceeds until the error does not exceed a sensible threshold value (Table 2). To<br />

develop such <strong>scaling</strong> functions, comprehensive decision-support systems have been<br />

developed (Bierkens et al., 2000) but to date only methods to answer “hard”<br />

agroecological questions have been included, while the integration of information<br />

from the soft agroecological ones is not included. The framework of hierarchy <strong>and</strong><br />

scale presented here is similarly bound to hard agroecology but provides a hint at a<br />

starting point for interdisciplinary research projects. This would typically be a<br />

common problem of sustainability, investigated by both “soft” <strong>and</strong> “hard” researchers,<br />

corresponding to the criteria one problem in the framework. However, because the<br />

“soft” sciences do not produce pure quantitative results, it might not merely be a<br />

question of currency shifts - for example from the physical units of an agronomic<br />

study to the monetary units of an economical study (Squire <strong>and</strong> Gibson, 1997) -<br />

followed by the traditional <strong>scaling</strong> procedure of criteria two to four. Instead, criteria<br />

two to four could be interpreted as a communicative process (Bawden, 1995), where<br />

statements regarding solutions to the common problem are compared at spatiotemporal<br />

scales of relevance for decisions.<br />

One example where the results from “soft” <strong>and</strong> “hard” sciences differed, <strong>and</strong><br />

interdisciplinary research would gain knowledge is illustrated in the recent debate<br />

concerning the possible benefits of introducing a “golden rice variety” (Schiermaier,<br />

2001). In contrast to traditional varieties, the golden rice is genetically engineered to<br />

contain vitamin A precursors, a deficiency of which causes blindness <strong>and</strong> other<br />

illnesses. One of the inventing plant scientists predicted the introduction of this new<br />

variety to solve the “unnecessary death <strong>and</strong> blindness of millions of poor every year”<br />

(Potrykus, 2001). However, nutritionists argue that vitamin A can only be absorbed by<br />

the body if consumed with sufficient oils <strong>and</strong> fats, which is often lacking in many<br />

Third World diets, <strong>and</strong> social scientists argue that some of the vitamin A problem is<br />

caused by the social status of eating hulled, white rice, with a low vitamin A content,<br />

<strong>and</strong> that better nutrition could as easily have been achieved by campaigning for the<br />

consumption of existing, more wholesome varieties of brown paddy rice (Schnapp<br />

<strong>and</strong> Schiermaier, 2001). This example illustrates that the potential effect of feeding<br />

11


malnourished people with golden rice varieties differs when seen from the perspective<br />

of the uni-disciplinary perspective of the plant scientist than from a perspective that<br />

also includes nutritional <strong>and</strong> social knowledge. Estimating consequences of<br />

conversion to organic farming is another subject where both ecological (Dalgaard et<br />

al., 1998), economic (Hansen et al., 2001), <strong>and</strong> social driving forces (Trewavas, 2001)<br />

are relevant to include. This is because conversion to organic farming is driven both<br />

by the ecological potential of this system compared to conventional farming <strong>and</strong> by<br />

the socio-economic gains for farmers <strong>and</strong> the society.<br />

A common feature of the problems encountered in the development of sustainable<br />

food production is the need for feedback mechanisms between the different research<br />

disciplines <strong>and</strong> between decision-makers <strong>and</strong> researchers. This is because the<br />

decisions to be made must take into account both the functioning of natural<br />

ecosystems <strong>and</strong> the response of humans acting either as individuals or as part of<br />

society. Consequently soft <strong>and</strong> hard science mechanisms interact with one another,<br />

<strong>and</strong> a dialectical approach (Levins <strong>and</strong> Lewontin, 1985), where both top-down <strong>and</strong><br />

bottom-up viewpoints are valued, becomes fundamental for the iterative integration of<br />

information from multiple disciplines.<br />

7 Conclusions <strong>and</strong> perspectives<br />

The current driving force for agroecology is the need to facilitate the development of<br />

more sustainable agricultural systems. This emphasis on sustainability is drawing<br />

agroecology up from its roots in agronomy <strong>and</strong> ecology to include elements of both<br />

sociology <strong>and</strong> economics. This study found that agroecology can currently be defined<br />

as the study of interactions between plants, animals, humans <strong>and</strong> the environment<br />

within food production- <strong>and</strong> consumption systems. One of its hallmarks is that it<br />

integrates between scientific disciplines <strong>and</strong> scales.<br />

The first Green Revolution was achieved primarily through the development <strong>and</strong><br />

application of technology. Whilst successful in terms of food production, serious<br />

questions have been raised concerning the impact of these agricultural practices on the<br />

health of the cultivated l<strong>and</strong> (Oldeman et al., 1991). Conway (1997) argued that a<br />

second Green Revolution is required, which is even more productive than the first<br />

Green Revolution <strong>and</strong> even more ’green’ in terms of conserving natural resources <strong>and</strong><br />

the environment. In addition to the productive <strong>and</strong> environmental aspects, the social<br />

<strong>and</strong> economic dimensions of food production systems must therefore also be<br />

considered.<br />

In recent years, significant progress has been made in underst<strong>and</strong>ing the issue of<br />

<strong>scaling</strong> <strong>and</strong> in the development of appropriate techniques. The barriers to<br />

<strong>interdisciplinarity</strong> are mainly cultural <strong>and</strong> political not technical, <strong>and</strong> lying deeply<br />

embedded in the way science has developed, these barriers present the major obstacle<br />

to the development of agroecology.<br />

Acknowledgements<br />

The authors wish to thank the ARLAS research project, <strong>and</strong> the Danish Research<br />

Councils for funding this work as part of the research project Agrar2000, from which<br />

this is paper no. 4. Tommy Dalgaard would like to thank Dr. Avaz Koocheki from<br />

12


Iran <strong>and</strong> Professors Steve Gliessman <strong>and</strong> Miguel Altieri from the USA for initial<br />

discussions during a study visit to The <strong>Agroecology</strong> Centre, University of California,<br />

Santa Cruz <strong>and</strong> to Chris Kjeldsen, Aalborg University, for his comments on the thesis<br />

presented in this paper. Finally, we thank the reviewers of the paper for their many<br />

useful comments, which helped significantly to improve our work.<br />

References<br />

AGRICOLA (2001) AGRICultural OnLine Access (http://www.nalusda.gov/ag98/). The National<br />

Agricultural Library, U.S. Department of Agriculture, Beltsville, Maryl<strong>and</strong>, USA<br />

Allen, P., 1999. Reweaving the food security safety net: Mediating entitlement <strong>and</strong> entrepreneurship.<br />

Agriculture <strong>and</strong> Human Values 16, 117-129.<br />

Allen, T.F.H. <strong>and</strong> Hoekstra, T.W., 1992. Toward a Unified Ecology. Columbia University Press, New<br />

York. ISBN 0-231-06919-7. 384 p.<br />

Altieri, M.A., 1980, 1995. <strong>Agroecology</strong>: The Science of Sustainable Agriculture. Westview Press,<br />

Colorado, USA. ISBN 0-8133-1764-9. 433 p.<br />

Bawden, R., 1995. Systemic development: a learning approach to change. Centre for Systemic<br />

Development, University of Western Sydney, Hawkesbury. Occasional Paper #1. 68 p.<br />

Bichel Committee, 1999. Rapport fra den Tværfaglige økologigruppe (Report from the interdiciplinary<br />

group on organic farming). Danish Environmental Protection Agency, Copenhagen. ISBN 87-7909-<br />

292-6. 98 p.<br />

Bierkens, M.F.P., Finke, P.A., de Willigen, P., 2000. Up<strong>scaling</strong> <strong>and</strong> Down<strong>scaling</strong> Methods for<br />

Environmental Research. Developments in Plant <strong>and</strong> Soil Sciences vol. 88. Kluwer Academic<br />

Publishers, Dordrecht. ISBN 0-7923-6339-6. 190 p.<br />

Bouma, J., 1997. Soil Environmental Quality: A European Perspective. J. Environ. Qual. 26, 26-31.<br />

Bouma, J., Finke, P.A., Hoosbeek, M.R., Breeuwsma, A., 1998. Soil <strong>and</strong> water quality at different<br />

scales: concepts, challenges, conclusions <strong>and</strong> recommendations. Nutrient Cycling in Agroecosystems<br />

50, 5-11.<br />

Brown, L., Flavin, C. <strong>and</strong> Fench, H., 2000. State of the World 2000. W.W.Norton <strong>and</strong> Compagny,<br />

London. ISBN 0-393-04848-9. 263 p.<br />

CAB (2001) Commonwealth Agricultural Bureaux, CAB International (http://www.cabi.org/).<br />

Wallingford, Oxford, UK.<br />

Carls, J., 1988. Abstracts on Sustainable Agriculture. Vol. 1. Deutches Zentrum für<br />

Entwicklungstechnologien, Braunsweig, Germany. 294 p.<br />

Carls, J., 1989. Abstracts on Sustainable Agriculture. Vol. 2. Deutches Zentrum für<br />

Entwicklungstechnologien, Braunsweig, Germany. Vieweg. ISBN 3-528-02060-1. 372 p.<br />

Carls, J., 1990. Abstracts on Sustainable Agriculture. Vol. 3. Deutches Zentrum für<br />

Entwicklungstechnologien, Braunsweig, Germany. Vieweg. ISBN 3-528-02062-8. 453 p.<br />

Carroll, C.R., V<strong>and</strong>ermeer, J.H., Rosset, P.M. (eds.), 1990. <strong>Agroecology</strong>. Biological Ressource<br />

Management Series. McGraw Hill Publishing Compagny, New York. ISBN 0-07-052923-X. 641 p.<br />

Carson, R.L. 1964. Silent Spring. Noughton Miffin Compagny. ISBN 0-395-68329-7.<br />

13


Checkl<strong>and</strong>, P., 1999. Systems Thinking, Systems Practice. Includes a 30-year retrospective. John Wiley<br />

<strong>and</strong> Sons, Chichester. ISBN 0-471-98606-2. 330 p.<br />

Conway, G., 1997. The Doubly Green Revoloution. Food for All in the Twenty-First Century. Cornell<br />

University Press. ISBN 0-8014-8610-6. 335 p.<br />

Conway, G., 1987. The Properties of Agroecosystems. Agricultural Systems 24, 95-117.<br />

Cropper, M.L. <strong>and</strong> Oates, W.E., 1992. Environmental Economics: A Survey. Journal of Economic<br />

Litterature XXX, 675-740.<br />

Crutchfield, J. P., 1994. Is Anything Ever New? Considering Emergence. In: Complexity: Metaphors,<br />

Models, <strong>and</strong> Reality, G. Cowan, D. Pines, <strong>and</strong> D. Melzner (eds.). SFI Series in the Sciences of<br />

Complexity XIX:479-497. Addison-Wesley, Redwood City.<br />

Curan, P.J., Foody, G.M., van Gardingen, P.R., 1997. Scaling Up. In: Gardingen, P.R., Foody, G.M.<br />

<strong>and</strong> Curran, P.J. Scaling-up From Cell to L<strong>and</strong>scape. p. 1-6. Society for Experimantal Biology.<br />

Seminar Series 63. Cambridge University Press. ISBN 0-521-47109-5. 386 p.<br />

Dalgaard, T., 2001. Simulation <strong>and</strong> Regional Generalisation of Agricultural Resource Use. Ph.D.<br />

Thesis. The Royal Veterinary <strong>and</strong> Agricultural University of Denmark, Copenhagen. ISBN 87-988287-<br />

3-8. 184 p.<br />

Dalgaard, T., Halberg, N., Kristensen, I.S., 1998. Can organic farming help to reduce N-losses?<br />

Experiences from Denmark. Nutrient Cycling in Agroecosystems 52, 277-287.<br />

Dalgaard T., Halberg N., Porter J., 2001. A model for fossil energy use in Danish agriculture used to<br />

compare organic <strong>and</strong> conventional farming. Agriculture, Ecosystems <strong>and</strong> Environment 87(1), 51-65.<br />

Danish Ministry of Environment <strong>and</strong> Energy, 1995. Danmarks Energifremtider (Danish energy<br />

futures). The Danish Energy Agency, Copenhagen. 214 p.<br />

Dumanski, J., Pettapiece, W.W., McGregor, R.J., 1998. Relevance of scale dependent approaches for<br />

integrating biophysical <strong>and</strong> socio-economic information <strong>and</strong> development of agroecological factors.<br />

Nutrient Cycling in Agroecosystems 50, 13-22.<br />

ECONLIT, 2001. American Economic Association's electronic bibliography of economic literature<br />

(www.econlit.org). Journal of Economic Literature, Pittsburgh, USA.<br />

Edwards, C.A., Grove, T.L., Harwood, R.R., Pierce Colfer, C.J., 1993. The role of agroecology <strong>and</strong><br />

integrated farming systems in agricultural sustainability. Agriculture, Ecosystems <strong>and</strong> Environment 46,<br />

99-121.<br />

Erlich, P.R., 1966. The Population Bomb. Buccaneer Books. 1997 reprint. ISBN 1-568-49587-0.<br />

Evans, L., 1998. Feeding the 10 billion: Plants <strong>and</strong> Population Growth. ISBN 0-521-64685-5.<br />

Cambridge University Press.<br />

Flavin, C., Dunn, S. 1998. Responding to the Threat of Climate Change. In: Brown, L.R., Flavin, C.F.,<br />

French, H. (eds.), 1998. State of the World. W.W. Norton, New York. pp.113-130. ISBN 0-393-31727-<br />

7.<br />

Francis, C. <strong>and</strong> King, J., 1997. Impact of personal values on agricultural research. Society <strong>and</strong> Natural<br />

Resources 10(3), 273-282.<br />

Fresco, L.O., 1995. Agro-ecological knowledge at different scales. In: Bouma, J., Kuyvenhoven, A.,<br />

Bouman, B.A.M., Luyten, J.C. <strong>and</strong> Z<strong>and</strong>stra, H.G. (eds.): Eco-regional Approaches for Sustainable<br />

14


L<strong>and</strong> Use <strong>and</strong> Food Production. pp. 133-141. Kluwer Academic Publishers, Dordrecht. ISBN 0-7923-<br />

3608-9.<br />

Friederichs, K., 1930. Die Grundfragen und Gesetzmässigkeiten der l<strong>and</strong>- <strong>and</strong> forstwirtshaftlichen<br />

zoologie, Berlin. In: Tischler, W., 1965. Agrarökologie. Gustav Fischer Verlag, Jena. 499 p.<br />

Gliessman, S.R., 1998. <strong>Agroecology</strong>. Ecological Processes in Sustainable Agriculture. Ann Arbor<br />

Press, Chelsea, MI. ISBN 1-57504-043-3.<br />

Gliessman, S.R., 1990a. Underst<strong>and</strong>ing the basis of sustainability for agriculture in the tropic:<br />

Experiences in Latin America. Sustainable Agricultural Systems, Soil <strong>and</strong> Water Conservation Society,<br />

Ankeny, Iowa, The USA. Chapter 22, pp. 378-390.<br />

Gliessman, S.R., 1990b. <strong>Agroecology</strong>. Researching the Ecological Basis for Sustainable Agriculture.<br />

Springer Verlag, Berlin. ISBN 0-387-97028-2. 380 p.<br />

Grace, J., van Gardingen, P.R., Luan, J., 1997. Tackling Large-scale problems by <strong>scaling</strong> up. In:<br />

Gardingen, P.R., Foody, G.M. <strong>and</strong> Curran, P.J. Scaling-up From Cell to L<strong>and</strong>scape. p. 7-16. Society for<br />

Experimantal Biology. Seminar Series 63. Cambridge University Press. ISBN 0-521-47109-5. 386 p.<br />

Grigg, D., 1993. The World food problem. 2 nd edition. Oxford, Blackwell.<br />

Hansen, B., Alrøe, H.F., Kristensen, E.S., 2001. Approaches to assess the environmental impact of<br />

organic farming with particular regard to Denmark. Agriculture, Ecosystems <strong>and</strong> Environment 83, 11-<br />

26.<br />

Hanson, H.C., 1939. Ecology in agriculture. Ecology 20, 111-117.<br />

Hardin, G., 1968. The Tragedy of the Commons. Science 162, 1243-1248<br />

Harper, J.L. 1974. Agricultural Ecosystems. Agroecosystems 1, 1-6.<br />

Hecht, S., 1995. The Evolution of Agroecological Thought. In: Altieri, M. <strong>Agroecology</strong>: The Science<br />

of Sustainable Agriculture. Westview Press, Colorado, USA. P. 1-20. ISBN 0-8133-1764-9. 433 p.<br />

ISIS-SCI, 2001. Science Citation Index Exp<strong>and</strong>ed (http://www.isinet.com). Institute for Scientific<br />

Information. Thomson Scientific, Philadelphia, PA, USA.<br />

Lambert, J.D.H., Brubacher, D., Arnason, J.T., 1990. Nutrient Mobility in a Shifting Cultivation<br />

System, Belize, Central America. In: Gliessman, S.R. <strong>Agroecology</strong>. Researching the Ecological Basis<br />

for Sustainable Agriculture. pp. 122-129. Springer Verlag, Berlin. ISBN 0-387-97028-2.<br />

Lerl<strong>and</strong>, E. van, Lansink, A.O., Schmieman, E., 2000. Summary from the conference: Sustainable<br />

Energy: New Challenges for Agriculture <strong>and</strong> Implications for L<strong>and</strong> Use. Wageningen, The<br />

Netherl<strong>and</strong>s. May 18-20 2000.<br />

Levins R., Lewontin R., 1985. The Dialectical Biologist. Harward University Press. ISBN 0-674-<br />

20281-3.<br />

Longino, E., 1990. Science as Social Knowledge. Princeton University Press. 262 pp. ISBN 0-691-<br />

02051-5.<br />

Marceau, D.J., 1999. The scale issue in social <strong>and</strong> natural sciences. Canadian Journal of Remote<br />

Sensing 25:4, 347-356.<br />

Marshall, B., Crawford, J.W., Porter, J.R., 1997. Variability <strong>and</strong> <strong>scaling</strong>: matching methods <strong>and</strong><br />

phenomena. In: Gardingen PR, Foody GM <strong>and</strong> Curran PJ, Scaling-up From Cell to L<strong>and</strong>scape. p. 253-<br />

15


272. Society for Experimental Biology. Seminar Series 63. Cambridge University Press. ISBN 0-521-<br />

47109-5. 386 p.<br />

Meadows, D.H., Meadows, D.L., R<strong>and</strong>ers, J. <strong>and</strong> Behrens, W.W., 1972. The Limits to Growth: A<br />

Report for the club of Rome’s Project on the Predcament of Mankind. Earth Isl<strong>and</strong> Ltd., London.<br />

Merton, R.K. 1973. The Normative Structure of Science. In: The Sociology of Science: Theoretical <strong>and</strong><br />

Empirical Investigations, N.W. Storer (ed). University of Chicago Press, pp. 267-278.<br />

Molenaar, J.G. de, 1990. The impact of Agrohydrological Management on Water, Nutrients, <strong>and</strong><br />

fertilisers in the Environment of The Netherl<strong>and</strong>s. In: Gliessman, S.R. <strong>Agroecology</strong>. Researching the<br />

Ecological Basis for Sustainable Agriculture. P. 275-304. Springer Verlag, Berlin. ISBN 0-387-97028-<br />

2.<br />

Nielsen V., Sørensen K.G., 1994. Green Fields. Operational Analysis <strong>and</strong> Model Simulations. Report<br />

59. National Institute of Agricultural Engineering, Bygholm. ISBN 87-7471-040-0. 155 p.<br />

Nissani, M., 1997. Ten cheers for <strong>interdisciplinarity</strong>: The case for interdisciplinary knowledge <strong>and</strong><br />

research. Social Science Journal 34 (2) 201-216.<br />

Odum, H.T. 1971. Fundamentals of Ecology. 3rd ed. W.B. Saunders, Philadelphia. ISBN 0-7216-6941-<br />

7. 574 p.<br />

Oldeman, L.R. et al., 1991. World-Map of the Status of Human-Induced Soil Degradation. An<br />

Exlanatory Note. 2 nd ed. International Soil Reference <strong>and</strong> Information Centre <strong>and</strong> U.N. Environment<br />

Programme: Wageningen, Netherl<strong>and</strong>s <strong>and</strong> Nairobi.<br />

O’Neill, R.V., DeAngelis, D,L, Waide, J.B. <strong>and</strong> Allen, T.F.H., 1986. A hierarchical concept of<br />

ecosystems. Monographs in Population Biology. 23, 1-272<br />

Pearce, D., 1996. Measuring sustainable development. In: Nicolaisen M (ed.): Four lectures on<br />

environmental sciences. University of Copenhagen. ISBN 87-87848-910<br />

Potrykus, I., 2001. In Vitro Cellular <strong>and</strong> Developmental Biology – Plants. IAPTC&B Journal, MA,<br />

USA. Vol 37:2.<br />

Rabbinge, R., 1997. Integrating policy <strong>and</strong> technical issues for international research on agriculture <strong>and</strong><br />

the environment using systems approaches. In: Teng, P.S., Kropff, M.J. et al. Applications of Systems<br />

Approaches at the Farm <strong>and</strong> Regional Levels. Volume 1. p. 249-262. Kluwer Academic Publishers,<br />

Dordrecht. ISBN: 0-7923-4285-2.<br />

Rastetter E.B., King A.W., Cosby, B.J., Hornberger G.M., O’Niell, V.R., 1992. Aggregating fine scale<br />

ecological knowledge to model coarse-scale attributes of ecosystems. Ecological Applications 2(1), 55-<br />

70.<br />

Reintjes, C., Haverkort, B., Waters-Bayer, A., 1992. Farming for the Future. MacMillan Press Ltd.,<br />

London. ISBN 0-333-57011-1. 250 p.<br />

Refsgaard, K., Halberg N., Kristensen, E.S., 1998. Energy Utilization in Crop <strong>and</strong> Dairy Production in<br />

Organic <strong>and</strong> Conventional Livestock Production Systems. Agric. Systems 57(4), 599-630<br />

Riley, J., 2001. Preface. The indicator explosion: local needs <strong>and</strong> international challenges. Agriculture,<br />

Ecosystems & Environment Vol. 87 (2), p. 119-120.<br />

Rosset, P.M., 1996. Input Substitution. A dangerous trend in sustainable agriculture. Institute for Food<br />

<strong>and</strong> Development Policy. Working Paper 4. Oakl<strong>and</strong>, CA, USA.<br />

Schiermaier, Q., 2001. Designer rice to combat diet deficiences makes its debut. Nature 409, 551.<br />

16


Schnapp, N. <strong>and</strong> Schiermaier, Q., 2001. Critics claim ‘sight-saving’ rice is over-rated. Nature 410, 503.<br />

SSCI, 2001. Social Sciences Citation Index). Institute for Scientific Information. Thomson Scientific,<br />

Philadelphia, PA, USA.<br />

Squire, G.R. <strong>and</strong> Gibson, G.J., 1998. Scaling-up <strong>and</strong> <strong>scaling</strong>-down: matching research with<br />

requirements in l<strong>and</strong> management <strong>and</strong> policy. In: Gardingen PR, Foody GM <strong>and</strong> Curran PJ, Scaling-up<br />

From Cell to L<strong>and</strong>scape. p. 17-34. Society for Experimental Biology. Seminar Series 63. Cambridge<br />

University Press. ISBN 0-521-47109-5. 386 p.<br />

Stein, A., Riley J. <strong>and</strong> Halberg, N., 2001. Issues of scale for environmental indicators. Agriculture,<br />

Ecosystems & Environment Vol. 87 (2), p. 119-259<br />

Tansley, A., 1935. The use <strong>and</strong> abuse of vegetational concepts <strong>and</strong> terms. Ecology 16, 284-307.<br />

Thomas, V.G., Kevan, P.G., 1993. Basic Principles of <strong>Agroecology</strong> <strong>and</strong> Sustainable Agriculture. Journ.<br />

Env. Ethics. 6:1, 1-19.<br />

Trewavas, A., 2001. Urban myths of organic farming. Nature 410, 409-410<br />

Van Latesteijn, H.C., 1997. Scenarios for L<strong>and</strong>-Use in Europe: agroecological options within socioeconomic<br />

boundaries. In: Bouma, J., Kuyvenhoven, A., Bouman, B.A.M., Luyten, J.C. <strong>and</strong> Z<strong>and</strong>stra,<br />

H.G. (eds.): Eco-regional Approaches for Sustainable L<strong>and</strong> Use <strong>and</strong> Food Production. pp. 43-64.<br />

Kluwer Academic Publishers, Dordrecht. ISBN 0-7923-3608-9.<br />

Wagenet, R.J., 1998. Scale issues is agroecological research chains. Nutrient Cycling in<br />

Agroecosystems 50, 23-34.<br />

Waldon, H., Gliessman, S., Buchanan, M., 1998. Agroecosystem Responses to Organic <strong>and</strong><br />

Conventional Management Practices. Agricultural Systems 57(1), 65-75.<br />

Whyte, L.L., Wilson, A.G. <strong>and</strong> Wilson, D., 1969. Hierarchical Structures. American Elsevier<br />

Publishing Compagny, New York. ISBN 444-00069-0. 317 p.<br />

Wood, D., 1998. Ecological principles in agricultural policy: but which principles? Food Policy vol. 23.<br />

5, 371-381.<br />

Ziman, J.M., 2000. Real Science: What it is <strong>and</strong> What it Means. Cambridge University Press. 399 p.<br />

17


Tables<br />

Table 1<br />

Example on the linear-, non-linear <strong>and</strong> hierarchical <strong>scaling</strong> procedure, used to<br />

calculate the farm level fuel use Ftotal on a 4 ha small farm with N=2 fields, <strong>and</strong> a<br />

larger 50 ha farm with N=3 fields.<br />

n An<br />

(ha)<br />

Small Farm<br />

Dn<br />

(km)<br />

Ftotal for different <strong>scaling</strong> procedures<br />

(l)<br />

Linear Non-linear Hierarchical<br />

1 1 1 100 102 104<br />

2 3 1 300 300 302<br />

Total 4 400 402 406<br />

Average (l ha -1 ) 100 101 102<br />

Larger Farm<br />

1 20 2 2000 1660 1702<br />

2 10 1 1000 930 941<br />

3 20 10 2000 1660 1870<br />

Total 50 5000 4250 4513<br />

Average (l ha -1 ) 100 85 90<br />

An is the area of field no. n, Dn is the distance to the field.<br />

18


Table 2.<br />

General Framework of Hierarchy <strong>and</strong> Scale with four criteria to support <strong>and</strong> evaluate<br />

the conveyance of information between science <strong>and</strong> a decision-maker<br />

Criteria 1. Define the decision-maker, their problem <strong>and</strong> the scale at which the<br />

decision-maker needs information.<br />

Criteria 2. Determine on which scales information regarding this problem is<br />

available <strong>and</strong> collect the relevant information.<br />

Criteria 3. Create a hypothesis of how existing information, identified in criteria 2,<br />

can be transformed to the scale needed for decision-making, identified in criteria 1.<br />

First try with simple linear <strong>scaling</strong> procedures, <strong>and</strong> after having tested them in criteria<br />

4, try more complicated, non-linear or hierarchical <strong>scaling</strong> procedures.<br />

Criteria 4. Test the hypothesis of criteria 3 with independently sampled decisionmaker<br />

scale information. If the hypothesis is rejected, try with a new hypothesis or<br />

seek new information, which can be transformed to the decision-maker scale.<br />

19


Figures <strong>and</strong> figure captions<br />

Figure 1.<br />

The box symbolises The Window of <strong>Agroecology</strong> within food production systems.<br />

The viewpoints of the different schools of ecology are marked with eye signatures.<br />

The classical, scientific disciplines, where some are within the window of<br />

agroecology, are lined up in the right column, ordered in a hierarchy with the ‘hard’<br />

disciplines at the bottom <strong>and</strong> the ‘soft’ disciplines at the top (Checkl<strong>and</strong>, 1999).<br />

20


Social Sciences<br />

Natural Sciences<br />

Economics<br />

Figure 2.<br />

The triangular composition of the subjects for agroecological studies. The area of the<br />

circles is proportional to the number of references found.<br />

21


Figure 3.<br />

Examples of the spatial <strong>and</strong> temporal scale for investigations of hierarchical levels<br />

within natural (light coloured), <strong>and</strong> agricultural systems (dark coloured). (After<br />

Rabbinge, 1997).<br />

22


ARLAS’ scenariesystem<br />

ET GRUNDLAG FOR HELHEDSORIENTEREDE KONSEKVENSVURDRINGER AF<br />

ÆNDRINGER I AREALANVENDELSEN OG LANDBRUGSPRODUKTIONEN<br />

Tommy Dalgaard 1 , Chris Kjeldsen 1 , Birgit M. Rasmussen 1 , Jesper R. Fredshavn 2 ,<br />

Bernd Münier 3 , Jesper S. Schou 3 ,Mette Dahl 4 , Irene A. Wiborg 5 , Per Nørmark 6 og<br />

Jørgen F. Hansen 1<br />

1 Danmarks JordbrugsForskning, Afdeling for Jordbrugssystemer. Box 50. DK-8830 Tjele.<br />

E-mail: tommy.dalgaard@agrsci.dk. 2 Danmarks Miljøundersøgelser, Afdeling for L<strong>and</strong>skabsøkologi, Grenåvej 14, DK-8410<br />

Rønde. 3 Danmarks Miljøundersøgelser, Afdeling for Systemanalyse, Frederiksborgvej 399, DK-4000 Roskilde. 4 Danmark og<br />

Grønl<strong>and</strong>s Geologiske Undersøgelser. Øster Voldgade 10, DK-1350 København K. 5 L<strong>and</strong>brugets Rådgivningscenter,<br />

L<strong>and</strong>skontoret for Planteavl. Udkærsvej 15, DK-8200 Aarhus N. 6 Viborg Amt, Skottenborgvej 26, DK-8800 Viborg.<br />

8 Indledning<br />

Formålet med dette kapitel er at give en oversigt over scenariesystemet i ARLAS og<br />

eksemplificere brugen af dette system som grundlag for helhedsorienterede<br />

konsekvensvurdringer af ændringer i arealanvendelsen og l<strong>and</strong>brugsproduktionen.<br />

Først beskrives værkstedsområdet og datagrundlaget for de tre scenarier, som er<br />

belyst i projektet. Dernæst gennemgås kort sammenhængene og dataflowet mellem de<br />

modelsystemer, der er integreret i scenariesystemet, og endelig gives en oversigt over<br />

resultater fra scenarierne.<br />

9 Materialer og Metoder<br />

9.1 Værkstedsområdet<br />

Værkstedsområdet ligger på kanten mellem Viborg og Århus Amter, 30 km SØ for<br />

R<strong>and</strong>ers, og udgør et 10 km x 10 km udsnit af et typisk og geologisk varieret<br />

Midtjydsk l<strong>and</strong>skab (Torp 2002, Caspersen og Jensen 2002). L<strong>and</strong>brugsjorden i<br />

området er præget af intensiv svine- og kvægproduktion, sammen med forholdsvis<br />

mange små deltidsbrug, placeret omkring egnscentret Bjerringbro By (Rygnestad et<br />

al. 2000). Desuden præges området af en stor <strong>and</strong>el af skov og krat, specielt ved<br />

Tange Sø, og Gudenåen der gennemløber området (Tabel 1, Figur 1).<br />

Tabel 1. Arealanvendelsen i værkstedsområdet 1998<br />

Værkstedsområdet (ha)<br />

L<strong>and</strong>brugsjord:<br />

Mark i omdrift 5300<br />

Vedvarende græs<br />

Ikke l<strong>and</strong>brug:<br />

850<br />

Skov og krat 2500<br />

Veje og bebyggelse 1050<br />

V<strong>and</strong> 200<br />

Andre biotoper 100<br />

I alt 10000<br />

23


Figur 1. Arealanvendelsen i værkstedsområdet 1998<br />

Figur 2. Marker som indgår i de l<strong>and</strong>brugsmæssige beregninger i ARLAS samt disse<br />

markers placering i forhold til værkstedsområdet (firkanten) og i forhold til Viborg<br />

24


Amts udpegning af skovrejsningsområder, områder hvor skovrejsning er uønsket, og<br />

områder med særlige drikkev<strong>and</strong>sinteresser (OSD).<br />

L<strong>and</strong>brugspraksis i form af afgrødevalg og gødskning modelleres for alle marker på<br />

de bedrifter, som har marker i værkstedsområdet (Figur 2).<br />

9.1.1 Afgrødevalg og sædskifte<br />

Afgrødevalget modelleres for hver mark med en sædskiftemodel (Kjeldsen 2000,<br />

Dalgaard et al. 2002a). Til brug for faunamodelleringerne anvendes en forsimplet<br />

version af den model der anvendes ved bedriftsmodelleringerne, idet afgrøden på<br />

hver mark vælges ud fra den statistiske s<strong>and</strong>synlighed for at denne afgrødetype<br />

forekommer i sædskiftet på den aktuelle bedriftstype (Odderskær 2002, Dalgaard<br />

2000). Modellen der anvendes ved bedriftssimuleringerne indeholder 13 forskellige<br />

afgrødetyper og skelner mellem 3 forskellige sædskiftekategorier (Figur 3).<br />

Bedrifternes marker opdeles i marker med et grovfodersædskifte (1), marker med et<br />

salgsafgrødesædskifte (2) og marker med et vedvarende græssædskifte (3). Markerne<br />

med grovfodersædskifte placeres tættest på bedriftens bygninger, idet der inddrages<br />

hele marker i grovfodersædskiftet indtil der opnås det areal med grovfodersædskifte,<br />

som er tættest på at dække et areal svarende til 0,36 ha grovfoderareal per dyreenhed<br />

kvæg på bedriften. Marker med vedvarende græs ifølge de empiriske oplysninger for<br />

1998 forbliver vedvarende græs (3), og de resterende marker dyrkes i et<br />

salgsafgrødesædskifte (2).<br />

Figur 3. Skematisk oversigt over sædskiftekategoriernes fordeling på en bedrifts<br />

marker. 1) Grovfoder-sædskifte, 2) Salgsafgrøde-sædskifte, 3) Vedvarende<br />

græsmarks-sædskifte.<br />

Sædskiftemodellen arbejder med 3 forskellige bedriftstyper; A) Plantebedrifter, B)<br />

Kvægbedrifter og C) Svinebedrifter, opdelt i henhold til EUROSTAT’s og<br />

Fødevareøkonomisk Instituts metode (Dalgaard og Rygnestad 2000). I prototypen af<br />

modellen er grovfodersædskiftet ens på alle bedriftstyper, mens<br />

salgsafgrødesædskiftet på kvægbedrifter adskiller sig fra salgsafgrødesædskiftet på<br />

svine- og planteavlsbedrifter (Tabel 2). På hver bedrift fastholdes markerne med<br />

vedvarende græs i et vedvarende græsmarks-”sædskifte” udenfor omdriften.<br />

25


Tabel 2. Afgrøderækkefølger i grovfoder- og salgsafgrødesædskifterne i<br />

sædskiftemodellen.<br />

Grovfoder-sædskiftet Salgsafgrøde-sædskiftet på Salgsafgrøde-sædskiftet på<br />

kvægbedrifter<br />

plante- og svinebedrifter<br />

Byg-ært helsæd m. udlæg Vårbyg Vinterraps<br />

1. Års kløvergræs Vinterhvede Vinterhvede<br />

2. Års kløvergræs Vårbyg Vårbyg<br />

Byg-ært helsæd m. udlæg Vårbyg<br />

Slætgræs Brak<br />

Roer Ærter<br />

Vinterhvede<br />

Vinterrug<br />

Vinterbyg<br />

Sædskiftemodellen køres for en 30 årig periode. Her vises gennemsnit for 26 års<br />

sædskifte og gødskning, svarende til den 26 års periode, som de gennemsnitlige<br />

modellerede N-tab i form af ammoniak og udvaskning opgøres for. De 4 første år<br />

bruges til initialisering af modellen for udvaskning og modellen for<br />

gødningsfordeling. Resultaterne af sædkiftemodellens afgrødevalg er samenlignet<br />

med empirisk indsamlede afgrødeoplysninger fra 1998 (Tabel 3).<br />

Tabel 3. L<strong>and</strong>brugsafgrøder i værkstedsområdet 1998.<br />

% Empiri Model<br />

Vårkorn, modenhed 18 18<br />

Vinterkorn, modenhed 37 34<br />

Raps og ærter 13 16<br />

Brak 8 8<br />

Helsæd 2 5<br />

Omdriftsgræs 9 7<br />

Roer, majs og kartofler 2 2<br />

Vedvarende græs 10 11<br />

100 100<br />

9.1.2 Gødskning<br />

Husdyrgødningen fordeles hvert år på markerne i forhold til 1998 gødningsnormen for<br />

den aktuelle afgrøde, forfrugt og forforfrugt på den aktuelle mark, og i forhold til<br />

jordtypen på hver mark (Dalgaard et al. 2002b). Der regnes ikke med v<strong>and</strong>ing i<br />

værkstedsområdet. Der spredes ikke husdyrgødning ud på vedvarende græsmarker.<br />

Produceres der mere plantetilgængeligt N i form af husdyrgødning end der er behov<br />

for ifølge normberegningerne eksporteres husdyrgødning til den nærmeste bedrift,<br />

hvor behovet er større end husdyrgødningsproduktionen. Hvis den nærmeste bedrift<br />

26


ikke kan modtage alt husdyrgødningen eksporteres der også gødning til den<br />

næstnærmeste bedrift, hvor behovet er større end husdyrgødningsproduktionen osv.<br />

Der tildeles nu, i hver af de 30 år sædskiftemodellen løber, husdyrgødning til alle<br />

marker proportionalt med N-normbehovet på de enkelte marker. Som sagt tildeles der<br />

ikke husdyrgødning til vedvarende græs. Dernæst suppleres der for alle marker op til<br />

N-, P- og K-normen med h<strong>and</strong>elsgødning. Således beregnes produktionen, eksporten<br />

og udbringningen af husdyrgødning, samt udbringningen af h<strong>and</strong>elsgødning i<br />

værkstedsområdet (Tabel 4).<br />

Tabel 4. Gødningsproduktion og gødningsanvendelse på markerne (Modelleret<br />

praksis for 1998)<br />

Areal<br />

(ha)<br />

Husdyrgødning<br />

H<strong>and</strong>elsgødning<br />

(ton total N)<br />

(ton N)<br />

Produktion Eksport Udbragt Udbragt<br />

Plantebedrifter 5310 123 -77 200 482<br />

Kvægbedrifter 1524 343 50 293 115<br />

Svinebedrifter 2155 297 27 270 98<br />

I alt 8990 763 0 763 695<br />

Figur 4. Modelleret fordeling af husdyr- og h<strong>and</strong>elsgødningskvælstof på markerne i<br />

værkstedsområdet.<br />

27


9.2 De tre scenarier<br />

I ARLAS projektet er gennemført tre scenarier: Maginaljordsscenariet,<br />

Drikkev<strong>and</strong>sscenariet og Småbiotopscenariet. Alle disse scenarier vedrører ændringer<br />

i arealanvendlsen på l<strong>and</strong>brugsjorden og de heraf følgende konsekvenser for<br />

l<strong>and</strong>brugsproduktion, økonomi, miljø og natur.<br />

Tabel 5. De tre scenariers ændring i arealanvendelsen (ha) på l<strong>and</strong>brugsjorden i<br />

værkstedsområdet<br />

Marginaljords- Drikkev<strong>and</strong>s- Småbiotopscenario<br />

scenario scenario<br />

Marker i omdrift 1 Vedvarende græs<br />

-1071 -832 -208<br />

2 1071 -42 -157<br />

Vedvarende græsbrak 0 568 168<br />

Skov 0 305 197<br />

1 2<br />

) Incl. brak i omdrift. ) Incl. græsningsarealer indført i marginaljordsscenariet<br />

28


Figur 5. Den ændrede arealanvendelse i hver af de tre scenarier<br />

29


Figur 6. Modelleret fordeling af husdyr- og h<strong>and</strong>elsgødningskvælstof på markerne i<br />

hver af de tre scenarier<br />

30


9.2.1 Marginaljordsscenario<br />

I marginaljords-scenariet defineres marginaljord som alle arealer med JB 1 (+2 som<br />

ikke findes) eller JB 11, plus alle skrånende arealer klasse 6 grader og klasse 12<br />

grader. Alle marker med centrum i disse marginaljordsområder defineres som<br />

marginale.<br />

I scenariet udlægges vedvarende græsmarker (og benævnt marginaljordsgræs) i<br />

forbindelse med disse marginaljordsarealer efter følgende beslutningsregler (Schou og<br />

Abildtrup 2001):<br />

1. Hvis mindre end 25% af bedriftens areal er marginaljord antages at bedriften kan<br />

tilpasse sig uden radikale driftsomlægninger:<br />

- Salgsafgrødeproduktionen reduceres svarende til det omlagte areal.<br />

- Det eksisterende husdyrhold er uændret.<br />

- Marginale arealer afgræsses med 1 ammeko med opdræt pr. 2 ha.<br />

2. Hvis mellem 25% og 75% af bedriftens areal er marginaljord antages det at:<br />

- Salgsafgrødeproduktionen ophører – arealet overgår til foderproduktion.<br />

- Husdyrproduktion fortsætter (hvis bedriften har mindre end 3 DE/ha).<br />

Ellers afvikles<br />

den eksisterende husdyrproduktion og hele arealet udlægges som marginale<br />

arealer<br />

- Marginale arealer afgræsses med 1 ammeko med opdræt pr. 2 ha.<br />

3. Hvis mere end 75% af bedriftens areal er marginaljord antages det, at hele<br />

bedriften omlægges til ekstensiv afgræsning med 1 ammeko med opdræt pr. 2 ha.<br />

Figur 7. Fra marginaljordsområdet lige øst for Tangeværket. Området er også er<br />

udpeget som Særligt Følsomt L<strong>and</strong>brugsområde (SFL). Foto: Tommy Dalgaard<br />

(1998).<br />

9.2.2 Drikkev<strong>and</strong>sscenario<br />

I drikkev<strong>and</strong>s-scenariet fokuseres der på to strategier for drikkev<strong>and</strong>sbeskyttelse<br />

omfattende græsbraklægning og skovrejsning i områder, der af Viborg Amt i 2002 er<br />

udpeget med henblik på særlig drikkev<strong>and</strong>sbeskyttelse (Nørmark 2002). De to<br />

strategier omfatter:<br />

31


1. Skovrejsning: Etablering af løvskov på alle l<strong>and</strong>brugsarealer, hvor<br />

skovrejsningsområder og drikkev<strong>and</strong>sområder (OSD) er sammenfaldende.<br />

2. Braklægning: Braklægning med flerårig græs på al øvrig l<strong>and</strong>brugsjord i OSDdrikkev<strong>and</strong>sområder<br />

(Jf. erfaringer iflg. Wiborg 2002)<br />

Ved de to strategier er det centrale element for bedriftstilpasningen, hvor stor en <strong>and</strong>el<br />

af bedriftens l<strong>and</strong>brugsareal, der berøres af scenariet. Fælles for de to strategier<br />

antages det, at udtagningen af arealerne er irreversibel, således forstået, at de fremover<br />

ikke kan indgå i bedriftens aktiviteter, dvs. anvendes som harmoniareal mv.<br />

Hvor det kun er en mindre del af arealet der berøres, kan det være rimeligt at antage,<br />

at produktionen på bedriftens øvrige arealer fortsætter uændret efter en proportional<br />

kapacitetstilpasning. Dette betyder, at husdyrholdet reduceres i forhold til <strong>and</strong>elen af<br />

bedriftens areal, der udtages af omdrift. Det resulterende afgrødevalg, på det<br />

resterende areal i omdrift, følger af sædskiftemodellen (Dalgaard et al. 2002a). Hvor<br />

en større del af bedriftens areal berøres af tiltagene vil det være rimeligt at antage, at<br />

husdyrproduktionen helt ophører.<br />

En væsentlig forskel i forhold til marginaljordsscenariet er at de ekstensiverede<br />

arealer i dette scenario fortsat kunne indgå i l<strong>and</strong>brugsdriften – dog som ekstensivt<br />

drevne arealer. Dette er ikke tilfældet for drikkev<strong>and</strong>sscenariet. Ligeledes må de<br />

forventes at l<strong>and</strong>brugsdriften helt vil ophøre ved udtagning af hovedparten af bedrifts<br />

areal. Med dette udgangspunkt anvendes følgende beslutningsregler for<br />

drikkev<strong>and</strong>scenariet:<br />

1. Hvis mindre end 25% af bedriftens areal udtages, antages at bedriften kan tilpasse<br />

sig således at det dyrkede areal og husdyrproduktionen reduceres proportionalt<br />

med det udtagne areal.<br />

2. Hvis mellem 25% og 75% af bedriftens areal udtages antages det at bedriften<br />

tilpasser sig, således at husdyrproduktionen ophører, medens det resterende<br />

l<strong>and</strong>brugsareal i omdrift anvendes til salgsafgrødeproduktion, og vedvarende<br />

græsmarker er uændrede. Dvs. alle disse bedrifter bliver drevet som<br />

planteavlsbedrifter.<br />

3. Hvis mere end 75% af bedriftens areal er udtaget antages det, at<br />

l<strong>and</strong>brugsproduktionen ophører på hele bedriften.<br />

32


Figur 8. Fra det sydlige Område med Særlige Drikkev<strong>and</strong>sinteresser (OSD). Området<br />

i forgrunden tilplantes med skov i drikkev<strong>and</strong>sscenariet, mens arealerne omkring<br />

Ormstrup Sø og Ormstrup Gods (i baggrunden) udtages til græsbrak. Foto: Tommy<br />

Dalgaard (1998).<br />

9.2.3 Småbiotopscenario<br />

I småbiotop-scenariet fokuseres der på udtagning af små marker (


9.3 Scenariesystemet<br />

Scenarierne baseres konkret på et informationssystem, hvor data håndteres i GIS 1 og<br />

sendes rundt til de forskellige simuleringsmodeller. Data returneres til GIS, hvor det<br />

bliver konverteret til kort, som kan bruges til videre analyse og formidling.<br />

9.3.1 Opsætning af GIS systemet<br />

Basis for generering af scenarier er således etablering af en datamodel i GIS, som<br />

beskriver l<strong>and</strong>skabet og de elementer, der indgår heri. Vores datamodel omfatter kort<br />

sagt 3 elementer: l<strong>and</strong>brugsbedrifter (defineret som et punktobjekt), deres tilhørende<br />

markarealer, samt en bred samling af <strong>and</strong>re objekter, som man kan kalde ”øvrige<br />

l<strong>and</strong>skabselementer”. Denne klasse består af veje, bymæssig bebyggelse, læhegn,<br />

skov, ferskv<strong>and</strong>, grøftekanter med mere. Alle disse 3 klasser af objekter indgår i vores<br />

datamodel, som dermed dækker hele fladen i værkstedsområdet. Ud over at modellere<br />

værkstedsområdet i rum, skal vi også modellere i tid, da sigtet er at belyse<br />

konsekvenser af udviklingsprocesser som fx er afhængig af klimavariationer over tid.<br />

Det nødvendiggør en lang række tilpasninger af data, da vores udgangspunkt er data<br />

for et enkelt punkt i tiden, nemlig 1998. Der er hovedsagelig tre elementer i vores<br />

datamodel, som ændrer sig over tid, nemlig sædskiftet på l<strong>and</strong>brugsarealerne,<br />

gødskningen af disse arealer, og den øvrige arealanvendelse på ikke<br />

l<strong>and</strong>brugsarrealer. Arealanvendelsen udenfor l<strong>and</strong>brugsarealerne ændres i scenarierne<br />

ikke over tid, så der er ikke her et behov for at modellere en eventuel ændring i<br />

arealanvendelse. Anderledes er det med sædskiftet og dermed gødskningen over tid.<br />

Opbygningen af modelleringen af såvel sædskifte som gødskning er omtalt under<br />

materialer og metoder. Tilpasningen af data, så de opnår en udstrækning i tid, udføres<br />

ved hjælp af scripts (makroer) i Arcview, som styres fra en menu i et Arcview-projekt<br />

(Figur 10). De forskellige scripts, som er programmeret i det objektorienterede<br />

programmeringssprog Avenue til Arcview, er dokumenteret <strong>and</strong>etsteds (Greve 2002a;<br />

Greve 2002b).<br />

1 Geografisk InformationsSystem. Vi har i ARLAS anvendt Arcview 3.2a som GIS-program.<br />

34


Figur 10. Oversigt over den menu med ArcView scripts, der er udviklet til ARLAS<br />

scenariesystemet (Greve 2002a)<br />

De første af disse scripts initierer bl<strong>and</strong>t <strong>and</strong>et opslagstabeller med husdyrdata,<br />

gødningsnormer og <strong>and</strong>re variable, som indgår i scenarierne. Man indtaster så her<br />

referencen til de aktuelle datafiler, man bruger til hvert scenarie. Man skal altså forud<br />

udarbejde korrigerede tabeller for ændringer i grunddata, når man laver scenarier. Når<br />

alle disse procedurer, er kørt igennem, er GIS-systemet klart til at udveksle data<br />

mellem de forskellige simuleringsmodeller.<br />

9.3.2 Flow af data i scenariesystemet<br />

Udvekslingen afvikles i sekvens, da resultaterne fra nogle modeller er forudsætninger<br />

for<br />

generering af inputdata til <strong>and</strong>re modeller (Figur 11).<br />

35


Figur 11. Sekvenser for udveksling af informationer mellem GIS og de fem<br />

modelsystemer, som indgår i ARLAS Scenariesystemet.<br />

Vi vil her kort gengive proceduren for flow af data mellem GIS og<br />

simuleringsmodellerne, idet vi følger nummereringen i Figur 11. Det første trin (1a) i<br />

udvekslingen af data er bedriftsdata i form af et regneark udtrukket fra generelle<br />

l<strong>and</strong>brugsregistre, som overføres til økonomiberegningsdelen. Retur leveres generelle<br />

beslutningsregler (se materialer og metoder) for på hvilken måde driftslederen på den<br />

enkelte bedrift responderer på de strukturelle forhold, som er angivet i grunddata (2a).<br />

På baggrund heraf genereres i hvert scenario et korrigeret bedriftsdatasæt, hvor bl.a.<br />

afgrødevalg og gødskning er opgjort med sædskifte og gødskningsmodellen. For<br />

udgangssituationen udføres samme procedure, hvorved afgrødevalg og gødskning<br />

bliver sammenlignelig med scenarierne, og på baggrund af de korrigerede bedriftsdata<br />

beregnes værdier for bedrifts- og velfærdsøkonomi, som returneres til GIS (2b). De<br />

korrigerede bedriftsdata konverteres dernæst til et datasæt i et særligt inputdataformat,<br />

som igen styres via et script, som efterfølgende overføres til bedriftsmodellen<br />

FASSET (3). Denne returnerer data på markniveau for bl.a. N-udvaskning og<br />

afstrømning (se Hutchings 2002), som efterfølgende konverteres til kort i GIS (4).<br />

FASSET’s tal for udvaskning og afstrømning udgør basis for generering af input til<br />

den hydrologiske model (5). Endvidere overføres der data til biotopmodellen, som<br />

bruger angivelser af arealanvendelsen som input (6). Faunamodellens input er<br />

information om sædskiftet (7). Herefter er man klar til at modtage resultaterne (8, 9,<br />

10) fra de tre sidstnævnte modeller. Disse resultater konverteres også til kort i GIS og<br />

man er nu klar til at præsentere data eller lave yderligere tværgående analyser med<br />

resultaterne.<br />

36


10 Resultater og diskussion<br />

I dette afsnit samles hovedresultaterne fra beregninger af de tre gennemgåede<br />

scenarier. Der skelnes mellem fire forskellige dimensioner, som påvirkes i hvert<br />

scenario: 1) Økonomi, 2) Kvælstoftab, 3) Flora og 4) Fauna. I hver dimension<br />

demonstreres hvorledes scenariesystemet, via tilknytningen til det geografiske<br />

informationssystem, kan anvendes til at visualisere den geografiske variation af<br />

konsekvenserne i de opstillede scenarier. Desuden samles hovedresultaterne for hver<br />

dimension i en tabel, og der afgives i form af plusser og minusser en subjektiv,<br />

samlet vurdering af konsekvenserne i hvert scenario. Til slut samles vurderingerne i<br />

en oversigtstabel og styrkerne og svaghederne ved scenariesystemet diskuteres.<br />

10.1 Økonomi<br />

Baseret på Schou og Abildtrup (2001), Schou og Abildtrup (2002), Schou (2002)<br />

Tabel 6. Økonomi resultatoversigt. Ændring i kr/ha på de berørte l<strong>and</strong>brugsarealer.<br />

Marginaljords- Drikkev<strong>and</strong>s- Småbiotopscenario<br />

scenario scenario<br />

Berørt l<strong>and</strong>brugsareal 4400 ha 1300 ha 400 ha<br />

Velfærdsøkonomi -5000 -2200 1<br />

-2900 2<br />

Driftsøkonomi -9000 -800 1<br />

-600 2<br />

Samlet vurdering ----- --- 0 3<br />

1 2 3<br />

) ved udnyttelse af EU-tilskud. ) ved udnyttelse af MVJ tilskud. ) Småbiotopscenariet er ikke gennnemregnet, men antages<br />

ikke at have nogen stor, samlet økonomisk betydning.<br />

Figur 12. Eksempel på den geografiske fordeling af ændringer i det økonomiske<br />

resultat for drikkev<strong>and</strong>sscenariet ved udnyttelse af MVJ tilskud. Rød og grøn<br />

signalerer hhv. dårligere og bedre økonomi.<br />

37


10.2 Kvælstoftab: Bedrifts- og hydrologimodellen<br />

Baseret på Dahl et al. (2002) og Dalgaard et al. (2002e)<br />

Tabel 7. Kvælstoftab resultatoversigt. % ændring. N der forlader l<strong>and</strong>brugsarealet er<br />

modelleret med FASSET. N i grundv<strong>and</strong>et lige over redoxgrænsen for hele<br />

værkstedsområdet, N i Tyrebækken, og N i v<strong>and</strong>boringen i det sydlige OSD-område er<br />

modelleret med den hydrogeologiske model.<br />

Marginaljords-<br />

Scenario<br />

Drikkev<strong>and</strong>s-<br />

scenario<br />

Småbiotop-<br />

scenario<br />

FASSET:<br />

Nitrat fra rodzonen -25 -13<br />

Ammoniak -30<br />

Jordpuljen 0<br />

Hydrogeologi:<br />

Grundv<strong>and</strong> -11<br />

V<strong>and</strong> i Tyrebæk -73<br />

Boring i OSD-område -57<br />

Samlet vurdering ++++ 1 ++++ 0 2<br />

1 ) Kun nitratudvaskningen fra rodzonen er opgjort for marginaljordsscenariet. 2 ) Småbiotopscenariet er ikke gennnemregnet, men<br />

antages ikke at have nogen stor, samlet betydning for N-tabet.<br />

Figur 13. Eksempel på den geografiske fordeling af ændringer i udvaskning fra<br />

rodzonen og N-koncentration i grundv<strong>and</strong>smagasinet lige over redoxgrænsen ved<br />

indførsel af drikkev<strong>and</strong>sscenariet. Rød og grøn signalerer hhv. større og mindre<br />

kvælstoftab.<br />

10.3 Flora<br />

Baseret på Munier (2002)<br />

38


Tabel 8. Flora resultatoversigt. Ændring i udbredelse (ha) af skov, halvkultur<br />

(kultureng og kulturgæsl<strong>and</strong>) og halvnaturarealer (Kær, s<strong>and</strong>græsl<strong>and</strong> og <strong>and</strong>re<br />

overdrev), samt ændringen i sammenhængen af disse arealer (beregnet ud fra invers<br />

kvadratisk afst<strong>and</strong> til områder med samme plantesamfund. Dvs. en negativ ændring<br />

indikerer mindre sammenhæng og færre arealer.<br />

Marginaljords-<br />

scenario<br />

Drikkev<strong>and</strong>s-<br />

scenario<br />

Småbiotop-<br />

scenario<br />

Udbredelse:<br />

Halvkultur 347 358 -95<br />

Halvnatur 735 174 107<br />

Skov 0 308 199<br />

Sammenhæng:<br />

Halvkultur -85 284 -87<br />

Halvnatur 266 23 2<br />

Skov 0 1.483 487<br />

Samlet vurdering +++ +++ +<br />

Figur 14. Eksempel på den geografiske fordeling af summen af halvkultur- og<br />

halvnaturarealer, der specielt indeholder de interessante plantesamfund, hhv. i<br />

udgangssituationen og efter indførsel af marginaljordsscenariet.<br />

10.4 Fauna<br />

Baseret på Topping et al. (2002)<br />

Tabel 9. Fauna resultatoversigt. % ændring af populationer af indikatorarter.<br />

Marginaljords-<br />

scenario<br />

Drikkev<strong>and</strong>s-<br />

scenario<br />

Småbiotop-<br />

Scenario<br />

39


Lærker -10 0 -10<br />

Rådyr 0 100 50<br />

Edderkopper -25 -20<br />

1<br />

Markmus 5 15<br />

1<br />

Samlet vurdering -- +++ +<br />

1<br />

Småbiotopscenariet er ikke beregnet for edderkopper og markmus.<br />

Figur 15.<br />

Eksempel på den geografiske fordeling af best<strong>and</strong>ene af rådyr og ynglende<br />

sanglærker i hhv. udgangssituationen og i drikkev<strong>and</strong>sscenariet. De viste størelser er<br />

gennemsnit af en enkel kørsel for en 2 gange en 11 årig klimadataserie, hvilket er et<br />

spinklere talmateriale end det, der ligger bag Tabel 9 og opgørelserne i Topping et al.<br />

(2002).<br />

40


10.5 Resultatoversigt<br />

Tabel 10. Samlet resultatoversigt<br />

Marginaljords- Drikkev<strong>and</strong>s- Småbiotop-<br />

Scenario Scenario scenario<br />

Økonomi ----- --- 0<br />

Kvælstoftab ++++ ++++ 0<br />

Flora +++ +++ +<br />

Fauna -- +++ +<br />

10.6 Diskussion<br />

Det gennemgåede scenariesystems styrke er, at det simultant kan levere økonomiske,<br />

miljømæssige og naturmæssig konsekvenser af ændringer i arealanvendelsen og<br />

l<strong>and</strong>brugsproduktionen, visualisere disse konsekvenser på kort, samt danne basis for<br />

at analysere geografisk relaterede vekselvirkninger mellem disse dimensioner.<br />

Inden for hver af de tre aspekter – økonomi, miljø og natur - har processen med at<br />

konstruere systemet givet anledning til væsentlige nyudviklinger af<br />

simuleringsmodeller. Som sådan er der masser af muligheder i scenariesystemet. Der<br />

er dog stadigvæk et stykke vej at gå, før man står med et værktøj, som er ligeså<br />

praktisk relevant, som det er teoretisk interessant.<br />

En vis afst<strong>and</strong> mellem teoretisk interesse og praktisk relevans viser sig konkret i den<br />

aktuelle brug af scenariesystemet. De her opstillede scenarier har alle det til fælles, at<br />

de ikke er formuleret i en praktisk sammenhæng, hvor man står over for en<br />

problematisk situation og skal have afklaret sine h<strong>and</strong>lemuligheder. Scenarierne er<br />

mest valgt for at afspejle nogle dynamikker som de enkelte modeller er velegnet til at<br />

fremstille. Der er således et mestendels ”forskningsinternt” eller teoretisk perspektiv i<br />

de tre scenarier. En oplagt videre udviklingsproces for scenariesystemet var at vende<br />

dette perspektiv om og tage udgangspunkt i en praktisk sammenhæng, hvor systemets<br />

resultater i højere grad var rettet mod afklaring af usikkerheder og konsekvenser for<br />

nogle givne ”klienter”.<br />

At scenarierne ikke er problemorienterede, viser sig for eksempel ved at der i alle tre<br />

scenarier er negative økonomiske resultater for l<strong>and</strong>bruget. Man kunne derfor måske<br />

konkludere, at natur og økonomi udelukker hin<strong>and</strong>en, hvilket absolut ikke behøver at<br />

være tilfældet. Det berører en central diskussion om, hvilken form for l<strong>and</strong>brug der er<br />

det ”gode” l<strong>and</strong>brug, set i et helhedsperspektiv. De tre scenarier her er et skridt på<br />

vejen mod en vurdering af konsekvenser i et helhedsperspektiv, men det ville forøge<br />

den praktiske værdi af scenarierne væsentligt, hvis de i højere grad blev målrettet mod<br />

at afklare praktiske problemer. Det er dog et væsentligt skridt at disse forskellige<br />

aspekter kan betragtes i rammerne af det samme informationssystem.<br />

Omkring det praktiske perspektiv, bør man også huske på at systemet i sin nuværende<br />

form er meget datatungt og arbejdskrævende, noget som bl<strong>and</strong>t <strong>and</strong>et er relateret til<br />

41


detaljeringsgraden af inputdata. Dette ville i de fleste anvendelsessammenhænge være<br />

svært at realisere, eftersom man ikke kan bruge den samme tid på datagrundlaget som<br />

i ARLAS. En styrke ved scenariesystemet er dog, at man kan bruge forskellige<br />

modeller og koble dem sammen med GIS. For eksempel var det oplagt at bruge<br />

”lettere” simuleringsmodeller, som i højere grad kunne bruges i en praktisk<br />

sammenhæng. Udvikling af sådanne light-udgaver af simulerings-modellerne og<br />

ARLAS scenariosystemet kunne være et mål for fremtiden. I den forbindelse bør det<br />

også være et mål at udviklingen sker med henblik på afdækning af konkrete behov –<br />

fx hos statslige, amtslige og kommunale myndigheder eller hos l<strong>and</strong>bruget og dets<br />

organisationer.<br />

11 Referencer<br />

Caspersen OH og Jensen FS (2002) Fra udmark til rekreativ ressource. Papir til<br />

ARLAS Workshop 3.-4. december 2002.<br />

Dahl M, Per Rasmussen, Lisbeth Flindt Jørgensen, Vibeke Ernstsen, Frants von<br />

Planten-Hallermund og Stig Schack Pedersen (2002) Effekter af ændret<br />

arealanvendelse for nitratindhold i grundv<strong>and</strong> og overfladev<strong>and</strong> - beskrevet ved<br />

scenariestudier. Papir til ARLAS Workshop 3.-4. december 2002.<br />

Dalgaard T (2000) Notat vedrørende sædskifter for bedriftstyperne i ARLAS.<br />

Danmarks JordbrugsForskning, Foulum.<br />

Dalgaard T, Christen Duus Børgesen, Mette Balslev Greve, Tove Heidmann, Nick<br />

Hutchings, Jørgen F. Hansen, Chris Kjeldsen, Jan Nyholm, Birgit Møller Rasmussen<br />

(2002a): Arealanvendelsen i værkstedsområdet. Danmarks JordbrugsForskning 9/2.<br />

Dalgaard T, Christen Duus Børgesen, Mette Balslev Greve, Tove Heidmann, Nick<br />

Hutchings, Jørgen F. Hansen, Chris Kjeldsen, Jan Nyholm, Birgit Møller Rasmussen<br />

(2002b): Husdyrhold, gødningsproduktion og gødningsfordeling i værkstedsområdet.<br />

Danmarks JordbrugsForskning 9/2.<br />

Dalgaard T, Christen Duus Børgesen, Mette Balslev Greve, Tove Heidmann, Nick<br />

Hutchings, Jørgen F. Hansen, Chris Kjeldsen, Jan Nyholm, Birgit Møller Rasmussen<br />

(2002c): Marginaljords-scenariet. Danmarks JordbrugsForskning 10/5.<br />

Dalgaard T, Christen Duus Børgesen, Mette Balslev Greve, Tove Heidmann, Nick<br />

Hutchings, Jørgen F. Hansen, Chris Kjeldsen, Jan Nyholm, Birgit Møller Rasmussen,<br />

Jesper S. Schou (2002d): Drikkev<strong>and</strong>s-scenariet. Danmarks JordbrugsForskning 21/6.<br />

Dalgaard et al. (2002e) V<strong>and</strong>beskyttelse. Papir til ARLAS Workshop 3.-4. december<br />

2002.<br />

Dalgaard T og Rygnestad H (2000) Intern arbejdsrapport vedrørende klassificering<br />

og geografisk kortlægning af bedriftstyper. Danmarks JordbrugsForskning.<br />

42


Greve MB (2002a) Scripts I ARLAS udgangssituationen. Danmarks<br />

JordbrugsForskning.<br />

Greve MB (2002b) Scripts I ARLAS Marginaljordsapplikationen. Danmarks<br />

JordbrugsForskning.<br />

Hutchings NJ (2002) Modellering af N-tab fra plante-, svine- og kvægbedrifter. Papir<br />

til ARLAS Workshop 3.-4. december 2002.<br />

Kjeldsen (2000) Predicting crop allocation on field scale. Proceedings, GIS 2000 -<br />

14 th Annual Conference on Geographical Information Systems, March 13-16, 2000,<br />

Metro Toronto Convention Centre, Toronto, Ontario, Canada<br />

Münier B (2002) Biotop-modellering af 4 scenarier. Papir til ARLAS Workshop 3.-4.<br />

december 2002.<br />

Nørmark P (2002) Mulige kriterier for Drikkev<strong>and</strong>sscenario. Notat fra Viborg Amt<br />

den 13. Maj.<br />

Odderskær P (2002) Konsekvenser for sanglærken ved omlægning til økologisk jordbrug. In:<br />

Langer et al. FØJO rapport nr. 12. ISSN 1398-716X.<br />

Rygnestad H, Jensen JD & Dalgaard T (2000) Målrettede eller generelle politiske<br />

virkemidler? Økonomiske analyser i geografisk perspektiv. Series WP 17/00, 48 pp.<br />

ISSN 1398-4896.<br />

Schou JS og Abildtrup J (2001) Økonomiske konsekvenser ved omlægning af<br />

marginaljorder til vedvarende græs – metoder og resultater. ARLAS-notat 22. maj.<br />

Danmarks Miljøundersøgelser, Roskilde og Fødevareøkonomisk Institut,<br />

Frederiksberg.<br />

Schou JS (2002) Økonomisk analyse af skovrejsning og braklægning som strategier til<br />

drikkev<strong>and</strong>sbeskyttelse. DMU rapport in prep. Danmarks Miljøundersøgelser,<br />

Roskilde<br />

Schou JS og Abildtrup J (2002) Miljøøkonomiske analyser af scenarier for<br />

l<strong>and</strong>brugets arealanvendelse. Papir til ARLAS Workshop 3.-4. december 2002.<br />

Topping C, Odderskær P og Jepsen JU (2002) Effekten af l<strong>and</strong>skabsændringer på den<br />

vilde fauna belyst ved modelscenarier. Papir til ARLAS Workshop 3.-4. december<br />

2002.<br />

Torp S (2002) Jordbundskortlægning i værkstedsområdet i Bjerringbro/Hvorslev.<br />

Papir til ARLAS Workshop 3.-4. december 2002.<br />

Wiborg IA (2002) Nitratfølsomme indvindingsområder og aftaler om<br />

drikkev<strong>and</strong>sbeskyttelse. Notat fra L<strong>and</strong>brugets Rådgivningscenter 1. Maj.<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!