15.07.2013 Views

Disposition of Hydrocodone in Hair - Journal of Analytical Toxicology

Disposition of Hydrocodone in Hair - Journal of Analytical Toxicology

Disposition of Hydrocodone in Hair - Journal of Analytical Toxicology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Journal</strong> <strong>of</strong> <strong>Analytical</strong> <strong>Toxicology</strong>, Vol. 30, July/August 2006<br />

<strong>Disposition</strong> <strong>of</strong> <strong>Hydrocodone</strong> <strong>in</strong> <strong>Hair</strong><br />

Christ<strong>in</strong>e Moore'>, Michael Feldman-, Edward Harrison>, Sumandeep Rana', Cynthia Coulter', David Kuntz-,<br />

Alpana Agrawal', Michael V<strong>in</strong>cent', and James Soares'<br />

llmmunalysis Corporation, 829 Towne Center Drive, Pomona, California 91767 and2LabOne, Salt Lake City, Hayes Build<strong>in</strong>g,<br />

Unit C, 2282 South Presidents Drive, West Valley City, Utah 84120<br />

I Abstract I<br />

Theuse <strong>of</strong> prescription drugs, <strong>in</strong>clud<strong>in</strong>g syntheticopiates,is<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong> the U.S., withemergency room reports show<strong>in</strong>g a<br />

dramatic rise <strong>in</strong> prescription opiate abuse. As part <strong>of</strong> an ongo<strong>in</strong>g<br />

study, the hair <strong>of</strong> admitted opiate users wasanalyzed for<br />

hydrocodone and hydromorphone, as wellas code<strong>in</strong>e,morph<strong>in</strong>e,<br />

and 6-acetylmorph<strong>in</strong>e <strong>in</strong> order to determ<strong>in</strong>eifthere wasany<br />

correlationbetweenself-reported frequency <strong>of</strong> opiate <strong>in</strong>takeand<br />

the concentration <strong>of</strong> drug detected <strong>in</strong> hair. Thehairswere<br />

confirmed us<strong>in</strong>g gaschromatography-mass spectrometry follow<strong>in</strong>g<br />

screen<strong>in</strong>g byenzymel<strong>in</strong>ked immunosorbent assay(ELISA).<br />

Twenty-four hair specimens collectedfrom volunteers showed the<br />

presence <strong>of</strong> hydrocodone (130-15,933 pg/mg); four <strong>of</strong> those also<br />

conta<strong>in</strong>ed hydromorphone (59-504 pg/mg). Thespecimens were<br />

alsoanalyzed for morph<strong>in</strong>e, code<strong>in</strong>e,and 6-acetylmorph<strong>in</strong>e. <strong>Hair</strong><br />

specimens from five self-reported code<strong>in</strong>eusersshowed<br />

concentrations <strong>of</strong> hydrocodone between592 and 15,933 pg/mg.<br />

Inaddition,code<strong>in</strong>ewas presentat concentrations <strong>of</strong> 575-20,543<br />

pg/mg, but neither morph<strong>in</strong>e nor hydromorphone were present <strong>in</strong><br />

any <strong>of</strong> those hair specimens. Though the analysis <strong>of</strong> someopiates<br />

<strong>in</strong> hair has been previously published, this is the firststudywhere<br />

the hydrocodone and hydromorphone concentrations have been<br />

measured follow<strong>in</strong>g self-reported opiate <strong>in</strong>take.<br />

Introduction<br />

Prescription opioids such as Vicod<strong>in</strong>'", Lortab" (hydrocodone),<br />

and Dilaudid'? (hydromorphone) are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

abused <strong>in</strong> the U.S. Data from the 2003 Drug Abuse<br />

Warn<strong>in</strong>g Network, which collects <strong>in</strong>formation on drug-related<br />

episodes from hospital emergency departments <strong>in</strong> metropolitan<br />

areas, aswell as from Medical Exam<strong>in</strong>er <strong>of</strong>fices, listed opiates<br />

or opioids as present <strong>in</strong> 20,830 cases <strong>of</strong>emergency room (ER)<br />

visits because <strong>of</strong>overmedication. Non-medical use<strong>of</strong> opioids<br />

accounted for 17% <strong>of</strong>ER visits. Various surveys <strong>in</strong>dicate an <strong>in</strong>crease<br />

<strong>in</strong> the use <strong>of</strong> prescription opiates, with hydrocodone<br />

be<strong>in</strong>g among the drugs show<strong>in</strong>g the mostpronounced trends<br />

<strong>of</strong><strong>in</strong>creas<strong>in</strong>g abuse (1). In a recent study <strong>of</strong>prescription drug<br />

* Author to whom correspondence should be addressed. E-mail cmoore@immunalysis.com.<br />

abuse <strong>in</strong> Miami, 36% <strong>of</strong> ecstasy users also reported hydrocodone<br />

use (2).<br />

Procedures for the detection <strong>of</strong> these drugs <strong>in</strong> ur<strong>in</strong>e have<br />

been published (3,4) and there are several publications regard<strong>in</strong>g<br />

the <strong>in</strong>corporation <strong>of</strong>opiates <strong>in</strong>tohair (5,6), <strong>in</strong>clud<strong>in</strong>g<br />

studies employ<strong>in</strong>g the analysis <strong>of</strong>hair to prove hero<strong>in</strong> <strong>in</strong>take<br />

and/or dist<strong>in</strong>guish hero<strong>in</strong> use from morph<strong>in</strong>e or code<strong>in</strong>e <strong>in</strong>gestion<br />

(7,8). As far back as 1994, Nakahara etal. (9) described<br />

the importance <strong>of</strong>the efficient extraction <strong>of</strong>opiates from hair,<br />

compar<strong>in</strong>g five extraction methods. Other procedures for the<br />

determ<strong>in</strong>ation <strong>of</strong>drugs used <strong>in</strong> the treatment<strong>of</strong>hero<strong>in</strong> addiction,<br />

such as methadone (10), l-a-acetylmethadol (11), and<br />

buprenorph<strong>in</strong>e (12), <strong>in</strong> hairhave also been reported. However,<br />

we found only one publication specifically describ<strong>in</strong>g the detection<br />

<strong>of</strong> hydrocodone and hydromorphone, as well as oxymorphone<br />

and oxycodone simultaneously <strong>in</strong>human hairus<strong>in</strong>g<br />

gas chromatography-mass spectrometry (GC-MS) (13). The<br />

paper describes the methodology <strong>of</strong>analysis, but has noresults<br />

from the analysis <strong>of</strong> samples where drug <strong>in</strong>take history was<br />

available.<br />

Materials and Methods<br />

Subjects<br />

Ourstudy enrolled subjects from the Drug andAlcohol Recovery<br />

Team (DART) <strong>in</strong> Fullerton, Orange County, Southern<br />

California andwas approved underImmunalysis Institutional<br />

Review Board (IRB # 2004-05-001). Subjects were made aware<br />

<strong>of</strong> the purpose <strong>of</strong> the study and gave <strong>in</strong>formed consent. Although<br />

<strong>in</strong>formation ondrug use, <strong>in</strong>clud<strong>in</strong>g time <strong>of</strong>last use, frequency<br />

<strong>of</strong> use, ethnicity, age, gender, and hair color were<br />

recorded for each subject, names, addresses, or other identify<strong>in</strong>g<br />

<strong>in</strong>formation were not collected on the <strong>in</strong>terview sheet.<br />

Complete anonymity was established dur<strong>in</strong>g the sample collection<br />

and laboratory test<strong>in</strong>g procedures. Each subject provided<br />

a hair specimen taken from the vertex portion <strong>of</strong> the<br />

head at the time <strong>of</strong><strong>in</strong>terview. The subjects were asked ifthey<br />

took opiates, not specifically hero<strong>in</strong>, code<strong>in</strong>e, or other synthetic<br />

opiates. None <strong>of</strong> the subjects reported hav<strong>in</strong>g a pre-<br />

Reproduction (photocopy<strong>in</strong>g) <strong>of</strong> editorial content <strong>of</strong> this journal is prohibited without publisher's permission. 353


scription for opiates. <strong>Hair</strong> was transported to thetest<strong>in</strong>g facility<br />

andstored at room temperature.<br />

Experimental<br />

<strong>Hair</strong>screen<strong>in</strong>g kitswere obta<strong>in</strong>ed from Immunalysis Corporation<br />

(Pomona, CAl. The Opiates Direct ELISA Kit (Catalog<br />

# 207-0480) was used for screen<strong>in</strong>g the hair specimens and<br />

was used accord<strong>in</strong>g to the manufacturer's <strong>in</strong>structions. For<br />

confirmatory procedures, deuterated morph<strong>in</strong>e-d-, code<strong>in</strong>e-dj,<br />

hydrocodone-dj, hydrornorphone-dj, andfi-acetylrnorph<strong>in</strong>e-dj<br />

as <strong>in</strong>ternal standards aswell as the correspond<strong>in</strong>g unlabelled<br />

drug standards were obta<strong>in</strong>ed from Cerilliant (Round Rock,<br />

TX). Solid-phase mixed-mode cation exchange-hydrophobic<br />

phase extraction columns (CSDAU020, 200 mg) were obta<strong>in</strong>ed<br />

from United Chemical Technologies Inc. (Bristol, PAl. The<br />

derivatiz<strong>in</strong>g agent, N,O-bis-trimethylsilyl-trifluoroacetamide<br />

(BSTFA) conta<strong>in</strong><strong>in</strong>g 1% trimethylchlorosilane (TMCS), was<br />

obta<strong>in</strong>ed from Pierce Chemical Co. (Rockford, IL). All solvents<br />

were high-performance liquid chromatography grade or<br />

better, and all chemicals were American Chemical Society<br />

grade.<br />

Screen<strong>in</strong>g assay<br />

The Immunalysis Opiates Direct ELISA kit is based upon<br />

the competitive b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> enzyme-labeled antigenand unlabeled<br />

antigen to antibody <strong>in</strong> proportion to their concentration<br />

<strong>in</strong> the reaction well. <strong>Hair</strong> was cut <strong>in</strong>to small segments<br />

(3-5 mm), andan aliquot<strong>of</strong>10mgwas weighed. The<br />

hair was washed briefly with methanol (2 mL/10 m<strong>in</strong>), the<br />

solvent was decanted, andthe hair was allowed to dry. To the<br />

hairs, 0.025M phosphate buffer (pH 2.7,0.5 mL) was added;<br />

the tubeswere capped and <strong>in</strong>cubated at 60°C for 2 h. Phosphate<br />

buffer (O.5M, pH 9.0, 50ul.)was added to neutralize the<br />

acid environment, and the liquids were transferred to correspond<strong>in</strong>g<br />

clean glass tubes. Astandard curve consist<strong>in</strong>g <strong>of</strong>a<br />

drug-free negative hair specimen, a drug-free hair specimen<br />

spiked at 100pg/mg <strong>of</strong>morph<strong>in</strong>e, anda drug free hair specimen<br />

spiked at 400 pglmg <strong>of</strong> morph<strong>in</strong>e, as well as a cut-<strong>of</strong>f<br />

calibrator at 200 pglmg morph<strong>in</strong>e were <strong>in</strong>cluded <strong>in</strong> duplicate<br />

<strong>in</strong> every batch. All specimens, calibrators, and controls were<br />

diluted 1:5 by add<strong>in</strong>g 400 ul, <strong>of</strong>phosphate buffer sal<strong>in</strong>e (PBS),<br />

with 0.1 % bov<strong>in</strong>e serum album<strong>in</strong> (pH 7.0) to 100 ul, <strong>of</strong> extract.<br />

An aliquot <strong>of</strong>the diluted hair extract (20 ul.) was then<br />

added to the <strong>in</strong>dividual microplate well, and the screen<strong>in</strong>g<br />

assay was performed accord<strong>in</strong>g to the manufacturer's <strong>in</strong>structions.<br />

Theassay performance was optimal when20-60<br />

pg <strong>of</strong> morph<strong>in</strong>e were placed <strong>in</strong>to the microplate well. A<br />

sample size <strong>of</strong>20ul, <strong>of</strong>the diluted hairextract gave good separation<br />

at the screen<strong>in</strong>g cut-<strong>of</strong>f concentration <strong>of</strong> 200 pg <strong>of</strong><br />

morph<strong>in</strong>e equivalents permilligram <strong>of</strong>hair. The assay showed<br />

broad spectrum cross reactivity withother opiates, <strong>in</strong>clud<strong>in</strong>g<br />

code<strong>in</strong>e (200%), hydrocodone (93%), 6-acetylmorph<strong>in</strong>e<br />

(83%), hydromorphone (81%), oxycodone (21%), and oxymorphone<br />

(20%).<br />

Efficiency <strong>of</strong> screen<strong>in</strong>g extraction<br />

The extraction efficiency <strong>of</strong> the screen<strong>in</strong>g assay was determ<strong>in</strong>ed.<br />

Three hair specimens already confirmed for the pres-<br />

354<br />

<strong>Journal</strong> <strong>of</strong> <strong>Analytical</strong> <strong>Toxicology</strong>, Vol. 30, July/August 2006<br />

ence <strong>of</strong>opiates were selected and analyzed accord<strong>in</strong>g to the described<br />

procedure. After thefirst extract solution was removed,<br />

the hairwas r<strong>in</strong>sed, dried, andre-extracted for 1h (Extract 2).<br />

The solution was removed, anda third extraction was carried<br />

out (Extract 3).The extracts were screened as described or, if<br />

necessary, further diluted <strong>in</strong>tothe l<strong>in</strong>ear range <strong>of</strong>thescreen<strong>in</strong>g<br />

assay.<br />

Confirmatory assay<br />

Specimens show<strong>in</strong>g <strong>in</strong>hibition lower thanthat <strong>of</strong>the cut-<strong>of</strong>f<br />

calibrator (200 pglmg) were considered to be presumptively<br />

positive for opiates andwere carried forward to confirmation<br />

us<strong>in</strong>g GC-MS, operat<strong>in</strong>g <strong>in</strong> electron impact mode.<br />

Aseparate aliquot <strong>of</strong> hair was weighed out (10 mg). Low<br />

(100 pg/mg), medium (200 pg/rng), and high (500 pglmg)<br />

controls were also prepared. The <strong>in</strong>ternal standard solution<br />

conta<strong>in</strong>ed deuterated morph<strong>in</strong>e-dj, code<strong>in</strong>e-dj, acetylmorph<strong>in</strong>e-d,<br />

(6-AM), hydromorphone-dj, and hydrocodone-d, <strong>in</strong><br />

acetonitrile (200 nglmL). The samples were <strong>in</strong>cubated <strong>in</strong> acetone<br />

(1.5 mL) for5 m<strong>in</strong>at roomtemperature to remove gels,<br />

sprays, or extraneous cosmetic treatments on the hair, and<br />

thenthe acetone was discarded. Internal standard (50 mL) was<br />

added to each calibrator, control, or hair specimen at a concentration<br />

<strong>of</strong>1000 pglmg. Methanol (3 mL) was added, andthe<br />

samples were allowed to sonicate (2 hI70°C). The methanol<br />

was decanted and evaporated to dryness. To the rema<strong>in</strong><strong>in</strong>g<br />

hair, O.1M hydrochloric acid (1.5 mL) was added, and the<br />

tubeswere capped and<strong>in</strong>cubated overnight at 55°C. The acid<br />

was decanted <strong>in</strong>to the correspond<strong>in</strong>g dried methanol tube,<br />

and O.1M phosphate buffer (pH 6.0; 3 mL) was added. Solidphase<br />

mixed mode extraction columns (CleanScreen<br />

CSDAU0133) were placed <strong>in</strong>to a vacuum manifold. Each<br />

column was conditioned withethyl acetate (2 mL), methanol<br />

(2 mL), and O.1M phosphate buffer (pH 6.0; 2 mL). The samples<br />

were allowed to flow through the columns, then the<br />

columns were washed with deionized water (1 mL), O.1M hydrochloric<br />

acid (1 mL), methanol (1 mL), andethyl acetate (1<br />

mL). The columns were allowed to dry underpressure (15 psi,<br />

5 m<strong>in</strong>). The drugs were f<strong>in</strong>ally eluted us<strong>in</strong>g freshly prepared<br />

ethyl acetate/2% ammonium hydroxide (98:2, 3 mL). Theextractswere<br />

evaporated to dryness undernitrogen and reconstituted<br />

<strong>in</strong> ethyl acetate (25 ilL) and BSTFA-l%TMCS (25 ilL).<br />

Thetubes were capped andheated at 70°C for20m<strong>in</strong>.The extracts<br />

were transferred to autosampler vials for analysis by<br />

GC-MS. Controls andcalibrators were <strong>in</strong>cluded <strong>in</strong> each batch<br />

as described.<br />

<strong>Analytical</strong> procedure (GC-MS)<br />

Forconfirmation <strong>of</strong>thepresence <strong>of</strong>opiates, anAgilent Technologies<br />

6890 GC coupled toa 5975 mass selective detector operat<strong>in</strong>g<br />

<strong>in</strong> electron impact mode was used for analysis<br />

(GC-MS). The GC column was a DB-5 MS (0.25-mm i.d., 0.25­<br />

11m film thickness, 15-m length, J&W Scientific, an Agilent<br />

Company), and the <strong>in</strong>jection temperature was 250°C. The <strong>in</strong>jection<br />

mode was splitless. The oven was programmed from<br />

100°C for 0.5 m<strong>in</strong>, ramped at 40°C/m<strong>in</strong> to 230°C, thenramped<br />

at 5°C/m<strong>in</strong> to 250°C. The transfer l<strong>in</strong>e was held at 280°C, the<br />

MS source was 230°C, andthe quadropole at 150°C. The ions


<strong>Journal</strong> <strong>of</strong> <strong>Analytical</strong> <strong>Toxicology</strong>, Vol. 30, July/August 2006<br />

monitored were as follows: deuterated code<strong>in</strong>e and hydrocodone<br />

m/z 374 (237); unlabelled code<strong>in</strong>e and hydrocodone<br />

m/z371, (234, 196); deuterated morph<strong>in</strong>e and hydromorphone<br />

Table I. Extraction Efficiency for ELISA Screen<strong>in</strong>g<br />

Procedure<br />

Screen<strong>in</strong>g Result: Morph<strong>in</strong>e Equivalents<br />

Sample Extract Extract Extract Total<br />

# 1 h 2h 3h value<br />

259 pglmg 974 301 217 1492<br />

% Extraction 65.2% 20.1% 14.5% 100%<br />

260 pglmg 2207 222 126 2555<br />

% Extraction 85.2% 9.4% 5.3% 100%<br />

361 pglmg 1359 140 54 1553<br />

% Extraction 87.5% 9.0% 3.4% 100%<br />

Mean 79.2% 91.7%<br />

CV(%) 15.4% 6.3%<br />

Table II. Extraction Efficiency for Confirmatory<br />

Procedure<br />

GC-MS<br />

Result Code<strong>in</strong>e Morph<strong>in</strong>e 6-Acetylmorph<strong>in</strong>e <strong>Hydrocodone</strong><br />

Sample 106<br />

Day 1 2799 3036 1089 1828<br />

% Extraction 92.2% 94.1% 90.2% 83.3%<br />

Day 2 235 188 117 364<br />

% Extraction 7.7% 5.8% 9.7% 16.6%<br />

Sample 187<br />

Day 1 20,543 - - 15,852<br />

% Extraction 99.2% - - 99.5%<br />

Day 2 164 - - 74<br />

% Extraction 0.8% - - 0.4%<br />

Sample 225<br />

Day 1 339 1379 1758 764<br />

% Extraction 100% 100% 100% 92.9%<br />

Day 2 - - 58<br />

% Extraction 7.0%<br />

Sample 266<br />

Day 1 19,489 - - 15,933<br />

% Extraction 98.8% - - 99.3%<br />

Day 2 217 - - 108<br />

% Extraction 1.2% - - 0.7%<br />

Sample 300<br />

Day 1 2197 2501 932 1763<br />

% Extraction 93.1% 94.4% 92.8% 83.5%<br />

Day 2 161 147 72 346<br />

% Extraction 6.9% 5.6% 7.2% 16.5%<br />

Sample 340<br />

Day 1 6918 - - 5814<br />

% Extraction 100 - - 100<br />

m/z 432 (417); unlabelled morph<strong>in</strong>e andhydrornorphone m/z<br />

429 (414, 401); deuterated 6-acetylmorph<strong>in</strong>e m/z 402 (343);<br />

unlabelled 6-AM m/z 399 (340, 287). The qualify<strong>in</strong>g ions are<br />

shown <strong>in</strong>parentheses. All the drugs were well separated by retention<br />

time. Specimens were considered positive for theopiate<br />

drugs if present above the limit <strong>of</strong> quantitation <strong>of</strong> the assay<br />

(50 pg/mg).<br />

Efficiency <strong>of</strong> confirmatory extraction<br />

The extraction efficiency <strong>of</strong> the method was established.<br />

Six hair specimens conta<strong>in</strong><strong>in</strong>g high concentrations <strong>of</strong> opiates,<br />

relative to the 200 pg/mg screen<strong>in</strong>g cut-<strong>of</strong>f, were selected<br />

andanalyzed accord<strong>in</strong>g to the extraction protocol. The<br />

rema<strong>in</strong><strong>in</strong>g hair was dried and extracted aga<strong>in</strong>; the hair<br />

rema<strong>in</strong><strong>in</strong>g from that was subjected to a third extraction<br />

procedure. The extracts were confirmed us<strong>in</strong>g the GC-MS<br />

procedure described.<br />

Results and Discussion<br />

Method validation<br />

GC-MS. The precision <strong>of</strong>the assay was determ<strong>in</strong>ed by analyz<strong>in</strong>g<br />

hair specimens conta<strong>in</strong><strong>in</strong>g code<strong>in</strong>e, morph<strong>in</strong>e, and<br />

6-acetylmorph<strong>in</strong>e at concentrations <strong>of</strong>50, 100,200,500, and<br />

1000 pg/mg. The <strong>in</strong>terday precision <strong>of</strong>the assay at 200 pglmg<br />

for code<strong>in</strong>e, morph<strong>in</strong>e, and 6-acetylmorph<strong>in</strong>e was 2.20%,<br />

2.97%, and2.27%, respectively, (n = 6). The <strong>in</strong>traday precision<br />

was 2.37%, 2.78%, and 0.53% for code<strong>in</strong>e, morph<strong>in</strong>e, and<br />

6-AM, respectively, (n = 5). The limit <strong>of</strong> quantitation <strong>of</strong> the<br />

system was 50pglmg for all analytes; thecorrelation coefficient<br />

for all calibration curves was greater than r 2 = 0.99, and the<br />

upper limit <strong>of</strong>l<strong>in</strong>earity was 1000 pg/mg,Specimens exceed<strong>in</strong>g<br />

the upper limit were either re-extracted us<strong>in</strong>g less sample<br />

volume or diluted so the analytical value lay with<strong>in</strong> the calibration<br />

curve parameters.<br />

Extractionefficiency. The extraction efficiency <strong>of</strong>both the<br />

screen<strong>in</strong>g procedure andtheconfirmatory extraction methods<br />

were determ<strong>in</strong>ed. The screen<strong>in</strong>g method was efficient, with<br />

Table III. Overall Extraction Recovery<br />

Specimen Code<strong>in</strong>e Morph<strong>in</strong>e 6-Acetylmorph<strong>in</strong>e <strong>Hydrocodone</strong><br />

106 92.2 94.1 90.2 83.3<br />

187 99.2 99.5<br />

225 100 100 100 92.9<br />

266 98.8 99.3<br />

300 93.1 94.4 92.8 83.5<br />

340 100 100<br />

Mean 97.2 96.1 94.3 93.08<br />

extraction<br />

recovery<br />

(%)<br />

CV(%) 3.68 3.45 5.38 8.53<br />

355


an average extraction recovery <strong>of</strong>79.2% <strong>of</strong>morph<strong>in</strong>e equivalents<br />

<strong>in</strong>thefirst hour<strong>of</strong><strong>in</strong>cubation. After thesecond hour, the<br />

mean recovery was 91.7% with a coefficient <strong>of</strong> variation <strong>of</strong><br />

6.3% (n =3). The confirmatory procedure was also extremely<br />

efficient with recoveries for all four opiates over 93% (n =6).<br />

The results areshown <strong>in</strong> Tables I-III.<br />

Specimens<br />

Overall, 24hairspecimens tested positively for hydrocodone<br />

or hydromorphone.<br />

<strong>Hydrocodone</strong>. <strong>Hydrocodone</strong> was present <strong>in</strong> all24synthetic<br />

opiate-positive samples. Eight <strong>of</strong>the subjects did not admit to<br />

opiate use <strong>of</strong>any k<strong>in</strong>d. Five subjects reported specifically to the<br />

Table IV. Frequency <strong>of</strong> Opiate Intake <strong>in</strong> Specimens Positive for <strong>Hydrocodone</strong><br />

<strong>Journal</strong> <strong>of</strong> <strong>Analytical</strong> <strong>Toxicology</strong>, Vol. 30,July/August 2006<br />

<strong>in</strong>gestion <strong>of</strong>code<strong>in</strong>e, andallprovided hairsamples that tested<br />

positively for hydrocodone and code<strong>in</strong>e (it should be noted<br />

that one<strong>of</strong>the subjects admitted hydrocodone <strong>in</strong>take <strong>in</strong> additionto<br />

code<strong>in</strong>e). Three <strong>in</strong>dividuals reported hydrocodone use<br />

<strong>in</strong>addition tohero<strong>in</strong> or code<strong>in</strong>e <strong>in</strong>take, and all were positive for<br />

hydrocodone <strong>in</strong> the hair.<br />

The self-reported drug <strong>in</strong>take <strong>of</strong> the subjects is shown <strong>in</strong><br />

Table IV along with theanalytical results. <strong>Hydrocodone</strong> was detected<br />

<strong>in</strong> all hair samples follow<strong>in</strong>g admitted code<strong>in</strong>e <strong>in</strong>take,<br />

but, notably, morph<strong>in</strong>e was not detected <strong>in</strong> measurable concentrations.<br />

Hydromorphone. Foursamples conta<strong>in</strong>ed hydromorphone<br />

above the limit <strong>of</strong> quantitation (Table III). Two were from<br />

Self-Reported Opiate Intake Concentration Detected <strong>in</strong> <strong>Hair</strong>(pg/mg)<br />

Drug Frequency <strong>of</strong> use Code<strong>in</strong>e Morph<strong>in</strong>e 6-AM HYC' HYM<br />

Hero<strong>in</strong> 4 times/week 841 2006 1622 130<br />

Hero<strong>in</strong> 2 times/week 285 734 667 135 -<br />

Hero<strong>in</strong> 3 times/week - 570 831<br />

MTD 1time/day 154<br />

Hero<strong>in</strong> 1time/month - - - 155<br />

Hero<strong>in</strong> 14times/week 5743 15,206 7623 161 504<br />

Hero<strong>in</strong> 7 times/week 1958 9160 9925 202 268<br />

NA - - - - 224<br />

Opiates 3 times/week 192 - - 263 -<br />

Hero<strong>in</strong> 4 times/week 399 684<br />

HYC 3000 mg/day 289 373<br />

NA - - - - 477<br />

Code<strong>in</strong>e 500 mg/day 6516 - -<br />

HYC 750 mg/day 592<br />

NA - - - - 669<br />

Hero<strong>in</strong> 1time/week 339 1379 1758 764<br />

Hero<strong>in</strong> 1 time/week 2197 2501 932<br />

MTD 1time/day 1763<br />

Hero<strong>in</strong> 1times/month<br />

HYC 1time/week<br />

MTD 1 time/day 2799 3036 1089 1828<br />

NA - 100 190 81 2287 -<br />

NA - 157 - - 2974<br />

NA - 113 244 102 3110 82<br />

Code<strong>in</strong>e 3000 mg/day 575 - - 3150 -<br />

NA - 100 199 73 3156 59<br />

Code<strong>in</strong>e 2000 mg/day 851 - - 4019 -<br />

NA - 6918 - - 5814<br />

Code<strong>in</strong>e 1000 mg/day 20,543 - - 15,852<br />

Code<strong>in</strong>e 500 mg/day 19,489 - - 15,933<br />

, Abbreviations; 6-AM, 6-acetylmorph<strong>in</strong>e; HYC, hydrocodone; HYM, hydromorphone; MTD, methadone;and NA, no admission <strong>of</strong> opiate <strong>in</strong>take.<br />

356


Correlation<br />

There appeared to be no correlation between amount <strong>of</strong><br />

drug <strong>in</strong>gested and the concentration <strong>of</strong> any drug or drug<br />

metabolite detected <strong>in</strong> hair. Such a correlation has been reported<br />

for code<strong>in</strong>e, when the code<strong>in</strong>e levels arenormalized to<br />

the melan<strong>in</strong> (phaeomelan<strong>in</strong> and eumelan<strong>in</strong>) content <strong>of</strong> the<br />

hair. Unfortunately, theamount <strong>of</strong>hairneeded tocarry outthe<br />

determ<strong>in</strong>ation <strong>of</strong> total melan<strong>in</strong>, eumelan<strong>in</strong>, screen<strong>in</strong>g, and<br />

confirmation <strong>of</strong> each hair was impractical <strong>in</strong> our study. Accord<strong>in</strong>g<br />

to the method <strong>of</strong>Kronstrand et al. (26),50 mg<strong>of</strong>hair<br />

was necessary for total melan<strong>in</strong> determ<strong>in</strong>ation and30mgfor<br />

eumelan<strong>in</strong>. Our study required 10 mgfor screen<strong>in</strong>g and 20mg<br />

for confirmation, requir<strong>in</strong>g a total <strong>of</strong> 110 mg<strong>of</strong>hairpersubject,<br />

assum<strong>in</strong>g no repeats were necessary.<br />

Because melan<strong>in</strong> is predom<strong>in</strong>antly responsible for hair coloration,<br />

we assessed theaverage opiate concentration based on<br />

thehair color <strong>of</strong>subjects <strong>in</strong>thestudy (Figure 2). There was only<br />

one red-haired subject and only one blonde subject positive for<br />

morph<strong>in</strong>e and 6-acetylmorph<strong>in</strong>e; thus, these haircolors were<br />

not<strong>in</strong>cluded <strong>in</strong>theaverage values reported. Overall, grey-haired<br />

subjects had thehighest average concentration <strong>of</strong>code<strong>in</strong>e (5069<br />

pglmg) and hydrocodone, (6337 pg/mg; x = 54years) <strong>in</strong> hair.<br />

The mean age <strong>of</strong>black-haired subjects was 48.8 years, and they<br />

showed the highest average concentration <strong>of</strong>morph<strong>in</strong>e (6144<br />

pg/mg) and 6-acetylmorph<strong>in</strong>e (2931 pg/rng). However, the<br />

number <strong>of</strong>subjects <strong>in</strong> each haircolor class was limited; therefore,<br />

nodef<strong>in</strong>itive conclusion can bedrawn regard<strong>in</strong>g haircolor<br />

and opiate concentration. The age <strong>of</strong>thesubjects ranged from<br />

26 to 62 years, butonly two were younger than42 years.<br />

Conclusions<br />

In summary, hydrocodone can be readily detected <strong>in</strong> hair<br />

specimens. Follow<strong>in</strong>g admitted code<strong>in</strong>e use, all hair samples<br />

conta<strong>in</strong>ed hydrocodone, and none showed thepresence <strong>of</strong>morph<strong>in</strong>e,<br />

6-acetylmorph<strong>in</strong>e, or hydromorphone. In two <strong>of</strong> the<br />

cases, thehydrocodone concentration was significantly higher<br />

thanthecode<strong>in</strong>e. There appeared tobenocorrelation between<br />

self-reported opiate <strong>in</strong>take and concentration <strong>in</strong> hair.<br />

Acknowledgments<br />

We aregrateful to Ms. Toby Evans for facilitat<strong>in</strong>g subject access<br />

at DART and to Russell Munford (Immunalysis Corporation)<br />

for the collection <strong>of</strong>allthe specimens. Many thanks are<br />

due to Michelle Nguyen and Erma Abolencia for all the<br />

immunoassay test<strong>in</strong>g <strong>of</strong>hairsamples at Immunalysis Corporation.<br />

References<br />

1. T.J. Cicero, J.A. Inciardi, and A Munoz. Trends <strong>in</strong> Oxycont<strong>in</strong><br />

358<br />

<strong>Journal</strong> <strong>of</strong> <strong>Analytical</strong> <strong>Toxicology</strong>, Vol. 30, July/August 2006<br />

and other opioid analgesics <strong>in</strong> the United States: 2002-2004.<br />

}. Pa<strong>in</strong> 6(10): 662-672 (2005).<br />

2. S.P. Kurtz, J.A. Inciardi, H.L. Surratt, and L. Cottier. Prescription<br />

drug abuse among Ecstasy users <strong>in</strong> Miami.}. Addict. Dis. 24(4):<br />

1-16 (2005).<br />

3. M.L. Smith, R.O. Hughes, B. Lev<strong>in</strong>e, S. Dickerson, w.o. Darw<strong>in</strong>,<br />

and E.J. Cone. Forensic drug test<strong>in</strong>g for opiates. VI. Ur<strong>in</strong>e test<strong>in</strong>g<br />

for hydromorphone, hydrocodone, oxymorphone, and oxycodone<br />

with commercial opiate immunoassays and gas chromatography-mass<br />

spectrometry. }. Anal. Toxical. 19(1): 18-26<br />

(1995).<br />

4. L.A. Broussard, L.C. Presley, T. Pittman, R. Clouette, and<br />

G.H. Wimbish. Simultaneous identification and quantitation <strong>of</strong><br />

code<strong>in</strong>e, morph<strong>in</strong>e, hydrocodone, and hydromorphone <strong>in</strong> ur<strong>in</strong>e<br />

as trimethylsilyl and oxime derivatives by gas chromatography-mass<br />

spectrometry. Cl<strong>in</strong>. Chem. 43(1): 1029-1032 (1997).<br />

5. J.D. Ropero-Miller, B.A. Goldberger, E.J. Cone, and R.E. Joseph.<br />

The disposition <strong>of</strong> coca<strong>in</strong>e and opiate analytes <strong>in</strong> hair and f<strong>in</strong>gernails<br />

<strong>of</strong> humans follow<strong>in</strong>g coca<strong>in</strong>e and cade<strong>in</strong>e adm<strong>in</strong>istration.<br />

}.Anal. Toxical. 24: 496-508 (2000).<br />

6. K. Hold, D. Wilk<strong>in</strong>s, D. Roll<strong>in</strong>s, R. joseph, and E. Cone. Simultaneous<br />

quantitation <strong>of</strong> coca<strong>in</strong>e, opiates and their metabolites <strong>in</strong><br />

human hair by positive ion chemical ionization gas chromatography-mass<br />

spectrometry. }. Chromatogr. Sci. 36: 125-130 (1998).<br />

7. S.Strano-Rossi, A Bermejo-Barrera, and M. Chiarotti. Segmental<br />

hair analysis for coca<strong>in</strong>e and hero<strong>in</strong> abuse determ<strong>in</strong>ation.<br />

Forensic Sci. Int. 70: 211-216 (1995).<br />

8. C. Girod and C. Staub. Acetylcode<strong>in</strong>e as a marker <strong>of</strong> illicit hero<strong>in</strong><br />

<strong>in</strong> human hair: method validation and results <strong>of</strong> a pilot study.<br />

}.Anal. Toxical. 25: 106-111 (2001).<br />

9. Y. Nakahara, R. Kikura, and K. Takahashi. <strong>Hair</strong> analysis for drugs<br />

<strong>of</strong> abuse. VIII. Effective extraction and determ<strong>in</strong>ation <strong>of</strong> 6-acetylmorph<strong>in</strong>e<br />

and morph<strong>in</strong>e <strong>in</strong> hair with trifluoroacetic acid-methanol<br />

for the confirmation <strong>of</strong> retrospective hero<strong>in</strong> use by gas chromatography-mass<br />

spectrometry. }. Chromatogr. B657(1): 93-101<br />

(1994).<br />

10. D. Wilk<strong>in</strong>s, P. Nagasawa, S.P. Gygi, R.L. Foltz, and D.E. Roll<strong>in</strong>s.<br />

Quantitative analysis <strong>of</strong> methadone and two major metabolites <strong>in</strong><br />

hair by positive chemical ionization ion trap massspectrometry.<br />

}.Anal. Toxical. 20(6): 355-361 (1996).<br />

11. D.G. Wilk<strong>in</strong>s, AS. Valdez, G.G. Krueger, and D.E. Roll<strong>in</strong>s. Quantitative<br />

analysis <strong>of</strong> I-a-acetylmethadol, I-a-acetyl-N-normethadol,<br />

and I-a-acetyl-N,N-d<strong>in</strong>ormethadol <strong>in</strong> human hair by positive ion<br />

chemical ionization mass spectrometry. }. Anal. Toxical 21(6):<br />

420-426 (1997).<br />

12. F. V<strong>in</strong>cent, j. Bessard, J. Vacheron, M. Mallaret, and G. Bessard.<br />

Determ<strong>in</strong>ation <strong>of</strong> buprenorph<strong>in</strong>e and norbuprenorph<strong>in</strong>e <strong>in</strong> ur<strong>in</strong>e<br />

and hair by gas chromatography-mass spectrometry.}. Anal. Toxical.<br />

23(4): 270-279 (1999).<br />

13. J. jones, K. Toml<strong>in</strong>son, and C. Moore. The simultaneous determ<strong>in</strong>ation<br />

<strong>of</strong> code<strong>in</strong>e, morph<strong>in</strong>e, hydrocodone, hydromorphone,<br />

hydrocodone and oxycodone <strong>in</strong> hair and oral fluid.}. Anal. Toxieol.<br />

26(3): 171-175 (2002).<br />

14. L. Skender, V. Karacic, I. Brcic, and A. Bagaric. Quantitative determ<strong>in</strong>ation<br />

<strong>of</strong> amphetam<strong>in</strong>es, coca<strong>in</strong>e and opiates <strong>in</strong> human<br />

hair by gaschromatography/mass spectrometry. Forensic Sci. Int.<br />

125(2-3): 120-126 (2002).<br />

15. D.E. Roll<strong>in</strong>s, D.G. Wilk<strong>in</strong>s, and G.G. Krueger. Code<strong>in</strong>e disposition<br />

<strong>in</strong> human hair after s<strong>in</strong>gle and multiple doses. Eur. }. Cl<strong>in</strong>. Pharmacal.<br />

50(5): 391-397 (1996).<br />

16. D.G. Wilk<strong>in</strong>s, H.M. Haughey, G.G. Krueger, and D.E. Roll<strong>in</strong>s. <strong>Disposition</strong><br />

<strong>of</strong> code<strong>in</strong>e <strong>in</strong> female human hair after multiple dose adm<strong>in</strong>istration.}.<br />

Anal. Toxieol. 19(6): 492-498 (1995).<br />

17. K.B. Scheidweiler, E.J. Cone, E.T. Moolchan, and M.A. Huestis.<br />

Dose-related distribution <strong>of</strong> code<strong>in</strong>e, coca<strong>in</strong>e, and metabolites<br />

<strong>in</strong>to human hair follow<strong>in</strong>g controlled oral code<strong>in</strong>e and subcutaneous<br />

coca<strong>in</strong>e adm<strong>in</strong>istration. }. Pharmacal. Exp. Ther. 313(2):<br />

909-915 (2005).<br />

18. S.P. Gygi, F. Colon, R.B. Raftogianis, R.E. Gal<strong>in</strong>sky, D.G. Wilk<strong>in</strong>s,<br />

and D.E. Roll<strong>in</strong>s. Dose related distribution <strong>of</strong> code<strong>in</strong>e and its


<strong>Journal</strong> <strong>of</strong> <strong>Analytical</strong> <strong>Toxicology</strong>, Vol. 30, July/August 2006<br />

metabolites <strong>in</strong>to rat hair. Drug Metab. Dispos. 24(3): 282-287<br />

(1996).<br />

19. R.Ljoseph, K.M. Hold, D.G.Wilk<strong>in</strong>s, D.E. Roll<strong>in</strong>s, and E.). Cone.<br />

Drugtest<strong>in</strong>g with alternative matrices II. Mechanisms <strong>of</strong> coca<strong>in</strong>e<br />

andcode<strong>in</strong>e deposition <strong>in</strong> hair.}. Anal. Toxicol. 23(6): 396-408<br />

(1999).<br />

20. j.M. Oyler, Lj. Cone, R.E. joseph, andMA Huestis. Identification<br />

<strong>of</strong> hydrocodone <strong>in</strong> human ur<strong>in</strong>efollow<strong>in</strong>g controlledcode<strong>in</strong>e adm<strong>in</strong>istration.}.<br />

Anal. Ioxicol. 24(7): 530-535 (2000).<br />

21. E.j. Cone, HA Heit, Y.H. Caplan, and D. Gourlay. Evidence <strong>of</strong><br />

morph<strong>in</strong>e metabolism to hydromorphone <strong>in</strong> pa<strong>in</strong> patients chronically<br />

treatedwith morph<strong>in</strong>e.}. Anal. Toxicol. 30: 1-5 (2006).<br />

22. E.D. Wish, jA H<strong>of</strong>fman, and S. Nemes. The validity <strong>of</strong> self-reports<strong>of</strong><br />

drug use at treatment admission and at follow-up: comparisons<br />

with ur<strong>in</strong>alysis and hair assays. NlDA Res. Manogr.<br />

167: 200-226 (1997).<br />

23. H.M. Colon, R.R Robles, and H. Sahai. The validity <strong>of</strong> drug use<br />

self-reports among hardcore drug users <strong>in</strong> a household survey <strong>in</strong><br />

Puerto Rico: comparison <strong>of</strong> survey responses <strong>of</strong> coca<strong>in</strong>e and<br />

hero<strong>in</strong> use with hair tests. Drug AlcoholDepend. 67(3): 269-279<br />

(2002).<br />

24. D.A. Fishba<strong>in</strong>, R.B. Cutler, H.L. Rosom<strong>of</strong>f, and R.S. Rosom<strong>of</strong>f. Validity<br />

<strong>of</strong> self-reported drug use <strong>in</strong> chronic pa<strong>in</strong> patients. Cl<strong>in</strong>. }.<br />

Pa<strong>in</strong> 15(3): 184-191 (1999).<br />

25. C. Abner, M. Saadatian-Elahi, A. Pourshams, P. B<strong>of</strong>fetta, A. Feizzadeh,<br />

P. Brennan, P. Taylor, F. Kamangar, S.M. Dawsey, and<br />

R. Malekzadeh. Reliabilityandvalidity <strong>of</strong> opiateuse self-report <strong>in</strong><br />

a population at high riskfor esophageal cancer<strong>in</strong> Golestan, Iran.<br />

Cancer Epidemiol. Biomarkers Prevo 13(6): 1068-1070 (2004).<br />

26. R. Kronstrand, A. Forstberg-Peterson, B. Kagedal, l. Ahlner, and<br />

G. Larson. Code<strong>in</strong>e concentration <strong>in</strong> hair afteroral adm<strong>in</strong>istration<br />

isdependent on melan<strong>in</strong>content. Cl<strong>in</strong>. Chern. 45(9): 1485-1494<br />

(1999).<br />

Manuscriptreceived February 9,2006;<br />

revision received April 3, 2006.<br />

359

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!