15.07.2013 Views

FINDING N-TH ROOTS IN NILPOTENT GROUPS AND ...

FINDING N-TH ROOTS IN NILPOTENT GROUPS AND ...

FINDING N-TH ROOTS IN NILPOTENT GROUPS AND ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>F<strong>IN</strong>D<strong>IN</strong>G</strong> N-<strong>TH</strong> <strong>ROOTS</strong> <strong>IN</strong> <strong>NILPOTENT</strong> <strong>GROUPS</strong>... 585<br />

6. The Heisenberg Group<br />

6.1. Roots in H3(Z)<br />

Recall that the Heisenberg group is nilpotent of class 2 and that any element<br />

can be written in the form D = A m B n C k , where<br />

⎛ ⎞<br />

1 1 0<br />

⎛ ⎞<br />

1 0 0<br />

⎛ ⎞<br />

1 0 1<br />

A = ⎝0<br />

1 0⎠,<br />

B = ⎝0<br />

1 1⎠<br />

and C = ⎝0<br />

1 0⎠<br />

.<br />

0 0 1 0 0 1<br />

0 0 1<br />

That is, we can write<br />

D = A m B n C k =<br />

⎛ ⎞<br />

1 m k + mn<br />

⎝0<br />

1 n ⎠.<br />

0 0 1<br />

⎛ ⎞<br />

1 a c<br />

Proposition 6.1. Let r ∈ N. The matrix M = ⎝0<br />

1 b⎠<br />

= A<br />

0 0 1<br />

aBbC c−ab<br />

has an r-th root in the Heisenberg group if and only if a ≡ 0 (mod r), b ≡ 0<br />

+ 1) ≡ 0 (mod r).<br />

(mod r) and c − 1<br />

2ab(1 r<br />

Proof. Suppose that<br />

This shows that<br />

M = D r = (A m B n C k ) r =<br />

a = mr<br />

⎛<br />

1 mr rk +<br />

⎝<br />

1 ⎞<br />

2rmn(1 + r)<br />

0 1 nr ⎠<br />

0 0 1<br />

= A mr B nr C rk+1<br />

2 rmn(1−r)<br />

b = nr<br />

c − ab = rk + 1<br />

rmn(1 − r)<br />

2<br />

Hence, a ≡ 0 (mod r), b ≡ 0 (mod r), and c − ab = rk + 1<br />

2<br />

rk + ab<br />

2 (1<br />

r<br />

− 1), or c − 1<br />

2<br />

1 ab(1 + r ) ≡ 0 (mod r).<br />

r · a<br />

r<br />

b · r (1 − r) =

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!