15.07.2013 Views

a review of the state-of-the-art in coal blending for power ... - CCSD

a review of the state-of-the-art in coal blending for power ... - CCSD

a review of the state-of-the-art in coal blending for power ... - CCSD

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

COOPERATIVE RESEARCH CENTRE FOR BLACK COAL UTILISATION<br />

Established and supported under <strong>the</strong> Australian Government’s Cooperative Research Centres Program<br />

A REVIEW OF THE STATE-OF-THE-ART IN<br />

COAL BLENDING FOR POWER GENERATION<br />

FINAL REPORT - PROJECT 3.16<br />

TECHNOLOGY ASSESSMENT REPORT 14<br />

by<br />

Pr<strong>of</strong> Terry Wall*, Liza Elliott*,<br />

Dick Sanders**, and Ashley Conroy***<br />

* CRC <strong>for</strong> Black Coal Utilisation<br />

** Quality Coal Consult<strong>in</strong>g Pty Ltd<br />

*** Rio T<strong>in</strong>to Technical Services<br />

May 2001<br />

Advanced Technology Centre, The University <strong>of</strong> Newcastle<br />

University Drive Callaghan NSW 2308 AUSTRALIA<br />

Telephone (02) 4921 7314 Facsimile (02) 4921 7168<br />

Email: black-<strong>coal</strong>@newcastle.edu.au


Black Coal CRC<br />

DISTRIBUTION LIST<br />

Chairman; Executive Director; Manager Technology; Files<br />

Industry P<strong>art</strong>icipants<br />

ACARP Ltd Mr Ross McK<strong>in</strong>non<br />

.......................................................................................................................... Mr Jim Craigen<br />

ARCO Resources Ltd........................................................................................ Mr William Ash<br />

BHP Innovation Pty Ltd ..................................................................................... Dr Michael Eamon<br />

.......................................................................................................................... Dr Louis Wibberley<br />

CS Energy ........................................................................................................ Dr Chris Spero<br />

.......................................................................................................................... Mr Peter Costelloe<br />

.......................................................................................................................... Mr Ivan Mapp<br />

.......................................................................................................................... Mr Adrian Hughes<br />

The Griff<strong>in</strong> Coal M<strong>in</strong><strong>in</strong>g Co Pty Ltd .................................................................... Mr Barry Eldridge<br />

Tarong Energy .................................................................................................. Mr Burt Beasley<br />

.......................................................................................................................... Mr Leigh Miller<br />

.......................................................................................................................... Mr Dave Gunn<br />

Stanwell Power ................................................................................................. Mr Des Covey<br />

BHP Coal Pty Ltd .............................................................................................. Mr Alan Davies<br />

.......................................................................................................................... Mr Sid McGuire<br />

Delta Electricity ................................................................................................. Mr Mal Park<br />

.......................................................................................................................... Mr Peter Coombes<br />

Oakbridge Pty Ltd ............................................................................................. Mr Barry Isherwood<br />

Pacific Power .................................................................................................... Mr Tom Bryant<br />

.......................................................................................................................... Mr George Wells<br />

.......................................................................................................................... Dr Allen Lowe<br />

CNA Resources ................................................................................................ Mr Rod Hall<br />

Peabody Resources.......................................................................................... Mr David West<br />

Queensland Dept <strong>of</strong> M<strong>in</strong>es and Energy............................................................. Dr Ge<strong>of</strong>f Dickie<br />

.......................................................................................................................... Dr Rod Gould<br />

Rio T<strong>in</strong>to (Pacific Coal) ..................................................................................... Mr Brian Horwood<br />

.......................................................................................................................... Mr Duncan Waters<br />

Rio T<strong>in</strong>to (TRPL) ............................................................................................... Mr David Ca<strong>in</strong><br />

.......................................................................................................................... Dr Jon Davis<br />

Wesfarmers Coal Ltd ........................................................................................ Mr Peter Ashton<br />

Western Power ................................................................................................. Mr Keith Kirby<br />

.......................................................................................................................... Mr Jim Andrusiak<br />

Research P<strong>art</strong>icipants<br />

CSIRO .............................................................................................................. Dr John Wright<br />

.......................................................................................................................... Dr Jim Smitham<br />

.......................................................................................................................... Dr David Harris<br />

.......................................................................................................................... Dr Peter Nelson<br />

.......................................................................................................................... Dr John Carras<br />

.......................................................................................................................... Dr David French<br />

.......................................................................................................................... Dr Richard Sakurovs


Research P<strong>art</strong>icipants (cont)<br />

Curt<strong>in</strong> University <strong>of</strong> Technology......................................................................... Dr Barney Glover<br />

.......................................................................................................................... Pr<strong>of</strong> R Van Berkel<br />

.......................................................................................................................... Pr<strong>of</strong> Dong-ke Zhang<br />

.......................................................................................................................... Dr H B Vuthaluru<br />

.......................................................................................................................... Dr H M Yan<br />

The University <strong>of</strong> Newcastle.............................................................................. Pr<strong>of</strong> Ron MacDonald<br />

.......................................................................................................................... Dr John Lucas<br />

.......................................................................................................................... Pr<strong>of</strong> Terry Wall<br />

.......................................................................................................................... Pr<strong>of</strong> Chris Hooker<br />

The University <strong>of</strong> New South Wales .................................................................. Pr<strong>of</strong> David Young<br />

A.Pr<strong>of</strong> R Hard<strong>in</strong>g<br />

The University <strong>of</strong> Queensland ........................................................................... Pr<strong>of</strong> Don McKee<br />

.......................................................................................................................... Pr<strong>of</strong> John Pohl<br />

.......................................................................................................................... Dr R Pagen<br />

.......................................................................................................................... A/Pr<strong>of</strong> Victor Rudolph<br />

Dr J Joy<br />

Associated P<strong>art</strong>ies<br />

ACIRL Ltd ......................................................................................................... Mr Greg Smith<br />

CRC <strong>for</strong> Clean Power from Lignite .................................................................... Mr Malcolm McIntosh<br />

Electricity Supply Association <strong>of</strong> Australia Ltd ................................................... Dr Harry Schaap<br />

J Happ Consult<strong>in</strong>g............................................................................................. Mr Jim Happ<br />

Ultra-Systems Technology Pty Ltd .................................................................... Mr L<strong>in</strong>dsay Juniper


Cooperative Research Centre <strong>for</strong><br />

Black Coal Utilisation<br />

Advanced Technology Centre<br />

The University <strong>of</strong> Newcastle<br />

Callaghan NSW 2308<br />

Telephone: (02) 4921 7314<br />

Fax: (02) 4921 7168<br />

Feedback Form<br />

To help us improve our service to you may I ask you <strong>for</strong> five m<strong>in</strong>utes <strong>of</strong> your time to complete<br />

this questionnaire. Please fax or mail it back to me, or, if you would prefer, give me a call.<br />

ATTENTION MANAGER TECHNOLOGY<br />

FAX NO 02 49 217 168 DATE ………………………………………...<br />

FROM NAME: ………………………………………………….…………………...<br />

COMPANY: .………………………………………………………...……………<br />

Report Title: A REVIEW OF THE STATE-OF-THE-ART IN COAL BLENDING FOR POWER<br />

GENERATION<br />

Authors: Pr<strong>of</strong> Terry Wall, Liza Elliott, Dick Sanders and Ashley Conroy<br />

Would you please rate our per<strong>for</strong>mance <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g areas by tick<strong>in</strong>g <strong>the</strong> appropriate box:<br />

The Research<br />

This work has achieved its research objectives<br />

This work has delivered to agreed milestones<br />

This work is relevant to my organisation<br />

Communication <strong>of</strong> progress has been timely & useful<br />

The Report<br />

The report is well presented<br />

The context <strong>of</strong> <strong>the</strong> report is clear<br />

The content <strong>of</strong> <strong>the</strong> report is substantial<br />

The report is clearly written and understandable<br />

This product is good value<br />

Agree Neutral Disagree Don’t<br />

Know<br />

Any fur<strong>the</strong>r comments which would assist us <strong>in</strong> better serv<strong>in</strong>g your future requirements?:<br />

…………………………….…………………………………………………………………………………………<br />

……………………………………………………….…………………………………………………….………..<br />

Are <strong>the</strong>re any people you would like to add to our distribution list?:<br />

……………………………………………………………………………………………………………………….<br />

Thank you <strong>for</strong> your response


Preface<br />

In 1999 ACARP identified <strong>the</strong> use <strong>of</strong> <strong>coal</strong> blends <strong>in</strong> <strong>power</strong> generation as a high<br />

priority area <strong>for</strong> research, and commissioned <strong>the</strong> Centre to provide a <strong>state</strong> <strong>of</strong> <strong>the</strong> <strong>art</strong><br />

<strong>review</strong>.<br />

The <strong>review</strong> considered <strong>the</strong> available <strong>in</strong><strong>for</strong>mation on <strong>coal</strong> blends from two po<strong>in</strong>ts <strong>of</strong><br />

view – firstly, <strong>coal</strong> properties and <strong>the</strong>ir additivity and secondly, <strong>the</strong> per<strong>for</strong>mance <strong>of</strong><br />

blends <strong>in</strong> pulverised fuel (pf) fir<strong>in</strong>g. The <strong>review</strong> has concluded that <strong>the</strong> level <strong>of</strong><br />

understand<strong>in</strong>g on properties is <strong>in</strong>complete, and knowledge <strong>of</strong> per<strong>for</strong>mance is very<br />

poor <strong>for</strong> a number <strong>of</strong> plant per<strong>for</strong>mance issues.<br />

The report highlights areas <strong>for</strong> fur<strong>the</strong>r research. Some tests were found to provide<br />

properties that were non-additive <strong>for</strong> blends, and/or provided a poor basis <strong>for</strong><br />

predict<strong>in</strong>g blend per<strong>for</strong>mance <strong>in</strong> a <strong>power</strong> station. These were: Hardgrove gr<strong>in</strong>dability<br />

<strong>in</strong>dex, crucible swell<strong>in</strong>g number, ash fusibility temperatures, <strong>coal</strong> flow properties,<br />

volatile matter and cross<strong>in</strong>g po<strong>in</strong>t temperature (<strong>for</strong> <strong>in</strong>dicat<strong>in</strong>g spontaneous heat<strong>in</strong>g<br />

propensity). In addition, <strong>the</strong> follow<strong>in</strong>g areas were <strong>in</strong>dicated, <strong>for</strong> blends, as<br />

‘appropriate <strong>for</strong> future research ef<strong>for</strong>t, as properties are not readily related to plant<br />

per<strong>for</strong>mance and <strong>the</strong>y also have a major impact on plant operations’: moisture,<br />

p<strong>art</strong>icle size and m<strong>in</strong>eral composition (flow properties); nitrogen and ash fusibility<br />

(<strong>in</strong>creased carbon <strong>in</strong> ash and ash deposition caused by NOx control); trace elements<br />

(changes <strong>in</strong> deportment); ash fusibility (deposition and ash character); sulphur (ash<br />

precipitation); nitrogen (NOx prediction). It is recommended that a model be created<br />

to use all properties to predict boiler per<strong>for</strong>mance changes when us<strong>in</strong>g blends.<br />

This project adds value to <strong>the</strong> exist<strong>in</strong>g body <strong>of</strong> knowledge on <strong>the</strong> characterization <strong>of</strong><br />

<strong>coal</strong> blends previously reported by IEA Coal Research reports and established by<br />

Centre research by br<strong>in</strong>g<strong>in</strong>g it all toge<strong>the</strong>r with a specific focus on its effects on <strong>coal</strong><br />

combustion. The results <strong>of</strong> this work will assist export <strong>the</strong>rmal <strong>coal</strong> suppliers <strong>in</strong><br />

match<strong>in</strong>g product to market needs. It also provides <strong>the</strong> current understand<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

effects <strong>of</strong> mov<strong>in</strong>g away from traditional feed stocks by blend<strong>in</strong>g <strong>the</strong> greater diversity<br />

<strong>of</strong> <strong>coal</strong>s now available to generat<strong>in</strong>g authorities.<br />

Pr<strong>of</strong>. Terry Wall<br />

Program Manager – M<strong>in</strong>eral Matter Reactions<br />

Black Coal CRC


ACKNOWLEDGEMENTS<br />

The authors wish to acknowledge <strong>the</strong> contribution <strong>of</strong> Ms Kathy Benfell, from <strong>the</strong> Dep<strong>art</strong>ment<br />

<strong>of</strong> Geology, The University <strong>of</strong> Newcastle, who assisted <strong>in</strong> provid<strong>in</strong>g a discussion on <strong>coal</strong><br />

petrography, and Pr<strong>of</strong>essor A Roberts, <strong>the</strong> Dep<strong>art</strong>ment <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, The<br />

University <strong>of</strong> Newcastle, who provided <strong>in</strong><strong>for</strong>mation on <strong>coal</strong> handl<strong>in</strong>g. The f<strong>in</strong>ancial support <strong>of</strong><br />

ACARP, and <strong>in</strong>-k<strong>in</strong>d support from The Cooperative Research Centre <strong>for</strong> Black Coal Utilisation<br />

is also gratefully acknowledged.<br />

The permission <strong>of</strong> <strong>the</strong> International Energy Agency to reproduce significant sections from <strong>the</strong><br />

IEA reports <strong>of</strong> A Carpenter and N Skorupska is also gratefully acknowledged.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 2


TABLE OF CONTENTS<br />

Acknowledgements ....................................................................................................................2<br />

Table <strong>of</strong> Contents .......................................................................................................................3<br />

Summary ....................................................................................................................................7<br />

Recommendations .....................................................................................................................8<br />

Coal properties ...................................................................................................................8<br />

Plant per<strong>for</strong>mance prediction............................................................................................10<br />

Fur<strong>the</strong>r consolidation <strong>of</strong> knowledge and its useability......................................................12<br />

1 Introduction .......................................................................................................................13<br />

2 Blend<strong>in</strong>g: a summary <strong>review</strong> ............................................................................................14<br />

2.1 Why blend?.............................................................................................................14<br />

2.2 Def<strong>in</strong>itions...............................................................................................................14<br />

2.3 Methodology...........................................................................................................14<br />

3 Important Coal Properties <strong>in</strong> blend<strong>in</strong>g: <strong>the</strong>ir test<strong>in</strong>g, additivity and effects on <strong>power</strong><br />

stations .............................................................................................................................19<br />

3.1 Proximate analysis .................................................................................................19<br />

3.2 Specific energy (calorific value, heat<strong>in</strong>g value) ......................................................32<br />

3.3 Total sulphur...........................................................................................................33<br />

3.4 Pyritic sulphur.........................................................................................................36<br />

3.5 Chlor<strong>in</strong>e ..................................................................................................................38<br />

3.6 Ultimate analysis ....................................................................................................40<br />

3.7 Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex (HGI).........................................................................43<br />

3.8 Abrasion <strong>in</strong>dex........................................................................................................47<br />

3.9 Crucible swell<strong>in</strong>g number (CSN) ............................................................................49<br />

3.10 Ash fusibility (AFT) .................................................................................................50<br />

3.11 Ash analysis ...........................................................................................................53<br />

3.12 Trace elements.......................................................................................................56<br />

3.13 Coal flow properties................................................................................................58<br />

3.14 Size distribution ......................................................................................................59<br />

3.15 Petrographic analysis .............................................................................................60<br />

4 O<strong>the</strong>r <strong>coal</strong> properties ........................................................................................................63<br />

4.1 Ash behaviour by advanced techniques ................................................................63<br />

4.2 Arsenic....................................................................................................................68<br />

4.3 Char reactivity.........................................................................................................68<br />

4.4 CO2 or Cm ..............................................................................................................69<br />

4.5 Cross<strong>in</strong>g po<strong>in</strong>t temperatures ..................................................................................69<br />

4.6 Fixed carbon (FC) ..................................................................................................70<br />

4.7 Fly ash resistivity ....................................................................................................70<br />

4.8 Fuel ratio.................................................................................................................71<br />

4.9 Inherent moisture ...................................................................................................71<br />

4.10 Moisture hold<strong>in</strong>g capacity (MHC) ...........................................................................72<br />

4.11 Sulphate sulphur ....................................................................................................72<br />

4.12 Organic sulphur ......................................................................................................72<br />

4.13 Phosphorus ............................................................................................................72<br />

4.14 Relative density (RD) .............................................................................................72<br />

5 Specific Response to ACARP Research Priorities...........................................................73<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 3


5.1 Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with low rank <strong>coal</strong>s........................................73<br />

5.2 Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with high sulphur <strong>coal</strong>s .................................74<br />

5.3 Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with <strong>coal</strong>s <strong>of</strong> different m<strong>in</strong>eral matter<br />

composition ............................................................................................................74<br />

6 Technology transfer activities ...........................................................................................77<br />

7 Bibliography......................................................................................................................78<br />

Appendix 1 Supplementary reference tables .....................................................................84<br />

Appendix 2 Power station per<strong>for</strong>mance prediction <strong>in</strong>dices ................................................88<br />

A2.1 Fuel ratio as a predictor <strong>of</strong> burnout efficiency ........................................................88<br />

A2.2 S<strong>in</strong>ter<strong>in</strong>g temperature <strong>for</strong> predict<strong>in</strong>g foul<strong>in</strong>g behaviour <strong>of</strong> <strong>coal</strong> ash........................89<br />

A2.3 Sodium <strong>in</strong> ash to predict foul<strong>in</strong>g behaviour ............................................................89<br />

A2.4 Alkali metal content <strong>for</strong> prediction <strong>of</strong> foul<strong>in</strong>g...........................................................89<br />

A2.5 Viscosity <strong>of</strong> laboratory ash <strong>for</strong> predict<strong>in</strong>g slagg<strong>in</strong>g behaviour ................................90<br />

A2.6 The iron/calcium ratio to predict <strong>coal</strong> ash slagg<strong>in</strong>g propensity ..............................91<br />

A2.7 Base to acid ratio <strong>for</strong> predict<strong>in</strong>g slagg<strong>in</strong>g behaviour: .............................................91<br />

A2.8 B/A x %S(db) to predict slagg<strong>in</strong>g propensity ............................................................92<br />

A2.9 Emission <strong>in</strong>dex: ......................................................................................................92<br />

A2.10 Erosion <strong>in</strong>dices .......................................................................................................92<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 4


TABLES<br />

Table 1: Summary <strong>of</strong> <strong>the</strong> plant per<strong>for</strong>mance issues recommended <strong>for</strong> fur<strong>the</strong>r research...........7<br />

Table 2: Blend<strong>in</strong>g efficiencies <strong>of</strong> different stack<strong>in</strong>g and reclaim<strong>in</strong>g methods (after Zador, Fig.<br />

18, 1991) ...................................................................................................................16<br />

Table 3: Comparison <strong>of</strong> blend<strong>in</strong>g efficiencies <strong>for</strong> ash and sulphur (after Zador, 1991) ...........16<br />

Table 4: Blend additivity <strong>of</strong> ma<strong>in</strong> properties <strong>of</strong> <strong>power</strong> station feedstock ..................................20<br />

Table 5: Impact <strong>of</strong> key <strong>coal</strong> properties on <strong>power</strong> station plant per<strong>for</strong>mance ...........................21<br />

Table 6: The maximum operat<strong>in</strong>g flue gas temperature to avoid corrosion (Raask, 1985).....26<br />

Table 7: Manufacturers’ allowable mill outlet temperatures.....................................................29<br />

Table 8: The amount <strong>of</strong> liquid present <strong>in</strong> an ash sample at selected temperatures compared to<br />

<strong>the</strong> sample's de<strong>for</strong>mation temperature (DT) (Gupta, 1998)......................................52<br />

Table 9: Table <strong>of</strong> key trace elements .......................................................................................56<br />

Table 10: The mode <strong>of</strong> occurrence <strong>of</strong> trace elements <strong>in</strong> <strong>coal</strong> described by Swa<strong>in</strong>e and<br />

Goodarzi (1995). .......................................................................................................57<br />

Table 11: Classification <strong>of</strong> p<strong>art</strong>icle compositions <strong>in</strong>to m<strong>in</strong>eral groups......................................66<br />

Table 12: Summary <strong>of</strong> <strong>the</strong> issues associated with blend<strong>in</strong>g Australian <strong>coal</strong>s with <strong>in</strong>digenous<br />

<strong>coal</strong>s..........................................................................................................................76<br />

Table 13: Wall's table <strong>of</strong> <strong>the</strong> impact <strong>of</strong> <strong>coal</strong> properties on plant per<strong>for</strong>mance (Wall, 1988).....84<br />

Table 14: Su’s table <strong>of</strong> additivity <strong>of</strong> properties <strong>for</strong> <strong>coal</strong> blends (Su, 1999)...............................85<br />

Table 15: Skorupska’s table <strong>for</strong> <strong>the</strong> impact <strong>of</strong> <strong>coal</strong> quality on <strong>power</strong> station per<strong>for</strong>mance<br />

(Skorupska, 1993).....................................................................................................86<br />

Table 16: The boiler foul<strong>in</strong>g predicted by ash sodium content (Raask, 1985).........................89<br />

Table 17: The value <strong>of</strong> <strong>the</strong> alkali metal content <strong>of</strong> <strong>coal</strong> with correspond<strong>in</strong>g boiler foul<strong>in</strong>g<br />

(Raask, 1985). ..........................................................................................................90<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 5


FIGURES<br />

Figure 1: Types <strong>of</strong> stack<strong>in</strong>g <strong>for</strong> blend<strong>in</strong>g (after Carpenter, 1995) ............................................15<br />

Figure 2: Methods <strong>of</strong> reclaim<strong>in</strong>g (after Carpenter, 1995) .........................................................15<br />

Figure 3: Coal moisture content versus critical open<strong>in</strong>g dimension (Roberts, 1988)...............24<br />

Figure 4: The <strong>in</strong>teraction <strong>of</strong> NOx <strong>for</strong>mation and carbon <strong>in</strong> ash when combustion utilises a low<br />

NOx burner. ...............................................................................................................32<br />

Figure 5: Sulphur Dioxide emissions as a function <strong>of</strong> <strong>coal</strong> sulphur content.............................34<br />

Figure 6: The relationship between deposit chlor<strong>in</strong>e and fuel sulphur.....................................39<br />

Figure 7: Dependence <strong>of</strong> furnace wall tube corrosion (A, A’) and sulphate deposition (B) on<br />

chlor<strong>in</strong>e content <strong>of</strong> <strong>coal</strong> .............................................................................................39<br />

Figure 8: NOX emissions as function <strong>of</strong> <strong>coal</strong> nitrogen content .................................................42<br />

Figure 9: The relationship between NOx <strong>for</strong>mation and carbon <strong>in</strong> fly ash (Carpenter, 1995) ..42<br />

Figure 10: Mill <strong>power</strong> requirement as a function <strong>of</strong> HGI <strong>for</strong> blended and unblended <strong>coal</strong>s .....45<br />

Figure 11: Mill Product F<strong>in</strong>eness as a function <strong>of</strong> HGI <strong>for</strong> Blended and Unblended Coals .....46<br />

Figure 12: 60% Coal ‘A’ + 40% Coal ‘B’ – Distribution <strong>of</strong> blend components <strong>in</strong> size fractions 46<br />

Figure 13: 40% Coal ‘A’ + 60% Coal ‘B’ – Distribution <strong>of</strong> blend components <strong>in</strong> size fractions 47<br />

Figure 14: Relationship between optimum gr<strong>in</strong>d<strong>in</strong>g pressure <strong>in</strong> sp<strong>in</strong>dle mills and HGI...........47<br />

Figure 15: Electrical resistivity <strong>of</strong> <strong>coal</strong> ashes: A, low-sodium, low-sulphur <strong>coal</strong>; B, low-sodium,<br />

high-sulphur <strong>coal</strong>; D, high-sodium, high-sulphur <strong>coal</strong>. (Raask, 1985)......................55<br />

Figure 16: The effect <strong>of</strong> ash composition on <strong>the</strong> collection area <strong>of</strong> an electrostatic precipitator.<br />

(Paulson)...................................................................................................................55<br />

Figure 17: The p<strong>art</strong>ition<strong>in</strong>g <strong>of</strong> trace elements. Group 1 elements are found predom<strong>in</strong>antly <strong>in</strong><br />

<strong>the</strong> ash, group 3 elements are predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> gas phase, and group 2 are<br />

mixed between <strong>the</strong> two <strong>state</strong>s. (Clarke & Sloss, 1992) ............................................58<br />

Figure 18: The calculated grade efficiency <strong>of</strong> a selected electrostatic precipitator (Benitez,<br />

1993). ........................................................................................................................60<br />

Figure 19: Schematic illustration <strong>of</strong> Pearson’s (1991) plots <strong>of</strong> <strong>the</strong> vitr<strong>in</strong>ite reflectance<br />

distribution <strong>of</strong> a s<strong>in</strong>gle high-volatile bitum<strong>in</strong>ous <strong>coal</strong> (A), a blend <strong>of</strong> three bitum<strong>in</strong>ous<br />

<strong>coal</strong>s (B), and reflectance <strong>of</strong> all <strong>the</strong> maceral components <strong>of</strong> a low volatile bitum<strong>in</strong>ous<br />

<strong>coal</strong> (C). From Taylor et al. (1998)............................................................................62<br />

Figure 20: Schematic diagram <strong>of</strong> TMA apparatus, and ash sample assembly prior to heat<strong>in</strong>g.<br />

..................................................................................................................................64<br />

Figure 21: CCSEM m<strong>in</strong>eral detection process.........................................................................65<br />

Figure 22: Experimental output from an XRD analysis <strong>of</strong> <strong>coal</strong> ash..........................................67<br />

Figure 23: Typical fly ash resistivity pr<strong>of</strong>ile as a function <strong>of</strong> temperature ................................71<br />

Figure 24: Unburnt Combustibles as a function <strong>of</strong> Fuel Ratio <strong>for</strong> Unblended and Blended<br />

Coals .........................................................................................................................88<br />

Figure 25: The capture efficiency, or <strong>for</strong>mation <strong>of</strong> deposit <strong>of</strong> soda-lime glass and <strong>the</strong><br />

correspond<strong>in</strong>g p<strong>art</strong>icle viscosity................................................................................90<br />

Figure 26: The FeO-CaO-MgO equilibrium phase diagram show<strong>in</strong>g <strong>the</strong> eutectic at 1160°C..91<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 6


SUMMARY<br />

The <strong>review</strong> has considered <strong>the</strong> available <strong>in</strong><strong>for</strong>mation on <strong>coal</strong> blends from two po<strong>in</strong>ts <strong>of</strong> view –<br />

firstly, <strong>coal</strong> properties and <strong>the</strong>ir additivity and secondly, <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> blends <strong>in</strong><br />

pulverised fuel (pf) fir<strong>in</strong>g. The <strong>review</strong> has concluded that <strong>the</strong> level <strong>of</strong> understand<strong>in</strong>g on<br />

properties is <strong>in</strong>complete, and knowledge <strong>of</strong> per<strong>for</strong>mance is very poor <strong>for</strong> a number <strong>of</strong> plant<br />

per<strong>for</strong>mance issues.<br />

The <strong>review</strong> has highlighted several research topics <strong>for</strong> which research is needed.<br />

Tests on <strong>the</strong> follow<strong>in</strong>g <strong>coal</strong> properties require fur<strong>the</strong>r research. These properties are not<br />

additive, <strong>in</strong> that <strong>the</strong> blend property is not <strong>the</strong> weighted average <strong>of</strong> <strong>the</strong> properties <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>dividual <strong>coal</strong>s, and <strong>the</strong>y also provide a poor basis <strong>for</strong> predict<strong>in</strong>g blend per<strong>for</strong>mance:<br />

Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex<br />

Crucible swell<strong>in</strong>g number<br />

Ash fusibility temperatures<br />

Coal flow properties<br />

Volatile matter<br />

Cross<strong>in</strong>g po<strong>in</strong>t temperature<br />

The follow<strong>in</strong>g areas are appropriate <strong>for</strong> future research ef<strong>for</strong>t, as properties are not readily<br />

related to plant per<strong>for</strong>mance and <strong>the</strong>y also have a major impact on plant operations:<br />

Coal property Plant aspect Plant per<strong>for</strong>mance issues<br />

moisture,<br />

p<strong>art</strong>icle size,<br />

m<strong>in</strong>eral<br />

composition<br />

Coal handl<strong>in</strong>g Flow properties <strong>of</strong> blends<br />

nitrogen,<br />

Boiler NOx control caus<strong>in</strong>g <strong>in</strong>creased carbon <strong>in</strong> ash and<br />

ash fusibility<br />

ash deposition<br />

trace elements Boiler Trace elements: changes <strong>in</strong> deportment with<br />

blends<br />

ash fusibility Boiler Deposition and ash character <strong>in</strong> blends<br />

sulphur P<strong>art</strong>iculate<br />

removal<br />

Precipitation <strong>of</strong> ash from blends<br />

nitrogen NOx control Prediction <strong>of</strong> NOx from blends<br />

all Entire plant Model <strong>for</strong> <strong>the</strong> chang<strong>in</strong>g per<strong>for</strong>mance <strong>of</strong> a boiler<br />

with blended <strong>coal</strong>s<br />

Table 1: Summary <strong>of</strong> <strong>the</strong> plant per<strong>for</strong>mance issues recommended <strong>for</strong> fur<strong>the</strong>r research.<br />

This report summarises <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> blends and <strong>the</strong>ir impact on pf plants identified to<br />

date and elaborates on <strong>the</strong> key areas recommended above <strong>for</strong> future research on blends.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 7


Coal properties<br />

RECOMMENDATIONS<br />

Most <strong>of</strong> <strong>the</strong> commonly measured <strong>coal</strong> properties are additive <strong>for</strong> blends. However, some<br />

analytical tests <strong>for</strong> <strong>coal</strong> properties require consideration and <strong>the</strong> authors recommend more<br />

appropriate techniques be developed to provide <strong>the</strong> valuable <strong>in</strong><strong>for</strong>mation <strong>the</strong> <strong>in</strong>dustry looks <strong>for</strong><br />

<strong>in</strong> <strong>the</strong>se tests, as noted below.<br />

Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex<br />

The Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex has limitations <strong>in</strong> its use <strong>for</strong> expla<strong>in</strong><strong>in</strong>g <strong>the</strong> behaviour <strong>of</strong> <strong>coal</strong>s<br />

<strong>in</strong> crush<strong>in</strong>g and gr<strong>in</strong>d<strong>in</strong>g mills. The <strong>coal</strong> is crushed to less than 1.18 mm and any portion <strong>of</strong><br />

<strong>the</strong> <strong>coal</strong> less than 0.6 mm is rejected. As this size fraction represents <strong>the</strong> more friable<br />

material, <strong>the</strong> test provides results on <strong>the</strong> least friable materials <strong>in</strong> <strong>the</strong> <strong>coal</strong>. When wea<strong>the</strong>red,<br />

<strong>the</strong> <strong>coal</strong> will lose strength and an <strong>in</strong>creased proportion <strong>of</strong> <strong>the</strong> sample will be removed, <strong>the</strong>reby<br />

produc<strong>in</strong>g an erroneous result. Because a different fraction <strong>of</strong> <strong>the</strong> <strong>coal</strong> can be removed at<br />

each test, depend<strong>in</strong>g on <strong>the</strong> sample and <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g method, a <strong>coal</strong> with a high proportion <strong>of</strong><br />

friable material (up to 50%) could possibly be considered equivalent to a <strong>coal</strong> with only a<br />

small proportion. This test is unsuitable <strong>for</strong> <strong>the</strong> comparison <strong>of</strong> <strong>in</strong>dividual <strong>coal</strong>s, let alone <strong>coal</strong><br />

blends. The authors suggest a revised test is required to be designed be<strong>for</strong>e any<br />

experimentation on <strong>the</strong> gr<strong>in</strong>dability <strong>of</strong> blends is attempted.<br />

Crucible swell<strong>in</strong>g number<br />

Crucible swell<strong>in</strong>g number is not rout<strong>in</strong>ely used as a test on <strong>the</strong>rmal <strong>coal</strong>s and has found<br />

relevance <strong>in</strong> coke mak<strong>in</strong>g arenas, where <strong>the</strong> swell<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> <strong>coal</strong> effects <strong>the</strong> size<br />

and strength <strong>of</strong> <strong>the</strong> result<strong>in</strong>g coke. However, it is used as an <strong>in</strong>dicator <strong>of</strong> char blockage on<br />

burner mouths <strong>in</strong> <strong>the</strong> <strong>power</strong> station arena. The test is completed by plac<strong>in</strong>g 1 gram <strong>of</strong> f<strong>in</strong>ely<br />

ground <strong>coal</strong> <strong>in</strong> a sealed crucible and heat<strong>in</strong>g over a burner. The sample is removed from <strong>the</strong><br />

crucible and cooled and <strong>the</strong> size <strong>of</strong> <strong>the</strong> result<strong>in</strong>g button measured aga<strong>in</strong>st standard pr<strong>of</strong>iles.<br />

Un<strong>for</strong>tunately, <strong>the</strong> test gives no <strong>in</strong>dication <strong>of</strong> <strong>the</strong> size <strong>the</strong> <strong>coal</strong> has swollen to be<strong>for</strong>e any<br />

collapse, due to limited strength or effects <strong>of</strong> handl<strong>in</strong>g. Under pf conditions, <strong>the</strong> collapse<br />

experienced due to limited strength will most probably differ from that <strong>in</strong> <strong>the</strong> test, mak<strong>in</strong>g <strong>the</strong><br />

results <strong>of</strong> <strong>the</strong> test unsuitable <strong>for</strong> predictions based on swell<strong>in</strong>g. The swell<strong>in</strong>g character <strong>of</strong> <strong>the</strong><br />

<strong>coal</strong> as measured by this test appears to have no relevance to <strong>the</strong> adherence <strong>of</strong> char to<br />

burners, even though it is used <strong>for</strong> this purpose. Prediction <strong>of</strong> <strong>coal</strong> burnout, and <strong>the</strong> result<strong>in</strong>g<br />

ash p<strong>art</strong>icle size <strong>of</strong> <strong>the</strong> <strong>coal</strong>, may be possible based on knowledge <strong>of</strong> <strong>the</strong> swell<strong>in</strong>g behaviour<br />

<strong>of</strong> <strong>coal</strong>, but this may be more reliably obta<strong>in</strong>ed from total reflectograms. The char shape and<br />

size may be predictable (through correlations be<strong>in</strong>g developed) from reflectograms, which<br />

also allows calculation <strong>of</strong> char combustion rates and prediction <strong>of</strong> ash <strong>coal</strong>escence and<br />

fragmentation.<br />

Ash fusion temperatures (AFT)<br />

The ash fusion (or ash fusibility) temperature test is highly relied upon by <strong>the</strong> <strong>the</strong>rmal <strong>coal</strong><br />

<strong>in</strong>dustry to provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> likelihood <strong>of</strong> deposition with<strong>in</strong> a pf boiler. The test aims<br />

to provide <strong>the</strong> temperatures at which <strong>the</strong> <strong>coal</strong> ash first de<strong>for</strong>ms or becomes sticky<br />

(de<strong>for</strong>mation temperature), when it is likely to <strong>for</strong>m dense deposits because it has a tendency<br />

to agglomerate (sphere and hemisphere temperatures) and when <strong>the</strong> ash will <strong>for</strong>m a slag<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 8


which will flow down a boiler wall (flow temperature) (Raask, 1985). However, Gupta (1998)<br />

has shown that, at <strong>the</strong> de<strong>for</strong>mation temperature, a significant amount <strong>of</strong> liquid is present <strong>in</strong><br />

some samples, significantly overestimat<strong>in</strong>g <strong>the</strong> temperature at which ash becomes sticky. The<br />

significant variation <strong>in</strong> <strong>the</strong> amount <strong>of</strong> liquid present <strong>in</strong> ash samples suggests that this test<br />

cannot reliably predict difficult foul<strong>in</strong>g and slagg<strong>in</strong>g problems, even if <strong>the</strong> test overestimates<br />

<strong>the</strong> temperature at which deposition will occur. Some difficulty has also been observed <strong>in</strong><br />

obta<strong>in</strong><strong>in</strong>g similar AFT results from different laboratories, p<strong>art</strong>icularly <strong>for</strong> certa<strong>in</strong> Australian<br />

<strong>coal</strong>s where unreacted illite is responsible <strong>for</strong> liquid <strong>for</strong>mation, which also casts doubt on <strong>the</strong><br />

value <strong>of</strong> this test.<br />

Ash fusion temperatures do not provide any <strong>in</strong><strong>for</strong>mation on <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> ash.<br />

Typical s<strong>in</strong>ter<strong>in</strong>g temperatures <strong>for</strong> <strong>coal</strong> ash lie between 600°C and 1000°C, well below typical<br />

ash fusion temperatures <strong>for</strong> <strong>coal</strong> ash. More accurate techniques than ash fusion temperatures<br />

<strong>for</strong> measur<strong>in</strong>g <strong>the</strong> fusibility behaviour <strong>of</strong> <strong>coal</strong> ash are now becom<strong>in</strong>g available. One such<br />

technique is <strong>the</strong> <strong>the</strong>rmomechanical analysis (TMA) <strong>of</strong> ash, which can be repeated <strong>in</strong> different<br />

laboratories without significant deviation <strong>in</strong> results. Thermomechanical analysis is completed<br />

by measur<strong>in</strong>g <strong>the</strong> change <strong>in</strong> dimension <strong>of</strong> an ash sample while it is cont<strong>in</strong>uously heated. The<br />

ma<strong>in</strong> variable <strong>in</strong> this test is <strong>the</strong> heat<strong>in</strong>g rate applied to <strong>the</strong> sample. Various components <strong>of</strong> <strong>the</strong><br />

ash effect <strong>the</strong> fusibility <strong>of</strong> <strong>the</strong> ash and <strong>the</strong>se may be reflected <strong>in</strong> <strong>the</strong> change <strong>in</strong> dimension <strong>of</strong><br />

<strong>the</strong> ash with temperature. However, more work is required to ensure <strong>the</strong> adequate utilisation<br />

<strong>of</strong> <strong>in</strong><strong>for</strong>mation <strong>in</strong> TMA results <strong>for</strong> <strong>coal</strong>s and <strong>coal</strong> blends be<strong>for</strong>e its <strong>in</strong>clusion rout<strong>in</strong>ely <strong>in</strong><br />

specifications <strong>for</strong> test<strong>in</strong>g or market<strong>in</strong>g.<br />

Cross<strong>in</strong>g po<strong>in</strong>t temperature<br />

The cross<strong>in</strong>g po<strong>in</strong>t temperature, or relative ignition temperature (RIT), test is designed to<br />

<strong>in</strong>dicate <strong>the</strong> comparative propensity <strong>of</strong> a <strong>coal</strong> to spontaneously heat. As <strong>the</strong> ignition<br />

temperature <strong>of</strong> a <strong>coal</strong> is dependant on many variables (test furnace conditions, <strong>in</strong>clud<strong>in</strong>g<br />

heat<strong>in</strong>g rate, sample mass and p<strong>art</strong>icle size and <strong>the</strong> availability <strong>of</strong> oxygen <strong>for</strong> combustion) <strong>the</strong><br />

test is relative to o<strong>the</strong>r <strong>coal</strong>s and does not provide a set value.<br />

When this test is conducted, <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> sample <strong>coal</strong> and a furnace is measured<br />

while <strong>the</strong> furnace is heated. Once spontaneous heat<strong>in</strong>g st<strong>art</strong>s, <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> <strong>coal</strong><br />

rises dramatically and heats to a temperature above <strong>the</strong> furnace temperature. The<br />

temperature at which <strong>the</strong> temperatures <strong>of</strong> <strong>the</strong> furnace and <strong>the</strong> <strong>coal</strong> are equivalent is <strong>the</strong><br />

cross<strong>in</strong>g po<strong>in</strong>t temperature. Work is required to evaluate its value to plant operations <strong>in</strong>volv<strong>in</strong>g<br />

blends.<br />

Volatile matter<br />

In a pf furnace, <strong>coal</strong> experiences high heat<strong>in</strong>g rates (up to 10 6 °C/s, (Carpenter, 1995), which<br />

produce very fast devolatilisation. When volatile matter is determ<strong>in</strong>ed <strong>in</strong> a laboratory, <strong>coal</strong> is<br />

heated from room temperature to 900°C <strong>for</strong> 7 m<strong>in</strong>utes. The heat<strong>in</strong>g rate is 2°C/s. Elliott (1981)<br />

notes that <strong>the</strong> volatile matter produced from a <strong>coal</strong> is a strong function <strong>of</strong> heat<strong>in</strong>g rate.<br />

There<strong>for</strong>e, <strong>the</strong> amount <strong>of</strong> volatile matter produced <strong>in</strong> laboratory conditions has no relevance to<br />

<strong>the</strong> amount <strong>of</strong> volatile matter produced <strong>in</strong> a boiler. If volatile matter is to be adequately used to<br />

predict behaviour – ei<strong>the</strong>r flame ignition or <strong>coal</strong> burnout - with<strong>in</strong> a boiler, a more appropriate<br />

test is required.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 9


Plant per<strong>for</strong>mance prediction<br />

Many <strong>of</strong> <strong>the</strong> effects on a pf plant <strong>of</strong> blend<strong>in</strong>g <strong>coal</strong> are not predictable based on <strong>the</strong> measured<br />

property <strong>of</strong> <strong>the</strong> blend. This <strong>in</strong>dicates <strong>the</strong> wide variety <strong>of</strong> areas <strong>in</strong> which research can be<br />

completed, but as yet <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> complex processes <strong>in</strong>volved has still made<br />

prediction <strong>of</strong> <strong>coal</strong> per<strong>for</strong>mance <strong>in</strong> various aspects <strong>of</strong> <strong>the</strong> plant very difficult. In many cases,<br />

prediction <strong>of</strong> <strong>the</strong> behaviour <strong>of</strong> a s<strong>in</strong>gle <strong>coal</strong> requires significant knowledge <strong>of</strong> <strong>the</strong> plant <strong>in</strong> which<br />

<strong>the</strong> <strong>coal</strong> is be<strong>in</strong>g fired. Many mechanisms can control <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> <strong>coal</strong> or ash <strong>in</strong> each<br />

aspect <strong>of</strong> <strong>the</strong> plant, depend<strong>in</strong>g on <strong>the</strong> <strong>coal</strong> composition, p<strong>art</strong>icle size and plant operation,<br />

mak<strong>in</strong>g prediction <strong>of</strong> any k<strong>in</strong>d difficult. There<strong>for</strong>e prediction <strong>of</strong> blend behaviour is problematic<br />

unless <strong>the</strong>re is a direct relationship between <strong>the</strong> <strong>coal</strong> property and <strong>the</strong> plant per<strong>for</strong>mance,<br />

such as <strong>the</strong> amount <strong>of</strong> ash <strong>in</strong> <strong>the</strong> blend as measured by <strong>the</strong> proximate analysis and <strong>the</strong><br />

quantity <strong>of</strong> ash to be handled <strong>in</strong> a plant.<br />

Several areas have been highlighted below as need<strong>in</strong>g fur<strong>the</strong>r research. These represent <strong>the</strong><br />

areas that <strong>the</strong> authors believe will have <strong>the</strong> largest impact on <strong>the</strong> lack <strong>of</strong> current knowledge,<br />

and represent <strong>the</strong> greatest benefit to <strong>the</strong> Australian <strong>coal</strong> <strong>in</strong>dustry.<br />

Flow properties <strong>of</strong> blends<br />

A significant understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> various properties <strong>of</strong> <strong>the</strong> <strong>coal</strong>, such as <strong>the</strong> effect <strong>of</strong><br />

moisture, f<strong>in</strong>es and m<strong>in</strong>eral components that effect flow properties, has been presented <strong>in</strong> <strong>the</strong><br />

literature. However, when blends are utilised, <strong>the</strong> impacts <strong>of</strong> <strong>the</strong>se properties are somewhat<br />

unknown, <strong>for</strong> <strong>the</strong> blend tends to adopt much <strong>of</strong> <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> <strong>coal</strong> that is most difficult<br />

to handle. The ability to predict <strong>the</strong> behaviour <strong>of</strong> blends would enable <strong>the</strong> impact <strong>of</strong> <strong>the</strong> blend<br />

on <strong>coal</strong> handl<strong>in</strong>g to be determ<strong>in</strong>ed without significant test<strong>in</strong>g. Such correlations are as yet<br />

undeterm<strong>in</strong>ed, and work to progress <strong>the</strong>ir development is recommended.<br />

The impact <strong>of</strong> NOx reduction on <strong>coal</strong> burnout and deposition<br />

NOx emissions from <strong>power</strong> stations utilis<strong>in</strong>g low NOx burners are usually controlled by alter<strong>in</strong>g<br />

<strong>the</strong> operat<strong>in</strong>g conditions <strong>of</strong> <strong>the</strong> burner. Un<strong>for</strong>tunately, this also results <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> carbon<br />

<strong>in</strong> ash and <strong>of</strong>ten <strong>in</strong>creases <strong>the</strong> amount <strong>of</strong> ash deposition associated with iron compounds <strong>in</strong><br />

<strong>the</strong> <strong>coal</strong>’s m<strong>in</strong>eral matter. When a s<strong>in</strong>gle <strong>coal</strong> is used, <strong>the</strong> decreased burnout <strong>of</strong> a given <strong>coal</strong><br />

can be predicted based on operational experience. Generally <strong>the</strong> change <strong>in</strong> NOx and burnout<br />

follows a predictable trend, with <strong>the</strong> absolute value <strong>of</strong> <strong>the</strong> trend l<strong>in</strong>e dependant on <strong>the</strong> volatile<br />

matter <strong>of</strong> <strong>the</strong> <strong>coal</strong>. However, no knowledge <strong>of</strong> <strong>the</strong> behaviour <strong>of</strong> blends <strong>in</strong> this manner has<br />

been reported. It is unknown if <strong>the</strong> blend falls between <strong>the</strong> trends produced by <strong>the</strong> <strong>in</strong>dividual<br />

<strong>coal</strong>s <strong>in</strong> that blend or if it occurs at ano<strong>the</strong>r position on <strong>the</strong> figure. Pilot scale or full scale tests<br />

are necessary <strong>in</strong> order to establish such relationships <strong>for</strong> blends.<br />

Trace elements and changes <strong>in</strong> deportment with blends<br />

Due to <strong>in</strong>creas<strong>in</strong>g government regulations, <strong>the</strong> release <strong>of</strong> trace elements from <strong>coal</strong> <strong>in</strong>to <strong>the</strong><br />

environment is fast becom<strong>in</strong>g a serious issue <strong>for</strong> <strong>the</strong> Australian <strong>coal</strong> <strong>in</strong>dustry. Work currently<br />

be<strong>in</strong>g undertaken is consider<strong>in</strong>g <strong>the</strong> deportment <strong>of</strong> <strong>the</strong>se trace elements <strong>in</strong>to <strong>the</strong> gas phase<br />

and collection <strong>of</strong> <strong>the</strong>se elements by <strong>the</strong> ash. In <strong>the</strong>se studies, <strong>the</strong> results have generally been<br />

published as a split between <strong>the</strong> gas phase and <strong>the</strong> ash, that is <strong>the</strong>y show what proportion <strong>of</strong><br />

<strong>the</strong> element, as a percentage, resides <strong>in</strong> <strong>the</strong> gas phase. However, just as sulphur can be<br />

captured by calcium based species and o<strong>the</strong>r basic ash components, sorbents <strong>for</strong> trace<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 10


elements are expected to exist. Senior (2000) found that As and Se were collected from <strong>the</strong><br />

gas stream by components <strong>of</strong> <strong>the</strong> ash. Arsenic appeared to react with calcium to <strong>for</strong>m calcium<br />

arsenate but <strong>the</strong> reactant that appeared to be captur<strong>in</strong>g selenium could not be determ<strong>in</strong>ed.<br />

The addition <strong>of</strong> a <strong>coal</strong> to a blend may improve <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> a plant, <strong>in</strong> regards to its<br />

trace element emissions, due to <strong>the</strong> presence <strong>of</strong> p<strong>art</strong>icular species <strong>in</strong> <strong>the</strong> ash <strong>of</strong> that <strong>coal</strong>.<br />

Scaveng<strong>in</strong>g by fly ash will also depend on <strong>the</strong> ash surface area, and hence its f<strong>in</strong>eness.<br />

Research projects on trace element deportment should <strong>the</strong>re<strong>for</strong>e also consider blends.<br />

Deposition and ash character <strong>in</strong> blends<br />

At present, deposition <strong>in</strong> a boiler is one <strong>of</strong> <strong>the</strong> most difficult aspects <strong>of</strong> plant operation to<br />

predict. This is ma<strong>in</strong>ly due to <strong>the</strong> non-l<strong>in</strong>ear relationship between <strong>the</strong> composition <strong>of</strong> <strong>the</strong> ash<br />

and its fusibility and melt<strong>in</strong>g behaviour, and <strong>the</strong> <strong>in</strong>adequacy <strong>of</strong> exist<strong>in</strong>g analytical techniques.<br />

New techniques which provide a more accurate picture <strong>of</strong> <strong>the</strong> ash behaviour have been<br />

developed <strong>in</strong> <strong>the</strong> past few years, but more research is required to ensure that <strong>the</strong> <strong>in</strong><strong>for</strong>mation<br />

provided by <strong>the</strong>se techniques is <strong>in</strong>terpreted correctly by apply<strong>in</strong>g <strong>the</strong>m to real deposition<br />

situations. For example, <strong>the</strong> data provided by <strong>the</strong>rmomechanical analysis has been used to<br />

expla<strong>in</strong> foul<strong>in</strong>g and slagg<strong>in</strong>g with<strong>in</strong> furnaces, but has not been proved to provide adequate<br />

<strong>in</strong><strong>for</strong>mation that will allow prediction <strong>of</strong> deposition. As <strong>the</strong> ashes <strong>of</strong> <strong>the</strong> <strong>coal</strong>s <strong>in</strong> blends <strong>in</strong>teract,<br />

<strong>the</strong> relevance <strong>of</strong> such techniques to combustion utilis<strong>in</strong>g <strong>coal</strong> blends also needs to be<br />

considered. Work on deposition, that enables prediction <strong>of</strong> problems with<strong>in</strong> boilers from<br />

<strong>in</strong>dividual <strong>coal</strong>s and blends, should be supported.<br />

Precipitation <strong>of</strong> ash from blends<br />

One <strong>of</strong> <strong>the</strong> greatest advantages Australian <strong>coal</strong>s hold is <strong>the</strong>ir low sulphur content. The<br />

<strong>in</strong>dustry is encourag<strong>in</strong>g operators <strong>in</strong> o<strong>the</strong>r countries to consider blend<strong>in</strong>g Australian <strong>coal</strong>s with<br />

<strong>the</strong>ir feed stock to reduce SOx emissions. However, reduced sulphur contents <strong>of</strong> <strong>the</strong> ash are<br />

thought to decrease <strong>the</strong> operat<strong>in</strong>g per<strong>for</strong>mance <strong>of</strong> electrostatic precipitators, and a strong<br />

impact on p<strong>art</strong>iculate removal per<strong>for</strong>mance may cast doubt on <strong>the</strong> value <strong>of</strong> lower sulphur<br />

Australian <strong>coal</strong>s. Some rules <strong>of</strong> thumb exist, based on sulphur content, to guide operators <strong>in</strong><br />

electrostatic precipitator per<strong>for</strong>mance, but <strong>the</strong>se were produced on British <strong>coal</strong>s, and must be<br />

validated <strong>for</strong> blends <strong>of</strong> Australian <strong>coal</strong>s with overseas <strong>coal</strong>s.<br />

Resistivity <strong>of</strong> ashes is measured on ash generated from full-scale boilers, from pilot scale<br />

combustors, or from drop tube combustion experiments. The surface layers responsible <strong>for</strong><br />

<strong>the</strong> conductive path, necessary <strong>for</strong> required resistivity levels, are <strong>for</strong>med dur<strong>in</strong>g <strong>the</strong><br />

combustion process and <strong>the</strong> cool<strong>in</strong>g <strong>of</strong> ash. Resistivity is not additive, and prediction <strong>of</strong><br />

per<strong>for</strong>mance will be improved by research <strong>in</strong>to <strong>the</strong> reasons <strong>for</strong> this, p<strong>art</strong>icularly <strong>for</strong> <strong>coal</strong>s <strong>of</strong><br />

differ<strong>in</strong>g sulphur levels.<br />

Prediction <strong>of</strong> NOx <strong>for</strong> blends (or s<strong>in</strong>gle <strong>coal</strong>s)<br />

As NOx <strong>for</strong>ms from <strong>the</strong> nitrogen associated with <strong>the</strong> carbon <strong>in</strong> <strong>the</strong> <strong>coal</strong>, <strong>the</strong> volatiles <strong>of</strong> <strong>the</strong><br />

<strong>coal</strong> and air nitrogen, and as NOx <strong>for</strong>mation is dependant on operat<strong>in</strong>g conditions, it is<br />

generally difficult to predict NOx emissions <strong>for</strong> operat<strong>in</strong>g plants. Generally, if <strong>the</strong> nitrogen<br />

associated with a <strong>coal</strong> <strong>in</strong>creases, operators will expect to observe an <strong>in</strong>crease <strong>in</strong> NOx, and will<br />

alter operat<strong>in</strong>g conditions on this basis. Decreas<strong>in</strong>g <strong>the</strong> oxygen concentration at <strong>the</strong> burner, to<br />

limit NOx <strong>for</strong>mation, can result <strong>in</strong> significant slagg<strong>in</strong>g, and may be unnecessary as <strong>the</strong> <strong>for</strong>m <strong>of</strong><br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 11


<strong>the</strong> nitrogen associated with <strong>the</strong> <strong>coal</strong> is important. Knowledge <strong>of</strong> <strong>the</strong> reaction rate <strong>of</strong> each<br />

<strong>for</strong>m <strong>of</strong> nitrogen can allow <strong>the</strong> f<strong>in</strong>al NOx concentration to be calculated from <strong>the</strong> operational<br />

parameters (i.e. oxygen concentration around burner, and gas temperature). Estimation <strong>of</strong> <strong>the</strong><br />

NOx produced from <strong>coal</strong> nitrogen and operat<strong>in</strong>g conditions is possible with limited accuracy,<br />

and with less accuracy <strong>for</strong> blends.<br />

Model <strong>for</strong> <strong>the</strong> chang<strong>in</strong>g per<strong>for</strong>mance <strong>of</strong> plant with blended <strong>coal</strong>s<br />

It is clear that <strong>the</strong> many facets <strong>of</strong> <strong>the</strong> pf plant <strong>in</strong>teract: chang<strong>in</strong>g an operat<strong>in</strong>g condition <strong>of</strong> <strong>the</strong><br />

plant to account <strong>for</strong> one aspect <strong>of</strong> <strong>the</strong> <strong>coal</strong>s' character may significantly impact on areas <strong>of</strong> <strong>the</strong><br />

plant not considered. As a simple example, chang<strong>in</strong>g a <strong>coal</strong> <strong>in</strong> a blend to reduce costs may<br />

<strong>in</strong>crease <strong>the</strong> total moisture, result<strong>in</strong>g <strong>in</strong> a decrease <strong>in</strong> flame temperature, which will effect <strong>the</strong><br />

heat transfer <strong>in</strong> <strong>the</strong> furnace and may alter <strong>the</strong> deposition <strong>of</strong> ash. The <strong>in</strong>creased gas volume<br />

associated with <strong>in</strong>creas<strong>in</strong>g moisture will decrease <strong>the</strong> operat<strong>in</strong>g efficiency <strong>of</strong> p<strong>art</strong>iculate<br />

removal systems and any de-SOx plant. As <strong>the</strong> <strong>in</strong>teractions with<strong>in</strong> <strong>the</strong> plant are so complex, it<br />

would be unreasonable to expect an operator to ensure that chang<strong>in</strong>g one simple operat<strong>in</strong>g<br />

parameter does not have a negative impact on o<strong>the</strong>r areas. To assist operators with such<br />

decisions a model <strong>of</strong> <strong>the</strong> plant, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>se <strong>in</strong>teractions, should be developed. Even a<br />

list<strong>in</strong>g <strong>of</strong> effects would be useful. This is a significant task.<br />

Fur<strong>the</strong>r consolidation <strong>of</strong> knowledge and its useability<br />

The report presents a summary <strong>of</strong> current knowledge provided <strong>in</strong> <strong>the</strong> literature, with<br />

<strong>in</strong>terpretations by <strong>the</strong> group commissioned by ACARP <strong>for</strong> <strong>the</strong> project. The outcomes given<br />

are not quantitative, and an extension <strong>of</strong> this ef<strong>for</strong>t would be to develop s<strong>of</strong>tware <strong>in</strong>corporat<strong>in</strong>g<br />

a <strong>coal</strong> blend<strong>in</strong>g adviser, with calculated properties and <strong>in</strong>dications <strong>of</strong> per<strong>for</strong>mance based on<br />

<strong>the</strong> average as well as <strong>in</strong>dividual <strong>coal</strong>s.<br />

To ensure <strong>the</strong> value <strong>of</strong> <strong>the</strong> report and <strong>the</strong> future directions <strong>of</strong> research are optimised, <strong>the</strong><br />

group suggests a survey <strong>of</strong> <strong>in</strong>dustry personnel who receive a copy <strong>of</strong> <strong>the</strong> report be completed.<br />

The survey would ask <strong>the</strong> p<strong>art</strong>icipant to identify issues, both covered and not covered <strong>in</strong> this<br />

report, which <strong>the</strong>y have experienced when <strong>coal</strong>s are blended. This would confirm <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong> report and ensure actions based on <strong>the</strong> report and any fur<strong>the</strong>r work <strong>in</strong> this area would<br />

be well grounded.<br />

The value <strong>of</strong> reports from IEA Coal Research has been highlighted by <strong>the</strong> study. One such<br />

report – A Carpenter, Coal blend<strong>in</strong>g <strong>in</strong> <strong>power</strong> stations, IEACR/81, IEA Coal Research, July<br />

1995 – has been an excellent source summaris<strong>in</strong>g knowledge that prevailed prior to its<br />

release. We have <strong>in</strong>terpreted some <strong>of</strong> <strong>the</strong> work reported somewhat differently, but <strong>the</strong> quality<br />

and comprehensive nature <strong>of</strong> <strong>the</strong> report has been evident. We recommend that Australia reestablishes<br />

its membership <strong>of</strong> IEA Coal research.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 12


1 INTRODUCTION<br />

Most <strong>coal</strong> properties are additive when applied to <strong>coal</strong> blends. That is, <strong>the</strong> value <strong>of</strong> <strong>the</strong><br />

property <strong>for</strong> <strong>the</strong> blend can be determ<strong>in</strong>ed from <strong>the</strong> property <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual <strong>coal</strong>s <strong>in</strong>volved.<br />

Some tests used to determ<strong>in</strong>e p<strong>art</strong>icular <strong>coal</strong> properties do not use a representative sample <strong>of</strong><br />

<strong>the</strong> whole <strong>coal</strong> (Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex) or, because <strong>of</strong> <strong>the</strong> empirical test conditions, do<br />

not provide appropriate <strong>in</strong><strong>for</strong>mation <strong>for</strong> its use <strong>in</strong> <strong>the</strong> required application (crucible swell<strong>in</strong>g<br />

number and volatile matter). O<strong>the</strong>r tests do not provide a l<strong>in</strong>ear result <strong>for</strong> <strong>the</strong> blend when<br />

compared to <strong>the</strong> test result <strong>for</strong> <strong>the</strong> <strong>in</strong>dividual <strong>coal</strong>s (ash fusion temperatures), ensur<strong>in</strong>g that a<br />

test result <strong>for</strong> <strong>the</strong> blend itself must be obta<strong>in</strong>ed. Due to imperfect blend<strong>in</strong>g practices, <strong>the</strong>se<br />

test results <strong>of</strong>ten do not provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> blend behaviour <strong>in</strong> a pf furnace.<br />

Current knowledge <strong>of</strong> plant behaviour <strong>for</strong> combustion <strong>of</strong> <strong>in</strong>dividual <strong>coal</strong>s <strong>in</strong> some areas is<br />

adequate <strong>for</strong> predict<strong>in</strong>g <strong>the</strong> behaviour <strong>of</strong> a blend. However, <strong>in</strong> many areas <strong>of</strong> a pf plant,<br />

prediction <strong>of</strong> per<strong>for</strong>mance <strong>of</strong> a blend is difficult and requires fur<strong>the</strong>r research to provide<br />

acceptable accuracy <strong>in</strong> <strong>the</strong> prediction. In several cases, <strong>the</strong> behaviour <strong>of</strong> <strong>in</strong>dividual <strong>coal</strong>s, <strong>in</strong><br />

terms <strong>of</strong> <strong>the</strong>ir handl<strong>in</strong>g, combustion and waste stream characteristics, cannot be expla<strong>in</strong>ed<br />

adequately nor related to <strong>coal</strong> properties, and fur<strong>the</strong>r research is required to predict <strong>coal</strong><br />

per<strong>for</strong>mance.<br />

The follow<strong>in</strong>g discussion highlights <strong>the</strong> analytical techniques used to determ<strong>in</strong>e <strong>coal</strong><br />

properties, and <strong>in</strong>dicates <strong>the</strong>ir additivity <strong>for</strong> blends. The usefulness <strong>of</strong> <strong>the</strong>se properties <strong>in</strong><br />

terms <strong>of</strong> predict<strong>in</strong>g <strong>power</strong> plant per<strong>for</strong>mance is discussed, and limitations <strong>in</strong> utilis<strong>in</strong>g <strong>coal</strong><br />

property data are highlighted. As blend<strong>in</strong>g practise strongly impacts on <strong>the</strong> homogeneity <strong>of</strong><br />

<strong>the</strong> blend, and <strong>the</strong>re<strong>for</strong>e its behaviour <strong>in</strong> a pf plant, <strong>the</strong> discussion st<strong>art</strong>s with an overview <strong>of</strong><br />

blend<strong>in</strong>g methodology.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 13


2 BLENDING: A SUMMARY REVIEW<br />

The follow<strong>in</strong>g is a summary <strong>of</strong> <strong>the</strong> relevant aspects on <strong>coal</strong> blend<strong>in</strong>g methodology, from<br />

Section 3 <strong>of</strong> Coal Blend<strong>in</strong>g For Power Stations, Anne M Carpenter, IEACR/81, July 1995.<br />

2.1 Why blend?<br />

Blend<strong>in</strong>g is necessary <strong>for</strong> many reasons. These <strong>in</strong>clude: <strong>in</strong>digenous <strong>coal</strong>s may be too low <strong>in</strong><br />

rank and/or high <strong>in</strong> ash; traditional feed <strong>coal</strong>s have some quality deficiencies, which need<br />

compensat<strong>in</strong>g <strong>for</strong>; <strong>power</strong> stations have design limitations.<br />

2.2 Def<strong>in</strong>itions<br />

Homogenisation is <strong>the</strong> process<strong>in</strong>g <strong>of</strong> one type <strong>of</strong> material so that <strong>the</strong> <strong>in</strong>herent fluctuations <strong>in</strong><br />

respect <strong>of</strong> quality and/or size distribution are evened out.<br />

In blend<strong>in</strong>g <strong>the</strong> aim is to achieve a f<strong>in</strong>al product with a well def<strong>in</strong>ed composition, from two or<br />

more <strong>coal</strong> types, so that <strong>the</strong> elements are very well distributed and no large pockets <strong>of</strong> one<br />

type can be identified.<br />

In mix<strong>in</strong>g, traces <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual components can still be identified.<br />

2.3 Methodology<br />

Blend<strong>in</strong>g is ei<strong>the</strong>r by (i) plac<strong>in</strong>g <strong>the</strong> <strong>coal</strong>s <strong>in</strong> layers, <strong>in</strong> <strong>the</strong>ir correct proportions, <strong>in</strong> <strong>the</strong> same<br />

stockpile, <strong>the</strong>n reclaim<strong>in</strong>g across <strong>the</strong> full face or (ii) plac<strong>in</strong>g <strong>the</strong> <strong>coal</strong>s <strong>in</strong> different stockpiles<br />

and blend<strong>in</strong>g as <strong>the</strong>y are reclaimed onto belts, ano<strong>the</strong>r stockpile, or <strong>in</strong>to b<strong>in</strong>s, silos or<br />

bunkers. Some <strong>coal</strong>s need to be homogenised be<strong>for</strong>e <strong>the</strong>y are put <strong>in</strong>to blends.<br />

Common methods <strong>of</strong> stockpile blend<strong>in</strong>g are shown <strong>in</strong> Figure 1.<br />

Most effective blend<strong>in</strong>g methods are chevron and w<strong>in</strong>drow. The latter requires a slew<strong>in</strong>g<br />

boom. It provides <strong>the</strong> m<strong>in</strong>imum size segregation and <strong>the</strong> greatest blend<strong>in</strong>g efficiency. The<br />

ends <strong>of</strong> blend stockpiles are not representative and should be recycled to ano<strong>the</strong>r pile (note<br />

that if <strong>the</strong> ends are not representative, <strong>the</strong>n nei<strong>the</strong>r is <strong>the</strong> middle).<br />

For smaller operations, blend<strong>in</strong>g is <strong>of</strong>ten by reclaim<strong>in</strong>g from different stockpiles with front-end<br />

loaders, and layer<strong>in</strong>g onto <strong>the</strong> blend stockpile with a bulldozer. This m<strong>in</strong>imises spontaneous<br />

combustion risk, but is more mix<strong>in</strong>g than blend<strong>in</strong>g, with higher standard deviation <strong>in</strong> <strong>the</strong> end<br />

product.<br />

Some common methods <strong>of</strong> reclaim<strong>in</strong>g from blended stockpiles are given <strong>in</strong> Figure 2.<br />

Blend<strong>in</strong>g efficiency is <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> variation <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual components be<strong>for</strong>e stack<strong>in</strong>g to<br />

<strong>the</strong> variation after reclaim<strong>in</strong>g. This is improved if <strong>the</strong>re is a b<strong>in</strong> between <strong>the</strong> blend and its end<br />

use.<br />

The highest blend<strong>in</strong>g efficiency at a conventional plant was found (Zardor, 1991) to result<br />

from a comb<strong>in</strong>ation <strong>of</strong> w<strong>in</strong>drow blend<strong>in</strong>g and pilgrim step reclaim<strong>in</strong>g with a slew<strong>in</strong>g bucket<br />

wheel reclaimer. For bridge style reclaimers, those with a drum gave better efficiencies than<br />

those with a s<strong>in</strong>gle wheel.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 14


Strata<br />

Chevron<br />

Chevron-w<strong>in</strong>drow<br />

Figure 1: Types <strong>of</strong> stack<strong>in</strong>g <strong>for</strong> blend<strong>in</strong>g (after Carpenter, 1995)<br />

Figure 2: Methods <strong>of</strong> reclaim<strong>in</strong>g (after Carpenter, 1995)<br />

Strata or skewed chevron<br />

W<strong>in</strong>drow<br />

Chevcon<br />

Portal<br />

scraper<br />

side<br />

Surpris<strong>in</strong>gly, at a special blend<strong>in</strong>g plant, <strong>the</strong> relative efficiencies <strong>of</strong> w<strong>in</strong>drow and chevron<br />

blend<strong>in</strong>g depended on whe<strong>the</strong>r ash or sulphur was <strong>the</strong> critical factor <strong>in</strong> <strong>the</strong> resultant blend.<br />

This outcome seems <strong>in</strong>explicable. Zador gives efficiencies <strong>for</strong> w<strong>in</strong>drow blend<strong>in</strong>g <strong>of</strong> five <strong>coal</strong><br />

types, based on V and S. He def<strong>in</strong>es blend<strong>in</strong>g efficiency as:<br />

Blend<strong>in</strong>g efficiency = Variations be<strong>for</strong>e stack<strong>in</strong>g (@95% probability)<br />

Variations after reclaim<strong>in</strong>g (@95% probability)<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 15


Zador's Figure 18 gave blend<strong>in</strong>g efficiencies <strong>for</strong> different stack<strong>in</strong>g rates, blend<strong>in</strong>g methods<br />

and reclaim methods. Reclaim rates were taken to be constant, at 2000 to 4000 t/h. Table 2 is<br />

a summary, and is <strong>for</strong> stack<strong>in</strong>g rates <strong>of</strong> 1000, 2000 and 6000 t/h only. Obviously <strong>the</strong> number<br />

<strong>of</strong> w<strong>in</strong>drows or chevrons, and hence <strong>the</strong> degree <strong>of</strong> blend<strong>in</strong>g, is <strong>in</strong>versely proportional to <strong>the</strong><br />

stack<strong>in</strong>g rate (assum<strong>in</strong>g constant stacker travel rate). Efficiencies <strong>for</strong> rates between 2000 and<br />

6000 t/h can be reasonably estimated pro rata.<br />

Reclaim Stack<strong>in</strong>g Chevron/W<strong>in</strong>drow<br />

Blend<strong>in</strong>g Efficiencies<br />

Chevron W<strong>in</strong>drow<br />

Method Rate t/h Ash Sulphur Ash Sulphur Ash Sulphur<br />

Bench 1000 1.42 1.11 1.72 1.26 2.25 1.40<br />

2000 1.34 1.09 1.58 1.21 2.01 1.32<br />

6000 1.28 1.06 1.51 1.17 1.86 1.26<br />

Block 1000 1.50 1.13 1.87 1.31 2.58 1.48<br />

2000 1.41 1.11 1.71 1.25 2.26 1.39<br />

6000 1.35 1.08 1.61 1.21 2.07 1.33<br />

Pilgrim Step 1000 1.59 1.16 2.02 1.37 2.87 1.57<br />

2000 1.48 1.14 1.83 1.30 2.48 1.46<br />

6000 1.41 1.10 1.71 1.23 2.24 1.39<br />

Table 2: Blend<strong>in</strong>g efficiencies <strong>of</strong> different stack<strong>in</strong>g and reclaim<strong>in</strong>g methods (after Zador, Fig. 18,<br />

1991)<br />

The ratio <strong>of</strong> <strong>the</strong> blend<strong>in</strong>g efficiencies <strong>for</strong> S to those <strong>for</strong> ash, <strong>for</strong> <strong>the</strong> same situation, are fur<strong>the</strong>r<br />

perplex<strong>in</strong>g, as shown <strong>in</strong> Table 3.<br />

B. E. Ash / B. E. Sulphur<br />

Reclaim Stack<strong>in</strong>g Chevron/ Chevron<br />

Method Rate (t/h) W<strong>in</strong>drow Chevron W<strong>in</strong>drow<br />

Bench 1000 0.78 0.73 0.62<br />

2000 0.81 0.77 0.66<br />

6000 0.83 0.77 0.68<br />

Block 1000 0.75 0.70 0.57<br />

2000 0.79 0.73 0.62<br />

6000 0.80 0.75 0.64<br />

Pilgrim Step 1000 0.73 0.67 0.55<br />

2000 0.77 0.71 0.59<br />

6000 0.78 0.72 0.62<br />

Table 3: Comparison <strong>of</strong> blend<strong>in</strong>g efficiencies <strong>for</strong> ash and sulphur (after Zador, 1991)<br />

This suggests that <strong>the</strong> disparity between <strong>the</strong> blend<strong>in</strong>g efficiency <strong>for</strong> sulphur and that <strong>for</strong> ash is<br />

less at faster stack<strong>in</strong>g rates i.e. when <strong>the</strong>re are less cross sections <strong>of</strong> each blend component.<br />

It also suggests that <strong>the</strong> disparity is greatest <strong>for</strong> w<strong>in</strong>drow blends. Nei<strong>the</strong>r <strong>of</strong> <strong>the</strong>se outcomes<br />

seems logical. On <strong>the</strong> o<strong>the</strong>r hand it suggests that slower stack<strong>in</strong>g rates (more component<br />

cross sections) and w<strong>in</strong>drow blend<strong>in</strong>g improves <strong>the</strong> blend<strong>in</strong>g efficiency <strong>for</strong> ash at a greater<br />

rate than it does <strong>for</strong> sulphur. Aga<strong>in</strong>, this is <strong>in</strong>explicable.<br />

B<strong>in</strong>s (<strong>in</strong>clud<strong>in</strong>g silos and bunkers) may be used to blend different <strong>coal</strong>s, or to homogenise<br />

<strong>coal</strong>s reclaimed from blended stockpiles. Because <strong>of</strong> <strong>the</strong>ir relative capacities, b<strong>in</strong>s are <strong>of</strong>ten<br />

used <strong>for</strong> <strong>the</strong> "live" blend<strong>in</strong>g <strong>of</strong> <strong>coal</strong>s reclaimed from different stockpiles. See also belt<br />

blend<strong>in</strong>g.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 16


B<strong>in</strong> geometry usually precludes FIFO (first-<strong>in</strong>, first-out), <strong>the</strong> deviation rang<strong>in</strong>g from m<strong>in</strong>imal to<br />

extreme, depend<strong>in</strong>g on <strong>the</strong> segregation caused by hang-up. So b<strong>in</strong> blend<strong>in</strong>g efficiency is a<br />

function <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual <strong>coal</strong> flow properties and b<strong>in</strong> geometry.<br />

In belt blend<strong>in</strong>g, different <strong>coal</strong>s are loaded <strong>in</strong>to separate b<strong>in</strong>s, and blended by discharg<strong>in</strong>g<br />

<strong>the</strong>m directly onto a common belt at controlled rates. McGl<strong>in</strong>chey, Jones and Marjanovic<br />

(1999) discuss <strong>the</strong> variances obta<strong>in</strong>ed with<strong>in</strong> conical piles, from comp<strong>art</strong>mented hoppers, and<br />

from belt blend<strong>in</strong>g. They conclude that "feeder belts discharg<strong>in</strong>g onto a central conveyor belt"<br />

and "comp<strong>art</strong>ment hoppers discharg<strong>in</strong>g onto a common belt … were shown to give very<br />

similar levels <strong>of</strong> variance <strong>in</strong> <strong>the</strong> proportion<strong>in</strong>g <strong>of</strong> component <strong>coal</strong>s, over a wide range <strong>of</strong><br />

discharge conditions".<br />

N<strong>in</strong>e <strong>of</strong> eleven <strong>power</strong> stations surveyed by Gunderson and o<strong>the</strong>rs (1994) blended <strong>the</strong> <strong>coal</strong>s<br />

on belt conveyors. Evans and o<strong>the</strong>rs (1991) <strong>state</strong>d that, at one USA <strong>power</strong> station, blends <strong>of</strong><br />

subbitum<strong>in</strong>ous and bitum<strong>in</strong>ous <strong>coal</strong>s could be controlled to with<strong>in</strong> an accuracy <strong>of</strong> 1% us<strong>in</strong>g<br />

belt scales and variable speed feeders. At ano<strong>the</strong>r site a 1% accuracy was achieved <strong>for</strong> three<br />

<strong>coal</strong>s blended on a belt conveyor, which ran below each stockpile, us<strong>in</strong>g rotary plough<br />

feeders.<br />

Me<strong>in</strong>ers (1990) describes a sophisticated system at an American <strong>power</strong> station <strong>for</strong> blend<strong>in</strong>g<br />

high and low sulphur <strong>coal</strong>s, with <strong>the</strong> ratio decided by monitor<strong>in</strong>g stack SO2 emissions. Details<br />

<strong>of</strong> <strong>the</strong> system are <strong>in</strong> Carpenter, 1995, page 22.<br />

Dur<strong>in</strong>g a visit to <strong>the</strong> USA <strong>in</strong> 1991, one <strong>of</strong> <strong>the</strong> authors <strong>of</strong> this report visited a high sulphur m<strong>in</strong>e<br />

<strong>in</strong> Ohio, where <strong>the</strong>ir washed product was blended about 4:1 with low sulphur <strong>coal</strong> that had<br />

been barged up-river from m<strong>in</strong>es <strong>in</strong> <strong>the</strong> south. The blend produced SO2 emissions from <strong>the</strong><br />

adjacent <strong>power</strong> plant, con<strong>for</strong>m<strong>in</strong>g to <strong>the</strong> licence specification. The system <strong>in</strong>volved a real-time<br />

analyser, coupled with a sophisticated logic system, to feed <strong>the</strong> low sulphur <strong>coal</strong> onto <strong>the</strong> belt<br />

carry<strong>in</strong>g <strong>the</strong> high sulphur <strong>coal</strong>. Maximum precision was essential, to (i) ensure <strong>power</strong> station<br />

compliance on SO2 emissions and (ii) m<strong>in</strong>imise <strong>the</strong> use <strong>of</strong> <strong>the</strong> expensive, imported blend<strong>in</strong>g<br />

<strong>coal</strong>. Note that <strong>the</strong> m<strong>in</strong>e has s<strong>in</strong>ce been <strong>for</strong>ced to close, as a result <strong>of</strong> <strong>the</strong> more str<strong>in</strong>gent<br />

emission requirements <strong>in</strong>troduced <strong>in</strong> 1995.<br />

Blend<strong>in</strong>g control may be done by ei<strong>the</strong>r <strong>the</strong> feed<strong>for</strong>ward or feedback methods. For<br />

feed<strong>for</strong>ward control an analyser on each <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual <strong>coal</strong> streams feeds <strong>the</strong>ir quality<br />

(say, ash) value <strong>for</strong>ward to a controller, which adjusts <strong>the</strong> rate at which it is fed <strong>in</strong>to <strong>the</strong> blend.<br />

One major advantage <strong>of</strong> this method is that it takes account <strong>of</strong> changes <strong>in</strong> <strong>the</strong> properties <strong>of</strong> an<br />

<strong>in</strong>dividual <strong>coal</strong>, which may have occurred with time e.g. by oxidation. In a (cheaper) feedback<br />

control system <strong>the</strong> composition <strong>of</strong> <strong>the</strong> blend is cont<strong>in</strong>ually analysed and, based on <strong>the</strong> result,<br />

<strong>the</strong> amounts <strong>of</strong> <strong>the</strong> components are adjusted to achieve <strong>the</strong> required blend composition. A<br />

disadvantage <strong>of</strong> this method is that <strong>the</strong>re will always be a delay between <strong>the</strong> analysis po<strong>in</strong>t<br />

and <strong>the</strong> blend po<strong>in</strong>t. It is best suited to <strong>coal</strong>s, which are not too dissimilar <strong>in</strong> quality, and where<br />

<strong>the</strong> time delays are small.<br />

The EMO term<strong>in</strong>al at Rotterdam uses feed<strong>for</strong>ward control, based on a real-time elemental<br />

analyser and five b<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g imported <strong>coal</strong>s, to supply blends to Dutch <strong>power</strong> stations.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 17


Computer modell<strong>in</strong>g <strong>for</strong> blend control can be achieved by <strong>the</strong> simple use <strong>of</strong> spreadsheets, or<br />

by l<strong>in</strong>ear programm<strong>in</strong>g. These all depend on blend additivity. Models can also determ<strong>in</strong>e if <strong>the</strong><br />

blend<strong>in</strong>g should be carried out at <strong>the</strong> supplier end, or <strong>the</strong> user end, <strong>of</strong> <strong>the</strong> cha<strong>in</strong>.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 18


3 IMPORTANT COAL PROPERTIES IN BLENDING: THEIR TESTING, ADDITIVITY<br />

AND EFFECTS ON POWER STATIONS<br />

Many <strong>coal</strong> properties <strong>for</strong> blends can be predicted from <strong>the</strong> <strong>coal</strong> properties <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual<br />

<strong>coal</strong>s, simply by summ<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> each property based on <strong>the</strong> proportion <strong>of</strong> each<br />

<strong>coal</strong> <strong>in</strong> <strong>the</strong> blend. However, not all properties are additive, as set out <strong>in</strong> Table 4.<br />

The operator's ability to alter plant per<strong>for</strong>mance by blend<strong>in</strong>g <strong>coal</strong>s depends on <strong>the</strong> <strong>coal</strong><br />

properties selected, <strong>the</strong> impact <strong>of</strong> <strong>the</strong> property on <strong>the</strong> plant, and <strong>the</strong> efficiency <strong>of</strong> blend<strong>in</strong>g.<br />

The ability to predict <strong>the</strong> impact <strong>of</strong> a blend on plant per<strong>for</strong>mance depends strongly on <strong>the</strong> type<br />

<strong>of</strong> <strong>coal</strong>s blended. When two <strong>coal</strong>s <strong>of</strong> similar rank are blended, <strong>the</strong> impact on <strong>the</strong> plant is more<br />

predictable than when two <strong>coal</strong>s <strong>of</strong> vastly different rank are blended. The discussion below<br />

can be taken to cover blend<strong>in</strong>g <strong>of</strong> two vastly different <strong>coal</strong>s, but <strong>in</strong> general refers to blend<strong>in</strong>g<br />

<strong>coal</strong>s <strong>of</strong> similar rank.<br />

As shown <strong>in</strong> Table 5, <strong>the</strong> impact <strong>of</strong> a blend property on <strong>the</strong> plant per<strong>for</strong>mance is considered to<br />

be predictable if <strong>the</strong> average value measured by an analytical test on <strong>the</strong> blend, not <strong>the</strong> blend<br />

constituents, can be used to <strong>in</strong>dicate <strong>the</strong> expected change <strong>in</strong> per<strong>for</strong>mance.<br />

This section gives notes to accompany Table 4 and Table 5, which is a concise list<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

key properties <strong>for</strong> consideration when predict<strong>in</strong>g <strong>power</strong> station per<strong>for</strong>mance from <strong>coal</strong><br />

properties <strong>of</strong> blends. O<strong>the</strong>r lists have been published <strong>in</strong> <strong>the</strong> past, which covered many <strong>of</strong> <strong>the</strong><br />

properties discussed here. The tables <strong>of</strong> Wall (1988), Skorupska (1993) and Su (1999) are<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> appendices to this document.<br />

Note that references given to Standards, which def<strong>in</strong>e test procedures <strong>for</strong> each property, are<br />

<strong>for</strong> higher rank <strong>coal</strong>s only. In most cases, separate methods are prescribed <strong>for</strong> lower rank<br />

<strong>coal</strong>s.<br />

3.1 Proximate analysis<br />

The proximate analysis <strong>of</strong> <strong>coal</strong> comprises <strong>the</strong> moisture, ash, volatile matter and fixed carbon,<br />

<strong>the</strong> latter be<strong>in</strong>g by difference. These are normally reported on <strong>the</strong> as-analysed or air-dry<br />

basis. For <strong>the</strong> purpose <strong>of</strong> Table 4, <strong>the</strong> proximate analysis has been expressed on <strong>the</strong> as-fired<br />

or as-received basis, as this best refers to <strong>the</strong> condition <strong>of</strong> <strong>the</strong> <strong>coal</strong> received by <strong>the</strong> <strong>power</strong><br />

station.<br />

Note <strong>the</strong> great differences <strong>in</strong> residence time, heat<strong>in</strong>g rate and f<strong>in</strong>al temperature, <strong>for</strong> <strong>the</strong>se<br />

tests, between <strong>the</strong> empirical test furnace and a <strong>power</strong> station boiler.<br />

"Moisture" can conta<strong>in</strong> light hydrocarbons, especially <strong>in</strong> lower rank <strong>coal</strong>s, and so <strong>the</strong> moisture<br />

value may be too high and <strong>the</strong> volatile matter value too low. It is important to remember that<br />

laboratory volatile matter values <strong>in</strong>clude <strong>the</strong> m<strong>in</strong>eral matter volatiles (predom<strong>in</strong>antly water<br />

vapour and carbon dioxide), which are usually about 10% <strong>of</strong> <strong>the</strong> ash value. In an anthracite or<br />

semi-anthracite, <strong>for</strong> <strong>in</strong>stance, <strong>the</strong> pure m<strong>in</strong>eral matter may conta<strong>in</strong> as much "volatile matter"<br />

as <strong>the</strong> pure <strong>coal</strong> component.<br />

Conversion from <strong>the</strong> air-dry to as-fired (as-received) basis is as follows, <strong>for</strong> example <strong>for</strong> ash:<br />

Aaf,% = Aad% x (100 - Maf%) / (100 - Mad%)<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 19


where Maf = moisture as-fired (total moisture)<br />

Mad = air-dry moisture<br />

Calculation <strong>of</strong> analyses to different bases is described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g Standards: Australian<br />

Standard AS1038.16; British Standard BS1016-100; ISO1170; American Standard D3180;<br />

Japanese Standard JIS M8812.<br />

PROPERTY Derived<br />

(empirical)<br />

Property?<br />

Function <strong>of</strong><br />

Coal Rank,<br />

Coal Type,<br />

or M<strong>in</strong>eral<br />

Matter?<br />

Additive,<br />

Nonadditive<br />

Proximate analysis (as-fired) *1<br />

Moisture R, T, (M) A *7<br />

Ash D M A *8<br />

Volatile matter D R, T, (M) A *9<br />

Specific Energy *2 R, T, (M) A<br />

Sulphur - Total (M) A<br />

Pyritic M A<br />

Chlor<strong>in</strong>e M (A)<br />

Ultimate Analysis (d.a.f.)<br />

Carbon R, (T) A<br />

Hydrogen R, T A<br />

Nitrogen A<br />

Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex *3 D R, T, (M) N<br />

Abrasion Index D M (A)<br />

Crucible swell<strong>in</strong>g number *4 D R, T N<br />

Ash fusibility temperatures D M N<br />

Ash analysis *5 M A *10<br />

Trace elements *6 M (A)<br />

Coal flow properties D R, T, M (N)<br />

Size distribution - <strong>coal</strong> R, T, (M) A<br />

Petrographic Analysis (v/v)<br />

Maceral analysis T A<br />

Maceral reflectogram R, T (A)<br />

Table 4: Blend additivity <strong>of</strong> ma<strong>in</strong> properties <strong>of</strong> <strong>power</strong> station feedstock<br />

Comments<br />

*1 Taken to be analagous to "as received".<br />

*2 Also described as Heat<strong>in</strong>g Value, Calorific Value.<br />

*3 Result refers to a specially prepared, sized and dedusted fraction <strong>of</strong> <strong>the</strong> sample.<br />

*4 Described as Free Swell<strong>in</strong>g Index (ASTM).<br />

*5 AS1038 report<strong>in</strong>g order: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, TiO2, Mn3O4, SO3, P2O5.<br />

*6 Concern: major As, B, Cd, Pb, Hg, Mo, Se; moderate Cr, Cu, F, Ni, V, Zn; m<strong>in</strong>or Sb.<br />

*7 Moisture <strong>in</strong>tegrity may be lost on sampl<strong>in</strong>g; f<strong>in</strong>es content differences may reduce voidage<br />

and cause some free moisture to dra<strong>in</strong> from <strong>the</strong> blend.<br />

*8 Generally additive, except when high S, low Ca <strong>coal</strong> mixed with a low S, higher ash Ca <strong>coal</strong>.<br />

*9 May be higher than predicted, especially <strong>for</strong> blends <strong>of</strong> higher and lower rank <strong>coal</strong>s.<br />

*10 With <strong>the</strong> exception <strong>of</strong> SO3.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 20


The table assumes perfect blend<strong>in</strong>g <strong>of</strong> <strong>coal</strong>. No consideration is given to <strong>the</strong> impact <strong>of</strong> blend properties due to imperfect blend<strong>in</strong>g.<br />

PROPERTY<br />

Proximate analysis (as fired)<br />

Coal handl<strong>in</strong>g Mill<strong>in</strong>g and fir<strong>in</strong>g Boiler Ash management P<strong>art</strong>iculate removal SOx Control NOx control<br />

Moisture Not-Predictable Predictable Predictable<br />

Ash Predictable Predictable Predictable Predictable<br />

Volatile matter Not-Predictable Not-Predictable Not-Predictable<br />

Specific Energy Predictable Predictable Predictable<br />

Sulphur – Total Not-Predictable Not-Predictable Not-Predictable Not-Predictable Predictable<br />

Pyritic Not-Predictable Not-Predictable Not-Predictable Not-Predictable Not-Predictable<br />

Chlor<strong>in</strong>e<br />

Ultimate Analysis (d.a.f.)<br />

Carbon<br />

Hydrogen<br />

Predictable<br />

Nitrogen Not-Predictable<br />

Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex Not-Predictable<br />

Abrasion <strong>in</strong>dex<br />

Crucible swell<strong>in</strong>g number<br />

Ash fusibility temperatures Not-Predictable<br />

Ash analysis Not-Predictable Not-Predictable Not-Predictable<br />

Trace elements Not-Predictable Not-Predictable Not-Predictable<br />

Coal flow properties<br />

Size distribution - <strong>coal</strong> Not-Predictable<br />

Cross<strong>in</strong>g po<strong>in</strong>t temperature<br />

(Spontaneous heat<strong>in</strong>g)<br />

Petrographic Analysis<br />

Not-Predictable<br />

Maceral reflectogram Not-Predictable Not-Predictable<br />

Predictable: The impact <strong>of</strong> <strong>the</strong> blend property on <strong>the</strong> boiler is predictable from <strong>the</strong> measured property. Not-Predictable: The impact <strong>of</strong> <strong>the</strong> property on <strong>the</strong> boiler is not<br />

predictable from <strong>the</strong> measured value, and knowledge <strong>of</strong> <strong>the</strong> properties <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual <strong>coal</strong>s is required to expla<strong>in</strong> <strong>the</strong> <strong>coal</strong> behaviour.<br />

Table 5: Impact <strong>of</strong> key <strong>coal</strong> properties on <strong>power</strong> station plant per<strong>for</strong>mance<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 21


3.1.1 Moisture (air-dry)<br />

The air-dry moisture, or moisture <strong>in</strong> <strong>the</strong> analysis sample, is that moisture which is lost by <strong>the</strong> analysis<br />

sample (m<strong>in</strong>us 212 μm <strong>for</strong> AS, BS and ISO; m<strong>in</strong>us 250 μm <strong>for</strong> ASTM), when it is heated <strong>in</strong> nitrogen<br />

(ASTM: <strong>in</strong> air) at 105°C to 110°C, to constant mass, after it has first been allowed to come to<br />

equilibrium with <strong>the</strong> laboratory atmosphere. Miyazu (1969) <strong>state</strong>s that <strong>the</strong> ASTM method gives lower<br />

moisture values due to <strong>the</strong> use <strong>of</strong> air ra<strong>the</strong>r than nitrogen atmosphere, caus<strong>in</strong>g sample oxidation.<br />

Air-dry moisture is determ<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g Standards:<br />

Australian Standard AS1038.3; American Standards D3172, D3173, D5142; British Standard<br />

BS1016-104.1; International Standard ISO331, ISO687, ISO11722; Japanese Standard JIS M8812.<br />

This moisture is not <strong>in</strong>cluded <strong>in</strong> Table 4 or Table 5, as <strong>coal</strong> is never <strong>in</strong> this condition when used at a<br />

<strong>power</strong> station. It is needed, however, to recalculate analyses (carried out on air-dry <strong>coal</strong>) to o<strong>the</strong>r<br />

moisture bases, such as dry basis, or as-received basis.<br />

3.1.2 Moisture (as-fired)<br />

On <strong>the</strong> as-fired (as-received, as sampled, as-despatched) basis, <strong>the</strong> moisture is referred to as total<br />

moisture, a term used to describe <strong>coal</strong> <strong>in</strong> its "wet" condition.<br />

Analysis<br />

Australian Standard AS1038.1; American Standards D3302, D2961; British Standard BS1016.1;<br />

International Standard ISO589; Japanese Standard JIS M8811.<br />

The total moisture <strong>of</strong> <strong>coal</strong> comprises two components:<br />

Free moisture, Mf: that moisture which is lost by <strong>the</strong> <strong>coal</strong> sample <strong>in</strong> atta<strong>in</strong><strong>in</strong>g equilibrium with<br />

<strong>the</strong> air to which it is exposed.<br />

Air-dry moisture, Mad: that moisture <strong>in</strong> <strong>the</strong> <strong>coal</strong> sample, after it has atta<strong>in</strong>ed equilibrium with<br />

<strong>the</strong> surround<strong>in</strong>g atmosphere, which can only be removed by heat<strong>in</strong>g at 105°C to 110°C (<strong>in</strong><br />

nitrogen <strong>for</strong> all methods except ASTM, which specifies air).<br />

Total moisture = Mf + Mad x (1 - Mf/100)<br />

The determ<strong>in</strong>ation may be carried out <strong>in</strong> two stages, as above, or <strong>in</strong> a s<strong>in</strong>gle stage <strong>in</strong> an oven (direct<br />

gravimetric) or, less commonly, <strong>in</strong> a s<strong>in</strong>gle stage by distillation and collection <strong>of</strong> <strong>the</strong> moisture (direct<br />

volumetric).<br />

Blend additivity<br />

Additivity should apply to any <strong>for</strong>m <strong>of</strong> moisture compris<strong>in</strong>g <strong>in</strong>ternal (pore) and surface moisture<br />

components only. Where <strong>coal</strong>s conta<strong>in</strong> void moisture as well, however, i.e. moisture held between<br />

<strong>coal</strong> p<strong>art</strong>icles ra<strong>the</strong>r than on <strong>the</strong> p<strong>art</strong>icle surface, additivity may not precisely apply. It is possible that<br />

differences <strong>in</strong> size distribution <strong>of</strong> <strong>the</strong> blend components may mean that voids filled by moisture <strong>in</strong> one<br />

<strong>of</strong> <strong>the</strong> component <strong>coal</strong>s may, when blended, become occupied by <strong>coal</strong> p<strong>art</strong>icles from ano<strong>the</strong>r<br />

component, displac<strong>in</strong>g <strong>the</strong> void moisture as stockpile dra<strong>in</strong>age, and giv<strong>in</strong>g a lower than predicted<br />

result.<br />

As implied by Carpenter, differences between calculated and actual blend moisture values may reflect<br />

failure to reta<strong>in</strong> <strong>the</strong> moisture <strong>in</strong>tegrity dur<strong>in</strong>g and after sampl<strong>in</strong>g, ra<strong>the</strong>r than non-additivity <strong>of</strong> <strong>the</strong><br />

property.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 22


This property will <strong>in</strong>fluence handl<strong>in</strong>g and storage per<strong>for</strong>mance, but becomes irrelevant from <strong>the</strong> mill<strong>in</strong>g<br />

stage onwards, when <strong>the</strong> as-fired moisture becomes <strong>the</strong> important property.<br />

Power station per<strong>for</strong>mance<br />

Total moisture <strong>in</strong>creases transportation costs (is "ballast"), can cause handl<strong>in</strong>g and storage problems,<br />

and <strong>in</strong>creases <strong>the</strong> requirement <strong>of</strong> air <strong>for</strong> dry<strong>in</strong>g <strong>in</strong> <strong>the</strong> pulveriser. It retards ignition and decreases<br />

flame stability, and affects volume and dew po<strong>in</strong>t <strong>of</strong> flue gases.<br />

Coal handl<strong>in</strong>g<br />

There is no simple relationship between <strong>coal</strong> handl<strong>in</strong>g behaviour and total moisture content. Handl<strong>in</strong>g<br />

behaviour relates to <strong>the</strong> ease with which a <strong>coal</strong> can be conveyed, discharged or reclaimed from a<br />

stockpile, storage b<strong>in</strong> or <strong>the</strong> hold <strong>of</strong> a ship. When <strong>coal</strong> does not flow freely, it can be described as<br />

hav<strong>in</strong>g poor handl<strong>in</strong>g properties.<br />

The handl<strong>in</strong>g properties displayed by a <strong>coal</strong> result from a complex <strong>in</strong>teraction <strong>of</strong> chemical and<br />

mechanical properties <strong>of</strong> <strong>the</strong> <strong>coal</strong>, equipment design features and environmental factors. The <strong>coal</strong><br />

properties which impact on handl<strong>in</strong>g behaviour, many <strong>of</strong> which are <strong>in</strong>terdependent, <strong>in</strong>clude ash value;<br />

moisture content, <strong>in</strong>clud<strong>in</strong>g surface and <strong>in</strong>herent moisture level; m<strong>in</strong>eralogy, p<strong>art</strong>icularly <strong>the</strong> presence<br />

<strong>of</strong> swell<strong>in</strong>g clays such as montmorillonite and/or bentonite; maceral composition; p<strong>art</strong>icle size<br />

distribution; extent <strong>of</strong> wea<strong>the</strong>r<strong>in</strong>g; bulk density, both compacted and uncompacted; <strong>in</strong>ter-p<strong>art</strong>icle<br />

cohesiveness; bulk strength; friability.<br />

For a given <strong>coal</strong> <strong>in</strong> a specific <strong>coal</strong> handl<strong>in</strong>g plant, changes <strong>in</strong> moisture content can significantly<br />

<strong>in</strong>fluence bulk strength and, as a consequence, <strong>the</strong> handl<strong>in</strong>g characteristics. While poor handl<strong>in</strong>g<br />

properties are generally associated with high <strong>coal</strong> moisture levels, flow properties do not <strong>in</strong> fact<br />

cont<strong>in</strong>ue to deteriorate as moisture level is <strong>in</strong>creased. Experience <strong>in</strong> flow property test<strong>in</strong>g has shown<br />

that, <strong>for</strong> most <strong>coal</strong>s, <strong>the</strong> most unfavourable flow properties occur at a moisture level between 70% and<br />

90% <strong>of</strong> <strong>the</strong> saturation moisture content (Roberts, 1998). Figure 3 shows a typical relationship between<br />

flow properties (as <strong>in</strong>dicated by critical hopper open<strong>in</strong>g 1 ) and <strong>coal</strong> moisture content. As shown, flow<br />

properties are most unfavourable at an <strong>in</strong>termediate moisture level 2 .<br />

The moisture level at which <strong>the</strong> least favourable handl<strong>in</strong>g properties occur, and <strong>the</strong> severity <strong>of</strong> those<br />

handl<strong>in</strong>g problems, differ from <strong>coal</strong> to <strong>coal</strong> depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> o<strong>the</strong>r properties listed<br />

above. Similarly <strong>coal</strong>s which are washed usually have a higher moisture content but can be easier to<br />

handle s<strong>in</strong>ce many <strong>of</strong> <strong>the</strong> more troublesome components (especially degradable clays) are removed<br />

dur<strong>in</strong>g <strong>the</strong> wash<strong>in</strong>g process. As a consequence, <strong>the</strong> flow properties <strong>of</strong> a blend are not predictable<br />

from knowledge <strong>of</strong> <strong>the</strong> blend moisture level alone.<br />

As was <strong>the</strong> case <strong>for</strong> <strong>coal</strong> handl<strong>in</strong>g behaviour, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>coal</strong> moisture level on dust generation<br />

will be different <strong>for</strong> different <strong>coal</strong>s. For all <strong>coal</strong>s, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> surface moisture level from a low value<br />

will reduce dust generation. However, <strong>the</strong> dust ext<strong>in</strong>ction moisture (DEM) level will differ from <strong>coal</strong> to<br />

1<br />

The determ<strong>in</strong>ation <strong>of</strong> critical hopper open<strong>in</strong>g is a common design requirement <strong>for</strong> materials handl<strong>in</strong>g systems.<br />

Larger <strong>the</strong> critical hopper open<strong>in</strong>gs are <strong>in</strong>dicative <strong>of</strong> more <strong>in</strong>ferior flow properties.<br />

2<br />

While <strong>the</strong> characteristic plot shows that flow properties improve at moisture levels <strong>in</strong> excess <strong>of</strong> <strong>the</strong> critical<br />

moisture level, this is not a desirable operat<strong>in</strong>g range, as <strong>the</strong> consistency <strong>of</strong> <strong>the</strong> <strong>coal</strong> approaches that <strong>of</strong> slurry as<br />

<strong>the</strong> moisture is <strong>in</strong>creased.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 23


<strong>coal</strong> due to <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> many factors on dust generation 3 . As such <strong>the</strong> dust generation behaviour<br />

<strong>of</strong> a blend is not predictable from knowledge <strong>of</strong> <strong>the</strong> blend moisture alone.<br />

Critical Open<strong>in</strong>g Dimension B cr (m)<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

6 8 10 12 14 16 18 20 22<br />

Moisture Content % (W.B.)<br />

Figure 3: Coal moisture content versus critical open<strong>in</strong>g dimension (Roberts, 1998)<br />

Mill<strong>in</strong>g<br />

Increases <strong>in</strong> <strong>coal</strong> moisture adversely affect mill<strong>in</strong>g per<strong>for</strong>mance <strong>in</strong> a number <strong>of</strong> ways. Firstly, <strong>the</strong><br />

reduction <strong>in</strong> <strong>the</strong> as-received calorific value associated with <strong>the</strong> <strong>in</strong>creased moisture requires <strong>the</strong><br />

process<strong>in</strong>g <strong>of</strong> additional <strong>coal</strong> <strong>for</strong> <strong>the</strong> same boiler output, <strong>the</strong>reby putt<strong>in</strong>g additional demands on <strong>the</strong><br />

mill<strong>in</strong>g systems.<br />

Increased surface moisture levels also impose additional demands on <strong>the</strong> dry<strong>in</strong>g capacity <strong>of</strong> <strong>the</strong> mill.<br />

In <strong>the</strong> typical <strong>coal</strong> mill<strong>in</strong>g arrangement, hot primary air enters <strong>the</strong> mill, entra<strong>in</strong>s <strong>the</strong> pulverised <strong>coal</strong> and<br />

conveys it to <strong>the</strong> burners. The plant operator sets <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> air at <strong>the</strong> mill outlet (i.e.<br />

when it is comb<strong>in</strong>ed with <strong>the</strong> pulverised <strong>coal</strong>) <strong>in</strong> accordance with manufacturer’s recommendations.<br />

The temperature <strong>of</strong> <strong>the</strong> air at <strong>the</strong> mill <strong>in</strong>let is changed <strong>in</strong> response to <strong>the</strong> mill outlet temperature setpo<strong>in</strong>t<br />

and variations <strong>in</strong> <strong>the</strong> <strong>coal</strong> moisture content, by vary<strong>in</strong>g <strong>the</strong> proportions <strong>of</strong> hot air (directly from<br />

<strong>the</strong> air heater) and ambient (or temper<strong>in</strong>g) air, which comb<strong>in</strong>e to make up <strong>the</strong> <strong>in</strong>let air stream.<br />

Increases <strong>in</strong> <strong>coal</strong> moisture level result <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> mill <strong>in</strong>let air temperature required to<br />

ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> desired mill outlet temperature. As <strong>the</strong> moisture level <strong>in</strong>creases, a po<strong>in</strong>t is reached at<br />

which <strong>the</strong> mill <strong>in</strong>let air stream consists entirely <strong>of</strong> hot air with no temper<strong>in</strong>g air. Fur<strong>the</strong>r <strong>in</strong>creases <strong>in</strong><br />

moisture will result <strong>in</strong> a decrease <strong>in</strong> mill outlet temperature, below <strong>the</strong> set po<strong>in</strong>t. Under <strong>the</strong>se<br />

conditions, <strong>the</strong> risk <strong>of</strong> saturation conditions occurr<strong>in</strong>g and moisture precipitat<strong>in</strong>g at <strong>the</strong> mill outlet<br />

<strong>in</strong>creases. This is an extremely dangerous situation as it may lead to agglomerat<strong>in</strong>g <strong>of</strong> pulverised<br />

<strong>coal</strong>, and subsequent blockage <strong>of</strong>, and fire <strong>in</strong>, <strong>the</strong> pulverised fuel pipe between <strong>the</strong> mill and <strong>the</strong><br />

3 Many <strong>of</strong> <strong>the</strong> same factors, which <strong>in</strong>fluence <strong>coal</strong> flowability, also <strong>in</strong>fluence dust generation.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 24


urners. To avoid this situation when mill<strong>in</strong>g high moisture <strong>coal</strong>s, <strong>the</strong> plant operator has little choice<br />

o<strong>the</strong>r than to reduce <strong>the</strong> demands on <strong>the</strong> dry<strong>in</strong>g capacity <strong>of</strong> <strong>the</strong> mill by reduc<strong>in</strong>g its throughput. This<br />

will require ei<strong>the</strong>r additional mill<strong>in</strong>g plant to be brought <strong>in</strong>to service to ma<strong>in</strong>ta<strong>in</strong> boiler output, with <strong>the</strong><br />

associated <strong>in</strong>crease <strong>in</strong> auxiliary <strong>power</strong> consumption, or a reduction <strong>in</strong> unit output if no additional mill<br />

capacity is available.<br />

The response <strong>of</strong> mill<strong>in</strong>g systems to moisture <strong>in</strong>creases, result<strong>in</strong>g from <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> a blend, is<br />

not entirely predictable from <strong>the</strong> moisture level alone. O<strong>the</strong>r factors, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> result<strong>in</strong>g calorific<br />

value and <strong>the</strong> manner <strong>in</strong> which <strong>the</strong> moisture is distributed <strong>in</strong> <strong>the</strong> <strong>coal</strong> (i.e. <strong>in</strong>herent and surface) also<br />

need to be considered to more accurately predict <strong>the</strong> likely impact.<br />

Boiler<br />

Increas<strong>in</strong>g <strong>the</strong> moisture content <strong>of</strong> <strong>the</strong> blend, whe<strong>the</strong>r with<strong>in</strong> one <strong>coal</strong> or all <strong>the</strong> <strong>coal</strong>s associated with<br />

<strong>the</strong> blend, will <strong>in</strong>crease <strong>the</strong> energy required to evaporate water with<strong>in</strong> <strong>the</strong> boiler. For example, a<br />

change <strong>in</strong> moisture content from 12% to 24% will decrease <strong>the</strong> boiler efficiency by approximately<br />

1.5%. Increas<strong>in</strong>g <strong>the</strong> moisture content <strong>in</strong> a blend <strong>in</strong>creases <strong>the</strong> volume <strong>of</strong> flue gas, and more energy<br />

is carried out <strong>of</strong> <strong>the</strong> furnace <strong>in</strong>to <strong>the</strong> convective pass, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> quantities <strong>of</strong> superheat and<br />

reheat, mak<strong>in</strong>g it difficult to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> design steam temperatures. If <strong>the</strong> furnace exit gas<br />

temperature <strong>in</strong>creases, <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> boiler decreases. An <strong>in</strong>crease <strong>of</strong> 20 o C represents a<br />

decrease <strong>of</strong> 1% <strong>in</strong> boiler efficiency. The <strong>in</strong>creased gas velocities may result <strong>in</strong> <strong>in</strong>creased draft losses,<br />

greater fan capacity requirements and <strong>in</strong>creased tube erosion. The change <strong>in</strong> energy associated with<br />

<strong>the</strong> evaporation <strong>of</strong> water, and <strong>the</strong>re<strong>for</strong>e <strong>the</strong> impact on <strong>the</strong> heat transfer with<strong>in</strong> <strong>the</strong> boiler, is predictable<br />

(Carpenter, 1998).<br />

If <strong>the</strong> flue gas temperature <strong>in</strong>creases, due to <strong>in</strong>creased moisture <strong>in</strong> <strong>the</strong> gas stream, or more commonly<br />

due to high rates <strong>of</strong> deposition on <strong>the</strong> furnace walls, <strong>the</strong> design temperature <strong>for</strong> corrosion may be<br />

exceeded. Increased rates <strong>of</strong> corrosion <strong>in</strong> <strong>the</strong> superheater and o<strong>the</strong>r cooler p<strong>art</strong>s <strong>of</strong> <strong>the</strong> boiler results<br />

(Raask, 1985). Table 6 shows <strong>the</strong> maximum operat<strong>in</strong>g temperatures <strong>for</strong> p<strong>art</strong>icular materials to avoid<br />

excessive corrosion.<br />

P<strong>art</strong>iculate removal<br />

The <strong>in</strong>creased gas volumes and velocities associated with <strong>in</strong>creased <strong>coal</strong> moisture will decrease <strong>the</strong><br />

efficiency <strong>of</strong> electrostatic precipitators (Carpenter, 1998).<br />

SOx control<br />

Increas<strong>in</strong>g moisture <strong>in</strong>creases <strong>the</strong> flue gas volume and affects <strong>the</strong> dew po<strong>in</strong>t <strong>of</strong> sulphate species <strong>in</strong><br />

<strong>the</strong> gas, affect<strong>in</strong>g <strong>the</strong> efficiency <strong>of</strong> any sulphur recovery equipment (Carpenter 1998).<br />

NOx control<br />

Moisture reduces <strong>the</strong> flame temperature and, as <strong>the</strong> rate <strong>of</strong> NOx <strong>for</strong>mation from air nitrogen is<br />

temperature dependent, NOx emissions will decrease (Carpenter, 1998).<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 25


Maximum Operat<strong>in</strong>g<br />

Temperature (K)<br />

Material ASTM Oxidation Corrosion<br />

Carbon Steel A178C, A210 840 780<br />

1<br />

Carbon - Mo<br />

2<br />

A209 T1a 840 795<br />

1 1<br />

Cr − Mo<br />

2 2<br />

A213 T2 850 795<br />

1 1<br />

1 Cr − Mo<br />

4 2<br />

A213 T11 865 840<br />

1<br />

2Cr − Mo<br />

2<br />

A213 T3b 895 840<br />

1<br />

2 Cr − Mo<br />

4<br />

A213 T22 910 855<br />

1<br />

5Cr − Mo<br />

2<br />

A213 T5 920 880<br />

9Cr − 1Mo<br />

A213 T9 980 920<br />

18Cr-8Ni A213 TP304 1145 1035<br />

16Cr-13Ni-3Mo A213 TP316 1145 1035<br />

Table 6: The maximum operat<strong>in</strong>g flue gas temperature to avoid corrosion (Raask, 1985).<br />

3.1.3 Ash<br />

Analysis<br />

Australian Standard AS1038.3; American Standards D3172, D3174, D5142; British Standard<br />

BS1016-104.4; International Standard ISO1171; Japanese Standard JIS M8812.<br />

Ash is <strong>the</strong> <strong>in</strong>combustible residue rema<strong>in</strong><strong>in</strong>g after <strong>the</strong> <strong>in</strong>c<strong>in</strong>eration <strong>of</strong> <strong>the</strong> analysis sample (m<strong>in</strong>us 212<br />

μm <strong>for</strong> AS, BS and ISO; m<strong>in</strong>us 250 μm <strong>for</strong> ASTM) to a constant mass under standard conditions <strong>of</strong><br />

airflow and temperature (815°C <strong>for</strong> AS, BS, ISO and JIS; 750°C <strong>for</strong> ASTM). Note that <strong>the</strong> test<br />

temperatures <strong>in</strong> both cases are less than <strong>the</strong> decomposition temperature <strong>for</strong> CaCO3, but are greater<br />

than <strong>the</strong> dehydration temperature <strong>of</strong> kaol<strong>in</strong>ite, montmorillonite and illite (Raask). Miyazu (1969) <strong>state</strong>s<br />

that <strong>the</strong> ASTM method gives higher ash values because <strong>of</strong> its lower temperature.<br />

Blend additivity<br />

Although Su (1999) gives this as an additive property, <strong>the</strong>re are well def<strong>in</strong>ed situations where nonadditivity<br />

applies. There seem to be no logical reasons why an actual blend ash value would ever be<br />

lower than that predicted from <strong>the</strong> weighted average value. However, as noted by Carpenter, <strong>the</strong> ash<br />

value <strong>of</strong> a blend is <strong>of</strong>ten higher than that calculated from <strong>the</strong> weighted average <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual<br />

components, especially when lower rank <strong>coal</strong>s are blended with higher rank <strong>coal</strong>s. Carpenter expla<strong>in</strong>s<br />

this well, as result<strong>in</strong>g from <strong>the</strong> fixation <strong>of</strong> <strong>the</strong> sulphur from <strong>the</strong> higher rank <strong>coal</strong>s, as sulphate, by <strong>the</strong><br />

<strong>in</strong>creased ash alkalis content <strong>of</strong> <strong>the</strong> lower rank blend components. Irrespective <strong>of</strong> rank however, if<br />

<strong>coal</strong> A, conta<strong>in</strong><strong>in</strong>g significant amounts <strong>of</strong> sulphur but little calcium, is mixed with <strong>coal</strong> B, conta<strong>in</strong><strong>in</strong>g<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 26


significant amounts <strong>of</strong> calcium but little S, <strong>the</strong> ash <strong>of</strong> <strong>the</strong> blend will be greater than <strong>the</strong> weighted<br />

average <strong>of</strong> A and B. This is because <strong>the</strong> gases <strong>for</strong>med by <strong>the</strong> high sulphur, which escaped without<br />

fixation dur<strong>in</strong>g ash<strong>in</strong>g <strong>of</strong> A, are now fixed by <strong>the</strong> calcium <strong>in</strong> B.<br />

Power station per<strong>for</strong>mance<br />

Coal handl<strong>in</strong>g<br />

If <strong>the</strong> ash value <strong>of</strong> a <strong>coal</strong> or a blend is <strong>in</strong>creased, <strong>the</strong> specific energy <strong>of</strong> <strong>the</strong> <strong>coal</strong> will decrease,<br />

ensur<strong>in</strong>g that <strong>the</strong> amount <strong>of</strong> <strong>coal</strong> that must be handled to produce <strong>the</strong> equivalent amount <strong>of</strong> energy<br />

will <strong>in</strong>crease. The impact <strong>of</strong> ash on <strong>coal</strong> handl<strong>in</strong>g is thus predictable.<br />

Boiler<br />

Ash provides a <strong>the</strong>rmal load to <strong>the</strong> boiler. That is, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> ash <strong>in</strong>troduced <strong>in</strong>to a<br />

boiler <strong>in</strong>creases <strong>the</strong> energy required to heat that ash. This energy is lost to <strong>the</strong> steam rais<strong>in</strong>g system<br />

and more <strong>coal</strong> is required to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> steam temperature. The <strong>in</strong>creased <strong>the</strong>rmal load around <strong>the</strong><br />

flame, caused by <strong>the</strong> <strong>in</strong>crease <strong>in</strong> ash, causes a decrease <strong>in</strong> <strong>the</strong> peak flame temperature and reduces<br />

<strong>the</strong> heat transfer <strong>in</strong> <strong>the</strong> radiant section. This leaves a higher heat transfer <strong>in</strong> <strong>the</strong> convective section<br />

and, usually, a higher gas exit temperature. Changes <strong>in</strong> heat transfer with<strong>in</strong> <strong>the</strong> boiler can result <strong>in</strong><br />

<strong>in</strong>creases <strong>in</strong> foul<strong>in</strong>g, especially at <strong>the</strong> boiler exit (Lowe). The impact on <strong>the</strong> boiler <strong>of</strong> <strong>the</strong> quantity <strong>of</strong> ash<br />

<strong>in</strong> <strong>the</strong> <strong>coal</strong> is thus predictable.<br />

Ash management<br />

Obviously, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> ash <strong>in</strong> a blend will <strong>in</strong>crease <strong>the</strong> amount <strong>of</strong> ash that must be<br />

handled and disposed.<br />

The impact <strong>of</strong> low ash on <strong>the</strong> plant is generally predictable. However, some low ash <strong>coal</strong>s can<br />

unpredictably produce ash with a high carbon content, which can have a high impact on ash disposal<br />

and <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> electrostatic precipitators. This results from a low ash burden <strong>in</strong> <strong>the</strong> radiant<br />

zone <strong>of</strong> <strong>the</strong> furnace, caus<strong>in</strong>g a high heat flux with<strong>in</strong> this area. The convective zone <strong>the</strong>n cools and<br />

cannot generate enough steam, lower<strong>in</strong>g <strong>the</strong> rate <strong>of</strong> combustion (Lowe, 1987).<br />

P<strong>art</strong>iculate removal<br />

An <strong>in</strong>creased quantity <strong>of</strong> fly ash will also produce a decrease <strong>in</strong> electrostatic precipitator (EP)<br />

per<strong>for</strong>mance, if <strong>the</strong> operat<strong>in</strong>g conditions <strong>of</strong> <strong>the</strong> EPs are not adjusted. An <strong>in</strong>crease <strong>in</strong> <strong>the</strong> frequency <strong>of</strong><br />

rapp<strong>in</strong>g <strong>of</strong> EPs may be required to ensure <strong>the</strong> layer <strong>of</strong> ash on <strong>the</strong> EP plates does not become too<br />

large <strong>for</strong> adequate operations (Carpenter, 1995). When <strong>the</strong> ash layer becomes too thick, <strong>the</strong> electric<br />

field observed by an approach<strong>in</strong>g charged p<strong>art</strong>icle is relatively low, mak<strong>in</strong>g attraction <strong>of</strong> <strong>the</strong> p<strong>art</strong>icle to<br />

<strong>the</strong> collection plate more difficult. Re-entra<strong>in</strong>ment <strong>of</strong> ash p<strong>art</strong>icles from <strong>the</strong> collection plate may also<br />

occur.<br />

Similarly, an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> amount <strong>of</strong> ash will require shorter <strong>in</strong>tervals between clean<strong>in</strong>g <strong>of</strong> fabric<br />

filters.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 27


3.1.4 Volatile matter<br />

Analysis<br />

Australian Standard AS1038.3; American Standards D3172, D3175, D5142; British Standard<br />

BS1016-104.3; International Standard ISO562; Japanese Standard JIS M8812.<br />

This describes <strong>the</strong> loss <strong>in</strong> mass, corrected <strong>for</strong> moisture, when <strong>the</strong> analysis sample is heated out <strong>of</strong><br />

contact with <strong>the</strong> air under standard conditions. (950°C ASTM; 900°C AS, BS, ISO and JIS). Miyazu<br />

(1969) <strong>state</strong>s that <strong>the</strong> ASTM method gives higher volatile matter values <strong>of</strong> 0.5% to 1% due to <strong>the</strong><br />

higher temperature.<br />

Blend additivity<br />

"Generally considered to be additive" but "some care <strong>in</strong> <strong>the</strong> application <strong>of</strong> <strong>the</strong> additivity rule …<br />

required" as Riley et al (1989) found actual blend values (ASTM method) were higher than calculated,<br />

especially <strong>for</strong> 50:50 blends and blends <strong>of</strong> extreme ranks. Carpenter gives examples where results<br />

were higher than predicted, especially <strong>for</strong> mixes <strong>of</strong> higher and lower rank <strong>coal</strong>s. The mechanism <strong>for</strong><br />

this is not apparent and is not expla<strong>in</strong>ed. Results were worse <strong>for</strong> <strong>the</strong> 50:50 blends (as <strong>for</strong> ash). There<br />

seems to be no reason why results might ever be lower than predicted.<br />

Choudhury and Ganguly (1978) have shown that <strong>coal</strong>s with high siderite content give falsely high<br />

volatile matter values, as dur<strong>in</strong>g <strong>the</strong> test <strong>the</strong> carbon residue <strong>in</strong> <strong>the</strong> volatile matter crucible reduces <strong>the</strong><br />

FeO (from decomposition <strong>of</strong> <strong>the</strong> FeCO3) to elemental iron. Also, <strong>the</strong> CO2 from <strong>the</strong> carbonates is<br />

thought to react with <strong>the</strong> <strong>coal</strong> carbon to <strong>for</strong>m CO, aga<strong>in</strong> giv<strong>in</strong>g a high result. They give an equation to<br />

correct Vdmmf. Perhaps this might account <strong>for</strong> some <strong>in</strong>stances <strong>of</strong> non-additivity, although how this<br />

mechanism would apply to blends is not clear.<br />

Power station per<strong>for</strong>mance<br />

Mill<strong>in</strong>g<br />

Increas<strong>in</strong>g <strong>the</strong> volatile matter value <strong>of</strong> a <strong>coal</strong> is said to <strong>in</strong>crease <strong>the</strong> potential <strong>for</strong> premature<br />

combustion <strong>of</strong> <strong>the</strong> <strong>coal</strong> <strong>in</strong> <strong>the</strong> mill<strong>in</strong>g system.<br />

Based on relative levels <strong>of</strong> <strong>coal</strong> reactivity, and <strong>the</strong> fact that <strong>coal</strong> pulveris<strong>in</strong>g mills are swept with hot<br />

air, <strong>the</strong>re is an <strong>in</strong>tuitive <strong>in</strong>fluence <strong>of</strong> <strong>coal</strong> volatile matter value (as a first order <strong>in</strong>dicator <strong>of</strong> reactivity) on<br />

<strong>the</strong> risk <strong>of</strong> mill fires and explosions. Mill manufacturers typically specify allowable mill outlet<br />

temperatures on <strong>the</strong> basis <strong>of</strong> <strong>coal</strong> volatile matter value as <strong>for</strong> example <strong>in</strong> Table 7, which shows<br />

allowable mill outlet temperature limits <strong>for</strong> both Babcock and Wilcox (Stulz) and ABB-CE (S<strong>in</strong>ger,<br />

1991). Pohl (1992) reported on <strong>the</strong> results <strong>of</strong> studies <strong>of</strong> a number <strong>of</strong> <strong>coal</strong>s, cover<strong>in</strong>g a range <strong>of</strong> volatile<br />

contents, and focus<strong>in</strong>g on <strong>the</strong> ignition <strong>of</strong> <strong>coal</strong> dust clouds, and observed that lower volatile <strong>coal</strong>s were<br />

generally more difficult to ignite than higher volatile <strong>coal</strong>s.<br />

A 1987 EPRI study (Car<strong>in</strong>i and Hules) <strong>of</strong> mill fires and explosions, based largely on a survey <strong>of</strong> <strong>the</strong><br />

US utility <strong>in</strong>dustry, and conducted primarily by Riley Stoker Corporation, exam<strong>in</strong>ed <strong>the</strong> quality <strong>of</strong><br />

correlations between a wide variety <strong>of</strong> plant (mill and unit), <strong>coal</strong> and operational (perta<strong>in</strong><strong>in</strong>g to both<br />

mill and unit) parameters, and <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> mill fires and explosions. The potential causative<br />

factors <strong>in</strong>cluded:<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 28


1 Plant 2 Coal 3 Operational<br />

Mill type Ash value Unit operation (base load,<br />

Mill capacity Type (bitum<strong>in</strong>ous, cycl<strong>in</strong>g, peak<strong>in</strong>g)<br />

Number <strong>of</strong> mills per unit sub-bitum<strong>in</strong>ous, lignite, blend) Mill system operation<br />

Mill st<strong>art</strong> up year Volatile matter value<br />

Moisture content<br />

Mill operation<br />

ABB-CE<br />

1.1.1.1.1.1 Coal Allowable Mill Outlet<br />

Temperature (°C)<br />

High rank, high volatile bitum<strong>in</strong>ous<br />

Low-rank, high volatile bitum<strong>in</strong>ous<br />

High-rank, low-volatile bitum<strong>in</strong>ous<br />

Lignite<br />

Babcock and Wilcox<br />

Coal type Volatile Content<br />

(% dmmf 4 )<br />

Lignite and sub-bitum<strong>in</strong>ous<br />

High volatile bitum<strong>in</strong>ous<br />

Low volatile bitum<strong>in</strong>ous<br />

Anthracite<br />

30<br />

14 to 22<br />

14<br />

Table 7: Manufacturers’ allowable mill outlet temperatures<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 29<br />

77<br />

66<br />

82<br />

66<br />

Allowable Mill Outlet<br />

Temperature (°C)<br />

52 to 60<br />

66<br />

66 to 82<br />

93 to 99<br />

Account was also taken <strong>of</strong> fire detection hardware, and mill <strong>in</strong>ertis<strong>in</strong>g and ext<strong>in</strong>guish<strong>in</strong>g systems and<br />

media. The study found <strong>the</strong> factors, which appeared to be related to <strong>in</strong>creas<strong>in</strong>g frequency <strong>of</strong> mill fires,<br />

<strong>in</strong>cluded:<br />

• Increas<strong>in</strong>g mill capacity<br />

• More mills per unit<br />

• Use <strong>of</strong> vertical sp<strong>in</strong>dle mills ahead <strong>of</strong> ball mills ahead <strong>of</strong> high speed attrition mills<br />

• Increas<strong>in</strong>g volatile content<br />

• Increas<strong>in</strong>g <strong>coal</strong> moisture<br />

• Decreas<strong>in</strong>g rank<br />

• Change from cycl<strong>in</strong>g to base load operation<br />

• Newer plant<br />

However:<br />

• No s<strong>in</strong>gle parameter was identified as be<strong>in</strong>g critical <strong>in</strong> relation to <strong>the</strong> occurrence <strong>of</strong> mill fires and<br />

explosions.<br />

• Statistical relationships between <strong>the</strong> parameters listed above and <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> mill fires and<br />

explosions were found to be very weak and, <strong>for</strong> all parameters, <strong>the</strong> standard deviations were<br />

larger than <strong>the</strong> average values.<br />

4 dmmf – dry, m<strong>in</strong>eral matter free basis


• No one parameter was identified as be<strong>in</strong>g a key discrim<strong>in</strong>ator, and a simplistic <strong>in</strong>terpretation <strong>of</strong><br />

<strong>the</strong> data suggests that <strong>the</strong> <strong>coal</strong> volatile matter value is actually <strong>the</strong> worst discrim<strong>in</strong>ator <strong>for</strong> both<br />

fires and explosions.<br />

The report pays considerable attention to <strong>the</strong> statistical relationships between volatile matter value<br />

and <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> mill fires and explosions, given <strong>the</strong> reliance <strong>of</strong> mill manufacturers on volatile<br />

matter value as a means <strong>of</strong> determ<strong>in</strong><strong>in</strong>g operat<strong>in</strong>g temperatures <strong>for</strong> <strong>the</strong> mills. In this context <strong>the</strong> report<br />

<strong>state</strong>s:<br />

“….<strong>coal</strong> type and <strong>coal</strong> moisture content consistently appear <strong>in</strong> good discrim<strong>in</strong>at<strong>in</strong>g<br />

groups while <strong>coal</strong> volatility content consistently shows up <strong>in</strong> <strong>the</strong> poorest<br />

discrim<strong>in</strong>at<strong>in</strong>g groups. This observation about <strong>the</strong> surpris<strong>in</strong>g show<strong>in</strong>g <strong>of</strong> <strong>coal</strong><br />

volatility content rema<strong>in</strong>s unchanged whe<strong>the</strong>r <strong>the</strong> volatile content is based on an as<br />

received, dry, or dry, ash-free basis. It is probable that <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> <strong>coal</strong> type<br />

and moisture content <strong>in</strong>teract with operat<strong>in</strong>g conditions such as dry<strong>in</strong>g<br />

temperatures to <strong>in</strong>fluence fire and explosion hazard levels more significantly than<br />

<strong>coal</strong> volatility content by itself. Equipment and plant design factors such as mill type<br />

or mill capacity can appear ei<strong>the</strong>r as good or bad elements <strong>for</strong> discrim<strong>in</strong>ation<br />

purposes depend<strong>in</strong>g on o<strong>the</strong>r factors <strong>in</strong> <strong>the</strong> group. The fact that <strong>coal</strong> volatility<br />

content or o<strong>the</strong>r factors do not appear among <strong>the</strong> groups provid<strong>in</strong>g <strong>the</strong> best<br />

discrim<strong>in</strong>at<strong>in</strong>g (sic) does not mean that <strong>the</strong>se factors are worthless <strong>in</strong> assess<strong>in</strong>g<br />

hazard levels.”<br />

To add an additional level <strong>of</strong> complexity, Scott (1995) cites Zalosh (1987), who ascribed most mill<br />

fires to <strong>the</strong> effects <strong>of</strong> spontaneous combustion <strong>of</strong> static deposits <strong>of</strong> <strong>coal</strong>. This is supported by<br />

anecdotal experience which <strong>in</strong>dicates that <strong>the</strong> <strong>state</strong> <strong>of</strong> repair and quality <strong>of</strong> ma<strong>in</strong>tenance <strong>for</strong> a given<br />

mill<strong>in</strong>g <strong>in</strong>stallation have a pr<strong>of</strong>ound effect on <strong>the</strong> risk <strong>of</strong> mill fires, p<strong>art</strong>icularly <strong>for</strong> vertical sp<strong>in</strong>dle mills.<br />

As vertical sp<strong>in</strong>dle mills wear, <strong>the</strong> quantity <strong>of</strong> combustible material fall<strong>in</strong>g from <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g bowl<br />

through <strong>the</strong> air gap and <strong>in</strong>to <strong>the</strong> under-bowl region <strong>in</strong>creases dramatically. The under-bowl region is<br />

<strong>the</strong> po<strong>in</strong>t <strong>of</strong> entry <strong>of</strong> <strong>the</strong> hot primary air (up to about 300°C) to <strong>the</strong> mill. If <strong>the</strong> combustible material is<br />

not removed promptly from <strong>the</strong> under-bowl region by <strong>the</strong> action <strong>of</strong> <strong>the</strong> shaft-mounted scrapers 5 , fires<br />

will <strong>in</strong>evitably result, irrespective <strong>of</strong> <strong>the</strong> specific properties <strong>of</strong> <strong>the</strong> <strong>coal</strong>.<br />

In summary, it appears that <strong>the</strong>re are many factors, which <strong>in</strong>fluence <strong>the</strong> likelihood <strong>of</strong> mill fires and/or<br />

explosions occurr<strong>in</strong>g. The fact that mill manufacturers use <strong>coal</strong> volatile matter values to set mill<br />

temperature limits should not be <strong>in</strong>terpreted as an <strong>in</strong>dication that this is <strong>the</strong> most important contributor<br />

to <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> mill fires and explosions. Depend<strong>in</strong>g on <strong>the</strong> relative <strong>in</strong>fluence <strong>of</strong> all <strong>of</strong> <strong>the</strong> factors at<br />

a p<strong>art</strong>icular site, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> those parameters, which may <strong>in</strong>tuitively appear to be more important,<br />

may be considerably dim<strong>in</strong>ished.<br />

Fir<strong>in</strong>g<br />

The volatile matter value, as measured by <strong>the</strong> proximate analysis, is significantly lower than <strong>the</strong><br />

volatile matter value produced by a <strong>coal</strong> <strong>in</strong> a PF boiler. This is because <strong>the</strong> measured volatile matter<br />

value is dependant on <strong>the</strong> temperature and <strong>the</strong> heat<strong>in</strong>g rate. The temperature and <strong>the</strong> heat<strong>in</strong>g rate<br />

5<br />

The scrapers also wear and sometimes break away from <strong>the</strong>ir mount<strong>in</strong>g to <strong>the</strong> mill shaft. Under <strong>the</strong>se<br />

circumstances, <strong>the</strong> combustible material can build up <strong>in</strong> <strong>the</strong> under-bowl region.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 30


experienced <strong>in</strong> a PF boiler are significantly different to anyth<strong>in</strong>g experienced under laboratory<br />

conditions.<br />

There is no one ideal volatile matter value, <strong>the</strong> desired value depend<strong>in</strong>g on <strong>the</strong> design <strong>of</strong> <strong>the</strong> burner <strong>in</strong><br />

operation. The design <strong>of</strong> <strong>the</strong> burner, along with volatile yield, composition and heat<strong>in</strong>g value,<br />

determ<strong>in</strong>e <strong>the</strong> flame temperature and <strong>the</strong> flame stability. There<strong>for</strong>e efficient operation <strong>of</strong> <strong>the</strong> burner<br />

requires <strong>the</strong> use <strong>of</strong> a suitable <strong>coal</strong> <strong>for</strong> a given burner. Lower rank <strong>coal</strong>s have lower flame<br />

temperatures, as some components <strong>of</strong> <strong>the</strong> volatiles present <strong>in</strong> low rank <strong>coal</strong>s ignite at lower<br />

temperatures. The flame temperature <strong>of</strong> low rank <strong>coal</strong>s is also lower because <strong>the</strong> high moisture<br />

content <strong>of</strong> <strong>the</strong> <strong>coal</strong> “cools” <strong>the</strong> flame. However, <strong>the</strong> stability <strong>of</strong> <strong>the</strong> flame is usually <strong>in</strong>creased with <strong>the</strong><br />

amount <strong>of</strong> volatile matter present, which <strong>in</strong>creases with decreas<strong>in</strong>g rank <strong>of</strong> <strong>the</strong> <strong>coal</strong>. As <strong>the</strong> volatile<br />

matter is dependant on <strong>the</strong> volatile matter <strong>of</strong> each <strong>coal</strong> p<strong>art</strong>icle, if <strong>the</strong> blend conta<strong>in</strong>s two <strong>coal</strong>s with<br />

significantly different volatile contents, two flames can develop, based on <strong>the</strong> devolatilisation <strong>of</strong> each<br />

<strong>of</strong> <strong>the</strong> blended <strong>coal</strong>s. Evidence suggests that blend<strong>in</strong>g a low volatile <strong>coal</strong> with a small proportion <strong>of</strong><br />

high volatile <strong>coal</strong> assists <strong>in</strong> flame stability and produces an even distribution <strong>of</strong> heat transfer<br />

throughout <strong>the</strong> boiler (Carpenter, 1995).<br />

Boiler<br />

The flame temperature and geometry strongly <strong>in</strong>fluence <strong>the</strong> chemistry <strong>of</strong> some ash components and<br />

gas pollutants. For example, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> flame temperature will <strong>in</strong>crease NOx <strong>for</strong>mation (see NOx<br />

control below). Increas<strong>in</strong>g <strong>the</strong> temperature to which ash p<strong>art</strong>icles are exposed will also effect <strong>the</strong><br />

stick<strong>in</strong>ess <strong>of</strong> p<strong>art</strong>icles and may result <strong>in</strong> deposition. It is extremely difficult to predict <strong>the</strong> deposition <strong>of</strong><br />

ash <strong>in</strong> boilers, due to <strong>the</strong> multitude <strong>of</strong> deposition mechanisms and <strong>the</strong> number <strong>of</strong> ash components that<br />

can <strong>in</strong>itiate deposition. However, if <strong>the</strong> temperature that an ash p<strong>art</strong>icle experiences is above <strong>the</strong><br />

melt<strong>in</strong>g temperature <strong>of</strong> that species, <strong>the</strong> possibility <strong>of</strong> deposit <strong>for</strong>mation is <strong>in</strong>creased. If <strong>the</strong> flame<br />

temperature is known, <strong>the</strong> susceptibility <strong>of</strong> deposit <strong>for</strong>mation could be predicted from <strong>the</strong> melt<strong>in</strong>g and<br />

s<strong>in</strong>ter<strong>in</strong>g temperatures <strong>of</strong> <strong>the</strong> ash components, though this is a complex task. However, as <strong>the</strong> volatile<br />

matter value <strong>of</strong> <strong>the</strong> blend measured by analytical methods does not provide an adequate <strong>in</strong>dication <strong>of</strong><br />

<strong>the</strong> amount <strong>of</strong> volatile matter released by <strong>the</strong> <strong>coal</strong> <strong>in</strong> <strong>the</strong> burner, <strong>the</strong> impact on <strong>the</strong> temperatures with<strong>in</strong><br />

<strong>the</strong> furnace cannot be predicted.<br />

A significant change <strong>in</strong> volatile matter value or flame temperature will also affect <strong>the</strong> heat transfer<br />

throughout <strong>the</strong> boiler, and char burnout. A sudden decrease <strong>in</strong> volatile matter value <strong>of</strong> <strong>the</strong> fuel, as<br />

experienced from <strong>in</strong>homogeneous mix<strong>in</strong>g <strong>of</strong> blended <strong>coal</strong>s, will lower <strong>the</strong> flame temperature,<br />

decreas<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> heat transferred <strong>in</strong> <strong>the</strong> radiant section <strong>of</strong> <strong>the</strong> boiler and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

proportion captured by <strong>the</strong> convective section. If <strong>the</strong> carbon is relatively unreactive, such a change <strong>in</strong><br />

volatile components <strong>in</strong> <strong>the</strong> fuel may also <strong>in</strong>crease <strong>the</strong> amount <strong>of</strong> unburnt carbon <strong>in</strong> ash, requir<strong>in</strong>g<br />

<strong>in</strong>creased gr<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>coal</strong> (Carpenter, 1998).<br />

NOx control<br />

The nitrogen <strong>in</strong> NOx emitted from <strong>power</strong> stations comes from three sources: nitrogen from <strong>the</strong><br />

atmosphere, nitrogen from <strong>the</strong> volatile component <strong>of</strong> <strong>the</strong> <strong>coal</strong> and nitrogen associated with <strong>the</strong><br />

carbonaceous matter <strong>of</strong> <strong>the</strong> <strong>coal</strong>. Chang<strong>in</strong>g a blend volatile matter value may significantly impact on<br />

<strong>the</strong> NOx <strong>for</strong>med, because <strong>the</strong> amount <strong>of</strong> nitrogen available <strong>for</strong> reaction <strong>in</strong> <strong>the</strong> hottest p<strong>art</strong> <strong>of</strong> <strong>the</strong><br />

furnace is altered and <strong>the</strong> flame temperature is likely to change when <strong>the</strong> volatile content <strong>of</strong> <strong>the</strong> blend<br />

changes. However, as NOx <strong>for</strong>mation is also dependent on burner design, operat<strong>in</strong>g conditions <strong>of</strong> <strong>the</strong><br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 31


furnace and o<strong>the</strong>r <strong>for</strong>mation mechanisms, predict<strong>in</strong>g <strong>the</strong> change <strong>in</strong> NOx <strong>for</strong>mation from volatile<br />

nitrogen is not always successful.<br />

Low NOx burners seek to impede <strong>the</strong> production <strong>of</strong> NOx by restrict<strong>in</strong>g <strong>the</strong> accessibility <strong>of</strong> <strong>the</strong> zone <strong>of</strong><br />

<strong>in</strong>itial combustion to oxygen. It is generally accepted that <strong>the</strong> majority <strong>of</strong> NOx result<strong>in</strong>g from <strong>the</strong><br />

combustion <strong>of</strong> <strong>coal</strong> is produced dur<strong>in</strong>g this volatile combustion phase. While this methodology is<br />

highly effective and can reduce NOx emissions to as little as 30% <strong>of</strong> <strong>the</strong> uncontrolled levels <strong>for</strong> some<br />

<strong>coal</strong>s, it is best suited to higher volatile <strong>coal</strong>s. Higher volatile <strong>coal</strong>s will generally have proportionally<br />

more nitrogen associated with <strong>the</strong> volatile phase and less with <strong>the</strong> char and, as such, a technique,<br />

which targets <strong>the</strong> generation <strong>of</strong> NOx <strong>in</strong> <strong>the</strong> volatile combustion phase will obviously be more effective<br />

<strong>for</strong> <strong>the</strong>se <strong>coal</strong>s. The burnout efficiency <strong>of</strong> lower volatile <strong>coal</strong>s also tends to be much more sensitive to<br />

burner stoichiometry than is <strong>the</strong> case <strong>for</strong> higher volatile <strong>coal</strong>s, and as such NO x control strategies<br />

employed <strong>in</strong> <strong>the</strong> combustion process require a careful optimisation <strong>of</strong> NOx reduction burnout<br />

efficiency. For lower volatile <strong>coal</strong>s, it is generally very difficult to achieve both high levels <strong>of</strong> NOx<br />

reduction and satisfactory burnout efficiency levels concurrently. The trend between NOx reduction<br />

and <strong>in</strong>creased carbon <strong>in</strong> ash values is shown by <strong>the</strong> schematic <strong>in</strong> Figure 4. The trend shown <strong>in</strong> <strong>the</strong><br />

figure has been observed dur<strong>in</strong>g combustion <strong>of</strong> s<strong>in</strong>gle <strong>coal</strong> feeds. Un<strong>for</strong>tunately, <strong>the</strong> behaviour <strong>of</strong><br />

blends <strong>in</strong> this regard is unknown. High volatile <strong>coal</strong>s are generally considered to provide greater<br />

flexibility <strong>in</strong> burner operation.<br />

NOx<br />

Volatile Matter<br />

Carbon <strong>in</strong> Ash<br />

Figure 4: The <strong>in</strong>teraction <strong>of</strong> NOx <strong>for</strong>mation and carbon <strong>in</strong> ash when combustion utilises a low NOx<br />

burner.<br />

3.2 Specific energy (calorific value, heat<strong>in</strong>g value)<br />

Analysis<br />

Australian Standard AS1038.5.1; American Standards D2015, D5865; British Standard BS1016-105;<br />

International Standard ISO1928; Japanese Standard JIS M8814.<br />

This is <strong>the</strong> quantity <strong>of</strong> heat released by <strong>the</strong> combustion <strong>of</strong> a known amount <strong>of</strong> <strong>the</strong> analysis sample <strong>in</strong><br />

oxygen <strong>in</strong> a calorimeter bomb. The gross value determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> laboratory <strong>in</strong>cludes <strong>the</strong> heat <strong>of</strong><br />

<strong>for</strong>mation <strong>of</strong> acids (HNO3 and H2SO4), which are corrected <strong>for</strong> <strong>in</strong> <strong>the</strong> published result. It also <strong>in</strong>cludes<br />

<strong>the</strong> heat ga<strong>in</strong>ed when <strong>the</strong> water vapour condenses, <strong>in</strong> <strong>the</strong> bomb under pressure, to water. In a boiler<br />

this condensation does not occur and <strong>the</strong> (lower) net specific energy value is one where correction<br />

has been made <strong>for</strong> this. Purchase specifications <strong>for</strong> <strong>coal</strong> are <strong>in</strong>creas<strong>in</strong>gly giv<strong>in</strong>g <strong>the</strong> calorific value on<br />

a net, as-received basis, as this def<strong>in</strong>es <strong>the</strong> actual heat<strong>in</strong>g value <strong>of</strong> <strong>the</strong> <strong>coal</strong>.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 32


Blend additivity<br />

The specific energy is <strong>the</strong> most important property <strong>of</strong> a <strong>power</strong> station feed <strong>coal</strong>. This property is<br />

diluted by moisture and m<strong>in</strong>eral matter, so <strong>the</strong>re is a strong correlation between dry specific energy<br />

and dry ash. Riley (1989) showed <strong>the</strong> heat<strong>in</strong>g value to be additive, as expected. Note, however, that<br />

specific energy is <strong>of</strong>ten calculated from a relationship with ash, with usually a very high correlation<br />

coefficient <strong>for</strong> a dry basis regression. Because ash may not be additive <strong>for</strong> certa<strong>in</strong> comb<strong>in</strong>ations <strong>of</strong><br />

<strong>coal</strong>s, however (see section 3.1.3), specific energy may not be able to be precisely predicted from a<br />

weighted average set <strong>of</strong> <strong>the</strong>ir relationships with ash.<br />

Power station per<strong>for</strong>mance<br />

On <strong>the</strong> as-fired basis, specific energy (calorific value, heat<strong>in</strong>g value) <strong>in</strong>dicates <strong>the</strong> feed rate <strong>of</strong> <strong>coal</strong><br />

required to achieve a given <strong>the</strong>rmal output, and <strong>the</strong>re<strong>for</strong>e <strong>the</strong> <strong>coal</strong>'s value. However, specific energy<br />

<strong>in</strong>dicates nei<strong>the</strong>r rank nor type, and <strong>the</strong>re<strong>for</strong>e nei<strong>the</strong>r combustibility nor reactivity, especially on <strong>the</strong><br />

as-fired basis. For example a <strong>coal</strong> hav<strong>in</strong>g a specific energy <strong>of</strong> 22 MJ/kg as-fired might be ei<strong>the</strong>r a low<br />

ash, high volatile matter, high total moisture lignite, or a very high ash, low volatile matter, low total<br />

moisture anthracite. On <strong>the</strong> o<strong>the</strong>r hand two <strong>coal</strong>s <strong>of</strong> <strong>the</strong> same rank and specific energy might be ei<strong>the</strong>r<br />

dull (with compensat<strong>in</strong>gly lower ash or moisture values) or bright.<br />

Coal handl<strong>in</strong>g<br />

As <strong>the</strong> specific energy <strong>of</strong> a <strong>coal</strong> decreases, <strong>the</strong> amount <strong>of</strong> <strong>coal</strong> to be handled to produce a given<br />

amount <strong>of</strong> energy <strong>in</strong>creases.<br />

Boiler<br />

If <strong>the</strong> specific energy <strong>of</strong> a blend <strong>in</strong>creases, <strong>the</strong> total amount <strong>of</strong> heat that is recovered <strong>in</strong> <strong>the</strong> boiler per<br />

kilogram <strong>of</strong> <strong>coal</strong> fired will <strong>in</strong>crease, which will <strong>in</strong>crease <strong>the</strong> steam pressure. To account <strong>for</strong> this, <strong>the</strong><br />

process<strong>in</strong>g rate <strong>of</strong> <strong>the</strong> mills will decrease until <strong>the</strong> steam pressure returns to a pre-set value. The size<br />

<strong>of</strong> <strong>the</strong> combustion zone will also change with a change <strong>in</strong> specific energy. A decrease <strong>in</strong> specific<br />

energy will <strong>in</strong>crease <strong>the</strong> flow requirements <strong>of</strong> <strong>the</strong> primary air, <strong>for</strong>ced draft and <strong>in</strong>duced draft fans<br />

(Carpenter 1998). The impact <strong>of</strong> a change <strong>in</strong> <strong>the</strong> specific energy value <strong>of</strong> a blend is predictable.<br />

3.3 Total sulphur<br />

Analysis<br />

Australian Standards AS1038.6.3.1, AS1038.6.3.2, AS1038.6.3.3; American Standards D3177,<br />

D4239; British Standards BS1016-106.4.1, BS1016-106.4.2; International Standards ISO334,<br />

ISO351; Japanese Standard JIS M8813.<br />

Total sulphur is <strong>the</strong> sum <strong>of</strong> pyritic, sulphate and organic sulphur, and may be determ<strong>in</strong>ed by one <strong>of</strong><br />

<strong>the</strong> follow<strong>in</strong>g three methods:<br />

Eschka Method: <strong>the</strong> analysis sample is heated with Eschka mixture (2MgO+CaCO3) <strong>in</strong> an<br />

oxidis<strong>in</strong>g atmosphere at 800°C and <strong>the</strong>n leached with hydrochloric acid. After react<strong>in</strong>g <strong>the</strong><br />

solution with barium chloride, <strong>the</strong> sulphate produced is precipitated as barium sulphate and<br />

weighed.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 33


Blend additivity<br />

High Temperature Method: <strong>the</strong> analysis sample is burnt <strong>in</strong> oxygen at 1350°C, <strong>the</strong> sulphur<br />

be<strong>in</strong>g converted to <strong>the</strong> gaseous oxides. These are converted to sulphuric acid and titrated<br />

aga<strong>in</strong>st sodium borate.<br />

Infrared Analyser (<strong>in</strong>strumental): similar to <strong>the</strong> high temperature method, except that <strong>the</strong><br />

gaseous oxides produced are evaluated by an <strong>in</strong>frared analyser.<br />

Sampl<strong>in</strong>g imprecision, <strong>in</strong>creased by <strong>the</strong> high relative density <strong>of</strong> pyrite compared to <strong>coal</strong>, and <strong>the</strong><br />

tendency <strong>of</strong> pyrite to be non-uni<strong>for</strong>mly distributed through <strong>the</strong> size fractions, may mean that <strong>the</strong> blend<br />

total sulphur (where pyrite <strong>for</strong>ms a significant fraction) may have high variance compared to <strong>the</strong><br />

weighted average value calculated from <strong>the</strong> <strong>in</strong>dividual components. O<strong>the</strong>rwise, sulphur "appears to be<br />

additive" (Carpenter,1995).<br />

Power station per<strong>for</strong>mance<br />

Figure 5 shows emission levels <strong>of</strong> sulphur dioxide as a function <strong>of</strong> <strong>coal</strong> sulphur levels determ<strong>in</strong>ed <strong>in</strong><br />

pilot scale <strong>coal</strong> combustion equipment (ACIRL) and shows why sulphur <strong>in</strong> <strong>coal</strong> is generally regarded<br />

as a reliable predictor <strong>of</strong> expected SO2 emission levels.<br />

Sulphur Dioxide, SO 2 (ppm, dry, 0% O 2 )<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0<br />

Sulphur <strong>in</strong> Coal (% daf)<br />

Figure 5: Sulphur Dioxide emissions as a function <strong>of</strong> <strong>coal</strong> sulphur content<br />

S<strong>in</strong>gle Coals<br />

Blended Coals<br />

For <strong>the</strong>se data, <strong>the</strong> regression coefficients (R 2 ) <strong>for</strong> <strong>the</strong> unblended and blended <strong>coal</strong>s were determ<strong>in</strong>ed<br />

to be 0.91 and 0.95, confirm<strong>in</strong>g that a strong correlation exists between <strong>coal</strong> sulphur content and<br />

sulphur dioxide emission levels <strong>for</strong> both blended and s<strong>in</strong>gle <strong>coal</strong>s alike. However, calculat<strong>in</strong>g <strong>the</strong><br />

expected amount <strong>of</strong> SO2 emitted based on <strong>coal</strong> sulphur contents can <strong>in</strong> some cases lead to an<br />

overestimation, as sulphur will also <strong>for</strong>m SO3 (usually only <strong>in</strong> small proportions) and species with<strong>in</strong> <strong>the</strong><br />

ash may absorb sulphur to <strong>for</strong>m sulphates.<br />

Boiler (deposition)<br />

Sulphur which <strong>for</strong>ms SO3 can re-adsorb on alkalis and alkali e<strong>art</strong>h metals to <strong>for</strong>m sulphates, which<br />

can condense on “cool” surfaces with<strong>in</strong> <strong>the</strong> boiler, <strong>in</strong>itiat<strong>in</strong>g deposit <strong>for</strong>mation. The dewpo<strong>in</strong>t<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 34


temperature <strong>for</strong> both Na2SO4 and K2SO4 is approximately 1160K (Raask, 1985). When blend<strong>in</strong>g with<br />

a low rank <strong>coal</strong> with high Ca contents, <strong>the</strong> result<strong>in</strong>g CaSO4 can <strong>in</strong>crease foul<strong>in</strong>g and slagg<strong>in</strong>g<br />

observed with<strong>in</strong> <strong>the</strong> boiler, and a significant <strong>in</strong>crease <strong>in</strong> <strong>coal</strong> quantity may be required to meet <strong>the</strong><br />

design boiler rat<strong>in</strong>g (Carpenter, 1998).<br />

Boiler (corrosion)<br />

SO3 has also been shown to <strong>in</strong>itiate corrosion <strong>of</strong> boiler tubes, by react<strong>in</strong>g with <strong>the</strong> iron <strong>in</strong> <strong>the</strong> tube to<br />

<strong>for</strong>m FeS or FeSO4 (Raask, 1985). When molten, <strong>the</strong> ash acts as a flux<strong>in</strong>g agent <strong>for</strong> <strong>the</strong> iron <strong>in</strong> <strong>the</strong><br />

tube, and acts as transfer media <strong>for</strong> <strong>the</strong> flow <strong>of</strong> SO3 and corrosion products. Corrosion at <strong>the</strong> cool end<br />

<strong>of</strong> <strong>the</strong> boiler can occur when SO3 condenses. It is <strong>the</strong>re<strong>for</strong>e important to ma<strong>in</strong>ta<strong>in</strong> a temperature <strong>in</strong><br />

excess <strong>of</strong> <strong>the</strong> dewpo<strong>in</strong>t <strong>of</strong> SO3. However, <strong>the</strong> amount <strong>of</strong> SO3 produced and reta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> flue gas<br />

determ<strong>in</strong>es <strong>the</strong> dew po<strong>in</strong>t <strong>of</strong> SO3 <strong>for</strong> that gas. There<strong>for</strong>e a high sulphur <strong>coal</strong> will require a higher<br />

temperature than a low sulphur <strong>coal</strong>, to avoid <strong>the</strong> SO3 dew po<strong>in</strong>t and subsequent corrosion<br />

(Carpenter, 1998). However, most Australian <strong>coal</strong>s do not produce severe corrosion problems from<br />

sulphur attack, due to <strong>the</strong>ir low sulphur contents. Approximately 1-2% <strong>of</strong> sulphur <strong>in</strong> <strong>coal</strong> is converted<br />

to SO3 (Carpenter, 1998).<br />

Ash management<br />

Sulphates can report to <strong>the</strong> fly and bottom ash, and <strong>the</strong> sulphur content <strong>of</strong> <strong>the</strong> ash will affect <strong>the</strong> ability<br />

to sell ash to <strong>the</strong> construction <strong>in</strong>dustry. International standards generally specify <strong>the</strong> maximum<br />

allowable level <strong>of</strong> sulphur (present as SO3) <strong>in</strong> fly ash to be used as an admixture <strong>in</strong> concrete. For<br />

example, <strong>the</strong> ASTM standard C618 specifies that, <strong>for</strong> Class ‘F’ fly ash, <strong>the</strong> SO3 level shall not exceed<br />

5%.<br />

P<strong>art</strong>iculate removal<br />

Sulphur <strong>in</strong> <strong>coal</strong> is generally regarded as hav<strong>in</strong>g a beneficial effect on electrostatic precipitator (ESP)<br />

per<strong>for</strong>mance. Similarly, improvements <strong>in</strong> ESP per<strong>for</strong>mance have been found to result from <strong>the</strong><br />

addition <strong>of</strong> sulphur trioxide (SO3) or sulphuric acid (H2SO4) to <strong>the</strong> gas stream. In both cases, <strong>the</strong>se<br />

condition<strong>in</strong>g agents react with alkal<strong>in</strong>e sites on <strong>the</strong> surface <strong>of</strong> fly ash p<strong>art</strong>icles to reduce <strong>the</strong> surface<br />

resistivity <strong>of</strong> <strong>the</strong> p<strong>art</strong>icles. While resistivity is a composite <strong>of</strong> surface and bulk resistivity, with<strong>in</strong> <strong>the</strong><br />

temperature range <strong>of</strong> <strong>in</strong>terest (up to about 140°C <strong>for</strong> typical pulverised <strong>coal</strong> fired <strong>in</strong>stallations), surface<br />

resistivity is <strong>the</strong> dom<strong>in</strong>ant component.<br />

However, improvements <strong>in</strong> ESP collection efficiency, which occur as a result <strong>of</strong> sulphur <strong>in</strong> <strong>coal</strong> or <strong>the</strong><br />

addition <strong>of</strong> sulphur-based flue gas condition<strong>in</strong>g agents, are not universal, and <strong>the</strong> collection efficiency<br />

<strong>of</strong> highly acidic ashes has been found to be largely unresponsive to <strong>the</strong>se agents. There is no simple<br />

correlation between ash chemistry and <strong>the</strong> occurrence <strong>of</strong> acidic ashes. However, <strong>the</strong>se ashes are<br />

generally observed to have low levels <strong>of</strong> alkal<strong>in</strong>e components such as CaO.<br />

Sulphur from a <strong>coal</strong> blend will oxidise dur<strong>in</strong>g combustion and, if it is able to <strong>for</strong>m SO3, it will react with<br />

water vapour to <strong>for</strong>m sulphuric acid. Sulphuric acid can react with fly ash p<strong>art</strong>icles, depend<strong>in</strong>g on <strong>the</strong>ir<br />

ash composition. Alkalies absorb <strong>the</strong> sulphur <strong>in</strong> sulphuric acid and <strong>the</strong> result<strong>in</strong>g sulphate phase has a<br />

decreased resistivity, result<strong>in</strong>g <strong>in</strong> improved ESP per<strong>for</strong>mance. There<strong>for</strong>e, if <strong>the</strong> sulphur content <strong>of</strong> <strong>the</strong><br />

ash <strong>in</strong> <strong>the</strong> gas stream <strong>in</strong>creases, <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> electrostatic precipitators is expected to<br />

improve. However, <strong>the</strong> proportion <strong>of</strong> sulphur from <strong>the</strong> blend, associated with <strong>the</strong> fly ash, cannot be<br />

predicted.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 35


If <strong>the</strong> sulphur content <strong>of</strong> <strong>the</strong> fly ash decreases below 1wt%, not enough SO3 <strong>for</strong>ms, chang<strong>in</strong>g <strong>the</strong><br />

resistivity <strong>of</strong> <strong>the</strong> ash seen by <strong>the</strong> ESPs. When <strong>the</strong> sulphur content <strong>of</strong> <strong>the</strong> blend decreases, <strong>the</strong><br />

moisture content usually <strong>in</strong>creases, which <strong>in</strong>creases <strong>the</strong> gas flow rate and/or temperature, caus<strong>in</strong>g <strong>the</strong><br />

treatment time <strong>of</strong> <strong>the</strong> ESPs to decrease, lower<strong>in</strong>g <strong>the</strong> efficiency (Raask).<br />

SOx emissions<br />

SOx is <strong>the</strong> generic term <strong>for</strong> <strong>the</strong> gaseous oxides <strong>of</strong> sulphur, SO2 (ma<strong>in</strong>ly) and SO3. Blend<strong>in</strong>g is <strong>of</strong>ten<br />

carried out to limit SOx emissions and avoid expensive desulphurisation plants. Replac<strong>in</strong>g a high<br />

sulphur <strong>coal</strong> with a blend <strong>of</strong> a high sulphur <strong>coal</strong> and a low sulphur <strong>coal</strong> immediately decreases <strong>the</strong><br />

total amount <strong>of</strong> sulphur enter<strong>in</strong>g <strong>the</strong> furnace and must decrease <strong>the</strong> amount <strong>of</strong> SOx produced.<br />

Similarly, add<strong>in</strong>g a high sulphur <strong>coal</strong> to a low sulphur feed <strong>coal</strong> to decrease <strong>coal</strong> costs will be<br />

expected to <strong>in</strong>crease SOx emissions as <strong>the</strong> total amount <strong>of</strong> sulphur fed to <strong>the</strong> furnace has <strong>in</strong>creased.<br />

US <strong>coal</strong> fired <strong>power</strong> stations have been able to reduce SOx emissions, to meet emission standards,<br />

based on lower<strong>in</strong>g <strong>the</strong> sulphur content <strong>of</strong> <strong>the</strong> feed <strong>coal</strong> by blend<strong>in</strong>g <strong>coal</strong>s. When <strong>the</strong> sulphur content <strong>of</strong><br />

<strong>the</strong> blend was reduced (Carpenter, 1998), a correspond<strong>in</strong>g decrease <strong>in</strong> SO2 <strong>for</strong>mation was observed.<br />

Reductions <strong>of</strong> up to 20% were achieved. However, blend<strong>in</strong>g can also limit <strong>the</strong> effectiveness <strong>of</strong> exist<strong>in</strong>g<br />

equipment, as noted above. The sulphur content <strong>of</strong> <strong>the</strong> <strong>coal</strong> is only a qualitative measure <strong>of</strong> <strong>the</strong><br />

amount <strong>of</strong> SO2 that will be released. O<strong>the</strong>r factors, such as <strong>the</strong> <strong>for</strong>m <strong>of</strong> <strong>the</strong> sulphur <strong>in</strong> <strong>the</strong> <strong>coal</strong>, <strong>the</strong><br />

volatile matter value, pyrolysis temperature, p<strong>art</strong>icle size and sulphate retention <strong>in</strong> <strong>the</strong> ash (which is a<br />

function <strong>of</strong> ash composition), all effect <strong>the</strong> amount <strong>of</strong> sulphur released <strong>in</strong>to <strong>the</strong> atmosphere, mak<strong>in</strong>g<br />

blend<strong>in</strong>g <strong>of</strong> <strong>coal</strong> to limit SOx emissions an imprecise practise. However, <strong>for</strong> typical calcium levels <strong>in</strong><br />

bitum<strong>in</strong>ous <strong>coal</strong>s, <strong>the</strong> amount <strong>of</strong> sulphur absorbed on ash is low and eng<strong>in</strong>eer<strong>in</strong>g correlations can be<br />

used to provide a general prediction <strong>of</strong> SOx emissions. There<strong>for</strong>e, <strong>for</strong> most low alkali conta<strong>in</strong><strong>in</strong>g<br />

bitum<strong>in</strong>ous <strong>coal</strong>s, <strong>the</strong> impact <strong>of</strong> sulphur when blend<strong>in</strong>g <strong>coal</strong>s is predictable.<br />

When a high sulphur <strong>coal</strong> is blended with a <strong>coal</strong> with a low heat<strong>in</strong>g value, <strong>the</strong> result<strong>in</strong>g temperature<br />

and <strong>in</strong>creased quantity <strong>of</strong> flue gas will decrease <strong>the</strong> efficiency <strong>of</strong> any desulphurisation equipment<br />

available. The cost <strong>of</strong> extra sorbent required by such equipment may greatly reduce <strong>the</strong> cost benefit<br />

associated with blend<strong>in</strong>g such <strong>coal</strong>s (Carpenter, 1998).<br />

Emission limits with<strong>in</strong> New South Wales are: 0.1g <strong>of</strong> SO3 or equivalent per cubic metre <strong>of</strong> gas<br />

(Australian Legal In<strong>for</strong>mation Institute, 2000). Many countries have emission limits based on <strong>the</strong> mass<br />

<strong>of</strong> emissions per MJ <strong>of</strong> <strong>coal</strong> energy, which requires comparison <strong>of</strong> <strong>coal</strong>s <strong>for</strong> blend<strong>in</strong>g to consider <strong>the</strong><br />

sulphur <strong>in</strong> terms <strong>of</strong> <strong>the</strong> specific energy <strong>of</strong> <strong>the</strong> fuel. (Carpenter, 1995).<br />

3.4 Pyritic sulphur<br />

Analysis<br />

Australian Standard AS1038.11; American Standard D2492; British Standard BS1016-106.5;<br />

International Standard ISO157; Japanese Standard JIS M8817.<br />

The pyritic sulphur component <strong>of</strong> total sulphur is calculated from <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> iron, soluble <strong>in</strong><br />

nitric acid, follow<strong>in</strong>g <strong>the</strong> removal <strong>of</strong> non-pyritic iron by hydrochloric acid.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 36


Blend additivity<br />

There is no apparent reason why <strong>the</strong> pyritic sulphur value should be biased high or low i.e. pyritic<br />

sulphur should be additive. Note, however, <strong>the</strong> comments on possible sampl<strong>in</strong>g imprecision, given <strong>in</strong><br />

section 3.3.<br />

Power station per<strong>for</strong>mance<br />

Coal handl<strong>in</strong>g<br />

High pyritic sulphur <strong>coal</strong>s are prone to spontaneous heat<strong>in</strong>g. As <strong>the</strong> pyrite is oxidised, heat is<br />

generated which may enhance <strong>coal</strong> oxidation rates. The <strong>for</strong>m and distribution <strong>of</strong> pyrite <strong>in</strong> <strong>the</strong> <strong>coal</strong><br />

strongly <strong>in</strong>fluence <strong>the</strong> threat <strong>of</strong> spontaneous heat<strong>in</strong>g, or even spontaneous combustion. Pyrite can<br />

occur as framboidal aggregates, radiat<strong>in</strong>g clusters, stalactite <strong>for</strong>mations and <strong>in</strong> crystall<strong>in</strong>e <strong>for</strong>m (Deer<br />

et al, 1978). There<strong>for</strong>e, predict<strong>in</strong>g <strong>the</strong> tendency <strong>of</strong> a <strong>coal</strong> or blend to spontaneously heat, from <strong>the</strong><br />

pyritic sulphur content, can be deceptive depend<strong>in</strong>g on <strong>the</strong> pyritic <strong>for</strong>m. However, <strong>the</strong> majority <strong>of</strong> pyrite<br />

present <strong>in</strong> Australian <strong>coal</strong>s is framboidal <strong>in</strong> nature (Corcoran, 1979). The risk <strong>of</strong> spontaneous heat<strong>in</strong>g<br />

can be dim<strong>in</strong>ished by wash<strong>in</strong>g <strong>the</strong> <strong>coal</strong> to remove pyrite. Due to its high relative density, pyrite<br />

separates readily <strong>in</strong> gravity based processes, provid<strong>in</strong>g that <strong>the</strong> pyrite has been first liberated from <strong>the</strong><br />

<strong>coal</strong> by crush<strong>in</strong>g. Pyrite is, however, a difficult m<strong>in</strong>eral to remove from <strong>coal</strong> by surface type processes<br />

such as froth flotation, as its wett<strong>in</strong>g properties are similar to those <strong>of</strong> <strong>coal</strong>. Some success has been<br />

achieved <strong>in</strong> a reverse flotation process (Osborne, 1988).<br />

Mill<strong>in</strong>g and fir<strong>in</strong>g<br />

Pyrite is a m<strong>in</strong>eral which is both hard (hardness between 6 and 6.5), and dense (relative density <strong>of</strong> 5).<br />

Large p<strong>art</strong>icles <strong>of</strong> pyrite will impact strongly on any mill<strong>in</strong>g equipment, caus<strong>in</strong>g <strong>in</strong>creased wear. Aga<strong>in</strong>,<br />

<strong>the</strong> impact <strong>of</strong> a pyritic <strong>coal</strong> on <strong>the</strong> mill<strong>in</strong>g equipment depends on <strong>the</strong> <strong>for</strong>m and distribution <strong>of</strong> <strong>the</strong> pyrite<br />

<strong>in</strong> <strong>the</strong> <strong>coal</strong>. Blend<strong>in</strong>g <strong>coal</strong>s with lower pyrite contents be<strong>for</strong>e mill<strong>in</strong>g will reduce this wear, compared to<br />

<strong>the</strong> high pyrite <strong>coal</strong>, as <strong>the</strong> mill<strong>in</strong>g equipment will be exposed to less pyrite. However, <strong>the</strong> reduction <strong>in</strong><br />

wear behaviour is not l<strong>in</strong>ear with <strong>the</strong> proportion <strong>of</strong> hard m<strong>in</strong>erals. Hard m<strong>in</strong>erals are <strong>of</strong>ten reta<strong>in</strong>ed <strong>in</strong><br />

<strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g zone <strong>of</strong> a mill, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased wear, as discussed <strong>in</strong> section 3.11. O<strong>the</strong>r difficulties<br />

arise when mill<strong>in</strong>g blends, as <strong>the</strong> <strong>coal</strong>s' gr<strong>in</strong>dability will generally differ caus<strong>in</strong>g a large p<strong>art</strong>icle<br />

distribution or a bimodal distribution, as discussed <strong>in</strong> section 3.7.<br />

Boiler<br />

Pyrite causes slagg<strong>in</strong>g. Large, excluded pyrite p<strong>art</strong>icles, which are not fully converted to <strong>the</strong> oxide <strong>in</strong><br />

<strong>the</strong> reduc<strong>in</strong>g atmosphere <strong>of</strong> low NOx burners, cause slagg<strong>in</strong>g because <strong>the</strong>y become liquid and sticky.<br />

One <strong>for</strong>m <strong>of</strong> pyrite <strong>in</strong> <strong>coal</strong> is “framboidal” (from <strong>the</strong> French, frambois - raspberry), which comprises<br />

aggregates <strong>of</strong> small p<strong>art</strong>icles, 1 μm to 10 μm <strong>in</strong> size. These p<strong>art</strong>icles will experience high<br />

temperatures, and <strong>of</strong>ten reduc<strong>in</strong>g conditions, promot<strong>in</strong>g vaporisation and p<strong>art</strong>ial oxidation <strong>of</strong> <strong>the</strong><br />

pyrite. This vaporised pyrite will condense on “cool” surfaces or react to <strong>for</strong>m a sulphate, which may<br />

also condense, lead<strong>in</strong>g to deposit <strong>for</strong>mations. The sulphur associated with pyrite will impact on <strong>the</strong><br />

boiler per<strong>for</strong>mance as discussed <strong>in</strong> section 3.3. For this reason pyrite is associated with slagg<strong>in</strong>g, and<br />

<strong>the</strong> slagg<strong>in</strong>g <strong>in</strong>dices <strong>for</strong> bitum<strong>in</strong>ous <strong>coal</strong> <strong>in</strong>clude Fe and/or S based on this understand<strong>in</strong>g. Recent<br />

research by <strong>the</strong> CRC For Black Coal Utilisation, Newcastle, Australia has <strong>for</strong>mulated slagg<strong>in</strong>g <strong>in</strong>dices<br />

<strong>for</strong> <strong>coal</strong>s conta<strong>in</strong><strong>in</strong>g Fe <strong>in</strong> <strong>the</strong> <strong>for</strong>m <strong>of</strong> siderite (iron carbonate, FeCO3), and compared <strong>the</strong> <strong>in</strong>dices <strong>of</strong><br />

siderite-conta<strong>in</strong><strong>in</strong>g <strong>coal</strong>s with those <strong>of</strong> pyrite-conta<strong>in</strong><strong>in</strong>g <strong>coal</strong>s (Bailey, 1999 and McLennan, 1998). For<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 37


oth pyrite and siderite, slagg<strong>in</strong>g depends on <strong>the</strong> mode <strong>of</strong> distribution <strong>of</strong> <strong>the</strong> m<strong>in</strong>erals <strong>in</strong> <strong>the</strong> <strong>coal</strong>, and<br />

effects are not additive <strong>for</strong> blends.<br />

3.5 Chlor<strong>in</strong>e<br />

Analysis<br />

Australian Standards AS1038.8.1, AS1038.8.2; American Standards D2361, D4208; British Standard<br />

BS1016-106.6.1; International Standards ISO352, ISO587; Japanese Standard JIS M8813.<br />

Analysis methods are similar to those used <strong>for</strong> sulphur. Chlor<strong>in</strong>e may be determ<strong>in</strong>ed by <strong>the</strong> Eschka<br />

method, where chlor<strong>in</strong>e <strong>in</strong> <strong>the</strong> analysis sample is converted to chloride, extracted <strong>in</strong> nitric acid, and<br />

determ<strong>in</strong>ed titrimetrically, or by high temperature techniques where <strong>the</strong> chlor<strong>in</strong>e <strong>in</strong> <strong>coal</strong> is converted to<br />

hydrochloric acid and titrated.<br />

Blend additivity<br />

Although an almost <strong>in</strong>significant component <strong>in</strong> Australian <strong>coal</strong>s, chlor<strong>in</strong>e may be more significant <strong>in</strong><br />

sub-bitum<strong>in</strong>ous <strong>coal</strong>s with which <strong>the</strong> Australian <strong>coal</strong>s might be blended. Carpenter (1995) says that it<br />

is "probably additive".<br />

Power station per<strong>for</strong>mance<br />

It is practically impossible to remove chlor<strong>in</strong>e from <strong>coal</strong> by wash<strong>in</strong>g (Osborne, 1988). Chlor<strong>in</strong>e is<br />

usually associated with <strong>the</strong> carbon matrix <strong>of</strong> <strong>the</strong> <strong>coal</strong> and removal <strong>of</strong> any significant fraction <strong>of</strong><br />

chlorides <strong>in</strong> <strong>the</strong> <strong>coal</strong> requires long wash<strong>in</strong>g times. Blend<strong>in</strong>g <strong>the</strong>re<strong>for</strong>e is generally <strong>the</strong> only technique<br />

available to reduce chlor<strong>in</strong>e associated with a <strong>coal</strong> feed.<br />

Boiler<br />

For many years it was believed that corrosion associated with <strong>the</strong> presence <strong>of</strong> chlor<strong>in</strong>e could be<br />

avoided by ensur<strong>in</strong>g <strong>the</strong> chlor<strong>in</strong>e content <strong>in</strong> fuel is ma<strong>in</strong>ta<strong>in</strong>ed below 0.3 and above 0.25 (Raask,<br />

1985). However, recently Bryers (1992) has noted that reduc<strong>in</strong>g conditions may be required <strong>for</strong><br />

corrosion to occur. Under oxidis<strong>in</strong>g conditions, chlor<strong>in</strong>e <strong>for</strong>ms HCl and will only be corrosive when <strong>the</strong><br />

temperature is below <strong>the</strong> dew po<strong>in</strong>t <strong>of</strong> HCl. Under reduc<strong>in</strong>g conditions, HCl decomposes to Cl2, which<br />

directly attacks iron tubes to <strong>for</strong>m FeCl2. FeCl2 has a low melt<strong>in</strong>g temperature and is highly volatile,<br />

react<strong>in</strong>g with oxygen to <strong>for</strong>m iron oxide and fresh Cl2. FeCl2 also <strong>for</strong>ms a porous scale on <strong>the</strong> tube<br />

surface, allow<strong>in</strong>g CO attack to occur. Note that most Australian <strong>coal</strong>s have Cl levels well below <strong>the</strong><br />

0.3 level noted by Raask.<br />

Alkali-metal chlorides are also postulated to condense on heat transfer surfaces where <strong>the</strong>y react to<br />

<strong>for</strong>m sulphates. If <strong>in</strong>sufficient sulphur is available, <strong>the</strong> chloride rema<strong>in</strong>s on <strong>the</strong> surface lead<strong>in</strong>g to<br />

corrosion. Figure 6 shows <strong>the</strong> relationship between deposit chlor<strong>in</strong>e and fuel sulphur (Rob<strong>in</strong>son et al,<br />

1997).<br />

Some researchers have found that <strong>the</strong> rate <strong>of</strong> deposition associated with sodium is directly<br />

proportional to <strong>the</strong> amount <strong>of</strong> NaCl <strong>in</strong> <strong>the</strong> <strong>coal</strong>. However, below a chlor<strong>in</strong>e content <strong>of</strong> 0.4, <strong>the</strong> sodium<br />

is collected by silicates. When <strong>the</strong> available surface area <strong>of</strong> <strong>the</strong> silicates has been utilised, <strong>the</strong> excess<br />

sodium converts to sulphates, which result <strong>in</strong> deposition. The proportion <strong>of</strong> available sodium and<br />

equivalent metals which exhibit this behaviour is judged by <strong>the</strong> amount <strong>of</strong> chlor<strong>in</strong>e <strong>in</strong> <strong>the</strong> <strong>coal</strong>, as <strong>the</strong><br />

chlor<strong>in</strong>e represents <strong>the</strong> delivery system <strong>of</strong> <strong>the</strong> metal ions to <strong>the</strong> boiler. The deposition and corrosion<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 38


due to chlor<strong>in</strong>e is described <strong>in</strong> Figure 7. Though <strong>the</strong> chlor<strong>in</strong>e values noted above represent <strong>the</strong> total<br />

chlor<strong>in</strong>e available <strong>in</strong> <strong>the</strong> <strong>coal</strong>, effectively only a proportion <strong>of</strong> chlor<strong>in</strong>e is available <strong>for</strong> corrosion and<br />

deposition. This chlor<strong>in</strong>e may be referred to as “Free Chlor<strong>in</strong>e”, which cannot be determ<strong>in</strong>ed from <strong>the</strong><br />

normal analysis techniques.<br />

Deposit Chlor<strong>in</strong>e (% dry mass)<br />

Fuel sulfur/(2xMax Fuel Alkali Chloride)<br />

Figure 6: The relationship between deposit chlor<strong>in</strong>e and fuel sulphur.<br />

Maximum corrosion rate, nmh -1<br />

500<br />

250<br />

A A’ B<br />

0.4 0.8<br />

Chlor<strong>in</strong>e <strong>in</strong> <strong>coal</strong>, %<br />

Figure 7: Dependence <strong>of</strong> furnace wall tube corrosion (A, A’) and sulphate deposition (B) on chlor<strong>in</strong>e<br />

content <strong>of</strong> <strong>coal</strong><br />

P<strong>art</strong>iculate removal<br />

The presence <strong>of</strong> chlor<strong>in</strong>e compounds <strong>in</strong> flue gases (usually present as HCl) is known to adversely<br />

affect <strong>the</strong> operation <strong>of</strong> both selective catalytic reduction (SCR) de-NO X plants and flue gas<br />

desulphurisation (FGD) plants. In SCR plants, <strong>the</strong> catalysts can be poisoned by chlor<strong>in</strong>e compounds,<br />

<strong>the</strong>reby reduc<strong>in</strong>g <strong>the</strong>ir efficiency, reduc<strong>in</strong>g <strong>the</strong>ir effective life and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> required level <strong>of</strong><br />

ammonia.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 39<br />

2<br />

1<br />

Na2SO4 + K2SO4 Deposition, mg m-2s-1


In wet FGD plants, <strong>the</strong> HCl reacts with <strong>the</strong> calcium carbonate, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> limestone<br />

consumption beyond that <strong>for</strong> <strong>the</strong> removal <strong>of</strong> SO2 only. High chloride concentrations may also<br />

adversely affect <strong>the</strong> by-product (gypsum) quality, <strong>the</strong> quality <strong>of</strong> <strong>the</strong> waste water, and necessitate<br />

additional use <strong>of</strong> corrosion-resistant materials <strong>in</strong> construction to ensure satisfactory service life.<br />

3.6 Ultimate analysis<br />

This consists <strong>of</strong> carbon, hydrogen, nitrogen, sulphur and oxygen (each expressed on a dry, ash-free<br />

basis). Although <strong>the</strong>re are methods <strong>for</strong> <strong>the</strong> direct determ<strong>in</strong>ation <strong>of</strong> oxygen, it is generally determ<strong>in</strong>ed<br />

by difference.<br />

For sulphur see section 3.3.<br />

3.6.1 Carbon & hydrogen<br />

Analysis<br />

Australian Standard AS1038.6.1; American Standards D3176, D3178, D5373; British Standards<br />

BS1016-106.1.1, BS1016-106.1.2; International Standards ISO609, ISO625; Japanese Standards JIS<br />

M8813.<br />

Carbon and hydrogen may be determ<strong>in</strong>ed by heat<strong>in</strong>g <strong>the</strong> analysis sample <strong>in</strong> oxygen <strong>in</strong> a high<br />

temperature furnace. Hydrogen is converted to water and carbon is converted to carbon dioxide, and<br />

<strong>the</strong>se two gases are absorbed onto magnesium perchlorate and soda-asbestos respectively. The<br />

percentages <strong>of</strong> each are calculated by <strong>the</strong> <strong>in</strong>crease <strong>in</strong> mass. Carbon and hydrogen may also be<br />

determ<strong>in</strong>ed by <strong>the</strong> use <strong>of</strong> a high temperature <strong>in</strong>frared analyser.<br />

3.6.2 Nitrogen<br />

Analysis<br />

Australian Standard AS1038.6.2; American Standards D3176, D3179, D5373; British Standard<br />

BS1016-106.2; International Standard ISO333; Japanese Standard JIS M8813.<br />

Nitrogen is determ<strong>in</strong>ed by decompos<strong>in</strong>g <strong>the</strong> analytical sample catalytically with sulphuric acid to <strong>for</strong>m<br />

ammonium sulphate. The ammonia, which is liberated by <strong>the</strong> addition <strong>of</strong> sodium hydroxide, is distilled<br />

and titrated aga<strong>in</strong>st sulphuric acid. Nitrogen may also be determ<strong>in</strong>ed by <strong>the</strong> use <strong>of</strong> a high temperature<br />

<strong>in</strong>frared analyser.<br />

Blend additivity<br />

Su (1999) concludes that C, H and N are additive. Carpenter (1995) says that C, H, N and S values<br />

"appear to be additive", while "oxygen content is probably additive as well."<br />

Oxygen is a direct <strong>in</strong>dicator <strong>of</strong> <strong>coal</strong> rank (<strong>for</strong> unoxidised <strong>coal</strong>). It is determ<strong>in</strong>ed by difference, however,<br />

and <strong>in</strong>cludes all <strong>of</strong> <strong>the</strong> errors <strong>in</strong> <strong>the</strong> C, H, N and S analyses. So <strong>the</strong> carbon value is a more precise<br />

measure <strong>of</strong> rank.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 40


Power station per<strong>for</strong>mance<br />

NOx control<br />

NOx is <strong>the</strong> generic term used to describe <strong>the</strong> two oxides <strong>of</strong> nitrogen emitted by <strong>power</strong> stations: nitric<br />

oxide (NO) and nitrogen dioxide (NO2). The nitrogen that <strong>for</strong>ms NOx comes from three sources:<br />

nitrogen <strong>in</strong> <strong>the</strong> <strong>coal</strong> volatiles, nitrogen <strong>in</strong> <strong>the</strong> carbonaceous matter <strong>of</strong> <strong>the</strong> <strong>coal</strong>, and atmospheric<br />

nitrogen. Nitrogen associated with air combusts at elevated temperatures, <strong>for</strong>m<strong>in</strong>g approximately 20%<br />

<strong>of</strong> <strong>the</strong> NOx produced <strong>in</strong> conventional pf combustors (Carpenter, 1995). Operational optimisation (low<br />

excess air), air stag<strong>in</strong>g/two-stage combustion (overfire air), low NOx burners, fuel stag<strong>in</strong>g (reburn<strong>in</strong>g<br />

with natural gas) and flue gas recirculation have all been utilised to lower NOx <strong>for</strong>mation (IEA Coal<br />

Research: Hjalmarsson, 1990, Hjalmarsson and Soud, 1990).<br />

NOx <strong>for</strong>med from atmospheric nitrogen is termed “<strong>the</strong>rmal NOx” and it can be controlled, though not<br />

elim<strong>in</strong>ated, by air stag<strong>in</strong>g, which limits <strong>the</strong> reaction temperature and <strong>the</strong> oxygen available <strong>for</strong><br />

combustion around <strong>the</strong> flame. NOx <strong>for</strong>mation from nitrogen <strong>in</strong> <strong>the</strong> <strong>coal</strong> “fuel NOx”, can be limited by<br />

reduc<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> air available <strong>for</strong> combustion dur<strong>in</strong>g devolatilisation, by burner design (low NOx<br />

burners) and to some extent by air stag<strong>in</strong>g. Volatile nitrogen can <strong>for</strong>m 60% to 80 % <strong>of</strong> <strong>the</strong> fuel NOx.<br />

There<strong>for</strong>e <strong>the</strong> proportion <strong>of</strong> nitrogen associated with volatile components <strong>of</strong> <strong>the</strong> <strong>coal</strong> is important when<br />

blend<strong>in</strong>g <strong>coal</strong>s to reduce NOx <strong>for</strong>mation. P<strong>art</strong>icle size can also effect NOx <strong>for</strong>mation. There<strong>for</strong>e<br />

gr<strong>in</strong>dability <strong>of</strong> a <strong>coal</strong> <strong>in</strong> a blend can also effect <strong>the</strong> NOx <strong>for</strong>med (Carpenter, 1995).<br />

Coal nitrogen cannot be used alone to predict NOx <strong>for</strong>mation. For “unstaged combustion”, NOx<br />

<strong>for</strong>mation can be predicted from <strong>the</strong> volatile nitrogen <strong>in</strong> <strong>the</strong> blend, based on <strong>the</strong> NOx emissions <strong>of</strong> <strong>the</strong><br />

parent <strong>coal</strong>s. Under staged combustion conditions, NOx decreases l<strong>in</strong>early as <strong>the</strong> proportion <strong>of</strong> <strong>the</strong><br />

higher volatile <strong>coal</strong> <strong>in</strong>creases. This occurs because most <strong>of</strong> <strong>the</strong> volatile nitrogen is reduced to<br />

molecular nitrogen and <strong>the</strong> majority <strong>of</strong> <strong>the</strong> NOx <strong>for</strong>ms from char nitrogen. NOx from char is extremely<br />

difficult to control. The stag<strong>in</strong>g efficiency or percent reduction <strong>in</strong> NOx, compared to unstaged<br />

combustion, reaches a maximum with a high proportion <strong>of</strong> <strong>the</strong> high volatile <strong>coal</strong>. However, <strong>the</strong> stag<strong>in</strong>g<br />

efficiency does not follow a l<strong>in</strong>ear trend with changes <strong>in</strong> <strong>coal</strong> blend proportions. When <strong>the</strong> residence<br />

time <strong>of</strong> p<strong>art</strong>icles with<strong>in</strong> <strong>the</strong> primary zone is long, <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> blend is l<strong>in</strong>ear. If <strong>the</strong> residence<br />

time is short, <strong>the</strong> blend behaviour is not predictable, suggest<strong>in</strong>g NOx <strong>for</strong>mation is dependant on <strong>the</strong><br />

surround<strong>in</strong>g gas atmosphere and temperature, such that different rates <strong>of</strong> fuel nitrogen release from<br />

<strong>the</strong> <strong>coal</strong>s <strong>in</strong> <strong>the</strong> blend ensure that <strong>the</strong> char experiences different conditions, thus effect<strong>in</strong>g <strong>the</strong> NOx<br />

<strong>for</strong>mation.<br />

Figure 8 shows NOX emission levels as a function <strong>of</strong> <strong>coal</strong> nitrogen determ<strong>in</strong>ed <strong>in</strong> pilot scale <strong>coal</strong><br />

combustion equipment (ACIRL Ltd). As shown, <strong>for</strong> both unblended and blended <strong>coal</strong>s, <strong>the</strong>re is no<br />

simple relationship between <strong>coal</strong> nitrogen content and NOX emission levels.<br />

Some <strong>the</strong>rmal <strong>coal</strong> specifications set a nitrogen limit <strong>of</strong> 1.8% or 2.0%, dry and ash-free, <strong>for</strong> Australian<br />

export <strong>coal</strong>s. These limits seem to have little technical relevance, <strong>for</strong> control <strong>of</strong> NOX emissions, <strong>in</strong> <strong>the</strong><br />

light <strong>of</strong> Figure 8, and may be seen to have possible relevance <strong>in</strong> terms <strong>of</strong> market<strong>in</strong>g strategies only.<br />

Fur<strong>the</strong>rmore, test work reported by Conroy and Bennett (1997), <strong>in</strong> which a small number <strong>of</strong> Australian<br />

export <strong>coal</strong>s were blended with overseas <strong>coal</strong>s, found that <strong>the</strong> NOX emission levels result<strong>in</strong>g from <strong>the</strong><br />

combustion <strong>of</strong> blends did not necessarily fall between that measured <strong>for</strong> <strong>the</strong> respective component<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 41


<strong>coal</strong>s when tested as s<strong>in</strong>gle <strong>coal</strong>s. In some cases, <strong>the</strong> NOX emission level measured <strong>for</strong> <strong>the</strong> blend<br />

was significantly higher than that determ<strong>in</strong>ed <strong>for</strong> ei<strong>the</strong>r <strong>of</strong> <strong>the</strong> component <strong>coal</strong>s when tested alone.<br />

New South Wales regulations limit NOx emissions to 0.8 grams per cubic metre <strong>of</strong> gas (Australian<br />

Legal In<strong>for</strong>mation Institute, 2000).<br />

NOX (ppm, dry, 0%, O2)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Unblended Coals<br />

Blended Coals<br />

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5<br />

Nitrogen <strong>in</strong> Coal (%daf)<br />

Figure 8: NOX emissions as function <strong>of</strong> <strong>coal</strong> nitrogen content<br />

Boiler<br />

Use <strong>of</strong> NOx abatement technology has been shown to <strong>in</strong>crease <strong>the</strong> propensity <strong>for</strong> slagg<strong>in</strong>g, and to<br />

<strong>in</strong>crease <strong>the</strong> proportion <strong>of</strong> unburnt carbon <strong>in</strong> fly ash, as shown <strong>in</strong> Figure 9 (Carpenter, 1995). Slagg<strong>in</strong>g<br />

associated with NOx abatement technology occurs due to <strong>the</strong> <strong>for</strong>mation <strong>of</strong> a reduc<strong>in</strong>g atmosphere <strong>in</strong><br />

small regions with<strong>in</strong> <strong>the</strong> furnace, result<strong>in</strong>g <strong>in</strong> reduction <strong>of</strong> iron bear<strong>in</strong>g species. Slagg<strong>in</strong>g due to o<strong>the</strong>r<br />

species <strong>in</strong> <strong>the</strong> ash, such as calcium, is not effected by NOx abatement technologies. Increases <strong>in</strong><br />

unburnt carbon <strong>in</strong> fly ash can usually be overcome by reduc<strong>in</strong>g <strong>the</strong> p<strong>art</strong>icle size <strong>of</strong> <strong>the</strong> <strong>coal</strong>, which will<br />

<strong>in</strong>crease <strong>power</strong> costs and <strong>the</strong> wear <strong>of</strong> pulveris<strong>in</strong>g equipment.<br />

NO x<br />

slagg<strong>in</strong>g<br />

percent <strong>of</strong> over fire air<br />

Carbon <strong>in</strong> fly ash<br />

Figure 9: The relationship between NOx <strong>for</strong>mation and carbon <strong>in</strong> fly ash (Carpenter, 1995)<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 42


3.7 Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex (HGI)<br />

Analysis<br />

Australian Standard AS1038.20; American Standard D409; British Standard BS1016-112;<br />

International Standard ISO5074; Japanese Standard not known.<br />

HGI is a measure <strong>of</strong> <strong>the</strong> ease with which <strong>coal</strong> may be ground. It uses a special r<strong>in</strong>g and ball mill,<br />

under load, to gr<strong>in</strong>d a specially prepared -1180+600 µm portion <strong>of</strong> <strong>the</strong> test sample <strong>for</strong> a specified time.<br />

The amount <strong>of</strong> –75 μm material generated is compared to a calibration ch<strong>art</strong>, based on a standard<br />

series <strong>of</strong> <strong>coal</strong>s, and an <strong>in</strong>dex assigned. The higher <strong>the</strong> <strong>in</strong>dex <strong>the</strong> s<strong>of</strong>ter <strong>the</strong> <strong>coal</strong>.<br />

Blend additivity<br />

HGI is one <strong>of</strong> <strong>the</strong> key parameters <strong>for</strong> this study. It is used to predict <strong>the</strong> <strong>power</strong> station mill<strong>in</strong>g rate <strong>in</strong><br />

p<strong>art</strong>icular. However, <strong>coal</strong>s hav<strong>in</strong>g <strong>the</strong> same HGI may vary significantly <strong>in</strong> <strong>the</strong>ir mill<strong>in</strong>g rates.<br />

To some extent <strong>the</strong>re is conflict<strong>in</strong>g evidence <strong>in</strong> regard to HGI additivity. HGI has been reported by<br />

some workers to be additive, when <strong>the</strong> blend <strong>coal</strong>s have similar ranks, and/or have a narrow range <strong>of</strong><br />

values. O<strong>the</strong>rs have found it to be non-additive. Because <strong>of</strong> <strong>the</strong> uncerta<strong>in</strong>ty, <strong>the</strong> restrictions, and <strong>the</strong><br />

nature <strong>of</strong> <strong>the</strong> test itself, Table 4 shows it as non-additive.<br />

In a case study conducted on eastern US <strong>coal</strong>s, Hower (1988) found that <strong>the</strong> weighted average HGI<br />

value <strong>for</strong> samples <strong>of</strong> s<strong>in</strong>gle lithotypes agreed closely with <strong>the</strong> HGI value determ<strong>in</strong>ed <strong>for</strong> a <strong>coal</strong><br />

comprised <strong>of</strong> those lithotypes. He cautioned, however, aga<strong>in</strong>st <strong>the</strong> use <strong>of</strong> his results to <strong>in</strong>fer <strong>the</strong><br />

additivity <strong>of</strong> blends <strong>of</strong> a variety <strong>of</strong> <strong>coal</strong>s, and <strong>state</strong>d:<br />

“Each <strong>of</strong> <strong>the</strong> <strong>coal</strong>s compris<strong>in</strong>g a <strong>power</strong> plant feedstock is <strong>in</strong> turn a blend <strong>of</strong> a variety<br />

<strong>of</strong> lithotypes. A blend <strong>of</strong> a variety <strong>of</strong> <strong>coal</strong>s is <strong>the</strong>re<strong>for</strong>e likely to be a more complex<br />

mixture <strong>of</strong> lithotypes than any <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle <strong>coal</strong>s <strong>in</strong> this study. This is p<strong>art</strong>icularly<br />

true when <strong>coal</strong>s <strong>of</strong> varied rank are <strong>in</strong>cluded <strong>in</strong> a blend <strong>in</strong> contrast to <strong>the</strong> isorank<br />

lithotypes <strong>in</strong> each <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual seams <strong>in</strong> our sample population. Gr<strong>in</strong>dability<br />

would probably appear to be less additive <strong>in</strong> a complex blend than it is with <strong>the</strong><br />

relatively simple channel and component lithotype sets discussed here.”<br />

In <strong>the</strong> conduct <strong>of</strong> <strong>the</strong> HGI test, a sample <strong>of</strong> <strong>the</strong> <strong>coal</strong> to be analysed is stage-crushed to a top size <strong>of</strong><br />

1.18 mm. The fraction <strong>of</strong> <strong>coal</strong> f<strong>in</strong>er than 0.60 mm is removed from <strong>the</strong> sample and discarded, leav<strong>in</strong>g<br />

only <strong>the</strong> –1.18+0.60 mm fraction as <strong>the</strong> sample which is actually placed <strong>in</strong> <strong>the</strong> HGI test apparatus.<br />

The –1.18+0.60 mm fraction may represent as little as 50% <strong>of</strong> <strong>the</strong> <strong>in</strong>itial sample mass. The Standard<br />

stipulates that <strong>the</strong> entire sample is to be discarded, and <strong>the</strong> sample preparation recommenced on a<br />

fresh sample, <strong>in</strong> <strong>the</strong> event that <strong>the</strong> percentage <strong>of</strong> <strong>the</strong> <strong>in</strong>itial sample represented by this fraction falls<br />

below 50%. It is significant that HGI is <strong>the</strong> only test, be<strong>in</strong>g considered <strong>in</strong> this study, where <strong>the</strong> sample<br />

portion tested is not representative <strong>of</strong> <strong>the</strong> entire sample taken. This leads to outcomes which<br />

sometimes appear paradoxical, and is <strong>the</strong> ma<strong>in</strong> reason <strong>for</strong> <strong>the</strong> non-additivity conclusion. Waters<br />

(1986) found this feature <strong>of</strong> <strong>the</strong> HGI test, whereby a large proportion <strong>of</strong> <strong>the</strong> <strong>coal</strong> was removed prior to<br />

<strong>the</strong> conduct <strong>of</strong> <strong>the</strong> test, resulted <strong>in</strong> a HGI value <strong>for</strong> a b<strong>in</strong>ary mixture significantly lower than <strong>the</strong> value<br />

calculated on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> HGI values and <strong>the</strong> proportions <strong>of</strong> each component <strong>in</strong> <strong>the</strong> mixture. In<br />

this case, <strong>the</strong> mass <strong>of</strong> each component <strong>coal</strong> <strong>in</strong> <strong>the</strong> test sample would not be represented <strong>in</strong> <strong>the</strong> same<br />

proportions as <strong>the</strong>y would have been <strong>in</strong> <strong>the</strong> <strong>in</strong>itial mixture, with <strong>the</strong> more friable (higher HGI) <strong>coal</strong><br />

hav<strong>in</strong>g been preferentially discarded <strong>in</strong> <strong>the</strong> sample preparation process. Waters found that only by<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 43


<strong>for</strong>mulat<strong>in</strong>g <strong>the</strong> HGI test sample after each component had been <strong>in</strong>dividually prepared to –1.18+0.60<br />

mm <strong>in</strong> <strong>the</strong> correct proportions <strong>of</strong> each component, was <strong>the</strong> resultant HGI closely approximated by <strong>the</strong><br />

calculated value. As this is not <strong>in</strong> accordance with <strong>the</strong> standard method <strong>of</strong> sample preparation<br />

employed <strong>in</strong> <strong>the</strong> HGI test, under most circumstances it would have to be assumed that HGI is not<br />

additive.<br />

Effect <strong>of</strong> oxidation on HGI results<br />

In any discussion regard<strong>in</strong>g <strong>the</strong> effects <strong>of</strong> oxidation on HGI, it is very important that <strong>the</strong> nature <strong>of</strong> <strong>the</strong><br />

oxidation process is properly specified. There have been very few studies conducted on <strong>the</strong> effects <strong>of</strong><br />

oxidation on HGI. For example Waters (1986) reported that oxidised <strong>coal</strong> has a lower HGI value i.e. is<br />

harder. Work published by Kona et al (1968), on <strong>the</strong> effects <strong>of</strong> oxidation on <strong>the</strong> properties <strong>of</strong> three US<br />

<strong>coal</strong>s, found that oxidation substantially lowered HGI values. It should be noted however that, <strong>in</strong> this<br />

study, <strong>the</strong> <strong>coal</strong> samples were oxidised <strong>in</strong> an oven at temperatures <strong>of</strong> between 200°C and 300°C <strong>for</strong><br />

periods rang<strong>in</strong>g from 12 to 48 hours. These conditions bear no resemblance to those that prevail <strong>for</strong><br />

natural low temperature oxidation or wea<strong>the</strong>r<strong>in</strong>g. Outcrop <strong>coal</strong> oxidises at a much slower rate than<br />

that described by Kona et al (1968). As reported by Gray et al (1976), and consistent with common<br />

field experience, outcrop <strong>coal</strong> becomes “mechanically weak, fissured and easily degradable” and<br />

smut (<strong>the</strong> end result <strong>of</strong> oxidation) is powdery. Notwithstand<strong>in</strong>g <strong>the</strong> <strong>in</strong>adequacies <strong>of</strong> <strong>the</strong> HGI test,<br />

wea<strong>the</strong>red <strong>coal</strong> <strong>in</strong>variably reports a higher HGI value than its unwea<strong>the</strong>red parent. The reason <strong>for</strong> <strong>the</strong><br />

paradox is apparently that, dur<strong>in</strong>g <strong>the</strong> preparation <strong>of</strong> <strong>the</strong> carefully crushed and sized -1180+600 µm<br />

test portion, oxidised p<strong>art</strong>icles report to <strong>the</strong> f<strong>in</strong>es, which are screened out <strong>of</strong> <strong>the</strong> test portion, leav<strong>in</strong>g it<br />

(relatively) harder.<br />

Power station per<strong>for</strong>mance<br />

Mill<strong>in</strong>g<br />

Hardgrove gr<strong>in</strong>dabilty <strong>in</strong>dex (HGI) provides an empirical measure <strong>of</strong> <strong>the</strong> relative ease <strong>of</strong> gr<strong>in</strong>d<strong>in</strong>g a<br />

given <strong>coal</strong>. In practical terms, HGI is used to provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> <strong>power</strong> required to pulverise a<br />

given <strong>coal</strong> and, as such, is one <strong>of</strong> <strong>the</strong> factors used by <strong>power</strong> plant designers to determ<strong>in</strong>e capacity<br />

requirements <strong>for</strong> pulveris<strong>in</strong>g plant. In general, lower HGI <strong>coal</strong>s have higher <strong>power</strong> and mill capacity<br />

requirements than higher HGI <strong>coal</strong>s <strong>for</strong> <strong>the</strong> same tonnage <strong>of</strong> <strong>coal</strong> processed. HGI also provides a<br />

relative <strong>in</strong>dication <strong>of</strong> <strong>the</strong> p<strong>art</strong>icle size distribution <strong>of</strong> <strong>the</strong> pulverised <strong>coal</strong> product, with higher HGI <strong>coal</strong>s<br />

generally produc<strong>in</strong>g f<strong>in</strong>er product than lower HGI <strong>coal</strong>s.<br />

For <strong>the</strong> same rank, HGI can vary greatly with petrography. For example <strong>the</strong> Walloon <strong>coal</strong>s <strong>of</strong> southwestern<br />

Queensland, with <strong>the</strong>ir high lipt<strong>in</strong>ite contents, have very low HGI values. Lipt<strong>in</strong>ite macerals<br />

are "tough" ra<strong>the</strong>r than brittle. Even though low HGI values may <strong>in</strong>dicate relatively high mill <strong>power</strong><br />

consumption <strong>for</strong> a highly lipt<strong>in</strong>itic <strong>coal</strong>, that <strong>coal</strong> may burn exceptionally well due to its high volatile<br />

matter value. It may, <strong>the</strong>re<strong>for</strong>e, be a highly desirable blend component to compensate <strong>for</strong> <strong>the</strong> poorer<br />

burnout characteristics <strong>of</strong> a very dull <strong>coal</strong>. Spero (1998) reported that <strong>the</strong> low HGI <strong>of</strong> Walloon <strong>coal</strong>s<br />

led to, <strong>for</strong> <strong>the</strong> same mill <strong>power</strong> consumption as o<strong>the</strong>r feed <strong>coal</strong>s, less <strong>of</strong> <strong>the</strong> pulverised fuel pass<strong>in</strong>g 75<br />

µm. Because <strong>of</strong> its higher reactivity, however, <strong>the</strong> carbon <strong>in</strong> ash values were lower than <strong>for</strong> <strong>the</strong> o<strong>the</strong>r<br />

feed <strong>coal</strong>s.<br />

To assess <strong>the</strong> extent to which blended <strong>coal</strong>s exhibit <strong>the</strong> same per<strong>for</strong>mance characteristics as<br />

unblended <strong>coal</strong>s <strong>of</strong> <strong>the</strong> same HGI value, <strong>the</strong> results <strong>of</strong> numerous tests conducted <strong>in</strong> ACIRL’s pilot<br />

scale mill<strong>in</strong>g facilities have been exam<strong>in</strong>ed. These results provide an excellent means <strong>of</strong> compar<strong>in</strong>g<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 44


<strong>the</strong> per<strong>for</strong>mance attributes <strong>of</strong> different <strong>coal</strong>s, as all <strong>of</strong> <strong>the</strong> <strong>coal</strong>s <strong>for</strong> which results have been presented<br />

have been tested under identical conditions <strong>in</strong> <strong>the</strong> same test equipment. Figure 10 shows mill <strong>power</strong><br />

requirement as a function <strong>of</strong> HGI <strong>for</strong> a number <strong>of</strong> unblended and blended <strong>coal</strong>s.<br />

Mill Power Requirement (kWh/t)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

S<strong>in</strong>gle Coals<br />

Blended Coals<br />

20 30 40 50 60 70 80 90 100 110<br />

Hardgrove Gr<strong>in</strong>dability Index<br />

Figure 10: Mill <strong>power</strong> requirement as a function <strong>of</strong> HGI <strong>for</strong> blended and unblended <strong>coal</strong>s<br />

Figure 10 shows <strong>the</strong> expected overall trend <strong>of</strong> decreas<strong>in</strong>g mill <strong>power</strong> requirement with <strong>in</strong>creas<strong>in</strong>g HGI.<br />

A cursory exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> figure shows that, as a population, <strong>the</strong> blended <strong>coal</strong>s do not exhibit<br />

behaviour largely different to that <strong>of</strong> <strong>the</strong> unblended <strong>coal</strong>s. Regression analysis <strong>of</strong> <strong>the</strong> data populations<br />

confirms that <strong>the</strong>re is no significant difference between <strong>the</strong> behaviour <strong>of</strong> unblended and blended <strong>coal</strong>s<br />

<strong>in</strong> terms <strong>of</strong> <strong>the</strong> relationship between mill <strong>power</strong> and HGI and shows that:<br />

a) The relationship between mill <strong>power</strong> and HGI <strong>for</strong> unblended <strong>coal</strong>s can be described by <strong>the</strong><br />

equation:<br />

Power = 95 (HGI) -0.58 (R 2 = 0.63)<br />

b) The relationship between mill <strong>power</strong> and HGI <strong>for</strong> blended <strong>coal</strong>s can be described by <strong>the</strong> equation:<br />

Power = 89 (HGI) -0.57 (R 2 = 0.65)<br />

Figure 11 shows mill product f<strong>in</strong>eness as a function <strong>of</strong> HGI <strong>for</strong> a number <strong>of</strong> unblended and blended<br />

<strong>coal</strong>s. While <strong>the</strong> expected general trend <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g mill product f<strong>in</strong>eness with <strong>in</strong>creas<strong>in</strong>g HGI can<br />

be observed <strong>for</strong> <strong>the</strong> overall data set, <strong>the</strong>re is no compell<strong>in</strong>g evidence to <strong>in</strong>dicate that blended <strong>coal</strong>s<br />

report behaviour that is substantially different to unblended <strong>coal</strong>s <strong>of</strong> <strong>the</strong> same HGI value.<br />

More detailed studies <strong>of</strong> <strong>in</strong>dividual blends have, however, revealed differences between <strong>the</strong> mill<strong>in</strong>g<br />

behaviour <strong>of</strong> <strong>the</strong>se <strong>coal</strong>s and that <strong>of</strong> unblended <strong>coal</strong>s. Conroy et al (1989) reported on <strong>the</strong> results <strong>of</strong><br />

test work conducted on blends made up <strong>of</strong> vary<strong>in</strong>g proportions <strong>of</strong> two <strong>coal</strong>s, with HGI values <strong>of</strong> 41<br />

(Coal ‘A’) and 79 (Coal ‘B’) respectively. In this test work, blends made up <strong>of</strong> 60% Coal ‘A’ with 40%<br />

Coal ‘B’, and 40% Coal ‘A’ with 60% Coal ‘B’ were subjected to pilot scale mill<strong>in</strong>g tests, along with <strong>the</strong><br />

unblended Coal ‘A’ and Coal ‘B’. As shown <strong>in</strong> Figure 12 and Figure 13, analysis <strong>of</strong> <strong>the</strong> mill products<br />

showed substantial over representation <strong>of</strong> <strong>the</strong> higher HGI component (Coal ‘B’) <strong>in</strong> <strong>the</strong> f<strong>in</strong>er size<br />

fractions <strong>in</strong>dicat<strong>in</strong>g preferential gr<strong>in</strong>d<strong>in</strong>g <strong>of</strong> this <strong>coal</strong>.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 45


F<strong>in</strong>eness (% pass<strong>in</strong>g 75um)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

S<strong>in</strong>gle Coals<br />

Blended Coals<br />

20 30 40 50 60 70 80 90 100<br />

Hardgrove Gr<strong>in</strong>dability Index<br />

Figure 11: Mill product f<strong>in</strong>eness as a function <strong>of</strong> HGI <strong>for</strong> blended and unblended <strong>coal</strong>s<br />

Mass Percentage (%)<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Coal 'B'<br />

Coal 'A'<br />

Pass<strong>in</strong>g 45 micron Between 45 and 75<br />

micron<br />

Size Fraction<br />

Reta<strong>in</strong>ed on 75 micron<br />

Figure 12: 60% Coal ‘A’ + 40% Coal ‘B’ – Distribution <strong>of</strong> blend components <strong>in</strong> size fractions<br />

Earlier mill<strong>in</strong>g studies (Conroy and Trenaman, 1990a) on unblended <strong>coal</strong>s revealed a relationship<br />

between <strong>the</strong> optimum level <strong>of</strong> applied gr<strong>in</strong>d<strong>in</strong>g pressure <strong>in</strong> vertical sp<strong>in</strong>dle pulverisers and HGI. This<br />

relationship, shown <strong>in</strong> Figure 14 gives <strong>the</strong> value at which optimum mill per<strong>for</strong>mance is achieved<br />

across <strong>the</strong> range <strong>of</strong> HGI values. Operation at gr<strong>in</strong>d<strong>in</strong>g pressures significantly <strong>in</strong> excess <strong>of</strong> <strong>the</strong>se<br />

values has been found to result <strong>in</strong> excessive mill <strong>power</strong> consumption, sub-optimal mill product<br />

f<strong>in</strong>eness and <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong> mill vibration.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 46


Mass Percentage (%)<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Coal 'B'<br />

Coal 'A'<br />

Pass<strong>in</strong>g 45 micron Between 45 and 75<br />

micron<br />

Size Fraction<br />

Reta<strong>in</strong>ed on 75 micron<br />

Figure 13: 40% Coal ‘A’ + 60% Coal ‘B’ – Distribution <strong>of</strong> blend components <strong>in</strong> size fractions<br />

The blend<strong>in</strong>g study, described <strong>in</strong> p<strong>art</strong> by Figure 12 and Figure 13, also assessed <strong>the</strong> optimum<br />

gr<strong>in</strong>d<strong>in</strong>g pressure <strong>for</strong> <strong>the</strong> two blends constituted from Coal ‘A’ and Coal ‘B’, and found that an<br />

approximate hyperbolic relationship existed between optimum gr<strong>in</strong>d<strong>in</strong>g pressure and HGI, with lower<br />

optimum gr<strong>in</strong>d<strong>in</strong>g pressures associated with higher HGI <strong>coal</strong>s. For <strong>the</strong> two blends tested, this study<br />

found that <strong>the</strong> optimum gr<strong>in</strong>d<strong>in</strong>g pressure was significantly higher than that <strong>for</strong> unblended <strong>coal</strong>s <strong>of</strong><br />

similar HGI values, and almost equal to that required <strong>for</strong> <strong>the</strong> lower HGI component <strong>coal</strong> unblended.<br />

Figure 14: Relationship between optimum gr<strong>in</strong>d<strong>in</strong>g pressure <strong>in</strong> sp<strong>in</strong>dle mills and HGI<br />

3.8 Abrasion <strong>in</strong>dex<br />

Analysis<br />

Australian Standard AS1038.19; American Standard nil; British Standard BS1016-111; International<br />

Standard ISO12900; Japanese Standard not known.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 47


Several abrasiveness tests are available. However, <strong>the</strong> results <strong>of</strong> each test do not rank a set <strong>of</strong> <strong>coal</strong>s<br />

<strong>in</strong> <strong>the</strong> same order <strong>for</strong> abrasiveness, and <strong>the</strong> results <strong>of</strong> different tests cannot be compared (Sligar<br />

1986). Indices such as free silica and Hardgrove gr<strong>in</strong>dability have been shown by Sligar (1986) to be<br />

poor predictors <strong>of</strong> abrasiveness. The abrasion <strong>in</strong>dex <strong>of</strong> a <strong>coal</strong> as outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Australian Standard is<br />

a measure <strong>of</strong> <strong>the</strong> wear caused by <strong>the</strong> <strong>coal</strong> and its conta<strong>in</strong>ed m<strong>in</strong>eral matter. It is calculated by<br />

measur<strong>in</strong>g <strong>the</strong> loss <strong>in</strong> mass <strong>of</strong> <strong>the</strong> four blades used <strong>in</strong> mill<strong>in</strong>g a <strong>coal</strong> sample under standard<br />

conditions.<br />

Blend additivity<br />

This property was only listed <strong>in</strong> <strong>the</strong> Wall table (Table 13). Because it is a direct <strong>in</strong>dicator <strong>of</strong> mill wear, it<br />

has been <strong>in</strong>cluded <strong>in</strong> this report's Table 4. Free silica content, which may be estimated from ash<br />

analysis, is an <strong>in</strong>direct <strong>in</strong>dicator <strong>of</strong> mill wear. Given that <strong>the</strong> abrasion <strong>in</strong>dex <strong>of</strong> a <strong>coal</strong> is directly<br />

determ<strong>in</strong>ed as <strong>the</strong> amount <strong>of</strong> metal lost from steel blades when a standard mass <strong>of</strong> <strong>coal</strong> is subjected<br />

to a standard number <strong>of</strong> rotations <strong>of</strong> those blades <strong>in</strong> a mill, <strong>the</strong> values are probably additive, although<br />

no published reference could be found to substantiate this. An orig<strong>in</strong>al reference to <strong>the</strong> test, by<br />

Yancey, Geer and Price (1951) makes no reference to blends. Sligar (1986) notes that this test<br />

assumes <strong>the</strong> results are additive <strong>for</strong> <strong>coal</strong> components. There<strong>for</strong>e <strong>the</strong> results should be additive <strong>for</strong><br />

<strong>coal</strong> blends.<br />

Power station per<strong>for</strong>mance<br />

Mill<strong>in</strong>g<br />

Sligar notes that <strong>the</strong> Abrasion Index is dependent on <strong>the</strong> amount <strong>of</strong> hard m<strong>in</strong>erals present <strong>in</strong> <strong>the</strong> <strong>coal</strong>,<br />

such as qu<strong>art</strong>z, pyrite and siderite. It is also dependent on <strong>the</strong> size <strong>of</strong> <strong>the</strong>se p<strong>art</strong>icles, by <strong>the</strong> equation:<br />

( ) 2<br />

AI = a + b.<br />

dp.<br />

q + c dp.<br />

q ,<br />

where AI is <strong>the</strong> abrasion <strong>in</strong>dex, a, b and c are constants, dp is <strong>the</strong> p<strong>art</strong>icle diameter (<strong>in</strong> micrometres)<br />

and q is <strong>the</strong> percentage <strong>of</strong> abrasive material. The constants are dependent on <strong>the</strong> mill <strong>in</strong> use, as mill<br />

wear is a function <strong>of</strong> <strong>the</strong> <strong>coal</strong> gr<strong>in</strong>dability and <strong>the</strong> type <strong>of</strong> mill used.<br />

Ball and tube mills have a significant proportion <strong>of</strong> metal to metal impact, which effects <strong>the</strong> rate <strong>of</strong><br />

wear, but generally only operate at low speeds (10 to 20 rev/m<strong>in</strong>). A hammer mill, on <strong>the</strong> o<strong>the</strong>r hand,<br />

will only have <strong>coal</strong> to metal contact (i.e. no metal to metal contact), and operates at high speeds (500<br />

to 1500 rev/m<strong>in</strong>). The Australian standard test is believed to provide a strong <strong>in</strong>dication <strong>of</strong> <strong>the</strong> rate <strong>of</strong><br />

hammer wear <strong>in</strong> high speed mills. Roll wear <strong>in</strong> medium speed mills is believed to be predicted well by<br />

<strong>the</strong> standard test, but <strong>the</strong> overall wear is not predicted as well. Ball wear on a product <strong>coal</strong> basis is<br />

predictable <strong>for</strong> low speed mills.<br />

For roll mills, <strong>coal</strong> abrasiveness and roll gr<strong>in</strong>d<strong>in</strong>g pressure are <strong>the</strong> major factors, which contribute to<br />

mill wear. Pacific Power (1993) produced correlations to predict mill wear rate (W) as:<br />

( AI × ) 1.<br />

8<br />

W = 0 . 017 GP + ,<br />

where AI is <strong>the</strong> abrasion <strong>in</strong>dex as measured by <strong>the</strong> standard test, and GP is <strong>the</strong> roll gr<strong>in</strong>d<strong>in</strong>g pressure.<br />

He also produced <strong>the</strong> follow<strong>in</strong>g correlations, which l<strong>in</strong>k <strong>the</strong> mill wear with Hardgrove gr<strong>in</strong>dability,<br />

moisture and SiO2 <strong>in</strong> <strong>the</strong> sample and <strong>the</strong> mean hardness <strong>of</strong> <strong>the</strong> roll material (Br<strong>in</strong>ell Hardness Number<br />

or BHN):<br />

⎡ 0. 017AI<br />

⎤⎡<br />

− 0.<br />

000049BHN<br />

+ 0.<br />

57⎤<br />

Or W = ⎢<br />

+ 1.<br />

8⎥⎢<br />

⎥ ,<br />

⎣0.<br />

0091HGI<br />

− 0.<br />

265 ⎦⎣<br />

0.<br />

55 ⎦<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 48


Or<br />

( Mar × SiO )<br />

⎡ 0. 012<br />

2 ⎤⎡<br />

− 0.<br />

000049BHN<br />

+ 0.<br />

57⎤<br />

W = ⎢<br />

+ 2.<br />

15⎥⎢<br />

⎣<br />

⎥ .<br />

⎣0.<br />

0091HGI<br />

− 0.<br />

265 ⎦ 0.<br />

55 ⎦<br />

3.9 Crucible swell<strong>in</strong>g number (CSN)<br />

CSN is a function <strong>of</strong> two discrete parameters, namely <strong>coal</strong> type (bright or dull) and rank. The higher<br />

<strong>the</strong> rank, <strong>the</strong> higher <strong>the</strong> carbon content and <strong>the</strong> lower <strong>the</strong> oxygen and hydrogen contents, and <strong>the</strong><br />

lower <strong>the</strong> volatile matter value. The higher <strong>the</strong> "brights" or "reactive" maceral content (vitr<strong>in</strong>ite plus<br />

lipt<strong>in</strong>ite), <strong>for</strong> a given rank, <strong>the</strong> higher <strong>the</strong> hydrogen content and volatile matter value. To achieve a<br />

high CSN value <strong>the</strong> <strong>coal</strong> must have sufficient volatile matter to create a frothy mass when <strong>the</strong> <strong>coal</strong> is<br />

rapidly heated <strong>in</strong> <strong>the</strong> absence <strong>of</strong> air through its fluid range. At <strong>the</strong> same time it must also have enough<br />

carbon to <strong>for</strong>m walls around <strong>the</strong> bubbles, <strong>of</strong> sufficient thickness to support <strong>the</strong> mass as it sets. So it is<br />

a delicate balance. The higher volatile matter, bright <strong>coal</strong>s <strong>of</strong> <strong>the</strong> Hunter Valley <strong>in</strong> New South Wales<br />

rarely reach a CSN value <strong>of</strong> 7, as <strong>the</strong> rank is not high enough to give strong walls around <strong>the</strong> gas<br />

bubbles. The lower volatile matter, higher rank, bright <strong>coal</strong>s <strong>of</strong> <strong>the</strong> Bowen Bas<strong>in</strong> <strong>in</strong> Queensland,<br />

however, may have CSN values <strong>of</strong> 9. Recent unpublished studies looked at <strong>the</strong> CSN values <strong>in</strong> a high<br />

rank <strong>coal</strong> deposit, where <strong>the</strong>y varied from 0 to 9, depend<strong>in</strong>g on rank. At a reflectance <strong>of</strong> 1.70, <strong>the</strong> <strong>coal</strong><br />

had a CSN <strong>of</strong> 9. Above this reflectance <strong>the</strong> CSN value reduced until, at a reflectance <strong>of</strong> 1.88, <strong>the</strong> CSN<br />

was zero.<br />

The effect <strong>of</strong> ash is <strong>in</strong>terest<strong>in</strong>g. Generally, m<strong>in</strong>eral matter acts as a diluent i.e. CSN reduces with<br />

<strong>in</strong>creas<strong>in</strong>g ash value. However, <strong>in</strong> <strong>the</strong> case <strong>of</strong> a high volatile bitum<strong>in</strong>ous <strong>coal</strong>, where <strong>the</strong> CSN value is<br />

lower than it is capable <strong>of</strong> be<strong>in</strong>g, due to <strong>the</strong> collapse <strong>of</strong> <strong>the</strong> button dur<strong>in</strong>g <strong>the</strong> test, <strong>in</strong>creased m<strong>in</strong>eral<br />

matter may provide a "stiffener" to <strong>the</strong> cell walls <strong>of</strong> <strong>the</strong> semi-coke produced, so that <strong>the</strong> button does<br />

not collapse, giv<strong>in</strong>g a higher value.<br />

Analysis<br />

Australian Standard AS1038.12.1; American Standard D720; British Standard BS1016-107.1;<br />

International Standard ISO501; Japanese Standard not known.<br />

A coke button is produced by allow<strong>in</strong>g 1g <strong>of</strong> <strong>the</strong> analysis sample to swell <strong>in</strong> a covered crucible while<br />

be<strong>in</strong>g heated rapidly to 800°C <strong>in</strong> one and a half m<strong>in</strong>utes and to 820°C <strong>in</strong> a fur<strong>the</strong>r m<strong>in</strong>ute. The button<br />

is assigned a value by comparison <strong>of</strong> its swollen pr<strong>of</strong>ile with a set <strong>of</strong> standard pr<strong>of</strong>iles.<br />

Blend additivity<br />

This property is referred to <strong>in</strong> Table 13 as B.S. Index, and by Su (Table 14) and Carpenter (1995) as<br />

Free Swell<strong>in</strong>g Index (<strong>the</strong> ASTM term<strong>in</strong>ology). Carpenter (1995) says that <strong>the</strong> FSI "is generally not<br />

additive <strong>for</strong> blends", also that <strong>the</strong> actual value <strong>for</strong> <strong>the</strong> blends studied was less than calculated,<br />

"especially <strong>in</strong> blends <strong>in</strong>volv<strong>in</strong>g low rank <strong>coal</strong>s".<br />

The non-additivity especially applies where <strong>the</strong>re are large rank and type differences between <strong>the</strong><br />

blend components. O<strong>the</strong>r cak<strong>in</strong>g parameters such as dilatometer and Gray-K<strong>in</strong>g coke type are<br />

similarly non-additive. Coals <strong>of</strong> different ranks have different plastic ranges, mean<strong>in</strong>g that <strong>the</strong>y give <strong>of</strong>f<br />

<strong>the</strong>ir volatile matter at different times, provid<strong>in</strong>g a fur<strong>the</strong>r complication.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 49


Power station per<strong>for</strong>mance<br />

Carpenter (1995) says that FSI (CSN) "provides an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> amount a <strong>coal</strong> charge will swell<br />

with<strong>in</strong> a boiler and <strong>of</strong> char behaviour" and that "a high swell<strong>in</strong>g number suggests that <strong>the</strong> <strong>coal</strong> p<strong>art</strong>icle<br />

may expand to <strong>for</strong>m lightweight porous p<strong>art</strong>icles that could contribute to a high carbon content <strong>in</strong> <strong>the</strong><br />

fly ash." Fur<strong>the</strong>r, she says that "generally, <strong>the</strong> higher <strong>the</strong> FSI, <strong>the</strong> lower <strong>the</strong> combustion efficiency".<br />

Aga<strong>in</strong>, given <strong>the</strong> difference <strong>in</strong> heat<strong>in</strong>g rates <strong>in</strong> <strong>the</strong> test and <strong>in</strong> a boiler, she says that "<strong>the</strong> FSI may not<br />

provide a good <strong>in</strong>dication <strong>of</strong> <strong>the</strong> swell<strong>in</strong>g behaviour <strong>of</strong> <strong>coal</strong> under pf conditions".<br />

Statements like Carpenter's, <strong>in</strong>ferr<strong>in</strong>g char morphology and unburned carbon <strong>in</strong> ash from CSN,<br />

needed to be read with caution. The ash values also need to be taken <strong>in</strong>to account. For example, a<br />

higher rank <strong>coal</strong> and a lower rank <strong>coal</strong> may each have a CSN value <strong>of</strong> 5. The lower rank <strong>coal</strong> may<br />

have a low ash value, and produce a collapsed button because <strong>of</strong> its high volatile matter and<br />

relatively low carbon content. The higher rank <strong>coal</strong> may be a "natural 9" at low ash values, but may<br />

have this value reduced to 5 by its high ash value. Even though <strong>the</strong> CSN values are <strong>the</strong> same, <strong>the</strong><br />

char and flyash would be significantly different <strong>for</strong> each.<br />

CSN is also used by some utilities to <strong>in</strong>dicate <strong>the</strong> propensity <strong>of</strong> pulverised <strong>coal</strong> p<strong>art</strong>icles to build-up <strong>in</strong><br />

<strong>coal</strong> burners. While it is <strong>the</strong>oretically conceivable that <strong>coal</strong>s which have become plastic may adhere to<br />

<strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>coal</strong> burners under some circumstances, practical experience <strong>in</strong>dicates that <strong>the</strong> risk <strong>of</strong><br />

burner build-ups is no greater with higher CSN <strong>the</strong>rmal <strong>coal</strong>s than it is with lower CSN <strong>coal</strong>s. Major<br />

US utility equipment manufacturers do not <strong>in</strong>clude CSN data as p<strong>art</strong> <strong>of</strong> <strong>the</strong> suite <strong>of</strong> <strong>coal</strong> properties<br />

requested from a client <strong>for</strong> burner and boiler design purposes, and do not consider CSN to have any<br />

importance <strong>in</strong> <strong>the</strong> context <strong>of</strong> burner and boiler design. Fur<strong>the</strong>rmore, <strong>in</strong> <strong>the</strong> series describ<strong>in</strong>g evaluation<br />

criteria commonly used by <strong>the</strong> Japanese utility <strong>power</strong> <strong>in</strong>dustry, Okamoto (1997) <strong>in</strong>dicates that <strong>the</strong><br />

demise <strong>of</strong> stoker fired combustors saw <strong>the</strong> demise <strong>of</strong> CSN as a parameter <strong>of</strong> any relevance to<br />

combustion applications 6 , and that pulverised <strong>coal</strong>-fired <strong>in</strong>stallations utilise cak<strong>in</strong>g <strong>coal</strong>s with few<br />

problems.<br />

3.10 Ash fusibility (AFT)<br />

This property is also referred to as ash fusion. Comments applicable to "reduc<strong>in</strong>g" test atmospheres<br />

are equally applicable to "oxidis<strong>in</strong>g", so <strong>the</strong>se are not separately itemised <strong>in</strong> Table 4.<br />

The ash fusibility test was orig<strong>in</strong>ally designed, <strong>in</strong> <strong>the</strong> 1920s, to <strong>in</strong>dicate <strong>the</strong> likely cl<strong>in</strong>ker <strong>for</strong>m<strong>in</strong>g<br />

characteristics <strong>of</strong> ash from lump <strong>coal</strong> <strong>in</strong> stoker fired furnaces. In more recent times its results have<br />

been used to give an <strong>in</strong>dication to <strong>the</strong> designers and operators <strong>of</strong> pulverised <strong>coal</strong> fired boilers <strong>of</strong> <strong>the</strong><br />

likely ash deposition characteristics (slagg<strong>in</strong>g and foul<strong>in</strong>g) <strong>of</strong> <strong>the</strong> <strong>coal</strong> to be fired. Except where <strong>the</strong><br />

furnaces are specifically designed to handle fluid ash, combustion furnaces are designed on <strong>the</strong><br />

premise that <strong>the</strong> ash will rema<strong>in</strong> solid dur<strong>in</strong>g its residence time.<br />

The ash fusibility temperatures are an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> fusibility behaviour <strong>of</strong> an ash between its<br />

solidus and liquidus temperatures, which are a function <strong>of</strong> <strong>the</strong> ash composition. Low de<strong>for</strong>mation<br />

temperatures, <strong>in</strong> conjunction with high hemisphere temperatures, are mislead<strong>in</strong>g, due to <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> unreacted illite <strong>in</strong> <strong>the</strong> laboratory ash, as shown by Wall et al, (1998).<br />

6 With cak<strong>in</strong>g <strong>coal</strong>s, <strong>the</strong>re was an associated risk <strong>of</strong> <strong>coal</strong> agglomerat<strong>in</strong>g on <strong>the</strong> grate and imped<strong>in</strong>g <strong>the</strong> passage<br />

<strong>of</strong> air through <strong>the</strong> grate.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 50


Analysis<br />

Australian Standard AS1038.15; American Standard D1857; British Standard BS1016-113;<br />

International Standard ISO540; Japanese Standard JISM8801.<br />

This test is carried out by mak<strong>in</strong>g a pyramid from moistened <strong>coal</strong> ash, <strong>the</strong>n heat<strong>in</strong>g it through <strong>the</strong><br />

range 900°C to 1600°C under a controlled atmosphere, ei<strong>the</strong>r oxidis<strong>in</strong>g or reduc<strong>in</strong>g. Four standard<br />

temperatures are recorded, namely de<strong>for</strong>mation, sphere, hemisphere and flow (Australian Standards)<br />

and <strong>in</strong>itial de<strong>for</strong>mation, s<strong>of</strong>ten<strong>in</strong>g, hemispherical and flow (American standards). In all standards <strong>the</strong><br />

temperatures <strong>in</strong>dicate (<strong>in</strong> order) <strong>the</strong> first round<strong>in</strong>g <strong>of</strong> <strong>the</strong> tip, a spherical shape (height equals width), a<br />

hemispherical shape (height equals half <strong>the</strong> width) and flow (nearly flat layer). The <strong>coal</strong> ash is<br />

prepared <strong>in</strong> a laboratory ash muffle, at temperatures between 800°C and 900°C.<br />

Blend additivity<br />

The non-additivity <strong>of</strong> ash fusibility temperatures is well known. The values can be predicted with some<br />

certa<strong>in</strong>ty, however, <strong>for</strong> a given <strong>coal</strong>, us<strong>in</strong>g relationships with ash composition e.g. <strong>the</strong> Schaefer Index<br />

or SI (Schaefer, 1933). Problems exist with <strong>the</strong> SI, however, as with o<strong>the</strong>r factors, when <strong>the</strong>re is a<br />

significant number <strong>of</strong> ">" temperatures. S<strong>in</strong>ce <strong>the</strong> different blend components may have different SI<br />

relationships, <strong>the</strong> value <strong>of</strong> SI <strong>for</strong> predict<strong>in</strong>g <strong>the</strong> ash fusibility <strong>of</strong> blends, from <strong>the</strong> values <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual<br />

components, is uncerta<strong>in</strong>. Carpenter (1995) however, referr<strong>in</strong>g to <strong>the</strong> work <strong>of</strong> Askew and Lief (1992),<br />

<strong>state</strong>s that "<strong>the</strong> application <strong>of</strong> <strong>the</strong> regression equation <strong>for</strong> predict<strong>in</strong>g AFT can be expected to be valid<br />

only <strong>for</strong> those <strong>coal</strong>s and blends on which <strong>the</strong>y were derived". This <strong>in</strong>fers that <strong>the</strong> ash fusibility <strong>of</strong><br />

blends can be predicted from <strong>the</strong> ash analysis <strong>of</strong> <strong>the</strong> blends, us<strong>in</strong>g <strong>the</strong> equations. The prediction <strong>of</strong><br />

<strong>the</strong> ash fusibility <strong>of</strong> blends, from ei<strong>the</strong>r <strong>the</strong> ash fusibility or ash analysis values <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual blend<br />

components, is not confirmed.<br />

Carpenter (1995) also reports that, accord<strong>in</strong>g to Lloyd et al (1993), <strong>the</strong> AFT <strong>of</strong> blends <strong>of</strong> North<br />

American <strong>coal</strong>s <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g amounts <strong>of</strong> Al2O3, CaO, K2O, Na2O and TiO2. The AFT<br />

consistently decreased with <strong>in</strong>creas<strong>in</strong>g amounts <strong>of</strong> MgO, SO3 and SiO2. Usually, but not always,<br />

<strong>in</strong>creases <strong>in</strong> Fe2O3 content tended to lower <strong>the</strong> AFT.<br />

Power station per<strong>for</strong>mance<br />

Boiler<br />

The build up <strong>of</strong> ash deposits on heat transfer surfaces reduces heat transfer from <strong>the</strong> combustion gas<br />

to <strong>the</strong> water-steam system and can cause blockage <strong>of</strong> gas flow, corrosion and erosion. Each<br />

decreases <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> plant. The deposits can be difficult to remove and can damage<br />

equipment when large deposits <strong>of</strong> fused material fall from walls. Ash deposition can occur by p<strong>art</strong>icle<br />

impaction, <strong>the</strong>rmophoresis, vapour condensation or chemical reaction. Slagg<strong>in</strong>g and foul<strong>in</strong>g is<br />

strongly <strong>in</strong>fluenced by equipment design, plant operat<strong>in</strong>g conditions, fuel reactivity and ash<br />

composition. Basic components <strong>of</strong> <strong>the</strong> <strong>coal</strong> ash, <strong>of</strong>ten referred to as flux<strong>in</strong>g components, lower <strong>the</strong><br />

melt<strong>in</strong>g temperature <strong>of</strong> <strong>the</strong> ash and cause <strong>the</strong> <strong>for</strong>mation <strong>of</strong> sticky p<strong>art</strong>icles that can <strong>in</strong>itiate deposits.<br />

These basic components consist <strong>of</strong> Fe, Ca, Mg, Na, and K. Increas<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> any <strong>of</strong> <strong>the</strong>se<br />

constituents can result <strong>in</strong> <strong>in</strong>creased deposition.<br />

Associations <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> <strong>the</strong> <strong>coal</strong> also have a high impact on <strong>the</strong> <strong>for</strong>mation <strong>of</strong> low melt<strong>in</strong>g<br />

temperature p<strong>art</strong>icles. For example, iron associated with sulphur as pyrite will oxidise <strong>in</strong> <strong>the</strong> flame,<br />

produc<strong>in</strong>g a Fe-O-S melt, with a melt<strong>in</strong>g temperature <strong>of</strong> approximately 1080 o C. This melt phase is<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 51


<strong>of</strong>ten associated with slagg<strong>in</strong>g propensity. If <strong>the</strong> pyrite is associated with <strong>the</strong> <strong>coal</strong> matrix, <strong>the</strong> heat from<br />

<strong>the</strong> burn<strong>in</strong>g p<strong>art</strong>icle will vaporise <strong>the</strong> pyrite, which can condense as a sticky layer and <strong>in</strong>itiate deposit<br />

<strong>for</strong>mation, or can produce H2S, which can be corrosive. Iron present as siderite (FeCO3), will<br />

decompose to FeO, which has a melt<strong>in</strong>g temperature <strong>of</strong> approximately 1380 o C. Pure siderites, and<br />

siderites with high calcium contents, are more likely to <strong>for</strong>m molten p<strong>art</strong>icles that lead to deposition<br />

than are siderites conta<strong>in</strong><strong>in</strong>g magnesium, as <strong>the</strong>se species are more likely to decompose (Bailey,<br />

1999). Aga<strong>in</strong>, <strong>in</strong>cluded p<strong>art</strong>icles can vaporise result<strong>in</strong>g <strong>in</strong> condensation. Siderite p<strong>art</strong>icles, however,<br />

are less likely to vaporise than pyrite p<strong>art</strong>icles. Iron associated with clay p<strong>art</strong>icles (alum<strong>in</strong>osilicates, <strong>for</strong><br />

example chlorite) is less likely to oxidise and <strong>for</strong>m low melt<strong>in</strong>g temperature p<strong>art</strong>icles that can lead to<br />

deposition.<br />

Na, Ca and Mg can <strong>of</strong>ten become sulphated by captur<strong>in</strong>g SO3 from <strong>the</strong> gas stream. These species<br />

have a low s<strong>in</strong>ter<strong>in</strong>g temperature and are <strong>of</strong>ten associated with deposits with<strong>in</strong> <strong>the</strong> convective pass.<br />

Na and K associated with organic species <strong>in</strong> <strong>the</strong> <strong>coal</strong> and are very volatile, and are <strong>of</strong>ten found to<br />

condense on <strong>the</strong> tubes with<strong>in</strong> a boiler, which can <strong>in</strong>itiate deposit <strong>for</strong>mation.<br />

As most elements <strong>in</strong> <strong>the</strong> ash can occur as many different m<strong>in</strong>eral species, it is impossible to predict<br />

<strong>the</strong> slagg<strong>in</strong>g and foul<strong>in</strong>g propensity <strong>of</strong> an ash based on its oxide analysis. Ash fusibility temperatures<br />

are one method <strong>of</strong> consider<strong>in</strong>g <strong>the</strong> behaviour <strong>of</strong> an ash <strong>in</strong> a boiler, as <strong>the</strong>y give an <strong>in</strong>dication <strong>of</strong> <strong>the</strong><br />

temperature at which highly sticky phases may <strong>for</strong>m. Un<strong>for</strong>tunately, some ashes produce de<strong>for</strong>mation<br />

temperatures that have significant amounts <strong>of</strong> liquid present (as high as 90% as shown <strong>in</strong> Table 8).<br />

High proportions <strong>of</strong> liquid phase at <strong>the</strong> de<strong>for</strong>mation temperature provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> presence<br />

<strong>of</strong> molten phases <strong>in</strong> <strong>the</strong> boiler but do not give an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> temperature at which <strong>the</strong>se phases<br />

became sticky (Gupta, 1998). Variability <strong>in</strong> <strong>the</strong> liquid content <strong>of</strong> <strong>the</strong> ash, at <strong>the</strong> de<strong>for</strong>mation<br />

temperature, makes comparison <strong>of</strong> <strong>coal</strong>s and prediction <strong>of</strong> <strong>the</strong> foul<strong>in</strong>g and slagg<strong>in</strong>g behaviour<br />

extremely hazardous. The ash fusibility temperatures also provide little <strong>in</strong><strong>for</strong>mation about <strong>the</strong> change<br />

<strong>in</strong> sticky behaviour <strong>of</strong> an ash dur<strong>in</strong>g its fusibility range, as some ashes have significantly high<br />

proportions <strong>of</strong> liquid at <strong>the</strong> de<strong>for</strong>mation temperature.<br />

Ash 1 Ash 2 Ash 3 Ash 4 Ash 5 Ash 6 Ash 7 Ash 8 Ash 9<br />

DT 1240 o C 1050 o C 1230 o C 1320 o C 1090 o C 1390 o C 1110 o C 1210 o C 1320 o C<br />

Melt at 1100 o C >90% >75% >60% >15%<br />

Melt at 1200 o C >60% >40% >60% >90% >90%<br />

Melt at 1300 o C >80% >60% >75% >75%<br />

Melt at 1400 o C >90% >50% >80% >80%<br />

Table 8: The amount <strong>of</strong> liquid present <strong>in</strong> an ash sample at selected temperatures compared to <strong>the</strong><br />

sample's de<strong>for</strong>mation temperature (DT) (Gupta, 1998).<br />

There are so many different processes <strong>in</strong>volved <strong>in</strong> deposition with<strong>in</strong> boilers that it is impossible to<br />

accurately predict deposition behaviour <strong>of</strong> blends. In general, <strong>the</strong> deposition behaviour <strong>of</strong> <strong>the</strong> blend is<br />

worse than <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> parent <strong>coal</strong>s. However, predict<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> blend which<br />

provides <strong>the</strong> worst deposition requires understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> impact <strong>of</strong> composition on <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g<br />

and melt<strong>in</strong>g temperatures <strong>of</strong> <strong>the</strong> ash and an understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> mode <strong>of</strong> deposition <strong>for</strong> those<br />

p<strong>art</strong>icular <strong>coal</strong>s.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 52


3.11 Ash analysis<br />

Analysis<br />

Australian Standard AS1038.14.1-3; American Standards D1757, D2795, D3682, D4326, D5016,<br />

D6349; British Standard BS1016-14; International Standard <strong>in</strong> draft; Japanese Standard JIS M8815.<br />

The composition <strong>of</strong> <strong>the</strong> <strong>coal</strong> ash, expressed <strong>in</strong> terms <strong>of</strong> <strong>the</strong> simple oxide <strong>for</strong>ms, is determ<strong>in</strong>ed by<br />

ei<strong>the</strong>r one or more <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g techniques:<br />

• Wet chemical or gravimetric analysis<br />

• Atomic absorption spectrometry<br />

• X-ray fluorescence spectrometry<br />

• Optical emission spectrometry<br />

Results are expressed as "mass % <strong>of</strong> ash".<br />

Blend additivity<br />

Ash analysis oxides should be additive, with <strong>the</strong> exception <strong>of</strong> SO3, as discussed <strong>in</strong> section 3.1.3. Of<br />

greater importance than ash analysis is m<strong>in</strong>eral matter analysis. Because <strong>of</strong> <strong>the</strong> paucity <strong>of</strong> references<br />

to this <strong>in</strong> rout<strong>in</strong>e test<strong>in</strong>g results, however, it has not been <strong>in</strong>cluded <strong>in</strong> Table 4. M<strong>in</strong>eral matter<br />

compositions should be additive, but <strong>in</strong>teraction between m<strong>in</strong>eral matter <strong>in</strong> <strong>the</strong> blend <strong>coal</strong>s may result<br />

<strong>in</strong> different products <strong>in</strong> <strong>the</strong> ash.<br />

Power station per<strong>for</strong>mance<br />

Mill<strong>in</strong>g<br />

In <strong>in</strong>dustrial <strong>coal</strong> pulverisers, <strong>the</strong> products <strong>of</strong> <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g process are conveyed from <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g<br />

zone by <strong>the</strong> primary air. The various components <strong>of</strong> <strong>coal</strong> cover a wide range <strong>of</strong> p<strong>art</strong>icle sizes and<br />

specific gravities, and as such <strong>the</strong> extent to which <strong>the</strong> p<strong>art</strong>icles are entra<strong>in</strong>ed <strong>in</strong> <strong>the</strong> primary air stream<br />

can differ substantially, from one component to ano<strong>the</strong>r. The hard m<strong>in</strong>erals associated with <strong>coal</strong>, such<br />

as pyrite and qu<strong>art</strong>z, which are <strong>the</strong> primary contributors to abrasive wear <strong>in</strong> <strong>coal</strong> pulveris<strong>in</strong>g and<br />

transport equipment, are less likely to be entra<strong>in</strong>ed <strong>in</strong> <strong>the</strong> primary air stream than <strong>the</strong> carbonaceous<br />

components <strong>of</strong> <strong>the</strong> <strong>coal</strong> due to two pr<strong>in</strong>cipal factors:<br />

(a) These components do not reduce <strong>in</strong> size as readily as <strong>the</strong> carbonaceous components <strong>of</strong> <strong>coal</strong><br />

(b) These components have higher relative densities than <strong>the</strong> carbonaceous components <strong>of</strong> <strong>coal</strong>.<br />

(Relative densities <strong>of</strong> pyrite and qu<strong>art</strong>z are approximately 5.0 and 2.6 respectively.)<br />

As such, <strong>the</strong>se components tend to accumulate preferentially <strong>in</strong> <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g zone. The results <strong>of</strong> pilot<br />

scale test work reported by Conroy and Trenaman (1990b) on an Australian domestic <strong>coal</strong> found that<br />

<strong>the</strong> qu<strong>art</strong>z concentration <strong>in</strong> <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g zone <strong>of</strong> <strong>the</strong> pulveriser was, under certa<strong>in</strong> circumstances, more<br />

than twice <strong>the</strong> level found <strong>in</strong> <strong>the</strong> feed <strong>coal</strong>. This work also found that <strong>the</strong> extent to which <strong>the</strong> qu<strong>art</strong>z<br />

concentrated <strong>in</strong> <strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g zone was <strong>in</strong>fluenced by <strong>the</strong> process conditions, <strong>in</strong>clud<strong>in</strong>g primary air flow<br />

rate and degree <strong>of</strong> <strong>in</strong>ternal classification.<br />

Boiler<br />

Some <strong>coal</strong>s with f<strong>in</strong>e silica m<strong>in</strong>erals produce deposits on walls <strong>of</strong> pf furnaces, which result <strong>in</strong> poor<br />

heat transfer due to <strong>the</strong>ir reflective character. This character is due to dusty deposits, compris<strong>in</strong>g f<strong>in</strong>e<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 53


ash p<strong>art</strong>icles (Wall, 1994). The problem can be overcome by blend<strong>in</strong>g, to create deposits with coarser<br />

ash p<strong>art</strong>icles or which <strong>for</strong>m s<strong>in</strong>tered deposits.<br />

Ash handl<strong>in</strong>g<br />

If <strong>the</strong> proportion <strong>of</strong> CaO, SiO2 or Al2O3 change, <strong>the</strong> handl<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> ash can alter, mak<strong>in</strong>g<br />

handl<strong>in</strong>g <strong>in</strong> wet sluiceways difficult due to plugg<strong>in</strong>g <strong>of</strong> <strong>the</strong> system and erosion problems.<br />

P<strong>art</strong>iculate removal<br />

It is a fundamental requirement <strong>of</strong> <strong>the</strong> electrostatic precipitation process that <strong>the</strong> fly ash p<strong>art</strong>icles<br />

acquire an electrical charge. A higher charge on <strong>the</strong> p<strong>art</strong>icle results <strong>in</strong> more efficient operation <strong>of</strong> <strong>the</strong><br />

electrostatic precipitator (ESP). Ash composition effects <strong>the</strong> resistivity <strong>of</strong> an ash, and <strong>the</strong>re<strong>for</strong>e <strong>the</strong><br />

efficiency <strong>of</strong> collection. P<strong>art</strong>icle collection on <strong>the</strong> collector plate <strong>of</strong> an ESP is essentially a process <strong>of</strong><br />

charged p<strong>art</strong>icle transfer, through a mov<strong>in</strong>g gas by an applied electric field. The collection <strong>of</strong> p<strong>art</strong>icles<br />

relies on movement <strong>of</strong> p<strong>art</strong>icles towards <strong>the</strong> collection plate, and <strong>the</strong> adhesion <strong>of</strong> p<strong>art</strong>icles on contact<br />

with <strong>the</strong> collect<strong>in</strong>g surface. One <strong>of</strong> <strong>the</strong> major factors which <strong>in</strong>fluences <strong>the</strong> efficiency with which <strong>the</strong> fly<br />

ash p<strong>art</strong>icles are attracted to <strong>the</strong> collector plates is <strong>the</strong> strength <strong>of</strong> <strong>the</strong> electric field between <strong>the</strong><br />

collector plates and <strong>the</strong> emitter wires. The electric field and <strong>the</strong> p<strong>art</strong>icle collection efficiency are<br />

dependent on <strong>the</strong> applied voltage.<br />

The automatic controls attempt to ma<strong>in</strong>ta<strong>in</strong> maximum voltage to <strong>the</strong> ESP. The <strong>in</strong>troduction <strong>of</strong> high<br />

resistivity fly ash will cause a reduction <strong>in</strong> <strong>the</strong> maximum applied voltage and <strong>the</strong> strength <strong>of</strong> <strong>the</strong><br />

electric field. It may also lead to <strong>the</strong> onset <strong>of</strong> “back-corona”. Back corona occurs when a p<strong>art</strong>icle<br />

migrates to <strong>the</strong> collect<strong>in</strong>g surface but fails to dissipate its charge, caus<strong>in</strong>g a high potential gradient <strong>in</strong><br />

<strong>the</strong> dust layer on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> plate. This layer disrupts <strong>the</strong> electrical field that <strong>in</strong>duces p<strong>art</strong>icle<br />

migration, and repels <strong>the</strong> p<strong>art</strong>icles <strong>of</strong> like charge that are attempt<strong>in</strong>g to migrate to <strong>the</strong> collector plate,<br />

thus adversely impact<strong>in</strong>g on collection efficiency.<br />

Blend<strong>in</strong>g <strong>of</strong> <strong>coal</strong>s can change <strong>the</strong> resistivity <strong>of</strong> <strong>the</strong> ash, which is critical <strong>for</strong> electrostatic precipitator<br />

per<strong>for</strong>mance. High resistivity fly ash (above 10 11 ohm.cm) lowers <strong>the</strong> ESP per<strong>for</strong>mance by limit<strong>in</strong>g <strong>the</strong><br />

current that can pass through <strong>the</strong> ash layer resid<strong>in</strong>g on collection plates. Low resistivity fly ash (below<br />

10 8 ohm/cm) may also be a problem, as <strong>the</strong> ash easily loses its charge after contact with <strong>the</strong> collector<br />

plates. The uncharged p<strong>art</strong>icles may <strong>the</strong>n be easily re-entra<strong>in</strong>ed <strong>in</strong> <strong>the</strong> flue gas. Resistivity can be<br />

reduced to unfavourable levels by <strong>the</strong> presence <strong>of</strong> high levels <strong>of</strong> unburnt carbon <strong>in</strong> <strong>the</strong> fly ash. This<br />

may occur as a consequence <strong>of</strong> poor combustion efficiency, or may simply be <strong>the</strong> result <strong>of</strong> fir<strong>in</strong>g a<br />

<strong>coal</strong> with a very low ash value.<br />

Sodium and sulphur are known to have a strong effect on <strong>the</strong> conductivity <strong>of</strong> fly ash, as shown <strong>in</strong><br />

Figure 15. Decreas<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> Fe2O3, K2O and Na2O, or <strong>in</strong>creas<strong>in</strong>g MgO, CaO and SiO2 <strong>in</strong><br />

<strong>the</strong> fly ash, will <strong>in</strong>crease <strong>the</strong> fly ash resistivity. The <strong>for</strong>m <strong>of</strong> <strong>the</strong>se elements is also important: <strong>the</strong><br />

resistivity <strong>of</strong> muscovite, albite, qu<strong>art</strong>z and kyanite are two to three orders <strong>of</strong> magnitude larger than<br />

those <strong>for</strong> kaol<strong>in</strong>ite, illite and chlorite (Raask, 1985). Potter (1987) presented a correlation, which<br />

predicted <strong>the</strong> collection area required to atta<strong>in</strong> 0.1g/Nm 3 <strong>for</strong> a 15% ash, based on ash composition, as<br />

shown <strong>in</strong> Figure 16. A correction factor f, to convert <strong>the</strong> collection area to <strong>the</strong> precipitator size <strong>for</strong> an<br />

ash percentage, A, was also presented:<br />

f = 1.364-0.488 log10 [(100/A)-1]<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 54


RESISTIVITY, Ωm<br />

10<br />

8<br />

6<br />

400<br />

A<br />

B<br />

C<br />

D<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 55<br />

500<br />

TEMPERATURE, K<br />

Figure 15: Electrical resistivity <strong>of</strong> <strong>coal</strong> ashes: A, low-sodium, low-sulphur <strong>coal</strong>; B, low-sodium, highsulphur<br />

<strong>coal</strong>; D, high-sodium, high-sulphur <strong>coal</strong>. (Raask, 1985)<br />

PRECIPITATOR SIZE (m2/kg/s)<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

15% Ash 0.1g/m3 Outlet<br />

(Si + Al + Fe) IN ASH (%)<br />

600<br />

30 50 70 90<br />

Figure 16: The effect <strong>of</strong> ash composition on <strong>the</strong> collection area <strong>of</strong> an electrostatic precipitator. (Paulson)


If <strong>the</strong> temperature and p<strong>art</strong>iculate characteristics <strong>of</strong> fly ash change with a blend, <strong>the</strong>n <strong>the</strong> per<strong>for</strong>mance<br />

<strong>of</strong> a fabric filter will change. An <strong>in</strong>creased proportion <strong>of</strong> f<strong>in</strong>es <strong>in</strong> <strong>the</strong> ash may cause clogg<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

filter and possible agglomeration <strong>of</strong> <strong>the</strong> cake, caus<strong>in</strong>g difficulties <strong>in</strong> its removal. Condensation <strong>of</strong><br />

vapours on <strong>the</strong> fabrics and dis<strong>in</strong>tegration due to acid attack may require a change <strong>in</strong> cloth material to<br />

avoid significant <strong>in</strong>creases <strong>in</strong> emissions (Carpenter, 1995).<br />

3.12 Trace elements<br />

Analysis<br />

Australian Standard AS1038.10.1-5; American Standards D3683, D3684, D3761, D4606, D5987,<br />

D6357, D6414; British Standard BS1016-10; International Standard ISO601; Japanese Standard not<br />

known.<br />

Trace element analysis is per<strong>for</strong>med on <strong>coal</strong> and ash samples, us<strong>in</strong>g similar techniques to those <strong>for</strong><br />

ash analysis. Results are reported <strong>in</strong> mg/kg (Australian Standard), or p<strong>art</strong>s per million, "ppm" (ASTM).<br />

Blend additivity<br />

Carpenter (1995) does not cover <strong>the</strong> subject <strong>of</strong> trace elements <strong>in</strong> blends. However, o<strong>the</strong>r IEA<br />

reporters do (Clarke and Sloss, 1992; Couch, 1995; Davidson and Clarke, 1996). Are trace elements<br />

additive, especially <strong>in</strong> <strong>coal</strong>s <strong>of</strong> widely differ<strong>in</strong>g ranks? At present <strong>the</strong>re seems to be no evidence to <strong>the</strong><br />

contrary. See also Section 3.4 on <strong>the</strong> likely variance <strong>in</strong>troduced by sampl<strong>in</strong>g. Add to this <strong>the</strong> possible<br />

variance that may come from sample preparation i.e. trace element pickup from <strong>the</strong> laboratory mills.<br />

See also <strong>the</strong> Clarke and Sloss report on <strong>the</strong> p<strong>art</strong>ition<strong>in</strong>g <strong>of</strong> trace elements <strong>in</strong>to <strong>the</strong> <strong>power</strong> station<br />

waste streams.<br />

Table 9 shows <strong>the</strong> relative importance levels, and usual concentrations, <strong>of</strong> most trace elements.<br />

Component Level <strong>of</strong> Most Aust. Coals (ppm) Most Coals (ppm) Class Typ. NSW Flyash (ppm)<br />

Concern Mean Range Mean Range *1 Mean Range<br />

Antimony Sb M<strong>in</strong>or 0.5


Power station per<strong>for</strong>mance<br />

The mechanisms <strong>for</strong> deportment <strong>of</strong> each trace element are not well understood. To date experiments<br />

consider<strong>in</strong>g <strong>the</strong> p<strong>art</strong>ition<strong>in</strong>g <strong>of</strong> trace elements between ash and gas phases have had difficulty clos<strong>in</strong>g<br />

mass balances. Work by <strong>the</strong> Black Coal CRC is currently aimed at improv<strong>in</strong>g <strong>the</strong> closure <strong>of</strong> <strong>the</strong>se<br />

mass balances. The associations <strong>of</strong> <strong>the</strong> trace elements <strong>in</strong> <strong>the</strong> <strong>coal</strong> are believed to be very important,<br />

and will impact strongly on <strong>the</strong> result<strong>in</strong>g deportment. Table 10 shows <strong>the</strong> likely mode <strong>of</strong> occurrence <strong>of</strong><br />

some trace elements as described by Swa<strong>in</strong>e and Goodarzi (1995).<br />

Element Mode <strong>of</strong> Occurrence Level <strong>of</strong><br />

confidence (2)<br />

Antimony In pyrite and accessory sulphides 4<br />

Arsenic In pyrite 8<br />

Barium Barite and o<strong>the</strong>r Ba-bear<strong>in</strong>g m<strong>in</strong>erals 6<br />

Beryllium Organic association 4<br />

Boron Organic association 6<br />

Cadmium In sphalerite 8<br />

Chlor<strong>in</strong>e Chloride ions <strong>in</strong> pore water or adsorbed onto<br />

macerals<br />

Chromium Organic or clay association 2<br />

Cobalt In pyrite, some <strong>in</strong> accessory sulphides 4<br />

Copper Chalcopyrite 8<br />

Fluor<strong>in</strong>e Various m<strong>in</strong>erals 5<br />

Lead In galena 8<br />

Mercury In pyrite 6<br />

Manganese In carbonates, siderite and ankerite 8<br />

Molybdenum Probably sulphides 2<br />

Nickel Unclear 2<br />

Phosphorus Phosphates 6<br />

Selenium Organic association, <strong>in</strong> pyrite and accessory<br />

sulphides and selenides<br />

Silver Various sulphides 4<br />

Thallium Associated with pyrite 4<br />

Thorium Monazite with lower concentrations <strong>in</strong> xenotime<br />

and zircon<br />

T<strong>in</strong> Sn oxides and Sn sulphides 6<br />

Vanadium In clays and organic association 3<br />

Uranium Organically associated, some <strong>in</strong> zircon 7<br />

Z<strong>in</strong>c Sphalerite 8<br />

(1) Elements <strong>in</strong> bold type are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> EPA’s list <strong>of</strong> hazardous air pollutants.<br />

(2) A value <strong>of</strong> 10 <strong>in</strong>dicates <strong>the</strong> highest level <strong>of</strong> confidence; a value <strong>of</strong> 1 <strong>in</strong>dicates no confidence.<br />

Table 10: The mode <strong>of</strong> occurrence <strong>of</strong> trace elements <strong>in</strong> <strong>coal</strong> described by Swa<strong>in</strong>e and Goodarzi (1995).<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 57<br />

6<br />

8<br />

8


Some trace elements are expected to report solely to <strong>the</strong> gas stream and o<strong>the</strong>rs solely to <strong>the</strong> ash<br />

stream, while some trace elements p<strong>art</strong>ition to more than one stream, as shown <strong>in</strong> Figure 17.<br />

Increas<strong>in</strong>g Volatility<br />

Hg<br />

Rn<br />

Br Cl F<br />

B Se I<br />

As Cd Ga Ge Pb<br />

Sb Sn Te Tl Zn<br />

Ba Be Bi Co<br />

Cr Cs Cu Mo Ni Sr<br />

Ta U V W<br />

Eu Hf La Mn Rb<br />

Sc Sm Th Zr<br />

Group 3<br />

highly<br />

volatile<br />

Group 2<br />

Mixed<br />

behaviour<br />

Group 1<br />

Low<br />

volatile<br />

Figure 17: The p<strong>art</strong>ition<strong>in</strong>g <strong>of</strong> trace elements. Group 1 elements are found predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> ash,<br />

group 3 elements are predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> gas phase, and group 2 are mixed between <strong>the</strong> two <strong>state</strong>s.<br />

(Clarke & Sloss, 1992)<br />

Though some trace elements will be predictable <strong>in</strong> behaviour, such as mercury which appears to<br />

occur <strong>in</strong> <strong>the</strong> gas stream <strong>in</strong> most occasions, o<strong>the</strong>r elements which can occur <strong>in</strong> more than one phase<br />

cannot be considered predictable. Associations <strong>of</strong> <strong>the</strong> elements with<strong>in</strong> <strong>the</strong> <strong>coal</strong>, and <strong>the</strong> availability <strong>of</strong><br />

o<strong>the</strong>r species, which may act as a sorbent <strong>for</strong> <strong>the</strong> element, will change with blend<strong>in</strong>g and will effect<br />

deportment.<br />

3.13 Coal flow properties<br />

Analysis<br />

Australian Standard AS3880; American Standard not known; British Standard not known;<br />

International Standard ISO15117-1 draft; Japanese Standard not known.<br />

This group <strong>of</strong> properties is only given <strong>in</strong> <strong>the</strong> Wall table (Table 13), but is <strong>of</strong> great importance. Coal<br />

which will not flow cannot be fired.<br />

There are two major test methods employed, each <strong>of</strong> which is conducted over a range <strong>of</strong> total<br />

moisture values. The Durham Cone test, which is conducted on a 20 to 30 mm top size sample,<br />

<strong>in</strong>volves <strong>the</strong> timed discharge <strong>of</strong> a test portion <strong>of</strong> standard mass and top-size from a vibrat<strong>in</strong>g mildsteel,<br />

conical hopper. In <strong>the</strong> Jenike Shear Cell test <strong>the</strong> pre-consolidated, 4 mm top size, sample is<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 58


conta<strong>in</strong>ed with<strong>in</strong> a shear r<strong>in</strong>g, cover and base. The <strong>for</strong>ce required to move <strong>the</strong> shear r<strong>in</strong>g over <strong>the</strong><br />

base, under load, is recorded.<br />

Blend additivity<br />

Roberts (2000) <strong>state</strong>s that flow properties <strong>of</strong> blends are <strong>in</strong>fluenced when <strong>the</strong> m<strong>in</strong>or component<br />

exceeds 20%. Properties are not additive, with blends tend<strong>in</strong>g to <strong>the</strong> character <strong>of</strong> <strong>the</strong> worst <strong>coal</strong>. The<br />

<strong>in</strong>teractions are not understood or reported <strong>in</strong> detail. The known effects <strong>of</strong> moisture, f<strong>in</strong>es and<br />

<strong>in</strong>organic components on flow characteristics <strong>of</strong> s<strong>in</strong>gle <strong>coal</strong>s <strong>of</strong>fer <strong>the</strong> possibility <strong>of</strong> establish<strong>in</strong>g<br />

relationships, and predictions, through research. The test<strong>in</strong>g <strong>of</strong> blends is <strong>the</strong> only option at present.<br />

Power station per<strong>for</strong>mance<br />

Coal handl<strong>in</strong>g<br />

The most obvious consequence <strong>of</strong> us<strong>in</strong>g a <strong>coal</strong> with difficult flow properties is that <strong>the</strong> <strong>coal</strong> flow to <strong>the</strong><br />

<strong>power</strong> station will be reduced or <strong>in</strong>terrupted. This is most likely to occur as a result <strong>of</strong> blockages <strong>in</strong><br />

transfer chutes or <strong>coal</strong> bunkers feed<strong>in</strong>g <strong>the</strong> pulveris<strong>in</strong>g mills.<br />

The design features <strong>of</strong> <strong>power</strong> stations will also impact on <strong>coal</strong> flow properties. For this reason, <strong>the</strong><br />

<strong>coal</strong> handl<strong>in</strong>g plants at many <strong>power</strong> stations <strong>in</strong>clude such features as:<br />

• Dry storage or “slot” bunkers, to ensure that <strong>the</strong>re is an adequate supply <strong>of</strong> dry <strong>coal</strong> available at<br />

all times.<br />

• Selection <strong>of</strong> chute l<strong>in</strong><strong>in</strong>g materials to m<strong>in</strong>imise wall friction.<br />

• Transfer chutes designed to elim<strong>in</strong>ate protuberances and o<strong>the</strong>r features, which might encourage<br />

<strong>coal</strong> blockages.<br />

• Conical <strong>coal</strong> bunkers, designed <strong>in</strong> accordance with mass flow pr<strong>in</strong>ciples, so as to reduce <strong>the</strong> risk<br />

<strong>of</strong> <strong>coal</strong> flow to <strong>the</strong> mills be<strong>in</strong>g disrupted by “rat hol<strong>in</strong>g”, bridg<strong>in</strong>g or blockage, <strong>in</strong> <strong>the</strong> event that wet<br />

<strong>coal</strong> or <strong>coal</strong> with difficult flow properties is <strong>in</strong>troduced.<br />

• Air cannons or similar types <strong>of</strong> devices, which are fitted to bunkers and used to re-establish <strong>coal</strong><br />

flow when a disruption occurs. These are normally retro-fitted to <strong>coal</strong> storage bunkers <strong>in</strong> cases<br />

where <strong>the</strong> design features have been <strong>in</strong>adequate to ensure satisfactory material flow.<br />

3.14 Size distribution<br />

Analysis<br />

Australian Standard AS3881; American Standard D4749; British Standard BS1016-109; International<br />

Standard ISO1953; Japanese Standard not known.<br />

The size distribution <strong>of</strong> <strong>coal</strong> is obta<strong>in</strong>ed by pass<strong>in</strong>g a known amount <strong>of</strong> <strong>coal</strong> over a series <strong>of</strong> screens<br />

or sieves <strong>of</strong> different apertures. The mass percent reta<strong>in</strong>ed and pass<strong>in</strong>g, <strong>for</strong> each size fraction, can<br />

<strong>the</strong>n be calculated. Results are <strong>of</strong>ten graphed us<strong>in</strong>g a Ros<strong>in</strong>-Rammler scale, which has a log-log<br />

scale on <strong>the</strong> x-axis and a probability scale on <strong>the</strong> y-axis.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 59


Blend additivity<br />

While not <strong>in</strong> Su's (Table 14) or Carpenter's (1995) lists, size distribution is given <strong>in</strong> <strong>the</strong> Wall table<br />

(Table 13) and given significance <strong>in</strong> most <strong>of</strong> <strong>the</strong> stages <strong>in</strong> Skorupska's table (Table 15). It should<br />

logically be an additive property, and should not be different <strong>for</strong> blends <strong>of</strong> different ranks.<br />

Power station per<strong>for</strong>mance<br />

Mill<strong>in</strong>g and fir<strong>in</strong>g<br />

As <strong>the</strong> top size <strong>of</strong> a mill feed <strong>in</strong>creases, <strong>the</strong> capacity <strong>of</strong> <strong>the</strong> mill decreases. The effect on a mill’s<br />

capacity <strong>of</strong> chang<strong>in</strong>g <strong>the</strong> top size <strong>of</strong> a <strong>coal</strong> or blend is predictable, and is usually supplied by <strong>the</strong> mill’s<br />

manufacturer. The f<strong>in</strong>es content, on <strong>the</strong> o<strong>the</strong>r hand, can have a strong impact on <strong>the</strong> mill’s<br />

per<strong>for</strong>mance. In roll mills, excessive f<strong>in</strong>es can cause <strong>the</strong> rolls <strong>in</strong> <strong>the</strong> mill to skid across <strong>the</strong> charge<br />

ra<strong>the</strong>r than crush <strong>the</strong> sample.<br />

P<strong>art</strong>iculate removal<br />

The size distribution <strong>of</strong> <strong>the</strong> <strong>coal</strong> impacts on <strong>the</strong> size distribution <strong>of</strong> <strong>the</strong> ash, which effects <strong>the</strong><br />

per<strong>for</strong>mance <strong>of</strong> electrostatic precipitators. Ignor<strong>in</strong>g any electrical conductance associated with<br />

variations <strong>in</strong> p<strong>art</strong>icle composition, larger p<strong>art</strong>icles are collected more efficiently. There<strong>for</strong>e, <strong>in</strong>creas<strong>in</strong>g<br />

<strong>the</strong> p<strong>art</strong>icle size <strong>of</strong> a <strong>coal</strong> or blend should improve <strong>the</strong> collection efficiency <strong>of</strong> <strong>the</strong> precipitators<br />

(Paulson). However, an ESP can have poor efficiency at a given p<strong>art</strong>icle size, as shown <strong>in</strong> Figure 18,<br />

and alter<strong>in</strong>g <strong>the</strong> p<strong>art</strong>icle size <strong>of</strong> fly ash may result <strong>in</strong> poorer efficiency if <strong>the</strong> ESP's per<strong>for</strong>mance at that<br />

p<strong>art</strong>icular p<strong>art</strong>icle size is poor (Benitez, 1993).<br />

Grade efficiency<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.01 0.1 1 10<br />

P<strong>art</strong>icle diameter (μm)<br />

Figure 18: The calculated grade efficiency <strong>of</strong> a selected electrostatic precipitator (Benitez, 1993).<br />

3.15 Petrographic analysis<br />

Analysis<br />

Australian Standard AS2486, AS2856.2; American Standard D2798, D2799; British Standard<br />

BS6127; International Standard ISO7404; Japanese Standard not known.<br />

These tests provide <strong>in</strong><strong>for</strong>mation on <strong>the</strong> rank, <strong>the</strong> maceral composition, and <strong>the</strong> distribution <strong>of</strong> m<strong>in</strong>erals<br />

<strong>in</strong> <strong>the</strong> <strong>coal</strong> sample. A maceral analysis is <strong>the</strong> maceral composition <strong>of</strong> <strong>coal</strong> expressed as a percentage,<br />

and is determ<strong>in</strong>ed by po<strong>in</strong>t count<strong>in</strong>g a polished gra<strong>in</strong> mount <strong>of</strong> <strong>the</strong> <strong>coal</strong> viewed <strong>in</strong> reflected light.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 60


Macerals are <strong>the</strong> smallest microscopically recognisable organic constituents <strong>of</strong> <strong>coal</strong>. They derive from<br />

<strong>the</strong> orig<strong>in</strong>al plant material and are identified by <strong>the</strong>ir morphology and relief.<br />

The standard analytical technique used to dist<strong>in</strong>guish each maceral group, primarily by botanical<br />

<strong>for</strong>m, (AS 2856.2, 1998) relies on <strong>the</strong> subjective identification <strong>of</strong> botanical components by a tra<strong>in</strong>ed<br />

operator. An alternative approach is <strong>the</strong> maceral reflectogram, which is a graphical representation <strong>of</strong><br />

<strong>the</strong> range <strong>of</strong> maximum and random reflectance values, <strong>in</strong> oil, <strong>of</strong> <strong>in</strong>cident light from polished surfaces<br />

<strong>of</strong> <strong>coal</strong> macerals. This is an objective measurement directly related to <strong>the</strong> carbon content <strong>of</strong> <strong>the</strong><br />

components. Standard procedures exist <strong>for</strong> <strong>the</strong> manual measurement <strong>of</strong> vitr<strong>in</strong>ite reflectance, which<br />

may be applied to o<strong>the</strong>r <strong>coal</strong> macerals (AS 2486, 1989). There are no relevant standards <strong>for</strong><br />

measurement <strong>of</strong> <strong>the</strong> reflectance <strong>of</strong> all <strong>of</strong> a <strong>coal</strong>’s components. The data are usually presented as a<br />

frequency distribution or histogram. Automation <strong>of</strong> reflectance measurement permits collection <strong>of</strong><br />

millions <strong>of</strong> read<strong>in</strong>gs from a s<strong>in</strong>gle sample, greatly improv<strong>in</strong>g <strong>the</strong> statistical soundness <strong>of</strong> <strong>the</strong> results.<br />

O’Brien et al. (1998) recently automated <strong>the</strong> collection <strong>of</strong> full maceral reflectograms (FMR) <strong>of</strong> s<strong>in</strong>gle<br />

<strong>coal</strong>s. Their technique permits identification <strong>of</strong> both maceral group proportions and <strong>the</strong> range <strong>of</strong><br />

reflectance <strong>of</strong> all <strong>the</strong> <strong>coal</strong> components <strong>in</strong> a s<strong>in</strong>gle measurement. Fur<strong>the</strong>r development <strong>of</strong> <strong>the</strong> O’Brien<br />

et al. (1998) FMR technique is required be<strong>for</strong>e it can be used <strong>for</strong> blend identification.<br />

A microlithotype analysis gives <strong>the</strong> composition <strong>of</strong> maceral assemblages, called microlithotypes. It is<br />

rarely used <strong>in</strong> Australia.<br />

Blend additivity<br />

Petrographic analyses are not given <strong>in</strong> <strong>the</strong> Wall or Su tables (Table 13 and Table 14 respectively), but<br />

are <strong>in</strong>cluded <strong>in</strong> Carpenter's (1995) table. Reflectance has long been used as a tool <strong>for</strong> dist<strong>in</strong>guish<strong>in</strong>g<br />

between blend components <strong>in</strong> cok<strong>in</strong>g (Stach et al., 1982). Pearson (1991) applied probability analysis<br />

to <strong>the</strong> distribution <strong>of</strong> vitr<strong>in</strong>ite and whole <strong>coal</strong> reflectance <strong>for</strong> evaluat<strong>in</strong>g blend consistency. Vitr<strong>in</strong>ite<br />

reflectance data from a s<strong>in</strong>gle <strong>coal</strong> seam plot as a straight l<strong>in</strong>e on reflectance versus cumulative<br />

probability ch<strong>art</strong>s, us<strong>in</strong>g a non-l<strong>in</strong>ear probability scale (Taylor et al., 1998) - see Figure 19a. Plots <strong>of</strong><br />

<strong>the</strong> vitr<strong>in</strong>ite reflectance <strong>of</strong> blended <strong>coal</strong>s show steps, which <strong>of</strong>fset <strong>the</strong> l<strong>in</strong>ear vitr<strong>in</strong>ite segments <strong>of</strong> each<br />

<strong>of</strong> <strong>the</strong> <strong>coal</strong>s <strong>in</strong> <strong>the</strong> blends by <strong>the</strong>ir relative rank <strong>in</strong>tervals, as shown <strong>in</strong> Figure 19b. Plots <strong>of</strong> <strong>the</strong><br />

reflectance data from all <strong>of</strong> a <strong>coal</strong>’s components do not <strong>for</strong>m straight l<strong>in</strong>es because lipt<strong>in</strong>ite and<br />

<strong>in</strong>ert<strong>in</strong>ite reflectances do not have normal distributions. The distribution <strong>of</strong> <strong>in</strong>ert<strong>in</strong>ite reflectance is<br />

always skewed, which results <strong>in</strong> a flatten<strong>in</strong>g <strong>of</strong> <strong>the</strong> trace at high reflectance values, above <strong>the</strong> straight<br />

portion associated with vitr<strong>in</strong>ite (Figure 19c). Thus, whole <strong>coal</strong> reflectance probability distributions<br />

show vary<strong>in</strong>g patterns depend<strong>in</strong>g on <strong>the</strong> rank, petrographic composition and number <strong>of</strong> <strong>coal</strong>s <strong>in</strong> <strong>the</strong><br />

blend (ibid). Computer modell<strong>in</strong>g developed by Pearson (1991) can identify <strong>the</strong> proportions <strong>of</strong><br />

component <strong>coal</strong>s <strong>in</strong> blends <strong>of</strong> two or three <strong>coal</strong>s from <strong>the</strong> whole <strong>coal</strong> reflectance data.<br />

These properties are obviously very important now as a predictive tool <strong>for</strong> <strong>coal</strong> combustion<br />

characteristics, especially <strong>for</strong> predict<strong>in</strong>g char morphology. Although <strong>the</strong> maceral and microlithotype<br />

analyses are determ<strong>in</strong>ed as a percentage by volume, and additivity is on a relative mass basis, <strong>the</strong>re<br />

is no reason to suspect that <strong>the</strong>se properties are non-additive. Carpenter (1995) <strong>state</strong>s "Provided <strong>the</strong><br />

macerals can be correctly identified, maceral composition is probably additive <strong>for</strong> blend<strong>in</strong>g <strong>coal</strong>s", her<br />

qualification reflect<strong>in</strong>g <strong>the</strong> subjectivity <strong>of</strong> <strong>the</strong> test. The additivity <strong>of</strong> reflectance values is unknown. They<br />

are probably additive. Carpenter (1995) is more circumspect, stat<strong>in</strong>g "The reflectogram <strong>of</strong> s<strong>in</strong>gle <strong>coal</strong>s<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 61


is possibly not additive, but <strong>the</strong>re appears to be little experimental evidence to support this<br />

conclusion."<br />

Figure 19: Schematic illustration <strong>of</strong> Pearson’s (1991) plots <strong>of</strong> <strong>the</strong> vitr<strong>in</strong>ite reflectance distribution <strong>of</strong> a<br />

s<strong>in</strong>gle high-volatile bitum<strong>in</strong>ous <strong>coal</strong> (A), a blend <strong>of</strong> three bitum<strong>in</strong>ous <strong>coal</strong>s (B), and reflectance <strong>of</strong> all <strong>the</strong><br />

maceral components <strong>of</strong> a low volatile bitum<strong>in</strong>ous <strong>coal</strong> (C). From Taylor et al. (1998).<br />

Power station per<strong>for</strong>mance<br />

Boiler<br />

The proportions <strong>of</strong> <strong>the</strong> microscopically recognisable constituents <strong>of</strong> <strong>coal</strong>, or macerals, present <strong>in</strong> <strong>the</strong><br />

<strong>coal</strong>, affect <strong>the</strong> type and size <strong>of</strong> char <strong>for</strong>med dur<strong>in</strong>g combustion (Bailey et al, 1990; Rosenberg et al.,<br />

1996; Benfell and Bailey, 1998). Maceral content also effects <strong>the</strong> char reactivity, result<strong>in</strong>g <strong>in</strong> variations<br />

<strong>in</strong> burnout. Historically, <strong>in</strong> bitum<strong>in</strong>ous <strong>coal</strong>s, <strong>the</strong> maceral group vitr<strong>in</strong>ite has been assumed to be more<br />

chemically reactive and fusible than <strong>the</strong> maceral group <strong>in</strong>ert<strong>in</strong>ite and, <strong>in</strong> p<strong>art</strong>icular, <strong>the</strong> maceral<br />

fus<strong>in</strong>ite. However, <strong>for</strong> Permian <strong>coal</strong>s such as those <strong>in</strong> Australia, <strong>the</strong> <strong>in</strong>ert<strong>in</strong>ite group macerals show a<br />

wide range <strong>of</strong> physical and chemical properties. In <strong>the</strong>se <strong>coal</strong>s, <strong>the</strong> major <strong>in</strong>ert<strong>in</strong>ite group maceral,<br />

semifus<strong>in</strong>ite, can have reflectance values close to that <strong>of</strong> <strong>the</strong> accompany<strong>in</strong>g vitr<strong>in</strong>ite. The reflectance<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>dividual macerals is related to <strong>the</strong>ir fusibility such that low-reflect<strong>in</strong>g semifus<strong>in</strong>ite displays<br />

fusible behaviour <strong>in</strong> cok<strong>in</strong>g (Pearson and Price, 1985; Diessel and Wolff-Fischer, 1987; and<br />

Kruszewska, K., 1989).<br />

The extent <strong>of</strong> fusibility <strong>of</strong> <strong>the</strong> <strong>in</strong>ert<strong>in</strong>ite <strong>in</strong> a <strong>coal</strong> is one <strong>of</strong> <strong>the</strong> factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> morphology <strong>of</strong> <strong>the</strong><br />

daughter chars produced dur<strong>in</strong>g pulverised fuel applications. The observed variations <strong>in</strong> char<br />

structure <strong>in</strong> turn <strong>in</strong>fluence <strong>the</strong> overall burn<strong>in</strong>g rate (Benfell et al, 2000). It is <strong>the</strong>re<strong>for</strong>e important to<br />

determ<strong>in</strong>e both <strong>the</strong> amount <strong>of</strong> each maceral present, and <strong>the</strong>ir reflectance ranges, when assess<strong>in</strong>g a<br />

<strong>coal</strong> <strong>for</strong> combustion purposes.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 62


4 OTHER COAL PROPERTIES<br />

Section 3 listed all <strong>of</strong> <strong>the</strong> essential <strong>coal</strong> properties from which <strong>power</strong> station per<strong>for</strong>mance may be<br />

attempted to be predicted <strong>for</strong> blends or s<strong>in</strong>gle <strong>coal</strong>s. Many experimental techniques exist to determ<strong>in</strong>e<br />

o<strong>the</strong>r, less fundamental, <strong>coal</strong> properties. These are <strong>of</strong>ten only used <strong>in</strong> research applications but, when<br />

applied to a problem at an operat<strong>in</strong>g plant, can <strong>of</strong>ten provide a valuable understand<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

mechanisms <strong>in</strong>volved, and assist <strong>in</strong> obta<strong>in</strong><strong>in</strong>g <strong>the</strong> optimum solution. The follow<strong>in</strong>g discussion aims at<br />

provid<strong>in</strong>g <strong>in</strong><strong>for</strong>mation on <strong>coal</strong> properties which are not essential, but which are <strong>of</strong>ten encountered.<br />

Advanced techniques discussed <strong>in</strong> this section have been limited to those techniques available at<br />

multiple sites with<strong>in</strong> Australia, or freely available through selected laboratories.<br />

Several sources have been used to draw toge<strong>the</strong>r <strong>the</strong> <strong>in</strong><strong>for</strong>mation presented below. Many <strong>of</strong> <strong>the</strong><br />

techniques described have been utilised by groups with<strong>in</strong> <strong>the</strong> Cooperative Research Centre <strong>for</strong> Black<br />

Coal Utilisation and ACIRL Ltd. A report by A. Carpenter (1995) has also been very useful.<br />

4.1 Ash behaviour by advanced techniques<br />

As noted <strong>in</strong> Section 3, <strong>the</strong> fusibility character <strong>of</strong> <strong>coal</strong> ash strongly affects, and is affected by, <strong>the</strong><br />

operation <strong>of</strong> <strong>the</strong> boiler. Increased deposition reduces <strong>the</strong> heat transfer from <strong>the</strong> combustion <strong>of</strong> <strong>the</strong> <strong>coal</strong><br />

to <strong>the</strong> steam cycle, while changes <strong>in</strong> <strong>the</strong> amount <strong>of</strong> heat generated <strong>in</strong> <strong>the</strong> radiant section <strong>of</strong> <strong>the</strong><br />

furnace can <strong>in</strong>duce deposit <strong>for</strong>mation.<br />

As <strong>the</strong> ash fusion temperatures <strong>of</strong>ten do not provide enough <strong>in</strong><strong>for</strong>mation to expla<strong>in</strong> slagg<strong>in</strong>g and<br />

foul<strong>in</strong>g with<strong>in</strong> <strong>the</strong> boiler, advanced analysis techniques have been developed which can assist <strong>in</strong> <strong>the</strong><br />

explanation <strong>of</strong> ash behaviour. These techniques <strong>in</strong>clude <strong>the</strong>rmomechanical analysis (TMA), computer<br />

controlled scann<strong>in</strong>g electron microscopy (CCSEM), scann<strong>in</strong>g electron microscopy (SEM), x-ray<br />

diffraction analysis (XRD), and drop tube furnace studies. The results <strong>of</strong> <strong>the</strong>rmomechanical analysis<br />

and drop tube furnace studies <strong>for</strong> ash deposition are not additive because <strong>the</strong>se tests describe <strong>the</strong><br />

melt<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> ash, and this is dependant on <strong>the</strong> ash composition. CCSEM and XRD results<br />

on <strong>the</strong> o<strong>the</strong>r hand, which describe <strong>the</strong> composition <strong>of</strong> m<strong>in</strong>eral matter <strong>in</strong> <strong>the</strong> <strong>coal</strong>, are additive.<br />

Thermomechanical analysis<br />

Thermomechanical analysis measures <strong>the</strong> change <strong>in</strong> size <strong>of</strong> an ash sample as it s<strong>in</strong>ters and melts,<br />

while <strong>the</strong> temperature is cont<strong>in</strong>uously <strong>in</strong>creased. The melt<strong>in</strong>g behaviour can be used to predict <strong>the</strong><br />

temperatures at which deposit <strong>for</strong>mation may <strong>in</strong>hibit <strong>the</strong> heat transfer with<strong>in</strong> a pf furnace. As this<br />

technique provides more <strong>in</strong><strong>for</strong>mation than ash fusibility temperatures, it is <strong>of</strong>ten used to provide a<br />

stronger guide to deposit <strong>for</strong>mation, or to expla<strong>in</strong> <strong>the</strong> observed fusibility behaviour <strong>of</strong> a <strong>coal</strong> ash. Due<br />

to <strong>the</strong> variability <strong>of</strong> ash behaviour, <strong>the</strong> behaviour <strong>of</strong> ash from a blend cannot be predicted from <strong>the</strong><br />

TMA analysis <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual <strong>coal</strong> ashes.<br />

Methodology<br />

A schematic diagram <strong>of</strong> a Setram TMA92 Thermomechanical Analyser is shown <strong>in</strong> Figure 20.<br />

Approximately 50 mg <strong>of</strong> sample is crushed to less than 106 μm, be<strong>for</strong>e be<strong>in</strong>g placed <strong>in</strong>to a crucible.<br />

The sample is compacted with 260 kPa pressure and <strong>the</strong>n a penetrat<strong>in</strong>g ram is <strong>in</strong>serted <strong>in</strong>to <strong>the</strong><br />

crucible. The entire sample assembly is placed <strong>in</strong>to <strong>the</strong> TMA <strong>in</strong>strument and purged with high purity<br />

argon <strong>for</strong> ten m<strong>in</strong>utes. When consider<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> ash alone, <strong>the</strong> sample<br />

assembly is heated from ambient conditions at a rate <strong>of</strong> 50°C per m<strong>in</strong>ute to 700°C, and <strong>the</strong>n at 5°C<br />

per m<strong>in</strong>ute to 1600°C accord<strong>in</strong>g to a standard procedure (Saxby, 1996). When <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g behaviour<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 63


<strong>of</strong> <strong>the</strong> ash is also be<strong>in</strong>g considered, <strong>the</strong> assembly must be heated at 5°C per m<strong>in</strong>ute from ambient (or<br />

a temperature well below <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g temperature) to 1600°C. A load <strong>of</strong> 100 g is applied to <strong>the</strong><br />

penetrat<strong>in</strong>g ram, result<strong>in</strong>g <strong>in</strong> a pressure <strong>of</strong> 140 kPa at <strong>the</strong> <strong>in</strong>terface between <strong>the</strong> penetrat<strong>in</strong>g ram and<br />

<strong>the</strong> sample surface. As <strong>the</strong> sample is heated, <strong>the</strong> penetrat<strong>in</strong>g ram is <strong>for</strong>ced <strong>in</strong>to <strong>the</strong> ash, and may<br />

eventually contact <strong>the</strong> base <strong>of</strong> <strong>the</strong> crucible, if <strong>the</strong> slag completely flows <strong>in</strong>to <strong>the</strong> annulus between <strong>the</strong><br />

crucible and penetrat<strong>in</strong>g ram. Output from <strong>the</strong> TMA comprises <strong>the</strong> degree <strong>of</strong> ram penetration <strong>in</strong>to <strong>the</strong><br />

sample, expressed as a percentage <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al height <strong>of</strong> <strong>the</strong> sample, at a specific temperature.<br />

TMA measurements are usually conducted <strong>in</strong> sample assemblies constructed from molybdenum<br />

(Mo).<br />

Figure 20: Schematic diagram <strong>of</strong> TMA apparatus, and ash sample assembly prior to heat<strong>in</strong>g.<br />

Computer controlled scann<strong>in</strong>g electron microscopy<br />

This technique determ<strong>in</strong>es <strong>the</strong> size, shape, quantity and composition <strong>of</strong> m<strong>in</strong>eral gra<strong>in</strong>s <strong>in</strong> <strong>coal</strong> or ash.<br />

The chemical compositions obta<strong>in</strong>ed are classified <strong>in</strong>to m<strong>in</strong>eral types or categories. CCSEM based<br />

slagg<strong>in</strong>g <strong>in</strong>dices proposed by Gibb (1996) use <strong>the</strong> concentration and distribution <strong>of</strong> slagg<strong>in</strong>g<br />

components to predict <strong>the</strong> slagg<strong>in</strong>g behaviour. The <strong>in</strong>dex is additive, as fly ash generally consists <strong>of</strong><br />

alum<strong>in</strong>o-silicate glasses.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 64


Methodology<br />

CCSEM samples are generated by mix<strong>in</strong>g pulverised <strong>coal</strong> samples with f<strong>in</strong>ely ground carnuba wax,<br />

which are <strong>the</strong>n pressed, cross sectioned, polished and carbon coated. The wax is chosen to produce<br />

a SEM contrast <strong>in</strong>termediate to that <strong>of</strong> <strong>the</strong> <strong>coal</strong> and m<strong>in</strong>erals, as <strong>in</strong>dicated <strong>in</strong> Figure 21. An electron<br />

beam scans across <strong>the</strong> sample, and m<strong>in</strong>erals are detected by an <strong>in</strong>crease <strong>in</strong> contrast above <strong>the</strong><br />

m<strong>in</strong>eral threshold. M<strong>in</strong>eral associations are determ<strong>in</strong>ed as <strong>in</strong>cluded or excluded by <strong>the</strong> contrast <strong>of</strong> <strong>the</strong><br />

surround<strong>in</strong>g material, <strong>coal</strong> <strong>for</strong> <strong>in</strong>cluded m<strong>in</strong>erals and wax <strong>for</strong> excluded m<strong>in</strong>erals. The beam <strong>the</strong>n scans<br />

across <strong>the</strong> p<strong>art</strong>icle on a number <strong>of</strong> chords to determ<strong>in</strong>e <strong>the</strong> p<strong>art</strong>icle size.<br />

Figure 21: CCSEM m<strong>in</strong>eral detection process.<br />

An energy dispersive x-ray detector measures x-ray counts as a function <strong>of</strong> x-ray energy to produce a<br />

spectrum <strong>for</strong> an <strong>in</strong>dividual m<strong>in</strong>eral p<strong>art</strong>icle. Specialised s<strong>of</strong>tware <strong>the</strong>n determ<strong>in</strong>es <strong>the</strong> elemental<br />

concentrations from <strong>the</strong> x-ray counts <strong>of</strong> known characteristic peaks. Based on <strong>the</strong>se element<br />

concentrations, p<strong>art</strong>icles are <strong>the</strong>n classified <strong>in</strong>to m<strong>in</strong>eral groups accord<strong>in</strong>g to specific criteria<br />

(Folkedahl et al. 1993), which are presented <strong>in</strong> Table 11.<br />

X-ray diffraction (XRD) analysis<br />

XRD analysis is completed on <strong>the</strong> ash <strong>of</strong> <strong>the</strong> <strong>coal</strong> produced by low temperature ash<strong>in</strong>g, to determ<strong>in</strong>e<br />

<strong>the</strong> m<strong>in</strong>eral species present <strong>in</strong> <strong>the</strong> <strong>coal</strong>. Used alone, <strong>the</strong> results are qualitative, provid<strong>in</strong>g <strong>in</strong><strong>for</strong>mation<br />

on <strong>the</strong> species present but not on <strong>the</strong> amount <strong>of</strong> each species. Siroquant analysis determ<strong>in</strong>es <strong>the</strong><br />

amount <strong>of</strong> each species present from <strong>the</strong> XRD results. XRD analysis can also be used to determ<strong>in</strong>e if<br />

crystall<strong>in</strong>e species are present <strong>in</strong> a deposit.<br />

Methodology<br />

The ash sample is ground to a f<strong>in</strong>e homogeneous powder and placed between th<strong>in</strong>-walled glass<br />

slides, <strong>in</strong> cellophane capillary tubes or moulded <strong>in</strong>to an appropriate shape be<strong>for</strong>e be<strong>in</strong>g positioned <strong>for</strong><br />

analysis. The sample is hit by an x-ray beam, and <strong>the</strong> result<strong>in</strong>g diffraction pattern <strong>of</strong> <strong>the</strong> beam is<br />

recorded. The diffraction observed differs <strong>for</strong> <strong>the</strong> various crystals present <strong>in</strong> <strong>the</strong> ash, allow<strong>in</strong>g<br />

identification <strong>of</strong> each crystall<strong>in</strong>e material.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 65


Classification<br />

No.<br />

M<strong>in</strong>eral/chemical<br />

categories<br />

Compositional criteria (relative EDX* <strong>in</strong>tensity)<br />

1 Qu<strong>art</strong>z Al≤5, Si≥80<br />

2 Iron oxide/siderite Mg≤5, Al≤5, Si10, Ca+Mg≥80<br />

8 Ankerite Mg20, Ca+Mg+Fe≥80<br />

9 Kaol<strong>in</strong>ite Na≤5, Al+Si≥80, K≤5, Ca≤5, 0.85,<br />

13 Ca-Al Silicate Na≤5, Al≥15, Si>20,<br />

Ca+Al+Si≥80<br />

S≤5, K≤5, Ca≥5, Fe≤5,<br />

14 Na-Al Silicate Na≥5, Al≥15, Si>20,<br />

Na+Al+Si≥80<br />

S≤5, K≤5, Ca≤5, Fe≤5,<br />

15 Alum<strong>in</strong>osilicate Na≤5, Al>15, Si>20, K≤5, Ca≤5, Fe≤5, Al+Si≥80<br />

16 Mixed Silicate Na20, Si>20, S≤5, K20, S≤5, K≤5, Ca>10,<br />

Ca+Si≥80<br />

Fe≤5,<br />

19 Ca Alum<strong>in</strong>ate Al>15, Si≤5, P≤5, S≤5, Ca>20, Ca+Al≥80<br />

20 Pyrite S>40, Ca20, Ca>5, Ti>5, Fe≤5, Ba>5, S+Ca+Ti+Ba≥80<br />

29 Gypsum/Al<br />

Silicate<br />

Al>5, Si>5, S>5, Ca>5, Al+Si+S+Ca≥80<br />

30 Si Rich 65≤Si


Figure 22 shows <strong>the</strong> output from x-ray diffraction analysis. The size <strong>of</strong> <strong>the</strong> peaks is a function <strong>of</strong> <strong>the</strong><br />

amount <strong>of</strong> each crystal present <strong>in</strong> <strong>the</strong> ash. Siroquant analysis models <strong>the</strong> peaks <strong>of</strong> <strong>the</strong> XRD analysis,<br />

generat<strong>in</strong>g a curve which matches <strong>the</strong> XRD results, allow<strong>in</strong>g <strong>the</strong> quantity <strong>of</strong> each crystal present to be<br />

determ<strong>in</strong>ed.<br />

Figure 22: Experimental output from an XRD analysis <strong>of</strong> <strong>coal</strong> ash.<br />

Drop tube furnace studies<br />

A drop tube furnace is basically a vertical tube furnace, which can provide high heat<strong>in</strong>g rates (10 4 to<br />

10 5 K/s), high temperatures (to 1800 o C), a dynamic dilute p<strong>art</strong>icle phase and an atmosphere<br />

simulat<strong>in</strong>g combustion. This ensures that <strong>the</strong> apparatus provides results appropriate <strong>for</strong> pf combustion<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g areas (Carpenter and Skorupska, 1993):<br />

• pyrolysis/devolatilisation mechanism: <strong>the</strong> effect <strong>of</strong> operat<strong>in</strong>g conditions and <strong>coal</strong><br />

properties on pyrolysis products,<br />

• <strong>coal</strong> ignition, burnout and char combustion mechanisms,<br />

• nitrogen oxide production and<br />

• ash deposition mechanisms<br />

Drop tube furnaces are generally considered to be a research tool, and only to be used <strong>for</strong><br />

fundamental studies. However, <strong>the</strong> results from <strong>the</strong>se analyses are most appropriate <strong>for</strong> pf<br />

combustion and provide a high confidence without complet<strong>in</strong>g pilot scale or large scale tests. Results<br />

from drop tube studies on ash deposition are not additive, as <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> ash is dependant<br />

on its melt<strong>in</strong>g behaviour, which <strong>in</strong> turn depends on its composition.<br />

Methodology<br />

Coal is fed as dilute p<strong>art</strong>icles <strong>in</strong> a gas stream <strong>in</strong>to <strong>the</strong> hot zone <strong>of</strong> <strong>the</strong> furnace, via a cooled probe. This<br />

ensures a fast heat<strong>in</strong>g rate. Depend<strong>in</strong>g on <strong>the</strong> area <strong>of</strong> consideration, <strong>the</strong> <strong>coal</strong> or ash is collected by a<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 67


second probe at <strong>the</strong> base <strong>of</strong> <strong>the</strong> furnace and analysed <strong>for</strong> composition or carbon content. S<strong>in</strong>ce a<br />

mass balance is difficult to obta<strong>in</strong> across <strong>the</strong> furnace, <strong>the</strong> ash <strong>in</strong> <strong>the</strong> <strong>coal</strong> is used as a tracer when a<br />

drop tube is used to measure <strong>the</strong> char reactivity. That is, <strong>the</strong> amount <strong>of</strong> carbon left <strong>in</strong> <strong>the</strong> <strong>coal</strong> is<br />

determ<strong>in</strong>ed based on <strong>the</strong> orig<strong>in</strong>al proportion <strong>of</strong> ash <strong>in</strong> <strong>the</strong> <strong>coal</strong>.<br />

Entra<strong>in</strong>ed flow reactors<br />

An entra<strong>in</strong>ed flow reactor is effectively a drop tube furnace <strong>in</strong> which <strong>the</strong> <strong>coal</strong> p<strong>art</strong>icles are flow<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> gas stream at a velocity greater than <strong>the</strong>ir term<strong>in</strong>al velocity. These reactors are designed to<br />

ensure <strong>the</strong> gas flow is lam<strong>in</strong>ar, and that m<strong>in</strong>imal mix<strong>in</strong>g <strong>of</strong> <strong>the</strong> gas stream occurs. This is achieved by<br />

<strong>the</strong> addition <strong>of</strong> a “flow creator” at <strong>the</strong> <strong>coal</strong> feeder.<br />

Scann<strong>in</strong>g electron microscopy (SEM)<br />

A scann<strong>in</strong>g electron microscope can be used to study <strong>the</strong> composition <strong>of</strong> deposits, with special<br />

attention given to <strong>the</strong> layer attached to <strong>the</strong> metal surface, or to <strong>the</strong> composition <strong>of</strong> <strong>the</strong> bridg<strong>in</strong>g<br />

material with<strong>in</strong> agglomerates. Knowledge <strong>of</strong> <strong>the</strong> composition and gra<strong>in</strong> size <strong>of</strong> p<strong>art</strong>icles <strong>in</strong> <strong>the</strong>se areas<br />

<strong>of</strong> deposits can be used to identify <strong>the</strong> elements associated with deposit <strong>for</strong>mation, or to identify <strong>the</strong><br />

mechanism <strong>for</strong> deposit <strong>for</strong>mation. Once <strong>the</strong> mechanism <strong>of</strong> deposition is found, corrective action can<br />

be taken to stop deposit <strong>for</strong>mation or to limit its impact on <strong>the</strong> boiler.<br />

Samples <strong>for</strong> SEM work are mounted <strong>in</strong> an epoxy block, and <strong>the</strong> surface <strong>of</strong> <strong>the</strong> block is <strong>the</strong>n ground<br />

and polished, and coated with carbon prior to analysis. The SEM, operated <strong>in</strong> <strong>the</strong> secondary electron<br />

imag<strong>in</strong>g mode, allows analysis <strong>of</strong> <strong>the</strong> sectioned surface <strong>of</strong> <strong>the</strong> deposits.<br />

4.2 Arsenic<br />

Arsenic is <strong>of</strong>ten associated with pyrite, and is <strong>the</strong>re<strong>for</strong>e probably additive. It is one <strong>of</strong> a number <strong>of</strong><br />

trace elements which need to be considered, <strong>in</strong> blend <strong>coal</strong>s or s<strong>in</strong>gly, on environmental grounds. It is<br />

<strong>in</strong>cluded <strong>in</strong> Table 4, under Trace Elements. Clarke and Sloss (1992) and Davidson & Clarke (1996)<br />

produced two good IEA reports on trace elements, one <strong>of</strong> which describes <strong>the</strong> p<strong>art</strong>ition<strong>in</strong>g <strong>of</strong> each<br />

trace element <strong>in</strong>to <strong>the</strong> various waste streams <strong>in</strong> a <strong>power</strong> station. See also <strong>the</strong> IEA report by Couch,<br />

1995.<br />

4.3 Char reactivity<br />

Char reactivity refers to <strong>the</strong> rate <strong>of</strong> combustion <strong>of</strong> a <strong>coal</strong>. Unburnt carbon <strong>in</strong> fly ash results from <strong>the</strong><br />

<strong>in</strong>complete combustion <strong>of</strong> <strong>coal</strong> due to boiler operation, design and <strong>coal</strong> rank (<strong>in</strong>creased rank<br />

decreases <strong>coal</strong> reactivity). Addition <strong>of</strong> a more reactive <strong>coal</strong> <strong>in</strong> a blend may starve <strong>the</strong> unreactive char<br />

<strong>of</strong> oxygen and <strong>in</strong>crease <strong>the</strong> carbon <strong>in</strong> ash, although it may also <strong>in</strong>crease <strong>the</strong> flame temperature, which<br />

may result <strong>in</strong> more burnout. Alter<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> excess air or <strong>the</strong> size <strong>of</strong> <strong>the</strong> <strong>coal</strong> will be more<br />

likely to impact on <strong>the</strong> carbon <strong>in</strong> ash values produced by a boiler.<br />

Fly ash with high carbon content is usually unsaleable, effect<strong>in</strong>g an important by-product <strong>of</strong> <strong>the</strong> plant,<br />

and <strong>in</strong>creas<strong>in</strong>g difficulties <strong>in</strong> disposal. Increas<strong>in</strong>g <strong>the</strong> carbon content <strong>in</strong> <strong>the</strong> fly ash will also lower <strong>the</strong><br />

ash resistivity, but carbon also has a high aff<strong>in</strong>ity <strong>for</strong> SO3, and is highly prone to re-entra<strong>in</strong>ment,<br />

decreas<strong>in</strong>g <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> electrostatic precipitators (Carpenter, 1995).<br />

Char reactivity, as a value, is not additive. Char reactivity can be measured by <strong>the</strong>mogravimetric<br />

analysis or by drop tube furnace experiments. See Section 4.1 <strong>for</strong> a discussion <strong>of</strong> drop tube furnace<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 68


studies. Studies <strong>of</strong> <strong>coal</strong> pyrolysis, reactivity and NOx <strong>for</strong>mation <strong>in</strong> drop tube furnaces have shown<br />

<strong>the</strong>m to be generally additive, as <strong>the</strong> p<strong>art</strong>icle cloud <strong>in</strong> a drop tube is dilute and very little <strong>in</strong>teraction<br />

occurs. The behaviour <strong>of</strong> <strong>the</strong> blends <strong>in</strong> <strong>the</strong>se studies is strongly <strong>in</strong>fluenced by <strong>the</strong> gas conditions set<br />

by <strong>the</strong> operator.<br />

Thermogravimetric analysis<br />

Thermogravimetry is a technique <strong>in</strong> which <strong>the</strong> mass <strong>of</strong> a sample is monitored over time or<br />

temperature. A <strong>coal</strong> sample’s chang<strong>in</strong>g mass can be measured dur<strong>in</strong>g combustion or pyrolysis at a<br />

set temperature, under specific atmospheres. This <strong>in</strong><strong>for</strong>mation allows <strong>the</strong> reactivity <strong>of</strong> <strong>the</strong> <strong>coal</strong> to be<br />

determ<strong>in</strong>ed. Un<strong>for</strong>tunately, <strong>the</strong> heat<strong>in</strong>g rates <strong>of</strong> <strong>the</strong> sample achievable <strong>in</strong> this equipment are not as<br />

high as those experienced <strong>in</strong> pf boilers, and Elliott (1981) notes that <strong>the</strong> rate <strong>of</strong> heat<strong>in</strong>g effects <strong>the</strong><br />

reactivity <strong>of</strong> a <strong>coal</strong> because carbon deposition can occur dur<strong>in</strong>g volatile release, thus reduc<strong>in</strong>g char<br />

reactivity. The carbon structure <strong>of</strong> <strong>the</strong> <strong>coal</strong> can also alter slightly dur<strong>in</strong>g heat<strong>in</strong>g, which also effects <strong>the</strong><br />

char reactivity.<br />

When a blend is studied by TGA, <strong>the</strong> <strong>coal</strong>s appear to <strong>in</strong>teract, produc<strong>in</strong>g a different result than when<br />

each <strong>coal</strong> <strong>in</strong> <strong>the</strong> blend is studied <strong>in</strong>dividually and <strong>the</strong> results comb<strong>in</strong>ed. In boilers this reaction will not<br />

occur as p<strong>art</strong>icles are separated <strong>in</strong> <strong>the</strong> gas stream dur<strong>in</strong>g combustion.<br />

Methodology<br />

A <strong>coal</strong> sample is placed with<strong>in</strong> a <strong>the</strong>rmogravimetric analyser and <strong>the</strong> controlled atmosphere allowed to<br />

equilibrate. The mass <strong>of</strong> <strong>the</strong> sample is recorded cont<strong>in</strong>uously, while <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> sample is<br />

<strong>in</strong>creased at a set rate until pyrolysis or combustion occurs. The change <strong>in</strong> mass, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong><br />

amount <strong>of</strong> <strong>coal</strong> rema<strong>in</strong><strong>in</strong>g, is <strong>of</strong>ten matched with analysis <strong>of</strong> <strong>the</strong> <strong>of</strong>f-gas.<br />

4.4 CO2 or Cm<br />

Orig<strong>in</strong>ally reported as CO2, this property is now reported as Cm or m<strong>in</strong>eral carbon.<br />

Cm = CO2 x 0.273.<br />

It is only <strong>in</strong>cluded <strong>in</strong> Wall's table (Table 13), as affect<strong>in</strong>g <strong>the</strong> boiler, because it <strong>in</strong>dicates <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> carbonate m<strong>in</strong>erals, especially those <strong>of</strong> calcium and iron. Thus it is an <strong>in</strong>direct ra<strong>the</strong>r than direct<br />

property. It is probably additive.<br />

4.5 Cross<strong>in</strong>g po<strong>in</strong>t temperatures<br />

Of <strong>the</strong> many tests available <strong>for</strong> <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> propensity <strong>of</strong> a <strong>coal</strong> to heat spontaneously, <strong>the</strong> simple<br />

Cross<strong>in</strong>g Po<strong>in</strong>t Temperature test or Relative Ignition Test (RIT) is <strong>the</strong> most common. In this test a<br />

granular sample <strong>of</strong> <strong>coal</strong>, <strong>of</strong> f<strong>in</strong>e p<strong>art</strong>icle size, is heated at a fixed rate (2°C/m<strong>in</strong>.) while oxygen is<br />

passed through it. At some po<strong>in</strong>t <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> <strong>coal</strong> beg<strong>in</strong>s to <strong>in</strong>crease at a greater rate than<br />

<strong>the</strong> controlled heat<strong>in</strong>g rate <strong>of</strong> <strong>the</strong> conta<strong>in</strong><strong>in</strong>g vessel, due to <strong>the</strong> onset <strong>of</strong> spontaneous heat<strong>in</strong>g. The<br />

po<strong>in</strong>t where <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> sample crosses <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> sample conta<strong>in</strong>er is<br />

identified as <strong>the</strong> Cross<strong>in</strong>g Po<strong>in</strong>t or Relative Ignition temperature.<br />

The ignition temperature is not a physical constant <strong>for</strong> a given <strong>coal</strong>, but ra<strong>the</strong>r is dependent on <strong>the</strong><br />

prevail<strong>in</strong>g conditions under which <strong>the</strong> test is conducted. This <strong>in</strong>cludes furnace design, method and<br />

rate <strong>of</strong> heat<strong>in</strong>g, <strong>coal</strong> p<strong>art</strong>icle size, mass <strong>of</strong> sample, oxidant type (i.e. air or oxygen) and flow rate.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 69


Results are evaluated by comparison with <strong>the</strong> results <strong>of</strong> reference <strong>coal</strong>s <strong>of</strong> known self-heat<strong>in</strong>g<br />

propensity, hence <strong>the</strong> term Relative Ignition Temperature (RIT). Experience at <strong>the</strong> Australian Coal<br />

Industry Research Laboratories (ACIRL) has shown that RIT values <strong>in</strong> excess <strong>of</strong> 200°C are <strong>in</strong>dicative<br />

<strong>of</strong> a low self-heat<strong>in</strong>g propensity, whereas RIT values less than 130°C are <strong>in</strong>dicative <strong>of</strong> a high selfheat<strong>in</strong>g<br />

propensity.<br />

The orig<strong>in</strong>al work at Australia's CSIRO by Kirov (1954) showed that <strong>the</strong>re was a general <strong>in</strong>crease <strong>in</strong><br />

this temperature with rank, from about 120°C <strong>for</strong> brown <strong>coal</strong>s and lignites to about 210°C <strong>for</strong><br />

anthracites. Most <strong>coal</strong>s fell with<strong>in</strong> <strong>the</strong> range 140°C to 177°C. For example <strong>coal</strong>s <strong>in</strong> <strong>the</strong> Hunter Valley<br />

<strong>of</strong> NSW, be<strong>in</strong>g <strong>of</strong> high volatile bitum<strong>in</strong>ous rank, generally have Cross<strong>in</strong>g Po<strong>in</strong>t or Relative Ignition<br />

temperatures <strong>in</strong> <strong>the</strong> range 140°C to 150°C, while <strong>the</strong> higher rank South Coast <strong>coal</strong>s have<br />

temperatures <strong>in</strong> <strong>the</strong> general range 160°C to 180°C.<br />

It is not known if this property is additive. It is suspected that it is not. Depend<strong>in</strong>g on <strong>the</strong> blend<strong>in</strong>g<br />

efficiency, pockets <strong>of</strong> lower rank <strong>coal</strong> might cause a spontaneous heat<strong>in</strong>g, even <strong>in</strong> a mixture with a<br />

higher rank <strong>coal</strong>.<br />

4.6 Fixed carbon (FC)<br />

This is not an analysed property. Ra<strong>the</strong>r, it is determ<strong>in</strong>ed by difference i.e. 100 - moisture - ash -<br />

volatile matter (all on <strong>the</strong> same basis). Thus its additivity will depend on <strong>the</strong> additivity <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

three properties, and carries any errors <strong>in</strong> <strong>the</strong>ir determ<strong>in</strong>ation. Although its name suggests that it<br />

comprises purely carbon, it also significantly <strong>in</strong>cludes nitrogen, sulphur and oxygen. So its use <strong>in</strong><br />

predict<strong>in</strong>g <strong>power</strong> station per<strong>for</strong>mance, alone or as a component <strong>of</strong> <strong>the</strong> "fuel ratio", seems <strong>of</strong> dubious<br />

value. Carpenter (1995) says that FC "can provide an estimate <strong>of</strong> <strong>the</strong> quantity <strong>of</strong> char that will be<br />

produced and <strong>in</strong>dicate <strong>the</strong> amount <strong>of</strong> unburnt carbon that might be found <strong>in</strong> <strong>the</strong> fly ash". The ultimate<br />

analysis carbon would surely be more precise.<br />

4.7 Fly ash resistivity<br />

This property is only given <strong>in</strong> <strong>the</strong> Wall (Table 13) and Skorupska (Table 15) tables. References to fly<br />

ash resistivity have been made <strong>in</strong> sections 3.3 (total sulphur) and 3.11 (ash analysis).<br />

The electrical resistivity <strong>of</strong> fly ash is dependent on physical and chemical characteristics <strong>of</strong> <strong>the</strong> ash<br />

and <strong>the</strong> environment <strong>in</strong> which it is tested. Resistivity can be measured us<strong>in</strong>g both laboratory and <strong>in</strong>situ<br />

apparatus. The standard technique <strong>for</strong> laboratory measurements <strong>of</strong> resistivity is described <strong>in</strong> <strong>the</strong><br />

American Society <strong>of</strong> Mechanical Eng<strong>in</strong>eers Per<strong>for</strong>mance Test Code 28, and <strong>the</strong> Institute <strong>of</strong> Electrical<br />

and Electronics (IEEE) Standard P-548-82. There is some considerable variation <strong>in</strong> <strong>the</strong> types <strong>of</strong><br />

apparatus and techniques used <strong>for</strong> <strong>in</strong>-situ measurements <strong>of</strong> resistivity.<br />

Laboratory measurements <strong>of</strong> resistivity typically generate a pr<strong>of</strong>ile <strong>of</strong> resistivity as a function <strong>of</strong><br />

temperature as shown <strong>in</strong> Figure 23.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 70


Figure 23: Typical fly ash resistivity pr<strong>of</strong>ile as a function <strong>of</strong> temperature<br />

Limited <strong>in</strong><strong>for</strong>mation perta<strong>in</strong><strong>in</strong>g to <strong>coal</strong> blends 7 suggests that <strong>the</strong> resistivity values <strong>for</strong> a blend made up<br />

<strong>of</strong> <strong>coal</strong>s hav<strong>in</strong>g vastly different resistivity values will be <strong>in</strong>termediate between those resistivity values.<br />

For blends made up <strong>of</strong> <strong>coal</strong>s with reasonably similar resistivity values (i.e. differ<strong>in</strong>g by no more than<br />

one or two orders <strong>of</strong> magnitude), <strong>the</strong>re is no <strong>in</strong>dication <strong>of</strong> <strong>the</strong> additivity <strong>of</strong> resistivity values.<br />

4.8 Fuel ratio<br />

This is not <strong>in</strong> <strong>the</strong> Wall (Table 13), Su (Table 14) or Carpenter (1995) tables, but is given <strong>in</strong><br />

Skorupska's table (Table 15). See also section 3.1.4 (volatile matter) and notes on fixed carbon <strong>in</strong><br />

section 4.6 and Appendix A2.1. It is a coarse factor, useful <strong>for</strong> broad predictions only. The numerator<br />

and denom<strong>in</strong>ator both <strong>in</strong>clude properties which are not relevant to those <strong>power</strong> station per<strong>for</strong>mance<br />

characteristics that <strong>the</strong> fuel ratio is meant to predict For example FC <strong>in</strong>cludes N and O, and V <strong>in</strong>cludes<br />

m<strong>in</strong>eral volatiles such as CO2 and H2O. The fuel ratio was used <strong>in</strong> 1877 by Fraser to design a <strong>coal</strong><br />

classification system, which is expressed <strong>in</strong> <strong>in</strong>teger values only, and is well suited to this type <strong>of</strong><br />

application (van Krevelen 1993).<br />

4.9 Inherent moisture<br />

In its true context, this is an <strong>in</strong>tr<strong>in</strong>sic property <strong>of</strong> <strong>the</strong> <strong>in</strong> situ <strong>coal</strong>, governed by <strong>the</strong> <strong>coal</strong> rank and type. It<br />

is <strong>of</strong>ten used, <strong>in</strong>correctly, when <strong>the</strong> term air-dried moisture is <strong>in</strong>tended. Comments are similar to those<br />

<strong>for</strong> MHC <strong>in</strong> section 4.10.<br />

7<br />

Conroy, A and Bennett, P “The Combustion Behaviour <strong>of</strong> Australian Export and Overseas Low Rank Coal<br />

Blends”, ACARP Project C3097 End-<strong>of</strong>-Grant Report, 1997<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 71


4.10 Moisture hold<strong>in</strong>g capacity (MHC)<br />

For <strong>coal</strong>s <strong>of</strong> bitum<strong>in</strong>ous rank and higher, and some sub-bitum<strong>in</strong>ous <strong>coal</strong>s, with bed moisture values <strong>of</strong><br />

30% and less, moisture hold<strong>in</strong>g capacity (MHC) is considered to be a useful estimate <strong>of</strong> bed moisture<br />

(Selvig & Ode, 1953). Solid <strong>coal</strong>, <strong>in</strong> situ, comprises <strong>in</strong>ternal (pore) moisture only, and this is what is<br />

determ<strong>in</strong>ed by <strong>the</strong> moisture hold<strong>in</strong>g capacity test. The moisture hold<strong>in</strong>g capacity test, such as<br />

specified <strong>in</strong> Australian Standard AS1038 P<strong>art</strong> 17 (1989), is carried out on <strong>coal</strong> with a top p<strong>art</strong>icle size<br />

<strong>of</strong> 0.212 mm, whereas <strong>the</strong> equilibrium moisture test described <strong>in</strong> ASTM D1412 (1993) is carried out at<br />

<strong>the</strong> coarser top size <strong>of</strong> 1.18 mm.<br />

There is no reason why MHC should not be additive.<br />

MHC would not be used to directly predict <strong>coal</strong> per<strong>for</strong>mance at/<strong>in</strong> a <strong>power</strong> station. Ra<strong>the</strong>r it tends to<br />

<strong>in</strong>dicate <strong>the</strong> rank (and type) <strong>of</strong> <strong>the</strong> <strong>coal</strong>, and to determ<strong>in</strong>e many <strong>of</strong> those parameters which are directly<br />

used to predict per<strong>for</strong>mance (moisture, volatile matter etc).<br />

There is little doubt that dust may be a significant problem when total moisture values are less than<br />

<strong>the</strong> moisture hold<strong>in</strong>g capacity <strong>of</strong> <strong>the</strong> <strong>coal</strong> i.e. when <strong>the</strong> surface moisture is nil.<br />

4.11 Sulphate sulphur<br />

This is usually only a m<strong>in</strong>or component <strong>of</strong> fresh bitum<strong>in</strong>ous <strong>coal</strong>s, but it may be <strong>in</strong> significant<br />

proportions <strong>in</strong> wea<strong>the</strong>red lignites. There is no apparent reason why it should not be additive.<br />

4.12 Organic sulphur<br />

This is <strong>the</strong> major sulphur <strong>for</strong>m <strong>in</strong> most <strong>coal</strong>s. It is generally fairly constant (dry, m<strong>in</strong>eral matter free) <strong>for</strong><br />

a given <strong>coal</strong>, with <strong>the</strong> variation <strong>in</strong> total sulphur ma<strong>in</strong>ly com<strong>in</strong>g from fluctuations <strong>in</strong> <strong>the</strong> pyritic sulphur.<br />

There is no apparent reason why it should not be additive.<br />

4.13 Phosphorus<br />

This is generally present as <strong>the</strong> m<strong>in</strong>eral apatite, a calcium phosphate, ei<strong>the</strong>r as f<strong>in</strong>ely dissem<strong>in</strong>ated<br />

"<strong>in</strong>herent m<strong>in</strong>eral matter", or <strong>in</strong> thickened aggregations or bands. Forms <strong>of</strong> apatite <strong>in</strong>clude fluorapatite<br />

and chlorapatite. It should be additive. The phosphorous <strong>in</strong> <strong>coal</strong> may be calculated from <strong>the</strong> P2O5 <strong>in</strong><br />

ash as follows:<br />

P <strong>in</strong> <strong>coal</strong>% = P2O5 <strong>in</strong> ash x 0.4366 x ash <strong>in</strong> <strong>coal</strong>%/100<br />

4.14 Relative density (RD)<br />

S<strong>in</strong>ce relative density varies with <strong>coal</strong> rank, <strong>coal</strong> type, and m<strong>in</strong>eral type (especially iron bear<strong>in</strong>g<br />

m<strong>in</strong>erals), it is difficult to predict much from a s<strong>in</strong>gle RD value. It is hard to imag<strong>in</strong>e that anyth<strong>in</strong>g<br />

useful could be predicted from RD, which could not be better predicted from o<strong>the</strong>r parameters.<br />

Relative density is non-additive on a mass weighted basis (it is a mass/volume, not mass/mass,<br />

function).<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 72


5 SPECIFIC RESPONSE TO ACARP RESEARCH PRIORITIES<br />

Three areas where highlighted by ACARP as be<strong>in</strong>g extremely important to <strong>the</strong> Australian <strong>coal</strong><br />

<strong>in</strong>dustry:<br />

• Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with low rank <strong>coal</strong>s,<br />

• Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with high sulphur <strong>coal</strong>s and<br />

• Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with <strong>coal</strong>s <strong>of</strong> differ<strong>in</strong>g m<strong>in</strong>eral matter content.<br />

Though not discussed under <strong>the</strong>se head<strong>in</strong>gs, each <strong>of</strong> <strong>the</strong>se items has been discussed <strong>in</strong> detail <strong>in</strong><br />

Section 3. There<strong>for</strong>e, <strong>the</strong> follow<strong>in</strong>g is a summary <strong>of</strong> <strong>the</strong> discussion, highlight<strong>in</strong>g <strong>the</strong> important issues<br />

<strong>for</strong> each. Table 12 also lists each aspect, and <strong>the</strong> impact on plant per<strong>for</strong>mance.<br />

5.1 Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with low rank <strong>coal</strong>s<br />

Australian <strong>coal</strong>s are frequently bought by overseas <strong>power</strong> facilities to blend with low rank or lignitic<br />

<strong>coal</strong>s, produc<strong>in</strong>g an efficiency improvement <strong>for</strong> <strong>the</strong> facility. When Australian higher rank <strong>coal</strong>s are<br />

blended with low rank or lignitic <strong>coal</strong>s, several per<strong>for</strong>mance issues are expected. Coals with<br />

significantly different ranks will generally have different handl<strong>in</strong>g behaviour. There<strong>for</strong>e, plants<br />

designed to handle lower rank <strong>coal</strong>s should experience improved handl<strong>in</strong>g per<strong>for</strong>mance through <strong>the</strong><br />

addition <strong>of</strong> lower moisture, higher rank <strong>coal</strong>s.<br />

The high moisture levels associated with lignitic and sub-bitum<strong>in</strong>ous <strong>coal</strong>s impact on handl<strong>in</strong>g, mill<strong>in</strong>g<br />

and fir<strong>in</strong>g. They also effect p<strong>art</strong>iculate removal and de-NOx and de-SOx equipment. Mills that are<br />

designed to crush lower rank <strong>coal</strong>s will have <strong>in</strong>creased capacities when used to crush higher rank<br />

<strong>coal</strong>. Generally, lower rank <strong>coal</strong>s are more friable, result<strong>in</strong>g <strong>in</strong> a higher throughput <strong>for</strong> <strong>the</strong> mills.<br />

However, lower rank <strong>coal</strong>s also have a very high moisture content, result<strong>in</strong>g <strong>in</strong> a higher air<br />

requirement <strong>for</strong> <strong>the</strong> mills. If <strong>the</strong> mills cannot efficiently remove this moisture to a sufficient level,<br />

agglomeration <strong>of</strong> <strong>the</strong> <strong>coal</strong> may occur, lead<strong>in</strong>g to plugg<strong>in</strong>g <strong>of</strong> <strong>the</strong> pulverised fuel pipe between <strong>the</strong> mill<br />

and <strong>the</strong> burners. The addition <strong>of</strong> higher rank <strong>coal</strong>s (such as Australian export <strong>the</strong>rmal <strong>coal</strong>s) to <strong>the</strong><br />

<strong>in</strong>digenous feed <strong>coal</strong> will reduce this possibility. Moreover, s<strong>in</strong>ce Australian higher rank <strong>coal</strong>s have<br />

higher <strong>the</strong>rmal values, lower mill throughputs will be required.<br />

Lower rank (higher volatile matter content) <strong>coal</strong>s are generally said to have a higher potential <strong>for</strong><br />

premature (spontaneous) combustion dur<strong>in</strong>g mill<strong>in</strong>g, compared to higher rank (lower volatile matter<br />

content) <strong>coal</strong>s, which may be due to <strong>the</strong> relative ease <strong>of</strong> ignition <strong>of</strong> <strong>the</strong> lower rank <strong>coal</strong>s, as discussed<br />

<strong>in</strong> section 4.5, and noted by Pohl (1992). However, o<strong>the</strong>r studies have not been able to show any<br />

correlation between <strong>the</strong> <strong>coal</strong> volatile matter and documented cases <strong>of</strong> fires and explosions. It is<br />

probable that <strong>coal</strong> type and moisture content, along with mill operat<strong>in</strong>g variables, <strong>in</strong>fluence <strong>the</strong> risk <strong>of</strong><br />

fires <strong>in</strong> mills more than <strong>coal</strong> volatile matter content. Anecdotal evidence suggests ma<strong>in</strong>tenance <strong>of</strong><br />

mills, especially sp<strong>in</strong>dle mills, is a more important variable. There<strong>for</strong>e <strong>the</strong> addition <strong>of</strong> Australian higher<br />

rank <strong>coal</strong>s to lower rank <strong>in</strong>digenous <strong>coal</strong>s will tend to raise <strong>the</strong> relative ignition temperature and may<br />

reduce <strong>the</strong> risk <strong>of</strong> fires and explosions.<br />

The lower moisture content associated with a blend <strong>of</strong> bitum<strong>in</strong>ous <strong>coal</strong> and a lignitic <strong>coal</strong> (compared<br />

with <strong>the</strong> lignite alone) will require less energy to evaporate <strong>the</strong> water, result<strong>in</strong>g <strong>in</strong> lower flue gas<br />

volumes. The total amount <strong>of</strong> energy associated with <strong>the</strong> flue gas, and lost from <strong>the</strong> boiler, will<br />

decrease. Lower fan capacities may be required, and <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> erosion with<strong>in</strong> <strong>the</strong> boiler would<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 73


e expected to reduce. Due to this decrease <strong>in</strong> gas volume, <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> electrostatic<br />

precipitators, de-SOx and de-NOx plants would be expected to improve.<br />

Reduc<strong>in</strong>g <strong>the</strong> volatile matter value <strong>in</strong> a <strong>coal</strong> blend is also expected to reduce <strong>the</strong> stability <strong>of</strong> a flame,<br />

although <strong>the</strong> flame shape and size can be altered. A sudden decrease <strong>in</strong> <strong>the</strong> volatile matter value <strong>in</strong><br />

<strong>the</strong> <strong>coal</strong> blend would be expected to lower <strong>the</strong> flame temperature, reduc<strong>in</strong>g <strong>the</strong> energy absorbed <strong>in</strong><br />

<strong>the</strong> radiant section and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> proportion captured <strong>in</strong> <strong>the</strong> convective section. The carbon<br />

burnout <strong>of</strong> <strong>the</strong> ash may fall due to this rearrangement <strong>of</strong> heat throughout <strong>the</strong> furnace.<br />

In low rank <strong>coal</strong>s, a higher proportion <strong>of</strong> <strong>coal</strong> nitrogen is associated with <strong>the</strong> volatile component <strong>of</strong> <strong>the</strong><br />

<strong>coal</strong>. Utilisation <strong>of</strong> low NOx burners would <strong>the</strong>re<strong>for</strong>e be expected to have a greater impact on NOx<br />

<strong>for</strong>mation <strong>for</strong> low rank <strong>coal</strong> blends than <strong>for</strong> a blend with a higher rank <strong>coal</strong>. However, it is common <strong>for</strong><br />

a reduction <strong>of</strong> NOX to be accompanied by an <strong>in</strong>crease <strong>in</strong> carbon <strong>in</strong> ash.<br />

Low rank <strong>coal</strong>s also have significantly different ash properties that can lead to deposition. As <strong>the</strong>se<br />

issues are related to m<strong>in</strong>eral matter <strong>the</strong>y are discussed <strong>in</strong> 5.3 “Blend<strong>in</strong>g Australian <strong>coal</strong>s with <strong>coal</strong>s <strong>of</strong><br />

different m<strong>in</strong>eral matter composition” below.<br />

5.2 Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with high sulphur <strong>coal</strong>s<br />

The blend<strong>in</strong>g <strong>of</strong> <strong>coal</strong>s can be utilised to reduce SOx emissions, as a strong correlation exists between<br />

<strong>coal</strong> sulphur content and <strong>the</strong> SO2 emitted, except when large proportions <strong>of</strong> species able to absorb<br />

sulphur are present, such as calcium and magnesium. In <strong>the</strong>se cases, sulphate species are <strong>for</strong>med<br />

which decreases emissions. US <strong>power</strong> stations have experienced reduction <strong>in</strong> SOx emissions, by up<br />

to 20%, by blend<strong>in</strong>g <strong>coal</strong> feeds.<br />

Tube corrosion can also be associated with sulphur. FeS or FeSO4 can <strong>for</strong>m from a reaction <strong>of</strong><br />

sulphur with iron <strong>in</strong> <strong>the</strong> tubes <strong>of</strong> <strong>the</strong> furnace. These species act as a flux, and a transfer medium <strong>for</strong><br />

SO3 to travel to <strong>the</strong> tube surface, enhanc<strong>in</strong>g fur<strong>the</strong>r corrosion. The <strong>for</strong>mation <strong>of</strong> FeS and FeSO3<br />

depends on <strong>the</strong> condensation <strong>of</strong> SO3, which is a function <strong>of</strong> <strong>the</strong> dew po<strong>in</strong>t <strong>of</strong> SO3 <strong>in</strong> <strong>the</strong> gas. High<br />

sulphur <strong>coal</strong>s have higher dew po<strong>in</strong>ts that low sulphur <strong>coal</strong>s, <strong>in</strong>dicat<strong>in</strong>g that high sulphur <strong>coal</strong>s will<br />

produce higher amounts <strong>of</strong> corrosion by this mechanism. As Australian <strong>coal</strong>s have a low proportion <strong>of</strong><br />

sulphur, addition <strong>of</strong> a higher rank Australian <strong>coal</strong> will decrease corrosion.<br />

However, sulphur is known to improve <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> electrostatic precipitators. In fact, SO3 and<br />

H2SO4 have been added to <strong>the</strong> gas stream prior to ESPs to improve <strong>the</strong>ir per<strong>for</strong>mance. There<strong>for</strong>e<br />

blend<strong>in</strong>g <strong>coal</strong>s to improve SOx emissions may adversely impact on <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> electrostatic<br />

precipitators.<br />

Pyrite is a strong source <strong>of</strong> sulphur, but p<strong>art</strong>icular issues associated with pyrite <strong>in</strong> <strong>coal</strong> have been<br />

discussed <strong>in</strong> 5.3 “Blend<strong>in</strong>g Australian <strong>coal</strong>s with <strong>coal</strong>s <strong>of</strong> different m<strong>in</strong>eral matter composition” below.<br />

5.3 Blend<strong>in</strong>g Australian high rank <strong>coal</strong>s with <strong>coal</strong>s <strong>of</strong> different m<strong>in</strong>eral matter<br />

composition<br />

Many problems throughout a pf plant are associated with <strong>coal</strong> m<strong>in</strong>erals, <strong>in</strong>clud<strong>in</strong>g abrasion <strong>in</strong> <strong>the</strong> mills<br />

and deposition <strong>in</strong> <strong>the</strong> boiler. Some problems are straight <strong>for</strong>ward, while o<strong>the</strong>rs are extremely complex,<br />

such as deposition. Many mechanisms exist <strong>for</strong> deposition <strong>in</strong> boilers. Each mechanism depends on<br />

<strong>the</strong> type <strong>of</strong> m<strong>in</strong>erals present <strong>in</strong> <strong>the</strong> <strong>coal</strong>. Some <strong>of</strong> <strong>the</strong> major difficulties associated with <strong>coal</strong> m<strong>in</strong>eral<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 74


matter are given <strong>in</strong> Table 12. All <strong>of</strong> <strong>the</strong> problems associated with m<strong>in</strong>eral matter <strong>in</strong> <strong>coal</strong> can be<br />

reduced or overcome by blend<strong>in</strong>g with <strong>coal</strong>s which reduce <strong>the</strong> concentration <strong>of</strong> <strong>the</strong> <strong>of</strong>fend<strong>in</strong>g m<strong>in</strong>eral.<br />

Low rank <strong>coal</strong>s usually conta<strong>in</strong> higher proportions <strong>of</strong> <strong>the</strong> alkali e<strong>art</strong>h metals than high rank <strong>coal</strong>s, and<br />

are <strong>the</strong>re<strong>for</strong>e prone to deposition due to sulphate <strong>for</strong>mation. The sulphates condense on cool surfaces<br />

when <strong>the</strong> temperature drops below <strong>the</strong> dewpo<strong>in</strong>t <strong>of</strong> <strong>the</strong> sulphate, leav<strong>in</strong>g a “sticky” surface to collect<br />

p<strong>art</strong>iculates.<br />

Pyrite can also cause slagg<strong>in</strong>g. In <strong>the</strong> flame, pyrite <strong>for</strong>ms an Fe-O-S melt, with a melt<strong>in</strong>g temperature<br />

<strong>of</strong> approximately 1080°C. Pyrite can also vaporise and <strong>the</strong>n condense on cool tubes. The result <strong>of</strong><br />

both mechanisms is a sticky phase that will trap o<strong>the</strong>r p<strong>art</strong>icles <strong>in</strong> <strong>the</strong> radiant zone, result<strong>in</strong>g <strong>in</strong><br />

slagg<strong>in</strong>g. Iron species <strong>in</strong> general can also <strong>for</strong>m slagg<strong>in</strong>g when used <strong>in</strong> boilers which have regions with<br />

a reduc<strong>in</strong>g atmosphere, as is <strong>of</strong>ten found with low NOx burners. The reduction <strong>of</strong> <strong>the</strong> iron bear<strong>in</strong>g<br />

species results <strong>in</strong> a low melt<strong>in</strong>g temperature phase that will capture o<strong>the</strong>r p<strong>art</strong>icles. Australian export<br />

<strong>the</strong>rmal <strong>coal</strong>s are relatively low <strong>in</strong> pyritic sulphur, so that <strong>the</strong>ir blend<strong>in</strong>g with higher pyritic sulphur<br />

<strong>in</strong>digenous <strong>coal</strong>s will mitigate <strong>the</strong>se problems.<br />

Chlor<strong>in</strong>e has been associated with corrosion <strong>in</strong> boilers, though this has been l<strong>in</strong>ked to reduc<strong>in</strong>g<br />

conditions <strong>in</strong> <strong>the</strong> boiler. Chlor<strong>in</strong>e species <strong>in</strong> <strong>the</strong> flue gas are also known to adversely affect selective<br />

catalytic reduction de-NOx plants and desulphurisation plants. Blend<strong>in</strong>g is <strong>the</strong> only technique available<br />

<strong>for</strong> reduction <strong>of</strong> chlor<strong>in</strong>e, because wash<strong>in</strong>g is unlikely to remove chlor<strong>in</strong>e as it is usually bound to <strong>the</strong><br />

organic matrix <strong>of</strong> <strong>the</strong> <strong>coal</strong>. Australian <strong>coal</strong>s are generally low <strong>in</strong> chlor<strong>in</strong>e.<br />

F<strong>in</strong>e silica can <strong>for</strong>m highly reflective deposits on furnace walls, result<strong>in</strong>g <strong>in</strong> poor heat transfer.<br />

Generally this problem is overcome by blend<strong>in</strong>g <strong>coal</strong>s to produce larger p<strong>art</strong>icle sized ash which is not<br />

as reflective, or ash that <strong>for</strong>ms s<strong>in</strong>tered deposits.<br />

If <strong>the</strong> concentrations <strong>of</strong> CaO, SiO2 or Al2O3 change, <strong>the</strong> handl<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> ash <strong>in</strong> sluiceways<br />

may alter, result<strong>in</strong>g <strong>in</strong> plugg<strong>in</strong>g or erosion.<br />

Ash composition effects <strong>the</strong> resistivity <strong>of</strong> an ash, impact<strong>in</strong>g on ESP per<strong>for</strong>mance. Blend<strong>in</strong>g <strong>of</strong> <strong>coal</strong>s is<br />

one method <strong>of</strong> overcom<strong>in</strong>g poor ash resistivity. Decreas<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> Fe2O3, K2O and Na2O, or<br />

<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> MgO, CaO and SiO2, would be expected to improve <strong>the</strong> per<strong>for</strong>mance <strong>of</strong><br />

<strong>the</strong> ESP.<br />

Coals conta<strong>in</strong><strong>in</strong>g large proportions <strong>of</strong> pyrite generally are considered abrasive, caus<strong>in</strong>g high wear<br />

rates <strong>in</strong> mills. Blend<strong>in</strong>g a high pyrite <strong>coal</strong> with a <strong>coal</strong> with little or no pyrite will reduce <strong>the</strong> wear <strong>in</strong> a mill<br />

but will not reduce <strong>the</strong> wear l<strong>in</strong>early with blend proportion because hard m<strong>in</strong>erals are <strong>of</strong>ten reta<strong>in</strong>ed <strong>in</strong><br />

<strong>the</strong> gr<strong>in</strong>d<strong>in</strong>g zone. O<strong>the</strong>r hard m<strong>in</strong>erals, such as qu<strong>art</strong>z, will also cause abrasion <strong>in</strong> mills.<br />

Issue Property Impact on per<strong>for</strong>mance<br />

Blend<strong>in</strong>g<br />

Australian <strong>coal</strong><br />

with low rank<br />

<strong>coal</strong>s<br />

Moisture Improved handl<strong>in</strong>g properties.<br />

Less air requirements <strong>for</strong> mills.<br />

Lower flue gas volume, result<strong>in</strong>g <strong>in</strong> a change <strong>in</strong> efficiency <strong>of</strong><br />

boiler, altered SO4 dewpo<strong>in</strong>t, improved ESP per<strong>for</strong>mance and<br />

better de-NOx per<strong>for</strong>mance.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 75


Blend<strong>in</strong>g with<br />

high sulphur<br />

<strong>coal</strong>s<br />

Blend<strong>in</strong>g <strong>coal</strong>s<br />

with different<br />

m<strong>in</strong>eral matter<br />

Volatile matter Low NOx burners produce less NOx, but are <strong>of</strong>ten accompanied<br />

by <strong>in</strong>creased carbon <strong>in</strong> ash.<br />

Chang<strong>in</strong>g <strong>the</strong> volatile content will change <strong>the</strong> flame temperature.<br />

SOx emissions Increas<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> low sulphur <strong>coal</strong> <strong>in</strong> a blend will<br />

decrease <strong>the</strong> SOx emissions.<br />

Greater reduction <strong>in</strong> SOx emissions can result when sulphur is<br />

fixed <strong>in</strong> <strong>the</strong> ash, as <strong>the</strong> sulphate, by Ca and Mg.<br />

Blend<strong>in</strong>g to reduce SOx <strong>in</strong> <strong>the</strong> gas stream will decrease <strong>the</strong><br />

efficiency <strong>of</strong> ESP’s and de-SOx equipment.<br />

Pyrite Slagg<strong>in</strong>g has long been associated with pyrite; also abrasion <strong>in</strong><br />

mills.<br />

Fe species Iron species can result <strong>in</strong> slagg<strong>in</strong>g when reduc<strong>in</strong>g environments<br />

exist (eg low NOx burners).<br />

Chlor<strong>in</strong>e Chlor<strong>in</strong>e is associated with corrosion but can be reduced with<br />

blend<strong>in</strong>g.<br />

Silica Qu<strong>art</strong>z can be abrasive to mills and erosive to boilers.<br />

F<strong>in</strong>e qu<strong>art</strong>z is reflective and can impede boiler per<strong>for</strong>mance.<br />

This is overcome with blend<strong>in</strong>g.<br />

Poor resistivity Decreas<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> Fe2O3, K2O and Na2O or <strong>in</strong>creas<strong>in</strong>g<br />

ash<br />

MgO, CaO and SiO2 may improve ash resistivity and ESP<br />

per<strong>for</strong>mance.<br />

Table 12: Summary <strong>of</strong> <strong>the</strong> issues associated with blend<strong>in</strong>g Australian <strong>coal</strong>s with <strong>in</strong>digenous <strong>coal</strong>s.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 76


6 TECHNOLOGY TRANSFER ACTIVITIES<br />

The work completed <strong>in</strong> this report has been outl<strong>in</strong>ed <strong>in</strong> a paper presented at <strong>the</strong> Fourth Annual<br />

P<strong>art</strong>icipants Conference <strong>of</strong> <strong>the</strong> Cooperative Research Centre <strong>for</strong> Black Coal Utilisation, attended by<br />

many <strong>in</strong>dustrial personnel. Fur<strong>the</strong>r <strong>in</strong><strong>for</strong>mation transfer will be completed when this report is circulated<br />

widely. The authors also strongly recommend that members <strong>of</strong> <strong>the</strong> <strong>coal</strong> <strong>in</strong>dustry who receive a copy<br />

<strong>of</strong> this report be surveyed to determ<strong>in</strong>e if <strong>the</strong> issues outl<strong>in</strong>ed <strong>in</strong> this study represent <strong>the</strong> same issues<br />

identified by <strong>in</strong>dustry personnel when sell<strong>in</strong>g or us<strong>in</strong>g <strong>coal</strong>s as blends <strong>in</strong> general. Such a survey is<br />

believed to be a necessary step <strong>in</strong> <strong>the</strong> identification <strong>of</strong> issues associated with blend<strong>in</strong>g with<strong>in</strong> <strong>the</strong><br />

Australian <strong>coal</strong> <strong>in</strong>dustry but was not completed as it was not allotted fund<strong>in</strong>g <strong>in</strong> this project.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 77


7 BIBLIOGRAPHY<br />

Al-Otoom A Y, Bryant G W, Elliott L K, Skrifvars B J, Hupa M, Wall T F, Experimental options <strong>for</strong><br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> temperature <strong>for</strong> <strong>the</strong> onset <strong>of</strong> s<strong>in</strong>ter<strong>in</strong>g <strong>of</strong> <strong>coal</strong> ash, Energy and Fuels, 14, 1,<br />

227-233, 2000.<br />

Askew H, Lief H I, Blend<strong>in</strong>g <strong>coal</strong>s to meet ash fusion specification, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 5 th Australian<br />

Coal Science Conference, Australian Institute <strong>of</strong> Energy, 257-264, Melbourne, 1992.<br />

Australian Legal In<strong>for</strong>mation Institute, www.austlii.edu.au/legis/nsw/consol_reg/caaer1997352, July<br />

2000.<br />

Baig N A, Norton J J, Bur C A, Development <strong>of</strong> Coal Blend In<strong>for</strong>mation System, <strong>in</strong>: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

56th American Power Conference, Chicago, IL, USA, 25-27 Apr 1994. Chicago, IL, USA,<br />

Ill<strong>in</strong>ios Institute <strong>of</strong> Technology, American Power Conference, vol 56-I, 862-867, 1994.<br />

Bailey C W, Bryant G W, Mat<strong>the</strong>ws E M, Wall T F, Investigation <strong>of</strong> <strong>the</strong> High Temperature Behaviour <strong>of</strong><br />

Excluded Siderite Gra<strong>in</strong>s Dur<strong>in</strong>g Pulverised Fuel Combustion, Energy and Fuels, 12, 3, 464-<br />

469, 1998.<br />

Bailey C, High temperature trans<strong>for</strong>mations <strong>of</strong> siderite and per<strong>for</strong>mance <strong>of</strong> a PF fired plant, PhD<br />

<strong>the</strong>sis, The University <strong>of</strong> Newcastle, 1999.<br />

Bailey J G, Tate A, Diessel C F K, Wall T F, A char morphology system with applications to <strong>coal</strong><br />

combustion, Fuel 69, 225-239, 1990.<br />

Bend S L, Coal characterisation and <strong>coal</strong> combustion, PhD Thesis, University <strong>of</strong> Newcastle upon<br />

Tyne, 1989.<br />

Benfell K E, Bailey J G, Comparison <strong>of</strong> combustion and high pressure pyrolysis chars from Australian<br />

black <strong>coal</strong>s, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 8 th Australian Coal Science Conference, The Australian<br />

Institute <strong>of</strong> Energy, Sydney, 157-162, 7-9 December, 1998.<br />

Benfell K E, Liu G-S, Roberts D G, Harris D J, Lucas J A, Bailey J G, Wall T F, Modell<strong>in</strong>g char<br />

combustion: <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> parent <strong>coal</strong> petrography and pyrolysis pressure on <strong>the</strong> structure<br />

and <strong>in</strong>tr<strong>in</strong>sic reactivity <strong>of</strong> its char, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 28 th International Symposium on<br />

Combustion, 31 July-4 August, 2000, Ed<strong>in</strong>burgh, The Combustion Institute, Pittsburgh,<br />

2000.<br />

Benitez J, Process eng<strong>in</strong>eer<strong>in</strong>g and design <strong>for</strong> air pollution control, Prentice-Hall Included, New<br />

Jersey, 1993.<br />

Bryers R W, Fireside behaviour <strong>of</strong> m<strong>in</strong>eral impurities <strong>in</strong> fuels from Marchwood 1963 to <strong>the</strong> Sheraton<br />

Palm Coast 1992; <strong>in</strong>: Eng<strong>in</strong>eer<strong>in</strong>g foundation conference on <strong>in</strong>organic trans<strong>for</strong>mations and<br />

ash deposition dur<strong>in</strong>g combustion, Palm Coast, Fl, USA, 10-15 Mar 1991; American Society<br />

<strong>of</strong> Mechanical Eng<strong>in</strong>eers, 3-70, 1992.<br />

Car<strong>in</strong>i R C, Hules K R, Prevention, detection and control <strong>of</strong> pulverizer fires and explosions, Electric<br />

Power Research Institute Report CS-5059, Research Project 1883-1, Palo Alto, Cali<strong>for</strong>nia,<br />

February, 1987.<br />

Carpenter A M, Switch<strong>in</strong>g to clean <strong>coal</strong>s <strong>for</strong> <strong>power</strong> generation, IEA Coal Research, CCC/01, 1998.<br />

Carpenter A M, Coal blend<strong>in</strong>g <strong>for</strong> <strong>power</strong> stations, IEA Coal Research Report IEACR/81, July 1995.<br />

Carpenter A M, Skorupska N M, Coal combustion - analysis and test<strong>in</strong>g, IEA Coal Research Report<br />

IEACR/64, November 1993.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 78


Choudhury S S, Ganguly P C, Effect <strong>of</strong> carbonate m<strong>in</strong>erals on volatile matter <strong>of</strong> Coals, Fuel, 57,<br />

March, 175-178, 1978.<br />

Clarke L, Sloss L, Trace elements - emissions from <strong>coal</strong> combustion and gasification, IEA report<br />

IEACR/49, July, 1992.<br />

Conroy A and Bennett P, The combustion behaviour <strong>of</strong> Australian export and overseas low rank <strong>coal</strong><br />

blends”, ACARP Project C3097 end-<strong>of</strong>-grant report, 1997.<br />

Conroy A P, Juniper L A and Phong-anant D, The impact <strong>of</strong> <strong>coal</strong> pulveris<strong>in</strong>g characteristics on <strong>power</strong><br />

plant per<strong>for</strong>mance, 1989 International Conference on Coal Science, Tokyo, Japan, 23-27,<br />

October 1989.<br />

Conroy A P and Trenaman K J, The progress <strong>of</strong> research <strong>in</strong>to <strong>the</strong> pulveris<strong>in</strong>g characteristics <strong>of</strong> <strong>coal</strong>s,<br />

Institution <strong>of</strong> Eng<strong>in</strong>eers, Australia, 1990 International Coal Eng<strong>in</strong>eer<strong>in</strong>g Conference, Sydney,<br />

Australia, 19-21, June 1990.<br />

Conroy A P and Trenaman K J, The flow <strong>of</strong> hard m<strong>in</strong>eral <strong>in</strong> a pilot scale vertical sp<strong>in</strong>dle <strong>coal</strong><br />

pulveriser and its impact on pulveriser wear, AIE Australian Coal Science Conference, 1990.<br />

Corcoran J, M<strong>in</strong>eral matter <strong>in</strong> Australian steam<strong>in</strong>g <strong>coal</strong>s – a survey, Pulverised <strong>coal</strong> fir<strong>in</strong>g – m<strong>in</strong>eral<br />

matter and its effects, (ed T. F. Wall and I. Mc Stew<strong>art</strong>), University <strong>of</strong> Newcastle, 1979.<br />

Couch G R, Power from <strong>coal</strong> - where to remove impurities?, IEA report IEACR/82, Aug, 1995.<br />

Davidson R, Clarke L, Trace elements <strong>in</strong> <strong>coal</strong>, IEA report IEAPER/21, January, 1996.<br />

Deer W A, Howie R A, Zussman R A, Rock-<strong>for</strong>m<strong>in</strong>g m<strong>in</strong>erals, Halsted Press, London, 2nd Edition,<br />

1978.<br />

Diessel C F K, Wolff-Fischer E-M, Coal and coke petrographic <strong>in</strong>vestigations <strong>in</strong>to <strong>the</strong> fusibility <strong>of</strong><br />

Carboniferous and Permian cok<strong>in</strong>g <strong>coal</strong>s, International Journal <strong>of</strong> Coal Geology, 9, 87-108,<br />

1987.<br />

Elliott M A, Chemistry <strong>of</strong> <strong>coal</strong> utilisation, Second supplementary volume, John Wiley and Sons,<br />

Included, 1981.<br />

Folkedahl B C, Steadman E N, Brekke D W, Zygarlicke C J, Inorganic phase characterisation <strong>of</strong> <strong>coal</strong><br />

combustion products us<strong>in</strong>g advanced SEM techniques, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

Foundation Conference - The Impact <strong>of</strong> Ash Deposition on Coal Fired Plants, Williamson J<br />

and Wigley F Ed., 399-407, 1993.<br />

Gibb W H, The UK collaborative research programme on slagg<strong>in</strong>g pulverised <strong>coal</strong>-fired boilers:<br />

summary <strong>of</strong> f<strong>in</strong>d<strong>in</strong>gs, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g Foundation Conference - Application<br />

<strong>of</strong> Advanced Technology to Ash-Related Problems <strong>in</strong> Boilers, 1996.<br />

Gray R J, Rhoades A H, K<strong>in</strong>g D T, Detection <strong>of</strong> oxidized <strong>coal</strong> and <strong>the</strong> effect <strong>of</strong> oxidation on <strong>the</strong><br />

technological properties, Transactions <strong>of</strong> <strong>the</strong> Society <strong>of</strong> M<strong>in</strong><strong>in</strong>g Eng<strong>in</strong>eers, 260, December,<br />

334-341, 1976.<br />

Gupta R, New <strong>in</strong>dices relat<strong>in</strong>g m<strong>in</strong>erals <strong>in</strong> <strong>coal</strong>s to erosion <strong>in</strong> conventional and advanced <strong>coal</strong><br />

utilisation technologies, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> International Conference on Ash Behavior<br />

Control <strong>in</strong> Energy Conversion Systems, Pacifico Yokohama, Japan, 202-208, March 18-19,<br />

1998.<br />

Gupta S, The ash fusibility characteristics <strong>of</strong> <strong>the</strong>rmal <strong>coal</strong>s, PhD <strong>the</strong>sis, The University <strong>of</strong> Newcastle,<br />

1998.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 79


Hjalmarsson A-K, NOx control technologies <strong>for</strong> <strong>coal</strong> combustion, IEACR/24, London, UK, IEA Coal<br />

Research, June 1990.<br />

Hjalmarsson A-K and Soud H N, Systems <strong>for</strong> controll<strong>in</strong>g NOx from <strong>coal</strong> combustion, IEACR/30,<br />

London, UK, IEA Coal Research, June 1990.<br />

Hower J C, Additivity <strong>of</strong> hardgrove gr<strong>in</strong>dability: a case study, Journal <strong>of</strong> Coal Quality, April-June, 7, 2,<br />

68-70, 1988.<br />

Jungten H, Coal characterization <strong>in</strong> relation to <strong>coal</strong> combustion, P<strong>art</strong> II: environmental problems <strong>of</strong><br />

combustion, Erdol and Kohle, Erdgas, Petrochemie vere<strong>in</strong>igt mit Brennst<strong>of</strong>f-Chemie; 40, 5;<br />

204-208, 1987.<br />

Kirov N Y, Determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> ignition temperature <strong>of</strong> <strong>coal</strong> by <strong>the</strong> cross<strong>in</strong>g po<strong>in</strong>t method, CSIRO<br />

Fuel Research, Physical And Chemical Survey Of The National Coal Resources, November<br />

1954.<br />

Kona N R, Fairbanks H V, Leonard J W, Low temperature oxidation <strong>of</strong> <strong>coal</strong>, Fuel, vol. 47, 177-183,<br />

1968.<br />

Kruszewska K, The use <strong>of</strong> reflectance to determ<strong>in</strong>e maceral composition and <strong>the</strong> reactive-<strong>in</strong>ert ratio <strong>of</strong><br />

<strong>coal</strong> components, Fuel, 68, 753-757, 1989.<br />

Lowe A, Effect <strong>of</strong> ash levels on large pulverised <strong>coal</strong> fired furnace per<strong>for</strong>mance, Proceed<strong>in</strong>gs <strong>of</strong> EPRI<br />

Conference: The effect <strong>of</strong> <strong>coal</strong> quality on <strong>power</strong> plant per<strong>for</strong>mance, Atlanta, 1987.<br />

McGl<strong>in</strong>chey D, Jones MG, Marjanovic P, The blend<strong>in</strong>g and segregation <strong>of</strong> <strong>coal</strong> <strong>for</strong> <strong>the</strong> U.K. <strong>in</strong>dustrial<br />

market, Bulk Solids Handl<strong>in</strong>g, 19, 3, 345-351, 1999.<br />

McLennan A R, Ash <strong>for</strong>mation <strong>in</strong> reduc<strong>in</strong>g conditions, PhD <strong>the</strong>sis, The University <strong>of</strong> Newcastle, 1998.<br />

Mikka R A, Smitham J B, Coal handleability assessment, The Coal Journal, 11, 23-31, 1986.<br />

Miyazu T, Observations on analytical methods <strong>of</strong> imported <strong>coal</strong> <strong>for</strong> Japanese steel <strong>in</strong>dustry,<br />

International Conference on Quality Control, Tokyo, 703-706, 1969.O’Brien G, Jenk<strong>in</strong>s B,<br />

Esterle J, Automated image analysis system <strong>for</strong> <strong>coal</strong> petrographic characterisation, CSIRO<br />

Exploration and M<strong>in</strong><strong>in</strong>g report 567F, ACARP Project C6055, CSIRO Exploration and M<strong>in</strong><strong>in</strong>g,<br />

Kenmore, QLD, Australia, 1998<br />

Okamoto A, Evaluation method <strong>for</strong> <strong>the</strong>rmal <strong>coal</strong> quality (Japan) – P<strong>art</strong> 1, Coal and Safety, 10, 44-58,<br />

1997.<br />

Osborne D O, Coal preparation technology, Vol 2, Chapter 15, Graham and Trotman Ltd, London,<br />

1988.<br />

Pacific Power, Effects <strong>of</strong> <strong>coal</strong> moisture on vertical sp<strong>in</strong>dle mill per<strong>for</strong>mance”, National Energy<br />

Research, Development and Demonstration Program, Project No. 1215 End-<strong>of</strong>-Grant<br />

Report, Dep<strong>art</strong>ment <strong>of</strong> Resources and Energy, Canberra, Australia, December 1993.<br />

Paulson C A J, The basic pr<strong>in</strong>ciples <strong>of</strong> electrostatic precipitation, International tra<strong>in</strong><strong>in</strong>g centre <strong>for</strong> <strong>coal</strong><br />

technology, 18.<br />

Pearson D E, Price J T, Reactivity <strong>of</strong> <strong>in</strong>ert<strong>in</strong>ite (<strong>coal</strong>-typ<strong>in</strong>g) <strong>of</strong> Western Canadian cok<strong>in</strong>g <strong>coal</strong>s,<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> International Conference on Coal Science, 28-31 October, 1985,<br />

Sydney, Pergamon Press, Sydney, 907-908, 1985.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 80


Pearson D E, Probability analysis <strong>of</strong> blended cok<strong>in</strong>g <strong>coal</strong>s, International Journal <strong>of</strong> Coal Geology, 19,<br />

109-119, 1991.<br />

Pohl J H, Intensive course on combustion technology, Australian Combustion Technology Centre,<br />

ACIRL Limited, 1992.<br />

Potter E, Correlations <strong>of</strong> ash chemistry with pilot-scale electrostatic precipitation experiments, <strong>in</strong>:<br />

Steam<strong>in</strong>g <strong>coal</strong>: test<strong>in</strong>g and characterisation, Institute <strong>of</strong> Coal Research, University <strong>of</strong><br />

Newcastle, Eds R P Gupta and T F Wall, 33-34, 1987.<br />

Raask E, M<strong>in</strong>eral impurities <strong>in</strong> <strong>coal</strong> combustion: behaviour, problems and remedial measures,<br />

Wash<strong>in</strong>gton:Hemisphere Pub. Corp., c1985.<br />

Riley J T, Gilleland S R, Forsy<strong>the</strong> R F, Graham H D, Hayes F J, Non-additive analytical values <strong>for</strong><br />

<strong>coal</strong> blends, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 7th <strong>in</strong>ternational conference on <strong>coal</strong> test<strong>in</strong>g, Charleston,<br />

WV, USA, 21-23 Mar. 1989. Ashland, KY, USA, Coal Test<strong>in</strong>g Conference, Standards<br />

Laboratories, Technical Services Division, 32-38, 1989.<br />

Roberts A W, Design <strong>of</strong> storage and handl<strong>in</strong>g systems <strong>for</strong> cohesive solids, published <strong>in</strong> Basic<br />

Pr<strong>in</strong>ciples <strong>of</strong> Bulk Solids, Storage, Flow and Handl<strong>in</strong>g, Centre <strong>for</strong> Bulk Solids and P<strong>art</strong>iculate<br />

Technologies, The University <strong>of</strong> Newcastle, NSW, April 1998.<br />

Roberts A W, TUNRA bulk solids, University <strong>of</strong> Newcastle, private communication, 2000.<br />

Roberts A W, TUNRA bulk solids, University <strong>of</strong> Newcastle, private communication 2, 2000.<br />

Rosenberg P, Petersen H I, Thomsen E, Combustion char morphology related to combustion<br />

temperature and <strong>coal</strong> petrography, Fuel, 75, 1071-1082, 1996.<br />

Saxby J D, Chatfield S P, Proceed<strong>in</strong>gs 7 th Australian Coal Science Conference, 1996, Monash<br />

University, Australia, 391-398.<br />

Schaefer R L, Master's Thesis, M5 S2943, The Ohio State University, 1933, Quoted <strong>in</strong> Lowry,<br />

Chemistry <strong>of</strong> Coal Utilization, 521, 1995.<br />

Scott D H, Coal pulverisers – per<strong>for</strong>mance and safety, IEACR/79, IEA Coal Research, London, 60,<br />

1995.<br />

Selvig W A, Ode W H, Determ<strong>in</strong>ation <strong>of</strong> moisture hold<strong>in</strong>g capacity (bed moisture) <strong>of</strong> <strong>coal</strong> <strong>for</strong><br />

classification by rank, USBM RI 4968, April 1953.<br />

Senior C L, Bool L E, Sr<strong>in</strong>ivasachar S, Pease B R, Porle K, Pilot scale study <strong>of</strong> trace element<br />

vaporization and condensation dur<strong>in</strong>g combustion <strong>of</strong> pulverised sub bitum<strong>in</strong>ous <strong>coal</strong>, Fuel<br />

Process<strong>in</strong>g Technology, 63, 2-3, 149-165, April 2000.<br />

Skorupska N M, Coal specifications - impact on <strong>power</strong> station per<strong>for</strong>mance, IEA Coal Research<br />

Report IEACR/52, January 1993.<br />

S<strong>in</strong>ger, J G (ed.), Combustion – fossil <strong>power</strong>, 4e, Combustion Eng<strong>in</strong>eer<strong>in</strong>g, Inc., Connecticut, USA,<br />

1991.<br />

Sligar N J, The abrasiveness <strong>of</strong> <strong>coal</strong>, National Energy Research, Development and Demonstration<br />

Program, End-<strong>of</strong>-Grant Report No. 652, Dep<strong>art</strong>ment <strong>of</strong> Resources and Energy, Canberra,<br />

Australia, June 1986.<br />

Spero Dr C, Walloon <strong>coal</strong>s: <strong>the</strong>ir properties and <strong>power</strong> station per<strong>for</strong>mance, Queensland Coal, March,<br />

26-38, 1998.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 81


Sr<strong>in</strong>ivasachar S, Helble J J, Katz C B, Boni A A, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g foundation<br />

conference on m<strong>in</strong>eral matter and ash deposition <strong>in</strong> <strong>coal</strong>, 201, 1990.<br />

Stach E, Mackowsky M-Th, Teichmüller M, Taylor G H, Chandra D, Teichmüller R, Stach’s textbook<br />

<strong>of</strong> <strong>coal</strong> petrology, 3 rd Edition, Gebrüder Borntraeger, Berl<strong>in</strong>, 535, 1982.<br />

Stultz S C, Kitto J B (eds), Steam – its generation and use, 40 th edition, The Babcock and Wilcox<br />

Company, Ohio, USA, 1992.<br />

Su S, Combustion behaviour and ash deposition <strong>of</strong> blended <strong>coal</strong>s, PhD Thesis, The University <strong>of</strong><br />

Queensland, Brisbane, 1999.<br />

Swa<strong>in</strong>e D J, Goodarzi F, Environmental aspects <strong>of</strong> trace elements <strong>in</strong> <strong>coal</strong>, Energy and Environment,<br />

2, 1995.<br />

Taylor G H, Teichmüller M, Davis A, Diessel C F K, Littke R, Robert P, Organic petrology, Gebrüder<br />

Borntraeger, Berl<strong>in</strong>, 704, 1998.<br />

Ultra-Systems Technology, Application <strong>of</strong> <strong>the</strong> TMA technique to predict <strong>coal</strong> per<strong>for</strong>mance based on<br />

ash melt<strong>in</strong>g characteristics, report No C1024 to Dep<strong>art</strong>ment <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Uni <strong>of</strong><br />

Newcastle, May 1997<br />

Urba<strong>in</strong> G, Cambier F, Deletter M, Anseau M R, Viscosity <strong>of</strong> silicate melts, Trans. J. Br. Ceram. Soc.,<br />

80, 139-141, 1981.<br />

Van Krevelen D W, Coal: typology - physics - chemistry - constitution, Elsevier, London, 1993.<br />

Wall T F, Coal combustion, <strong>in</strong> UNDP <strong>coal</strong> technology course notes, edited by Electricity Commission<br />

<strong>of</strong> NSW, 1988.<br />

Wall T F, The properties and <strong>the</strong>rmal effects <strong>of</strong> ash deposition <strong>in</strong> <strong>coal</strong> fired furnaces - a <strong>review</strong>, <strong>in</strong>: The<br />

impact <strong>of</strong> ash deposition <strong>in</strong> <strong>coal</strong> fired plants, Eds J Williamson and F Wigley, Taylor and<br />

Francis, 446-478, 1994.<br />

Wall T F et al, False de<strong>for</strong>mation temperatures <strong>for</strong> ash fusibility associated with <strong>the</strong> conditions <strong>for</strong> ash<br />

preparation, Proceed<strong>in</strong>gs, Second P<strong>art</strong>icipants Conference, CRC For Black Coal Utilisation,<br />

Newcastle, Nov. 1998.<br />

Waters A, The additive relationship <strong>of</strong> Hardgrove gr<strong>in</strong>dability <strong>in</strong>dex, Journal <strong>of</strong> Coal Quality, 5, 1, 33-<br />

34, January-March, 1986.<br />

Yancey H F, Geer M R, Price J D, An <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> abrasiveness <strong>of</strong> <strong>coal</strong> and its associated<br />

impurities, Transactions AIME, M<strong>in</strong><strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g, 262-268, March 1951.<br />

Zador A T, Technology and economy <strong>of</strong> blend<strong>in</strong>g and mix<strong>in</strong>g, Bulk Solids Handl<strong>in</strong>g, 11, 1, 193-209,<br />

March 1991.<br />

Zalosh R G, Review <strong>of</strong> <strong>coal</strong> pulverizer fire and explosion <strong>in</strong>cidents, published <strong>in</strong> Industrial dust<br />

explosions, Cashdollar, KL and Hertzberg, M (eds), ASTM special technical publication 958,<br />

Philadelphia, PA, USA, American Society <strong>for</strong> Test<strong>in</strong>g and Materials, 191-201, 1987.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 82


APPENDIX 1<br />

SUPPLEMENTARY<br />

REFERENCE<br />

TABLES<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 83


APPENDIX 1 SUPPLEMENTARY REFERENCE TABLES<br />

PROPERTY<br />

Coal<br />

Handl<strong>in</strong>g<br />

Mill<strong>in</strong>g &<br />

Fir<strong>in</strong>g<br />

Boiler<br />

Ash<br />

Handl<strong>in</strong>g<br />

Flue Gas<br />

Clean<strong>in</strong>g O<strong>the</strong>r<br />

Coal and ash properties and plant systems affected<br />

SYSTEMS AFFECTED<br />

PLANT<br />

ENVIRONMENTAL<br />

Moisture Hold<strong>in</strong>g Capacity at x<br />

Inherent Moisture<br />

Proximate analysis (as fired)<br />

x x *1<br />

Moisture x x x x x<br />

Ash x x x x x x<br />

Volatile Matter x x<br />

Fixed Carbon x x<br />

Specific Energy x x<br />

Sulphur - Total x *2<br />

Pyritic x x x x<br />

Sulphate x x<br />

Organic x x<br />

Phosphorus x x<br />

Chlor<strong>in</strong>e<br />

CO2 or Cm<br />

x<br />

x<br />

x<br />

Arsenic<br />

Ultimate Analysis (d.a.f.)<br />

x<br />

Carbon x x<br />

Hydrogen x x<br />

Nitrogen x x<br />

Sulphur x x x *3<br />

Oxygen x x<br />

Hardgrove Gr<strong>in</strong>dability Index x *4<br />

YGP Abrasiveness Index x<br />

B.S. Index x<br />

Relative Density<br />

Ash fusibility temps<br />

x<br />

Oxidis<strong>in</strong>g x<br />

Reduc<strong>in</strong>g x<br />

Ash Analysis x x x x *5<br />

Trace elements - <strong>coal</strong> x<br />

Trace elements - ash x<br />

Flyash resistivity x<br />

Coal flow properties x<br />

Size distribution - <strong>coal</strong> x x<br />

Size distribution - flyash x x x x<br />

Ignition temp. - <strong>coal</strong> x<br />

Burn<strong>in</strong>g pr<strong>of</strong>ile - <strong>coal</strong> x<br />

Comments<br />

*1 i.e. air-dry moisture, Mad<br />

*2 See also Sdaf <strong>in</strong> ultimate analyses<br />

*3 See also Sulphur - Total<br />

*4 Result does not relate to <strong>the</strong> sample, but to a specially prepared, sized, dedusted fraction.<br />

*5 SiO 2, Al 2O 3, Fe 2O 3, TiO 2, Mn 3O 4, CaO, MgO, Na 20, K 2O, Li 2o, P 2O 5, SO 3<br />

Table 13: Wall's table <strong>of</strong> <strong>the</strong> impact <strong>of</strong> <strong>coal</strong> properties on plant per<strong>for</strong>mance (Wall, 1988).<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 84


PROPERTY<br />

Summarization <strong>of</strong> <strong>the</strong> additivity <strong>of</strong> various properties <strong>of</strong> blended <strong>coal</strong>s *<br />

References <strong>for</strong><br />

additive<br />

References <strong>for</strong> nonadditive<br />

Our conclusion<br />

Heat<strong>in</strong>g Value<br />

Proximate analysis<br />

6, 12 n/a Additive<br />

Moisture 5, 12 n/a Additive<br />

Volatile Matter 5, 6, n/a Additive<br />

Ash 6, , n/a Additive<br />

Fixed Carbon<br />

Ultimate analysis<br />

6 n/a Additive<br />

Carbon 12 n/a Additive<br />

Hydrogen 12 n/a Additive<br />

Nitrogen 12 n/a Additive<br />

Sulphur 12 n/a Additive<br />

Oxygen<br />

Ash analysis<br />

12 n/a Additive<br />

SiO2 n/a n/a <br />

Al2O3 n/a n/a <br />

TiO2 n/a n/a <br />

Fe2O3 n/a n/a <br />

CaO n/a n/a <br />

MgO n/a n/a <br />

Na2O n/a n/a <br />

K2O n/a n/a <br />

SO3 n/a n/a <br />

P2O5 n/a n/a <br />

Chlor<strong>in</strong>e 5 n/a n/a<br />

Free Swell<strong>in</strong>g Index n/a 12, 17, 18 Non-additive<br />

Ash Fusion Temperatures Non-additive<br />

Initial de<strong>for</strong>mation n/a 12, 19, 20 Non-additive<br />

S<strong>of</strong>ten<strong>in</strong>g n/a 12, 19, 20 Non-additive<br />

Hemispherical 12, 19, 20 Non-additive<br />

Fluid 12, 19, 20 Non-additive<br />

HGI 14, 15, 21, 22, 23, 24 12, 25, 26, 27 <br />

< > means that some care <strong>in</strong> <strong>the</strong> application <strong>of</strong> <strong>the</strong> additivity/non-additivity rule <strong>for</strong> <strong>the</strong> correspond<strong>in</strong>g<br />

parameter is required. For example, <strong>the</strong> measured dry ash contents <strong>for</strong> <strong>the</strong> blend were generally higher<br />

than <strong>the</strong> calculated ash values (reference 12).<br />

* In<strong>for</strong>mation from reference 5 is considered <strong>in</strong> <strong>the</strong> table.<br />

Table 14: Su’s table <strong>of</strong> additivity <strong>of</strong> properties <strong>for</strong> <strong>coal</strong> blends (Su, 1999).<br />

Su’s references:<br />

5 Carpenter, M A, "Coal blend<strong>in</strong>g <strong>for</strong> <strong>power</strong> stations", IEA/81, IEA Coal Research, London, 1995.<br />

6 Su S, Pohl J, "Combustion behaviour and ash deposition <strong>of</strong> blended <strong>coal</strong>s <strong>in</strong> <strong>power</strong> station boilers", 2nd<br />

Asian Pacific Conference on Susta<strong>in</strong>able Energy and Environmental Technology, Gold Coast, 14-17 June<br />

1998.<br />

12 Riley J T, Gilleland S R, Forsy<strong>the</strong> R F et al, "Nonadditive analytical values <strong>for</strong> <strong>coal</strong> blends", 7th<br />

International Coal Test<strong>in</strong>g Conference, pp 32-38, Charleston, WV, 1989.<br />

13 Artos V, Scaroni A W, "T.g.a and drop-tube reactor studies <strong>of</strong> <strong>the</strong> combustion <strong>of</strong> <strong>coal</strong> blends", Fuel<br />

1993, 72(7), pp 927-933.<br />

14 Hower J C, Wild G C, "Relationship between hardgrove gr<strong>in</strong>dability <strong>in</strong>dex and petrographic composition<br />

<strong>for</strong> high-volatile bitum<strong>in</strong>ous <strong>coal</strong>s from Kentucky", Journal <strong>of</strong> Coal Quality, 1988, 7(4), pp 122-126.<br />

15 Conroy A P, Juniper L A, Phong-Anant D, "The impact <strong>of</strong> <strong>coal</strong> pulveriz<strong>in</strong>g characteristics on <strong>power</strong><br />

plant per<strong>for</strong>mance", International Conference on Coal Science, Tokyo, Japan, 23-27 Oct 1989, pp 1003-<br />

1006.<br />

17 Cudmore J F, "Coal Utilization", <strong>in</strong> Ward C R, editor, "Coal geology and <strong>coal</strong> technology", Melbourne,<br />

Blackwell Scientific Publications, 1984, pp 113-150.<br />

18 Lowe A J, McCaffrey D J A, Richards D G, "PMRTA <strong>in</strong>vestigation <strong>in</strong>to <strong>the</strong> non-additive swell<strong>in</strong>g<br />

behaviour <strong>of</strong> <strong>coal</strong> blends", Coal Sci. Technol., 24 (Coal Science, Vol. 1), 1995, pp 343-346.<br />

19 Askew H, Lief H I, "Blend<strong>in</strong>g <strong>coal</strong>s to meet ash fusion temperature specification", 5th Australian Coal<br />

Science Conference, Melbourne, 30 November-2 December 1992, pp 257-264.<br />

20 Lloyd W G, Riley J T, et al, "Ash fusion temperatures under oxidis<strong>in</strong>g conditions", Energy & Fuels,<br />

1993, 7, pp 490-494.<br />

21 Juniper LA, Smith B. “Research achievements <strong>in</strong> def<strong>in</strong><strong>in</strong>g <strong>the</strong> combustion characteristics <strong>of</strong> Australian<br />

<strong>coal</strong>s”. Coal Handl<strong>in</strong>g and Utilization Conference, Sydney, Australia 19-21 June 1990. p. 129-134.<br />

25 Waters A, "The additive relationship <strong>of</strong> <strong>the</strong> hardgrove gr<strong>in</strong>dability <strong>in</strong>dex", Journal <strong>of</strong> Coal Quality, 1986,<br />

5(1), pp 33-34.<br />

26 Sligar J, "Gr<strong>in</strong>dability <strong>of</strong> <strong>coal</strong>", Workshop on steam<strong>in</strong>g <strong>coal</strong>: test<strong>in</strong>g and characterisation, Newcastle,<br />

Australia, 17-19 Nov., 1987.<br />

27 Hower J C, "Additivity <strong>of</strong> Hardgrove Gr<strong>in</strong>dability: A case study", Journal <strong>of</strong> Coal Quality, 1988, 7(2), pp<br />

68-71.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 85


PROPERTY<br />

Summary<br />

Power station component per<strong>for</strong>mance<br />

Environmental control<br />

# <strong>of</strong> <strong>the</strong> impacts <strong>of</strong> <strong>coal</strong> quality on <strong>power</strong> station per<strong>for</strong>mance<br />

Ash<br />

manage<br />

ment<br />

Coal<br />

clean<strong>in</strong>g<br />

require<br />

ment*<br />

SOx<br />

control<br />

require<br />

ment*<br />

NOx<br />

control<br />

require<br />

ment*<br />

Overall <strong>power</strong> station per<strong>for</strong>mance<br />

Quality &<br />

quantity <strong>of</strong><br />

waste<br />

products* Capacity Heat rate<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 86<br />

Ma<strong>in</strong>te<br />

nance<br />

require<br />

ment*<br />

Handl<strong>in</strong>g<br />

Steam<br />

Fly ash<br />

Availa<br />

& storage Mills Burners generator<br />

collection<br />

bility<br />

Ash content ▼▲ ▼▲ ▼▲ ▼▲ ▼▲ ▲▲ ▼▲ ▲▲ ▼▲ ▼▲ ▲▲ ▼▲<br />

Heat<strong>in</strong>g Value ▲▼ ▲▼ ▼▲ ▲▼ ▼▲ ▼▲ ▼▲ ▼▲ ▼▲ ▲▼ ▲▼ ▲▼ ▲▼<br />

Sulphur content ▼ ▼▲ ▼▲ ▲▼ ▲▼ ▲▼ ▲▼ ▲▼ ▼▲<br />

Moisture ▼▲ ▼ ▼▲ ▼▲ ▼ ▼▲ ▼▲ ▲▼ ▼▲<br />

Hardgrove Gr<strong>in</strong>dability ▲▼ ▼ ▲▼ ▼ ▼▲ ▼▲ ▼▲ ▲▼<br />

Volatile Matter ▼▲ ▼▲ ▲▼ ▼▲ ▼▲<br />

Ash fusion temperature ▲▼ ▲▼ ▲▼ ▼▲ ▲▼<br />

Ash resistivity ▼▲ ▼▲<br />

Sodium content ▼ ▲ ▼▲<br />

Chlor<strong>in</strong>e content ▼▲ ▼▲ ▼▲ ▲▼ ▼▲<br />

Fuel ratio ▲▼ ▲▼ ▼▲ ▲▼<br />

Free Swell<strong>in</strong>g Index ▼▲ ▼▲<br />

Size consist ▲▼ ▲▼ ▲▼ ▲▼ ▲▼ ▲▼ ▲ ▲▼ ▲▼ ▲▼<br />

#<br />

compiled from observations from literature and <strong>the</strong> IEA Coal Research survey<br />

value <strong>of</strong> <strong>the</strong> property <strong>in</strong>creases<br />

value <strong>of</strong> <strong>the</strong> property decreases<br />

▼ worsened (or decreased <strong>for</strong> components marked *)<br />

▲ improved (or <strong>in</strong>creased <strong>for</strong> components marked *)<br />

Table 15: Skorupska’s table <strong>for</strong> <strong>the</strong> impact <strong>of</strong> <strong>coal</strong> quality on <strong>power</strong> station per<strong>for</strong>mance (Skorupska, 1993).


APPENDIX 2<br />

POWER STATION<br />

PERFORMANCE INDICES<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 87


APPENDIX 2 POWER STATION PERFORMANCE PREDICTION INDICES<br />

Several <strong>in</strong>dices have been developed to assist operators to determ<strong>in</strong>e <strong>the</strong> impact <strong>of</strong> <strong>coal</strong> and <strong>coal</strong><br />

blends on plant per<strong>for</strong>mance. Listed below is a selection <strong>of</strong> <strong>the</strong> most widely used <strong>in</strong>dices. These<br />

<strong>in</strong>dices are derived from experience with a limited number <strong>of</strong> <strong>coal</strong>s, and are unlikely to be applicable<br />

to o<strong>the</strong>r <strong>coal</strong>s with different geological or geographical histories. They are based on <strong>the</strong> properties <strong>of</strong><br />

laboratory prepared ashes produced under conditions different to those <strong>of</strong> pf fired boilers, and reflect<br />

<strong>the</strong> average composition <strong>of</strong> <strong>the</strong> <strong>coal</strong> blend, tak<strong>in</strong>g no account <strong>of</strong> <strong>the</strong> variability which exists with<strong>in</strong> <strong>the</strong><br />

blend (or <strong>coal</strong>). Also, <strong>the</strong>y have been calibrated <strong>in</strong> boilers under basel<strong>in</strong>e conditions that may differ<br />

depend<strong>in</strong>g on operation and advances <strong>in</strong> technology.<br />

A2.1 Fuel ratio as a predictor <strong>of</strong> burnout efficiency<br />

Fuel ratio (i.e. (fixed carbon)/(volatile matter)) is typically used as an <strong>in</strong>dicator <strong>of</strong> burnout efficiency.<br />

Figure 24 shows <strong>the</strong> results <strong>of</strong> pilot scale combustion test work <strong>for</strong> several unblended and blended<br />

<strong>coal</strong>s, determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> ACIRL combustion test facility. As <strong>the</strong> figure shows, <strong>the</strong>re is a general trend<br />

<strong>of</strong> decreas<strong>in</strong>g burnout efficiency (as <strong>in</strong>dicated by <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong> unburnt combustibles) with<br />

<strong>in</strong>creas<strong>in</strong>g fuel ratio.<br />

Unburnt Combustibles (%)<br />

10.00<br />

1.00<br />

0.10<br />

Unblended Coals<br />

0.01<br />

Blended Coals<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Fuel Ratio (FC/VM)<br />

Figure 24: Unburnt combustibles as a function <strong>of</strong> fuel ratio <strong>for</strong> unblended and blended <strong>coal</strong>s<br />

The figure also shows that <strong>the</strong> blended <strong>coal</strong>s follow <strong>the</strong> same general trend as <strong>the</strong> unblended <strong>coal</strong>s.<br />

There is, however, substantial anecdotal evidence to support <strong>the</strong> proposition that not all <strong>coal</strong>s blended<br />

<strong>for</strong> fuel ratio (or volatile matter content), report burnout behaviour even approximat<strong>in</strong>g that <strong>of</strong><br />

unblended <strong>coal</strong>s <strong>of</strong> <strong>the</strong> same fuel ratio. The factors, which contribute to this, <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:<br />

• The differences <strong>in</strong> fuel ratios <strong>of</strong> <strong>the</strong> blend components. Anecdotal evidence <strong>in</strong>dicates that <strong>the</strong><br />

burnout per<strong>for</strong>mance <strong>of</strong> blends made up <strong>of</strong> components with vastly different fuel ratios is more<br />

heavily <strong>in</strong>fluenced by <strong>the</strong> presence <strong>of</strong> <strong>the</strong> lower volatile or higher fuel ratio material (i.e. <strong>the</strong> least<br />

reactive material) and, because <strong>of</strong> this, will be <strong>in</strong>ferior to <strong>the</strong> per<strong>for</strong>mance suggested by <strong>the</strong> prorated<br />

fuel ratio.<br />

• The extent to which p<strong>art</strong>icle size impacts burnout efficiency. As previously discussed, blend<br />

components with different HGI values will preferentially report to different size fractions <strong>in</strong> <strong>the</strong><br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 88


pulverised <strong>coal</strong> product. Increased p<strong>art</strong>icle size adversely affects burnout efficiency, and this may<br />

impact on <strong>the</strong> overall per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> blend depend<strong>in</strong>g on <strong>the</strong> o<strong>the</strong>r properties <strong>of</strong> <strong>the</strong> <strong>coal</strong>.<br />

A2.2 S<strong>in</strong>ter<strong>in</strong>g temperature <strong>for</strong> predict<strong>in</strong>g foul<strong>in</strong>g behaviour <strong>of</strong> <strong>coal</strong> ash<br />

The s<strong>in</strong>ter<strong>in</strong>g temperature <strong>of</strong> an ash is <strong>the</strong> temperature when strength will beg<strong>in</strong> to develop with<strong>in</strong> a<br />

deposit due to s<strong>in</strong>ter<strong>in</strong>g or bond<strong>in</strong>g <strong>of</strong> ash p<strong>art</strong>icles. This temperature is simply determ<strong>in</strong>ed by<br />

experimentation (Al-Otoom, 2000), but <strong>in</strong>frequently completed, as <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g temperature <strong>of</strong> <strong>coal</strong><br />

ash can be as low as 600 o C. Such temperatures are disturb<strong>in</strong>g to operators who see no value <strong>in</strong> a<br />

temperature <strong>of</strong> 600 o C, which is significantly lower than <strong>the</strong> operat<strong>in</strong>g temperature <strong>of</strong> a boiler.<br />

However, <strong>the</strong>se temperatures represent <strong>the</strong> st<strong>art</strong><strong>in</strong>g po<strong>in</strong>t <strong>for</strong> s<strong>in</strong>ter<strong>in</strong>g, or <strong>the</strong> temperature at which<br />

slight s<strong>in</strong>ter<strong>in</strong>g will occur if enough time has elapsed. When compared to a <strong>coal</strong> with a s<strong>in</strong>ter<strong>in</strong>g<br />

temperature <strong>of</strong> 1000 o C, it is clear that any deposition from ash with a s<strong>in</strong>ter<strong>in</strong>g temperature <strong>of</strong> 600 o C<br />

will <strong>for</strong>m strong and difficult to remove deposits <strong>in</strong> a shorter time frame at <strong>the</strong> operat<strong>in</strong>g temperatures<br />

<strong>of</strong> <strong>the</strong> boiler.<br />

A2.3 Sodium <strong>in</strong> ash to predict foul<strong>in</strong>g behaviour<br />

Many empirical results have shown that <strong>the</strong> sodium content <strong>of</strong> ash can be used to predict boiler<br />

foul<strong>in</strong>g, as sodium can <strong>in</strong>itiate deposit <strong>for</strong>mation. Table 16 shows <strong>the</strong> foul<strong>in</strong>g expected from <strong>the</strong><br />

proportion <strong>of</strong> sodium <strong>in</strong> ash. This <strong>in</strong>dex will work well when deposition is governed by sodium<br />

condensation. Deposition by o<strong>the</strong>r mechanisms can only be predicted with o<strong>the</strong>r <strong>in</strong>dices.<br />

Na2O <strong>in</strong> ash (wt%) Boiler foul<strong>in</strong>g<br />

2.5 Severe<br />

Table 16: The boiler foul<strong>in</strong>g predicted by ash sodium content (Raask, 1985).<br />

A2.4 Alkali metal content <strong>for</strong> prediction <strong>of</strong> foul<strong>in</strong>g<br />

S<strong>in</strong>tered deposits have been reported to have a layered structure result<strong>in</strong>g from <strong>the</strong> immiscibility <strong>of</strong><br />

silicates and sulphates <strong>for</strong>med from <strong>the</strong> ash. Alkali metals generally <strong>for</strong>m <strong>the</strong>se sulphates species,<br />

which transport through <strong>the</strong> porous deposit as a vapour phase, deposit<strong>in</strong>g on <strong>the</strong> metal surface and<br />

produc<strong>in</strong>g a very strong adhesion <strong>of</strong> <strong>the</strong> deposit to <strong>the</strong> tube. Decomposition <strong>of</strong> sodium and calcium<br />

sulphates by silicates at temperatures <strong>in</strong> excess <strong>of</strong> 1100°K produce a glassy silicate with a low<br />

s<strong>in</strong>ter<strong>in</strong>g temperature, which will <strong>in</strong>crease <strong>the</strong> strength <strong>of</strong> bonds between p<strong>art</strong>icles (Raask, 1985).<br />

For bitum<strong>in</strong>ous <strong>coal</strong>, <strong>the</strong> <strong>in</strong>dex <strong>for</strong> alkali metals is def<strong>in</strong>ed as:<br />

⎛ % ash(<br />

db)<br />

⎞<br />

( % Na 2O<br />

+ 0.<br />

6589%<br />

K2O)<br />

⎜<br />

⎟ ,<br />

⎝ 100 ⎠<br />

where, %Na2O and %K2O represent <strong>the</strong> percentage <strong>of</strong> alkali metals present <strong>in</strong> <strong>the</strong> ash <strong>of</strong> a <strong>coal</strong>, as<br />

measured by XRF analysis and reported as oxides. Table 17 shows <strong>the</strong> values <strong>of</strong> this <strong>in</strong>dex which<br />

correspond to foul<strong>in</strong>g propensity.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 89


Alkali <strong>in</strong>dex <strong>of</strong> <strong>coal</strong> Foul<strong>in</strong>g<br />

0.6 Severe<br />

Table 17: The value <strong>of</strong> <strong>the</strong> alkali metal content <strong>of</strong> <strong>coal</strong> with correspond<strong>in</strong>g boiler foul<strong>in</strong>g (Raask, 1985).<br />

The value <strong>of</strong> <strong>the</strong> <strong>in</strong>dex should be additive <strong>for</strong> <strong>coal</strong> blends as it is based on <strong>the</strong> ash analysis. Note,<br />

however, <strong>the</strong> comments <strong>in</strong> sections 3.1.3 and 3.11 regard<strong>in</strong>g sulphur fixation. The value <strong>of</strong> this <strong>in</strong>dex<br />

to Australian <strong>coal</strong>s is dubious as Su (1999) found no significant correlation between foul<strong>in</strong>g propensity<br />

<strong>of</strong> Australian <strong>coal</strong> blends and this <strong>in</strong>dex.<br />

A2.5 Viscosity <strong>of</strong> laboratory ash <strong>for</strong> predict<strong>in</strong>g slagg<strong>in</strong>g behaviour<br />

Estimation <strong>of</strong> <strong>the</strong> ash viscosity at given temperatures provides an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> relative stick<strong>in</strong>ess<br />

<strong>of</strong> p<strong>art</strong>icles, or <strong>the</strong> likelihood that p<strong>art</strong>icles will <strong>for</strong>m deposits due to <strong>in</strong>ertial impaction. P<strong>art</strong>icles <strong>in</strong>itially<br />

become “sticky” and are likely to <strong>for</strong>m a deposit at viscosities between 10 6 to 10 8 Poise (Sr<strong>in</strong>ivasachar<br />

et al., 1990). Below this viscosity, p<strong>art</strong>icles are dry and will not collect on a surface. Above this<br />

viscosity <strong>the</strong> p<strong>art</strong>icles very quickly <strong>for</strong>m a strong deposit that is difficult to remove, as shown <strong>in</strong> Figure<br />

25.<br />

Capture efficiency (uncorrected)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Soda-lime glass<br />

53/74 μm<br />

1m/s<br />

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0<br />

1/T x 10 4 (K -1 )<br />

Figure 25: The capture efficiency, or <strong>for</strong>mation <strong>of</strong> deposit <strong>of</strong> soda-lime glass and <strong>the</strong> correspond<strong>in</strong>g<br />

p<strong>art</strong>icle viscosity.<br />

To determ<strong>in</strong>e <strong>the</strong> viscosity <strong>of</strong> an ash at a p<strong>art</strong>icular temperature, most researchers use Urba<strong>in</strong>’s<br />

correlation (Urba<strong>in</strong>, 1981). Un<strong>for</strong>tunately, this correlation is only valid <strong>for</strong> homogeneous Newtonian<br />

slags, outside <strong>the</strong> regime <strong>of</strong> sticky p<strong>art</strong>icles. Ano<strong>the</strong>r <strong>in</strong>dex, T25, gives <strong>the</strong> temperature at which slags<br />

have a viscosity <strong>of</strong> 25 Pas., aga<strong>in</strong> generally a molten flow<strong>in</strong>g slag. Ultra-Systems Technology (1997)<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 90<br />

Transition<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Log 10 Viscosity (Pa.S)


found that T25 was <strong>in</strong>appropriate <strong>for</strong> Australian <strong>coal</strong>s as <strong>the</strong>re was no correlation with <strong>the</strong>ir slagg<strong>in</strong>g<br />

behaviour. The temperature <strong>of</strong> critical viscosity, <strong>the</strong> m<strong>in</strong>imum temperature at which <strong>the</strong> slag behaves<br />

<strong>in</strong> a Newtonian manner, is also used but aga<strong>in</strong> this describes a liquid, homogeneous slag.<br />

A2.6 The iron/calcium ratio to predict <strong>coal</strong> ash slagg<strong>in</strong>g propensity<br />

The ratio <strong>of</strong> iron (%Fe2O3) and calcium (%CaO) <strong>in</strong> ash is recommended by Su as a good <strong>in</strong>dicator <strong>for</strong><br />

slagg<strong>in</strong>g behaviour <strong>for</strong> Australian <strong>coal</strong>s and <strong>coal</strong> blends. A ratio near 1 was found empirically to<br />

produce severe slagg<strong>in</strong>g, and ratios near 0.3 and 3.0 produced some slagg<strong>in</strong>g. This <strong>in</strong>dex assumes<br />

strong <strong>in</strong>teraction <strong>of</strong> iron oxide and calcium species, which could be expected <strong>in</strong> sideritic <strong>coal</strong>s where<br />

iron is substituted by calcium. However, when sideritic iron is not replaced by calcium, <strong>the</strong> calcium<br />

must be closely associated with iron bear<strong>in</strong>g m<strong>in</strong>erals <strong>for</strong> this <strong>in</strong>dex to be valuable. The Fe2O3/CaO<br />

ratio <strong>of</strong> 3 is close to <strong>the</strong> eutectic found on <strong>the</strong> CaO, FeO, MgO phase diagram <strong>of</strong> 1160°C, shown <strong>in</strong><br />

Figure 26, <strong>in</strong>dicat<strong>in</strong>g that if CaO and FeO comb<strong>in</strong>e <strong>in</strong> <strong>the</strong>se proportions a sticky phase will <strong>for</strong>m <strong>in</strong> a<br />

boiler (Bailey, 1998). The o<strong>the</strong>r ratios assume <strong>in</strong>teraction <strong>of</strong> iron and calcium along with o<strong>the</strong>r<br />

elements. Interaction <strong>of</strong> iron and calcium <strong>in</strong> a blend, when each m<strong>in</strong>eral is present <strong>in</strong> separate <strong>coal</strong>s,<br />

may still produce such slagg<strong>in</strong>g behaviour. However, study <strong>of</strong> <strong>the</strong> test data <strong>of</strong> Australian <strong>coal</strong> blends<br />

presented by Su does not seem to <strong>in</strong>dicate any value <strong>of</strong> this <strong>in</strong>dex.<br />

Figure 26: The FeO-CaO-MgO equilibrium phase diagram show<strong>in</strong>g <strong>the</strong> eutectic at 1160°C<br />

A2.7 Base to acid ratio <strong>for</strong> predict<strong>in</strong>g slagg<strong>in</strong>g behaviour:<br />

The base to acid ratio is commonly used to predict <strong>the</strong> slagg<strong>in</strong>g propensity <strong>of</strong> a <strong>coal</strong>. It is def<strong>in</strong>ed as:<br />

% Fe2O3<br />

+ % CaO + % MgO + % Na2O<br />

+ % K 2O<br />

% SiO + % Al O + % TiO<br />

2<br />

2<br />

3<br />

2<br />

A value <strong>of</strong> <strong>the</strong> base to acid ratio between 0.4 and 0.7 <strong>in</strong>dicates a high slagg<strong>in</strong>g propensity. Values<br />

outside this range <strong>in</strong>dicate a lesser likelihood to slag.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 91<br />

.


The base to acid ratio assumes that <strong>the</strong> addition <strong>of</strong> acidic components to an ash <strong>in</strong>creases <strong>the</strong> ash<br />

melt<strong>in</strong>g temperature. Addition <strong>of</strong> basic components <strong>the</strong>re<strong>for</strong>e decreases <strong>the</strong> melt<strong>in</strong>g temperature <strong>of</strong><br />

<strong>the</strong> ash and <strong>the</strong> likelihood <strong>of</strong> severe slagg<strong>in</strong>g. In general, this pr<strong>in</strong>ciple is true <strong>for</strong> <strong>coal</strong> ashes.<br />

However, <strong>the</strong> basic components <strong>of</strong> <strong>the</strong> ash will effect <strong>the</strong> melt<strong>in</strong>g temperature <strong>of</strong> <strong>the</strong> ash <strong>in</strong> different<br />

ways and to different degrees, mak<strong>in</strong>g comparison <strong>of</strong> <strong>coal</strong> ashes <strong>of</strong> significantly different composition<br />

impossible. As <strong>the</strong> <strong>in</strong>dex is based solely on <strong>the</strong> ash oxide analysis it ignores <strong>the</strong> impact <strong>of</strong> p<strong>art</strong>icle<br />

size, which can effect <strong>the</strong> deposition <strong>in</strong> a furnace, or <strong>the</strong> impact <strong>of</strong> p<strong>art</strong>icular m<strong>in</strong>erals <strong>in</strong> <strong>coal</strong>, which<br />

are usually responsible <strong>for</strong> <strong>in</strong>itiat<strong>in</strong>g deposition. Su (1999) found no correlation between slagg<strong>in</strong>g <strong>in</strong><br />

test furnaces and <strong>the</strong> base to acid ratio <strong>of</strong> Australian <strong>coal</strong>s or blends <strong>of</strong> Australian <strong>coal</strong>s.<br />

A2.8 B/A x %S(db) to predict slagg<strong>in</strong>g propensity<br />

An <strong>in</strong>dex <strong>for</strong> slagg<strong>in</strong>g that multiplies <strong>the</strong> base to acid ratio with <strong>the</strong> sulphur content <strong>of</strong> <strong>the</strong> <strong>coal</strong>, on a<br />

dry basis, is sometimes used when <strong>the</strong> proportion <strong>of</strong> iron <strong>in</strong> <strong>the</strong> ash, as measured by XRF, is greater<br />

than <strong>the</strong> comb<strong>in</strong>ed proportions <strong>of</strong> calcium and magnesium. This <strong>in</strong>dex assumes all sulphur is present<br />

as pyrite, which is <strong>in</strong>appropriate <strong>for</strong> Australian <strong>coal</strong>s.<br />

Slagg<strong>in</strong>g deposits will <strong>of</strong>ten <strong>for</strong>m from a deposit produced by p<strong>art</strong>icles collect<strong>in</strong>g on a surface and<br />

<strong>the</strong>n melt<strong>in</strong>g to produce a slag. Once molten, most p<strong>art</strong>icles that impact on <strong>the</strong> deposit will adhere to<br />

<strong>the</strong> deposit. But <strong>the</strong> composition <strong>of</strong> <strong>the</strong> slag may not be equivalent to <strong>the</strong> ash composition, depend<strong>in</strong>g<br />

on <strong>the</strong> deposition mechanism, ensur<strong>in</strong>g that <strong>in</strong>dices such as those presented here provide an<br />

<strong>in</strong>adequate comparison <strong>of</strong> slagg<strong>in</strong>g propensity.<br />

A2.9 Emission <strong>in</strong>dex:<br />

This is <strong>the</strong> amount <strong>of</strong> SO2 produced per MJ <strong>of</strong> energy <strong>in</strong>put <strong>in</strong>to a burner (measured on an<br />

experimental scale). It is non-l<strong>in</strong>ear <strong>in</strong> respect <strong>of</strong> blend<strong>in</strong>g ratio.<br />

A2.10 Erosion <strong>in</strong>dices<br />

Two <strong>the</strong>ories have been proposed to expla<strong>in</strong> <strong>the</strong> erosion observed <strong>in</strong> PF boilers. Erosion by hard<br />

p<strong>art</strong>icles, consist<strong>in</strong>g ma<strong>in</strong>ly <strong>of</strong> qu<strong>art</strong>z, is based on <strong>the</strong> micro-mach<strong>in</strong><strong>in</strong>g <strong>the</strong>ory, where impact<strong>in</strong>g<br />

p<strong>art</strong>icles are believed to cut <strong>in</strong>to <strong>the</strong> surface. The second <strong>the</strong>ory is <strong>the</strong> platelet <strong>the</strong>ory that suggests<br />

that <strong>the</strong> metal de<strong>for</strong>ms when <strong>the</strong> hard p<strong>art</strong>icles impact <strong>in</strong>to it. Cont<strong>in</strong>ual de<strong>for</strong>mation eventually causes<br />

some <strong>the</strong> surface to break away. In both <strong>the</strong>ories, p<strong>art</strong>icle size, density and hardness strongly<br />

<strong>in</strong>fluence <strong>the</strong> degree <strong>of</strong> erosion caused by m<strong>in</strong>eral species <strong>in</strong> <strong>the</strong> ash. Larger, denser p<strong>art</strong>icles carry<br />

more momentum, which results <strong>in</strong> more energy that can cause <strong>the</strong> p<strong>art</strong>icle to cut <strong>in</strong>to <strong>the</strong> surface. The<br />

hardness <strong>of</strong> <strong>the</strong> material will determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> p<strong>art</strong>icle de<strong>for</strong>ms <strong>the</strong> surface on which it is<br />

impact<strong>in</strong>g, or whe<strong>the</strong>r it will de<strong>for</strong>m itself. Materials s<strong>of</strong>ter than <strong>the</strong> tube walls will de<strong>for</strong>m ra<strong>the</strong>r than<br />

affect <strong>the</strong> surface. P<strong>art</strong>icles that have s<strong>of</strong>tened due to <strong>the</strong>ir temperature (i.e. have begun to melt) will<br />

be less likely to abrade any surface. Qu<strong>art</strong>z, especially unfused qu<strong>art</strong>z, is extremely hard.<br />

Alum<strong>in</strong>osilicates are also hard materials and are denser than qu<strong>art</strong>z. They may <strong>the</strong>re<strong>for</strong>e play a role <strong>in</strong><br />

erosion.<br />

P<strong>art</strong>icles <strong>of</strong> qu<strong>art</strong>z encapsulated <strong>in</strong> <strong>coal</strong> will experience higher temperatures than p<strong>art</strong>icles not<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>coal</strong> matrix. There<strong>for</strong>e p<strong>art</strong>icles <strong>in</strong> <strong>the</strong> <strong>coal</strong> matrix are more likely to be s<strong>of</strong>ter and react<br />

with o<strong>the</strong>r m<strong>in</strong>erals which are also <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>coal</strong>, result<strong>in</strong>g <strong>in</strong> s<strong>of</strong>t or molten p<strong>art</strong>icles that will not<br />

abrade a surface.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 92


As <strong>the</strong> erosion <strong>in</strong>dices are generally predicted from an ash analysis, based on <strong>the</strong> proportion <strong>of</strong> hard<br />

materials <strong>in</strong> <strong>the</strong> <strong>coal</strong>, <strong>the</strong> <strong>in</strong>dices are additive <strong>for</strong> blends. The follow<strong>in</strong>g erosion <strong>in</strong>dices are commonly<br />

used (Gupta, 1998, Raask, 1985):<br />

Silica: SiO2 content as per <strong>the</strong> standard ash analysis. This <strong>in</strong>dex assumes all silica is erosive and<br />

<strong>the</strong>re<strong>for</strong>e will over-predict <strong>the</strong> erosive nature <strong>of</strong> many <strong>coal</strong>s.<br />

Conventional erosion <strong>in</strong>dex: E=SiO2-1.5*Al2O3. This <strong>in</strong>dex assumes a set proportion <strong>of</strong> SiO2 is locked<br />

<strong>in</strong> clays (<strong>in</strong> a ratio <strong>of</strong> 1.5 to 1). The rema<strong>in</strong>der is assumed to be free qu<strong>art</strong>z. This proportion was based<br />

on British <strong>coal</strong> samples and has been show to represent American <strong>coal</strong>s relatively well, though it has<br />

not been compared with Australian <strong>coal</strong>s.<br />

Effective silica: The amount <strong>of</strong> silica SiO2 (wt.%) not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>coal</strong> matrix. This is <strong>of</strong>ten<br />

expressed as a percentage <strong>of</strong> <strong>the</strong> total SiO2 content (based on <strong>the</strong> ash analysis).<br />

The Black Coal CRC Ash Effect Predictor uses CCSEM analysis to characterise <strong>the</strong> coarse excluded<br />

qu<strong>art</strong>z, and <strong>the</strong>re<strong>for</strong>e erosion.<br />

Project 3.16 State <strong>of</strong> The Art Review <strong>of</strong> Coal Blend<strong>in</strong>g <strong>for</strong> Power Generation Page 93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!