15.07.2013 Views

Br ¨uckner-Hartree-Fock with Realistic Nucleon-Nucleon Potentials

Br ¨uckner-Hartree-Fock with Realistic Nucleon-Nucleon Potentials

Br ¨uckner-Hartree-Fock with Realistic Nucleon-Nucleon Potentials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Br</strong>ückner-<strong>Hartree</strong>-<strong>Fock</strong> <strong>with</strong><br />

<strong>Realistic</strong> <strong>Nucleon</strong>-<strong>Nucleon</strong> <strong>Potentials</strong><br />

Patrick Hedfeld<br />

Institut für Kernphysik, TU Darmstadt


Overview<br />

■ <strong>Realistic</strong> <strong>Potentials</strong> & Effective Interactions<br />

■ Unitary Correlation Operator Method (UCOM)<br />

■ <strong>Hartree</strong>-<strong>Fock</strong> + Perturbation Theory<br />

■ <strong>Br</strong>ückner-<strong>Hartree</strong>-<strong>Fock</strong> (BHF)<br />

■ Summary & Outlook


<strong>Realistic</strong> <strong>Potentials</strong> & Effective Interactions<br />

<strong>Realistic</strong> <strong>Potentials</strong><br />

■ QCD motivated: based on meson exchange picture or chiral effective field<br />

theory<br />

■ fitted to properties of the deuteron and phase shifts<br />

■ need a short-range repulsion and tensor force<br />

Examples: AV18, CD Bonn, Chiral N 3 LO . . .<br />

Effective Interactions<br />

■ simple model spaces cannot describe short-range correlations<br />

■ adapt realistic potentials to<br />

model spaces while conserving phase shifts of the realistic potential


Unitary Correlation Operator Method<br />

Correlation Operator<br />

introduce short-range correlations by<br />

means of a unitary transformation <strong>with</strong> respect<br />

to the relative coordinates of all pairs<br />

<br />

C = exp[−i G] = exp − i <br />

gij Correlated States<br />

<br />

ψ = C ψ <br />

i


φ <br />

.<br />

<br />

φ r Cr<br />

.<br />

<br />

φ r CΩCr<br />

.<br />

Correlated States: The Deuteron<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

L = 0<br />

1 2 3 4 5<br />

r [fm]<br />

1 2 3 4 5<br />

L = 0 r [fm]<br />

L = 2<br />

1 2 3 4 5<br />

r [fm]<br />

central<br />

correlations<br />

tensor<br />

correlations<br />

[fm]<br />

.<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

s(r)<br />

1 2 3 4<br />

r [fm]<br />

ϑ(r)<br />

. 0<br />

1<br />

only short-range tensor<br />

correlations treated by CΩ<br />

2 3<br />

r [fm]<br />

4


Binding Energies & Radii<br />

E/A [MeV]<br />

.<br />

Rch [fm]<br />

.<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

5<br />

4<br />

3<br />

2<br />

1<br />

4 He 16O<br />

24O 40<br />

34Si<br />

Ca48Ca48<br />

Ni56Ni68<br />

Ni78Ni88<br />

Sr90Zr100<br />

Sn114Sn<br />

132Sn146Gd 208Pb experiment ● HF


.<br />

.<br />

Binding Energies & Radii<br />

E/A [MeV]<br />

Rch [fm]<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

5<br />

4<br />

3<br />

2<br />

1<br />

4 He 16O<br />

24O 40<br />

34Si<br />

Ca48Ca48<br />

Ni56Ni68<br />

Ni78Ni88<br />

Sr90Zr100<br />

Sn114Sn<br />

132Sn146Gd 208Pb experiment ● HF HF+PT2 RPA<br />

long-range<br />

correlations are<br />

perturbative<br />

(PT, BHF, RPA,...)


Bethe-Goldstone-Equation<br />

Equation<br />

G ω = W + W 1 Q<br />

G<br />

2 ω − H0<br />

Implementation<br />

Inversion<br />

Iteration<br />

G ω = W + W 1<br />

G ω = [ − 1<br />

2<br />

Q<br />

2 ω − H0<br />

Explanation<br />

W = T − Tcm + VUCOM + VC<br />

ω : starting energy<br />

Q : Pauli operator<br />

H0 : single particle Hamiltonian<br />

Q<br />

W]<br />

ω − H0<br />

−1 W<br />

W + W 1<br />

4<br />

Q<br />

ω − H0<br />

W Q<br />

W + . . .<br />

ω − H0


Correlations I<br />

Vab[MeV]<br />

.<br />

10<br />

5<br />

0<br />

-5<br />

ǫFermi = 1ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV]<br />

5 10<br />

ǫmax=6ω<br />

J = 1<br />

T = 0


Correlations II<br />

V ab[MeV]<br />

ǫmax=6ω<br />

.<br />

V ab[MeV]<br />

.<br />

10<br />

5<br />

0<br />

-5<br />

ǫ Fermi = 6ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV] 5 10<br />

10<br />

5<br />

0<br />

-5<br />

ǫ Fermi = 3ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV] 5 10<br />

V ab[MeV]<br />

.<br />

V ab[MeV]<br />

.<br />

10<br />

5<br />

0<br />

-5<br />

ǫ Fermi = 5ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV] 5 10<br />

10<br />

5<br />

0<br />

-5<br />

ǫ Fermi = 2ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV] 5 10<br />

V ab[MeV]<br />

.<br />

V ab[MeV]<br />

.<br />

10<br />

5<br />

0<br />

-5<br />

ǫ Fermi = 4ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV] 5 10<br />

10<br />

5<br />

0<br />

-5<br />

ǫ Fermi = 1ω<br />

-10<br />

-10 -5 0<br />

Gab[MeV] 5 10


Fully Self-Consistent BHF<br />

until EB<br />

converged<br />

single particle<br />

energies<br />

and states<br />

<strong>Hartree</strong>-<strong>Fock</strong><br />

Bethe-<br />

Goldstone-<br />

Equation<br />

(ω)<br />

VUCOM<br />

as first input<br />

matrix elements<br />

of the effective<br />

interaction


Results<br />

E/A[MeV]<br />

.<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

EExp<br />

40 Ca<br />

-10<br />

2 4 6 8 10<br />

ǫmax ω<br />

EExp<br />

90 Zr<br />

4 6 8 10<br />

ǫmax ω<br />

EExp<br />

208 Pb<br />

4 6 8 10<br />

ǫmax ω


ǫmax=10ω<br />

Binding Energy & Radii<br />

preliminary<br />

results<br />

.<br />

.<br />

E/A[MeV]<br />

Rch[fm]<br />

-4<br />

-6<br />

-8<br />

5<br />

4<br />

3<br />

2<br />

4He16O 24O34Si 40Ca48Ca 56Ni 88Sr90Zr 100Sn114Sn 132Sn146Gd 208Pb 68Ni<br />

experiment ● HF BHF HF+PT2


Summary & Outlook<br />

■ UCOM describes short-range correlations and ’tames’ the<br />

interaction; can be used in HF (BHF, RPA . . . )<br />

■ fully self-consistent BHF based on the realistic two body interaction<br />

VUCOM<br />

■ results for the energy <strong>with</strong> BHF are in good agreement <strong>with</strong><br />

experiment and second-order perturbation theory but radii<br />

are not much improved<br />

■ Outlook: other ’strategies’ for the starting energy, Padè approximants<br />

in the iterative scheme


Epilogue...<br />

My Collaborators<br />

■ R. Roth, P. Papakonstantinou, H.Hergert, A. Zapp<br />

Institut für Kernphysik, TU Darmstadt<br />

References<br />

■ R. Roth, P. Papakonstantinou, N.Paar, and H. Hergert, Phys. Rev. C73, 044312 (2006)<br />

■ R. Roth, H.Hergert, P. Papakonstantinou, T.Neff and H. Feldmeier, Phys. Rev. C72, 034002 (2005)<br />

■ C. Barbieri, N.Paar, R. Roth and P. Papakonstantinou, arXiv: nucl-th/0608011 (2006)<br />

■ http://crunch.ikp.physik.tu-darmstadt.de/tnp/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!