15.07.2013 Views

Theoretical study of natural ventilation flux in a single span ...

Theoretical study of natural ventilation flux in a single span ...

Theoretical study of natural ventilation flux in a single span ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

B A<br />

S E Biotechnol. Agron. Soc. Environ. 1998 2 (4), 256–263<br />

<strong>Theoretical</strong> <strong>study</strong> <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> <strong>flux</strong> <strong>in</strong> a s<strong>in</strong>gle<br />

<strong>span</strong> greenhouse<br />

Shaoj<strong>in</strong> Wang, Jules Deltour<br />

Unité de Physique et Chimie physique. Faculté universitaire des Sciences agronomiques de Gembloux. Avenue de la<br />

Faculté, 8. B–5030 Gembloux (Belgique).<br />

Reçu le 17 mars 1998, accepté le 4 ju<strong>in</strong> 1998.<br />

The <strong>ventilation</strong> <strong>flux</strong> was calculated for s<strong>in</strong>gle <strong>span</strong> greenhouses with s<strong>in</strong>gle longitud<strong>in</strong>al ro<strong>of</strong> open<strong>in</strong>g and with both<br />

longitud<strong>in</strong>al ro<strong>of</strong> and vertical side wall open<strong>in</strong>gs. Thermal buoyancy and w<strong>in</strong>d pressure contributions were separately<br />

analysed and then comb<strong>in</strong>ed for lee-side as well as for w<strong>in</strong>dward side <strong>ventilation</strong>.For the s<strong>in</strong>gle ro<strong>of</strong> w<strong>in</strong>dow, the temperature<br />

effect, proportional to the square root <strong>of</strong> the temperature difference, becomes negligible when compared to the w<strong>in</strong>d effect,<br />

proportional to the w<strong>in</strong>d speed, as soon as this is higher than 1.5 m.s -1.When a vertical side wall open<strong>in</strong>g was added to the<br />

ro<strong>of</strong> w<strong>in</strong>dow, the temperature effect was enhanced by the so called chimney effect, l<strong>in</strong>ked with the vertical distance between<br />

the two open<strong>in</strong>gs, <strong>in</strong> such a way that it becomes negligible only for an external w<strong>in</strong>d speed higher than 4 m.s -1.<br />

Keywords. Greenhouse, <strong>natural</strong> <strong>ventilation</strong>, w<strong>in</strong>d and temperature effects.<br />

Étude théorique du <strong>flux</strong> de <strong>ventilation</strong> naturelle dans une serre à une seule chapelle. On calcule le <strong>flux</strong> de <strong>ventilation</strong> de<br />

serres à une seule chapelle équipées, soit d’une ouverture longitud<strong>in</strong>ale faîtière unique, soit d’une ouverture faîtière et d’une<br />

ouverture longitud<strong>in</strong>ale dans la paroi latérale. On analyse séparément les contributions de l’effet de température et de la<br />

pression dynamique du vent pour les comb<strong>in</strong>er ensuite, tant dans le cas de la <strong>ventilation</strong> sous le vent que face au vent. Pour<br />

l’ouverture faîtière, l’effet de température, proportionnel à la rac<strong>in</strong>e carrée de la différence de température, devient<br />

négligeable comparé à l’effet du vent, proportionnel à sa vitesse, dés que celle-ci dépasse 1,5 m.s -1 . Quand une ouverture<br />

latérale est ajoutée à l’ouverture faîtière, l’effet de température est amplifié par l’effet de chem<strong>in</strong>ée lié à la distance verticale<br />

entre ces deux ouvertures et il ne devient négligeable que pour une vitesse du vent supérieure à 4 m.s -1 .<br />

Mots-clés. Serre, <strong>ventilation</strong> naturelle, effets du vent et de la température.<br />

INTRODUCTION<br />

Natural <strong>ventilation</strong> <strong>in</strong> greenhouses has been studied<br />

theoretically and experimentally for a long time. The<br />

two ma<strong>in</strong> driv<strong>in</strong>g forces <strong>of</strong> air exchange were identified<br />

as the thermal buoyancy and the w<strong>in</strong>d <strong>in</strong>duced forces<br />

(or stack and w<strong>in</strong>d effects). In order to have a better<br />

understand<strong>in</strong>g <strong>of</strong> the <strong>ventilation</strong> mechanism, these<br />

driv<strong>in</strong>g forces were treated separately and two particular<br />

s<strong>in</strong>gle <strong>span</strong> greenhouses were <strong>in</strong>vestigated: the s<strong>in</strong>gle<br />

sided longitud<strong>in</strong>al ro<strong>of</strong> open<strong>in</strong>g case and the case <strong>of</strong> a<br />

ro<strong>of</strong> open<strong>in</strong>g with a longitud<strong>in</strong>al side wall open<strong>in</strong>g.<br />

The theories <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> were developed<br />

and understood for cases <strong>in</strong> which only thermal<br />

buoyancy or only w<strong>in</strong>d pressure exists <strong>in</strong> build<strong>in</strong>gs.<br />

The calculation <strong>of</strong> <strong>ventilation</strong> rate only due to thermal<br />

buoyancy was performed by Emswiler (1962), Bruce<br />

(1977) and Randall and Patal (1994). The w<strong>in</strong>d effect<br />

on the <strong>ventilation</strong> was determ<strong>in</strong>ed by the <strong>in</strong>ternal and<br />

external pressure coefficients as functions <strong>of</strong> w<strong>in</strong>d<br />

direction and the build<strong>in</strong>g configuration (Bruce, 1975;<br />

Shrestha et al., 1993). The comb<strong>in</strong>ed temperature and<br />

w<strong>in</strong>d effects were carried out <strong>in</strong> different ways (Lee<br />

et al., 1982; Perera, 1986; Zhang et al., 1989; Albright<br />

et al., 1992; Walker, Wilson, 1993). In greenhouses, a<br />

few studies for predict<strong>in</strong>g <strong>ventilation</strong> <strong>flux</strong> were<br />

available for a ro<strong>of</strong> ventilator (Bot, 1983; De Jong,<br />

1990; Boulard, Baille, 1995), or for both ro<strong>of</strong> and side<br />

open<strong>in</strong>gs (Kozai, Sase, 1978). From these studies we<br />

might conclude that the proposed calculations were<br />

restricted with<strong>in</strong> narrow ranges for particular houses<br />

with special vents. Thus the results were not completely<br />

cover<strong>in</strong>g the various situations. The complicated<br />

<strong>in</strong>teractions between temperature and w<strong>in</strong>d effects<br />

were not fully clarified.<br />

The purpose <strong>of</strong> this paper was to develop a method<br />

to calculate the <strong>ventilation</strong> <strong>flux</strong> due to the effects <strong>of</strong><br />

both thermal buoyancy and w<strong>in</strong>d pressure based on the<br />

follow<strong>in</strong>g assumptions: steady state, the air be<strong>in</strong>g an<br />

ideal, <strong>in</strong>viscid and <strong>in</strong>compressible gas as well as uniform<br />

temperature distribution <strong>in</strong> the whole greenhouse. This<br />

<strong>study</strong> focused firstly on the greenhouse with a s<strong>in</strong>gle


<strong>Theoretical</strong> <strong>study</strong> <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> <strong>flux</strong> 257<br />

longitud<strong>in</strong>al ro<strong>of</strong> open<strong>in</strong>g and then on the greenhouse<br />

with both ro<strong>of</strong> and side wall open<strong>in</strong>gs.<br />

In the former case, the <strong>ventilation</strong> <strong>flux</strong>es <strong>in</strong>duced by<br />

temperature or w<strong>in</strong>d effect were analysed and compared<br />

<strong>in</strong> detail on the basis <strong>of</strong> <strong>in</strong>terior-exterior air temperature<br />

difference, the absolute temperatures, the ro<strong>of</strong> open<strong>in</strong>g<br />

angle and the external w<strong>in</strong>d speed. Four different<br />

methods to comb<strong>in</strong>e the temperature and w<strong>in</strong>d effects<br />

were compared.<br />

In the latter case, the chimney effect due to the air<br />

temperature difference between <strong>in</strong>side and outside <strong>of</strong><br />

the greenhouse was analysed as a function <strong>of</strong> the<br />

distance between the ro<strong>of</strong> and the side wall open<strong>in</strong>gs<br />

and the open<strong>in</strong>g angles <strong>of</strong> both w<strong>in</strong>dows. The comb<strong>in</strong>ed<br />

effect <strong>of</strong> temperature and w<strong>in</strong>d on the <strong>ventilation</strong> was<br />

f<strong>in</strong>ally <strong>in</strong>vestigated by the pressure distribution method.<br />

GREENHOUSE WITH A SINGLE<br />

LONGITUDINAL ROOF OPENING<br />

The simplest situation <strong>in</strong> greenhouses, as far as <strong>natural</strong><br />

<strong>ventilation</strong> is concerned, is the s<strong>in</strong>gle ro<strong>of</strong> w<strong>in</strong>dow<br />

with a homogeneous temperature field <strong>in</strong>side (T i ) and<br />

outside (T e ) (Figure 1). The studied greenhouse was a<br />

s<strong>in</strong>gle <strong>span</strong> with a ro<strong>of</strong> angle β = 22°. The w<strong>in</strong>dow was<br />

characterized by a width (H 0 ) and an open<strong>in</strong>g angle α.<br />

Its length (L 0 ) was the greenhouse overall length. See<br />

also list <strong>of</strong> symbols at the end <strong>of</strong> the article.<br />

Temperature effect<br />

When the longitud<strong>in</strong>al greenhouse w<strong>in</strong>dow was<br />

open, the air exchange due to temperature eff e c t<br />

o c c u r r e dma<strong>in</strong>ly through the front aperture <strong>of</strong> vertical<br />

height h with length L 0 and <strong>in</strong>creased with the<br />

open<strong>in</strong>g angle. The thermal pressure <strong>in</strong> the greenhouse<br />

w<strong>in</strong>dow varied with the distance z (Figure 1) and the<br />

pressure difference at each level <strong>in</strong> the open<strong>in</strong>g,<br />

Figure 1. Scheme <strong>of</strong> an open<strong>in</strong>g under the <strong>ventilation</strong><br />

w<strong>in</strong>dow on the ro<strong>of</strong> — Schéma de l’ouverture sous une<br />

fenêtre de <strong>ventilation</strong> en toiture.<br />

between <strong>in</strong>- and outside due to density difference<br />

resulted <strong>in</strong> air exchange and was given by:<br />

( )<br />

ΔP ( z)<br />

= − ρ − ρ<br />

T i e<br />

=<br />

( )<br />

T e<br />

ρ T i − T e<br />

Accord<strong>in</strong>g to the mass balance (<strong>in</strong>flow and outflow<br />

are to be equal), the neutral pressure level (NPL) will<br />

be found where the <strong>in</strong>terior and exterior pressures<br />

become equal. Therefore, the <strong>ventilation</strong> <strong>flux</strong> can be<br />

calculated by <strong>in</strong>tegrat<strong>in</strong>g the air speed through the<br />

lower part <strong>of</strong> the open<strong>in</strong>g (below NPL) or the upper<br />

part <strong>of</strong> the open<strong>in</strong>g (above NPL). The distribution <strong>of</strong><br />

air speed v(z) through the open<strong>in</strong>g can be deduced<br />

from equation (1):<br />

2<br />

v( z) = C d PT ( z)<br />

ρ Δ<br />

= C<br />

d<br />

2 ⋅ g ⋅ ΔT<br />

z<br />

T<br />

where the discharge coefficient C d is a function <strong>of</strong> the<br />

w<strong>in</strong>dow characteristics. Here it was found to be 0.65<br />

by Bot (1983) for the greenhouse ro<strong>of</strong> open<strong>in</strong>g and<br />

was used aga<strong>in</strong> by Boulard and Baille (1995) for the<br />

greenhouse cont<strong>in</strong>uous ro<strong>of</strong> vents. The outgo<strong>in</strong>g<br />

<strong>ventilation</strong> <strong>flux</strong> per unit length <strong>of</strong> the w<strong>in</strong>dow through<br />

the upper part is:<br />

h<br />

1<br />

φ = v<br />

v,1 ∫ ( z)dz<br />

0<br />

and the <strong>in</strong>com<strong>in</strong>g <strong>ventilation</strong> <strong>flux</strong> per unit length<br />

through the lower part is:<br />

0<br />

φ = ∫v( z)dz<br />

v,2 (4)<br />

−h<br />

2<br />

Due to the cont<strong>in</strong>uity equation:<br />

e<br />

g ⋅ z<br />

g ⋅ z<br />

= m z with m = C<br />

φ v,1 +φ v, 2 = 0<br />

2 ⋅ g ⋅ ΔT<br />

T<br />

Comb<strong>in</strong>ation <strong>of</strong> the equations (2) – (5) yields:<br />

h<br />

h1 = h 2 =<br />

2<br />

d<br />

e<br />

(1)<br />

(2)<br />

(3)<br />

(5)<br />

(6)


258 Biotechnol. Agron. Soc. Environ. 1998 2 (4), 256–263 S. Wang, J. Deltour<br />

This means that the NPL <strong>of</strong> a s<strong>in</strong>gle open<strong>in</strong>g is<br />

at mid-height. Here the height h <strong>of</strong> the ro<strong>of</strong> front<br />

aperture is a function <strong>of</strong> the open<strong>in</strong>g angle accord<strong>in</strong>g<br />

to figure 2:<br />

Therefore, from equations (2), (3), (6) and (7), the<br />

<strong>ventilation</strong> <strong>flux</strong> per unit length can be written:<br />

φ v = m<br />

3 2 H 3/2<br />

[ s<strong>in</strong> β−s<strong>in</strong> ( β −α)<br />

]<br />

0<br />

3/2<br />

H 0 s<strong>in</strong>(β-α)<br />

[ s<strong>in</strong>β<br />

−s<strong>in</strong>(<br />

β − ) ]<br />

h = H 0 α<br />

(7)<br />

H 0<br />

(8)<br />

H 0 s<strong>in</strong>β<br />

Ro<strong>of</strong><br />

Figure 2. Vertical height <strong>of</strong> the front aperture <strong>of</strong> the ro<strong>of</strong><br />

open<strong>in</strong>g — Hauteur verticale de l’ouverture de l’ouvrant<br />

en toiture.<br />

The <strong>ventilation</strong> <strong>flux</strong> as a function <strong>of</strong> ro<strong>of</strong> open<strong>in</strong>g<br />

angle was shown <strong>in</strong> figure 3 when the temperature<br />

difference between the <strong>in</strong>terior and exterior air was<br />

5K, 10K or 15K, respectively, with 273.15K or<br />

283.15K as the exterior air temperature. We could see<br />

that the <strong>ventilation</strong> <strong>flux</strong> <strong>in</strong>creased with the open<strong>in</strong>g<br />

angle α and the temperature difference ΔT, but the<br />

relationship with both <strong>of</strong> them was non-l<strong>in</strong>ear. The<br />

<strong>ventilation</strong> <strong>flux</strong> at the exterior air temperature<br />

273.15K was a little larger than that at 283.15K. This<br />

d i fference only reached 0.0001 m 3. s - 1. m - 1 for the<br />

extreme conditions (α = 40°, ΔT = 15K). The absolute<br />

value <strong>of</strong> the air temperature had a very small effect on<br />

the <strong>ventilation</strong> <strong>flux</strong> and could thus be neglected.<br />

Besides, for <strong>in</strong>creas<strong>in</strong>g open<strong>in</strong>g angles, the<br />

enhancement <strong>of</strong> the <strong>ventilation</strong> <strong>flux</strong> will reduce the<br />

temperature difference and the <strong>in</strong>teraction between the<br />

two processes will give an effective <strong>flux</strong> lower than<br />

the calculated one for the case when the <strong>in</strong>terior air<br />

temperature is ma<strong>in</strong>ta<strong>in</strong>ed constant.<br />

W<strong>in</strong>d effect<br />

The w<strong>in</strong>d action on the greenhouses appeared as a<br />

pressure distribution around them: a positive w<strong>in</strong>d<br />

pressure result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>flow <strong>of</strong> air and a negative<br />

one result<strong>in</strong>g <strong>in</strong> an outflow <strong>of</strong> air. The <strong>ventilation</strong> <strong>flux</strong><br />

(half <strong>in</strong>, half out) per unit length due to the w<strong>in</strong>d effect<br />

<strong>in</strong> a s<strong>in</strong>gle open<strong>in</strong>g can be written as:<br />

1/2<br />

⎛ 2⎞<br />

Aw 1/2<br />

φ v = C d⎜<br />

⎟ ΔPW ⎝ ρ⎠<br />

L0 with the w<strong>in</strong>d pressure:<br />

ΔP W = C p<br />

where the surface w<strong>in</strong>d pressure loss coefficient C p<br />

was given a value <strong>of</strong> -0.3 for the ro<strong>of</strong> w<strong>in</strong>dow <strong>of</strong> a<br />

greenhouse as proposed by De Jong (1990) and C d =<br />

0.65 as <strong>in</strong> equation (2). The front aperture area <strong>of</strong> the<br />

ro<strong>of</strong> w<strong>in</strong>dow was calculated by means <strong>of</strong> equation (7):<br />

A w = L0<br />

⋅ H 0<br />

Ro<strong>of</strong> open<strong>in</strong>g angle (°)<br />

Figure 3. Ventilation <strong>flux</strong> due to the temperature effect as a<br />

function <strong>of</strong> the open<strong>in</strong>g angle for the s<strong>in</strong>gle ro<strong>of</strong> w<strong>in</strong>dow —<br />

Flux de <strong>ventilation</strong> sous l’effet de température en fonction<br />

de l’angle d’ouverture du seul ouvrant de toiture.<br />

1 2<br />

ρ⋅ u<br />

2<br />

[ s<strong>in</strong>β<br />

− s<strong>in</strong>( β − α)<br />

]<br />

It was shown by figure 4 that the <strong>ventilation</strong> <strong>flux</strong><br />

due to the w<strong>in</strong>d effect appeared to be proportional to<br />

the ro<strong>of</strong> open<strong>in</strong>g angle and <strong>in</strong>creased, accord<strong>in</strong>g to<br />

equations (9) and (10), l<strong>in</strong>early with the w<strong>in</strong>d speed.<br />

Comb<strong>in</strong>ed w<strong>in</strong>d and temperature effects<br />

(9)<br />

(10)<br />

(11)<br />

The above discussion <strong>of</strong> the w<strong>in</strong>d and temperature<br />

effects on the <strong>ventilation</strong> was carried out separately<br />

and the isolated effects on the <strong>ventilation</strong> were fairly<br />

well understood. In fact, the air exchange was usually<br />

due to the comb<strong>in</strong>ed w<strong>in</strong>d and temperature effects. In<br />

order to solve this problem, an iterative method (Kozai,


<strong>Theoretical</strong> <strong>study</strong> <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> <strong>flux</strong> 259<br />

Sase, 1978; Vandaele, Wouters, 1994) had been <strong>of</strong>ten<br />

used to obta<strong>in</strong> the total <strong>in</strong>ternal pressure giv<strong>in</strong>g rise to<br />

the actual total pressure difference across the open<strong>in</strong>g.<br />

To avoid the use <strong>of</strong> low efficient iterative procedures<br />

several simple methods <strong>of</strong> superpos<strong>in</strong>g the temperature<br />

and w<strong>in</strong>d effects had been proposed as follows.<br />

M e t h o d1 ( M 1 ) (Boulard, Baille, 1995). The <strong>ventilation</strong><br />

<strong>flux</strong> can be <strong>in</strong>tegrated over the half front aperture area<br />

accord<strong>in</strong>g to the sum <strong>of</strong> thermal and w<strong>in</strong>d pressure:<br />

s<strong>in</strong>ce<br />

then<br />

ΔP = ΔP T +ΔP W<br />

= ρ⋅ΔT<br />

g⋅z+Cp Te φ<br />

φ v = C d ⋅ T ⎛<br />

e g⋅ΔT<br />

3g ⋅ΔT ⎝ Te ⎜<br />

⎡<br />

⎢<br />

⎣ ⎢<br />

v<br />

= C<br />

d<br />

∫ Δ<br />

h / 2<br />

2 1<br />

P<br />

ρ<br />

0<br />

h+Cp⋅u 2⎞<br />

⎟<br />

⎠<br />

3/2<br />

( ) 3/2<br />

− C p⋅u 2<br />

Method 2 (M2) (Walker, Wilson, 1993). The simplest<br />

method <strong>of</strong> comb<strong>in</strong><strong>in</strong>g φ v, T and φ v, W was to add<br />

equations (8) and (9):<br />

φ v = φ v,T + φ v ,W<br />

=<br />

m<br />

3 2 H 3 /2<br />

0<br />

+ 1<br />

2 C d<br />

Ro<strong>of</strong> open<strong>in</strong>g angle (°)<br />

Figure 4. Ventilation <strong>flux</strong> due to the w<strong>in</strong>d effect as a<br />

function <strong>of</strong> the ro<strong>of</strong> open<strong>in</strong>g angle for the s<strong>in</strong>gle ro<strong>of</strong><br />

w<strong>in</strong>dow — Flux de <strong>ventilation</strong> sous l’effet du vent en<br />

fonction de l’angle d’ouverture du seul ouvrant de toiture.<br />

1 2<br />

ρ⋅ u<br />

2<br />

/ 2<br />

dz<br />

[ s<strong>in</strong> β − s<strong>in</strong> ( β − α ) ] 3/2<br />

A w 1/2<br />

C<br />

L p u<br />

0<br />

(12)<br />

(13)<br />

⎤<br />

⎥<br />

⎦ ⎥ (14)<br />

(15)<br />

This method will produce large errors when the<br />

temperature and w<strong>in</strong>d effects have the same order <strong>of</strong><br />

magnitude.<br />

Method 3 (M3) (Sherman, Grimsud, 1980; ASHRAE,<br />

1985; De Jong, 1990). A more elaborated method was<br />

to consider the square root <strong>of</strong> the sum <strong>of</strong> the quadratic<br />

<strong>flux</strong>es:<br />

φ = φ + φ<br />

2 2<br />

v v, T v, W<br />

This method was experimentally validated by<br />

De Jong (1990) and it was largely used <strong>in</strong> the practice<br />

as recommended by the ASHRAE (1985).<br />

M e t h o d 4 (M4) ( Wa l k e r, Wilson, 1993). As an<br />

improvement <strong>of</strong> the preced<strong>in</strong>g method, a parametric<br />

<strong>in</strong>teraction term between the two <strong>flux</strong>es was added:<br />

2 2<br />

φ v = φ + φ +<br />

v , T v , w B ⋅ φ ⋅ φ<br />

1 v , T v , W<br />

(16)<br />

(17)<br />

Method 3 (quadratic superposition) sometimes was<br />

found to overestimate the comb<strong>in</strong>ed <strong>ventilation</strong> <strong>flux</strong>,<br />

especially when the temperature and w<strong>in</strong>d effects were<br />

comparable. However, when one or the other<br />

dom<strong>in</strong>ates the error was reduced. To account for this<br />

<strong>in</strong>teraction an <strong>in</strong>terference term could be <strong>in</strong>troduced to<br />

act as a simple first order <strong>in</strong>ternal pressure shift<br />

correction. The coefficient B 1 was fitted by<br />

experiments and had been found to be -0.33 by Walker<br />

and Wilson (1993) for build<strong>in</strong>g leakages.<br />

Results. The <strong>ventilation</strong> <strong>flux</strong> <strong>in</strong>creased almost l<strong>in</strong>early<br />

with open<strong>in</strong>g angle when the temperature difference<br />

between the <strong>in</strong>terior and exterior air rema<strong>in</strong>ed constant<br />

(at 15K). The results (Figure 5) showed that there<br />

were three equivalent methods for comb<strong>in</strong><strong>in</strong>g stack<br />

and w<strong>in</strong>d effects at any w<strong>in</strong>d speed. The estimations<br />

by Method 1 (M1) and Method 3 (M3) were practically<br />

identical at any w<strong>in</strong>d speed and for the different ro<strong>of</strong><br />

open<strong>in</strong>g angles. Method 2 (M2) always was above the<br />

latter and the overestimation <strong>in</strong>creased with the<br />

open<strong>in</strong>g angle. The <strong>flux</strong> obta<strong>in</strong>ed by Method 4 (M4)<br />

was a little below that <strong>of</strong> M1 and M3. It implied that<br />

the <strong>in</strong>troduced <strong>in</strong>teraction term <strong>in</strong> Method 4 with the<br />

coefficient B 1 for build<strong>in</strong>g leakages was also suitable<br />

for the ro<strong>of</strong> open<strong>in</strong>g <strong>of</strong> greenhouses. The three nonl<strong>in</strong>ear<br />

methods were physically more realistic and<br />

seemed to be equivalent for comb<strong>in</strong><strong>in</strong>g <strong>in</strong>dependent<br />

w<strong>in</strong>d and temperature effect flows to estimate their<br />

comb<strong>in</strong>ed effects. For the present <strong>study</strong>, the Method 3<br />

was chosen because this method was validated by the<br />

experiments <strong>in</strong> the greenhouse ro<strong>of</strong> open<strong>in</strong>g (De Jong,<br />

1990). Therefore, the l<strong>in</strong>ear addition <strong>of</strong> the <strong>flux</strong>es


260 Biotechnol. Agron. Soc. Environ. 1998 2 (4), 256–263 S. Wang, J. Deltour<br />

(M2) was physically <strong>in</strong>correct and produced the<br />

greatest error (De Jong, 1990; Walker, Wilson, 1993).<br />

GREENHOUSE WITH ROOFAND SIDE<br />

OPENINGS<br />

Temperature effect<br />

Ro<strong>of</strong> open<strong>in</strong>g angle (°)<br />

Figure 5. Comparison <strong>of</strong> the <strong>ventilation</strong> <strong>flux</strong>es obta<strong>in</strong>ed by<br />

4 different methods for different w<strong>in</strong>d speeds at ΔT=15K as<br />

a function <strong>of</strong> the ro<strong>of</strong> open<strong>in</strong>g angle — Comparaison des<br />

<strong>flux</strong> de <strong>ventilation</strong> obtenus par différentes méthodes pour<br />

différentes vitesses du vent, avec ΔT=15K, en fonction de<br />

l’angle d’ouverture de l’ouvrant de toiture.<br />

In most Asian develop<strong>in</strong>g countries, such as <strong>in</strong> Ch<strong>in</strong>a,<br />

the s<strong>in</strong>gle <strong>span</strong> greenhouses with ro<strong>of</strong> and side wall<br />

open<strong>in</strong>gs were widely used. In this case, the<br />

<strong>ventilation</strong> due to temperature effect will be more<br />

effective because <strong>of</strong> a vertical distance D between the<br />

ro<strong>of</strong> w<strong>in</strong>dow and the side wall one (Figure 6). The<br />

side wall w<strong>in</strong>dow was assumed to be controlled by its<br />

open<strong>in</strong>g angle α'. When α' = 90°, the aperture was<br />

Figure 6. Geometry <strong>of</strong> the open<strong>in</strong>gs on the ro<strong>of</strong> and the side<br />

wall — Géométrie des ouvrants de toiture et de paroi<br />

latérale.<br />

equivalent to a slid<strong>in</strong>g w<strong>in</strong>dow which commonly<br />

appeared <strong>in</strong> greenhouses. If the width <strong>of</strong> the side wall<br />

w<strong>in</strong>dow was exactly the same as those <strong>of</strong> the ro<strong>of</strong><br />

w i n d o w, the <strong>ventilation</strong> <strong>flux</strong>es through the front<br />

apertures <strong>of</strong> the ro<strong>of</strong> open<strong>in</strong>g and the side wall<br />

open<strong>in</strong>g could be written accord<strong>in</strong>g to equation (8):<br />

φ v,ro<strong>of</strong> =<br />

2m<br />

[ Z 1 + H 0( s<strong>in</strong>β −s<strong>in</strong>( β −α)<br />

) ] 3<br />

3/2<br />

3/2<br />

{ −Z2 }<br />

φ v,side =<br />

− 2m<br />

( Z1 + H 0)<br />

3<br />

3/2<br />

−( Z1+H0cos α ′ ) 3/2<br />

{ }<br />

(18)<br />

(19)<br />

Accord<strong>in</strong>g to the cont<strong>in</strong>uity equation, the position<br />

<strong>of</strong> the neutral pressure level was a function <strong>of</strong> D, α and<br />

α' for fixed ΔT (= 15K) and T e (= 283.15K). T h e r e f o r e ,<br />

the <strong>ventilation</strong> <strong>flux</strong> <strong>of</strong> the greenhouse varied with them<br />

too. Firstly, we <strong>in</strong>vestigated the <strong>ventilation</strong> <strong>flux</strong><br />

variation with distance D and ro<strong>of</strong> open<strong>in</strong>g angle α at<br />

a fixed open<strong>in</strong>g angle α'=45° <strong>of</strong> the side wall open<strong>in</strong>g.<br />

Figure 7 showed that the <strong>ventilation</strong> <strong>flux</strong> <strong>in</strong>creased<br />

with the ro<strong>of</strong> open<strong>in</strong>g angle, but slowly. The vertical<br />

distance D was very important for the chimney effect.<br />

For a maximum open<strong>in</strong>g angle, the <strong>ventilation</strong> <strong>flux</strong> for<br />

D = 4H 0, 3H 0, 2H 0 and H 0 (= 0.785m) was about 4.59,<br />

4.12, 3.59 and 2.96 times that <strong>of</strong> the greenhouse with<br />

the sole ro<strong>of</strong> w<strong>in</strong>dow. In this case, the neutral pressure<br />

level rema<strong>in</strong>ed located between the two open<strong>in</strong>gs, that<br />

is, the air flow was outgo<strong>in</strong>g from the ro<strong>of</strong> w<strong>in</strong>dow<br />

and <strong>in</strong>com<strong>in</strong>g through the side wall one. The NPL<br />

could only be situated at an open<strong>in</strong>g level if the two<br />

open<strong>in</strong>gs were <strong>of</strong> highly unequal size, which was not<br />

a practical case.<br />

The <strong>ventilation</strong> <strong>flux</strong> through the side wall open<strong>in</strong>g<br />

was shown <strong>in</strong> figure 8 <strong>in</strong> which the front aperture was<br />

Ro<strong>of</strong> open<strong>in</strong>g angle (°)<br />

F i g u re 7. Temperature effect <strong>in</strong>duced <strong>ventilation</strong> <strong>flux</strong><br />

through comb<strong>in</strong>ed ro<strong>of</strong> and side wall open<strong>in</strong>gs as a function<br />

<strong>of</strong> α and D — Flux de <strong>ventilation</strong> sous l’effet de température<br />

à travers les ouvrants de toiture et de paroi latérale en<br />

fonction de α et D.


<strong>Theoretical</strong> <strong>study</strong> <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> <strong>flux</strong> 261<br />

Side open<strong>in</strong>g angle (°)<br />

Figure 8. Temperature effect <strong>in</strong>duced <strong>ventilation</strong> <strong>flux</strong> as a<br />

function <strong>of</strong> side open<strong>in</strong>g angle at ΔT=15K, α=22° and<br />

D=3H 0 — Flux de <strong>ventilation</strong> sous l’effet de température en<br />

fonction de l’angle d’ouverture de l’ouvrant sur la paroi<br />

verticale avec ΔT=15K, α=22° et D=3H 0.<br />

only used for air exchange. We <strong>in</strong>vestigated the<br />

<strong>ventilation</strong> <strong>flux</strong> variation with the side open<strong>in</strong>g angle<br />

while the temperature difference, ro<strong>of</strong> open<strong>in</strong>g angle<br />

and distance between the two w<strong>in</strong>dows were fixed at<br />

15K, 22° and 3H 0, respectively. It was observed that<br />

the <strong>ventilation</strong> <strong>flux</strong> <strong>in</strong>creased with the side open<strong>in</strong>g<br />

angle. Especially when the side open<strong>in</strong>g angle was<br />

between 20° and 50°, the <strong>flux</strong> <strong>in</strong>creased almost l<strong>in</strong>early.<br />

The <strong>ventilation</strong> <strong>flux</strong> due to temperature effect was<br />

proportional to ΔT 1 / 2 and to T e - 1 / 2 accord<strong>in</strong>g to<br />

equations (2) and (8). On the other hand, the first<br />

effect was important and the second one could be<br />

neglected based on figure 3.<br />

Comb<strong>in</strong>ed w<strong>in</strong>d and temperature effects<br />

When the external w<strong>in</strong>d speed <strong>in</strong>creased, the w<strong>in</strong>d<br />

pressure contribution to the <strong>ventilation</strong> became<br />

important. Hence, the comb<strong>in</strong>ation <strong>of</strong> both temperature<br />

and w<strong>in</strong>d effects had to be determ<strong>in</strong>ed for the various<br />

situations which <strong>in</strong>cluded different w<strong>in</strong>d directions<br />

and the open<strong>in</strong>g angles <strong>of</strong> the two w<strong>in</strong>dows. As usual,<br />

the computation <strong>of</strong> the <strong>ventilation</strong> <strong>flux</strong>es <strong>in</strong>duced by<br />

the two effects through the ro<strong>of</strong> and side wall open<strong>in</strong>gs<br />

was carried out by the use <strong>of</strong> the pressure distribution<br />

method. This method gave the <strong>ventilation</strong> <strong>flux</strong> based<br />

on the cont<strong>in</strong>uity equation and Bernoulli’s theorem if<br />

the w<strong>in</strong>d pressure and buoyancy force around the<br />

open<strong>in</strong>gs were known.<br />

The temperature effect was ma<strong>in</strong>ta<strong>in</strong>ed with the<br />

condition: ΔT=15K and D=3H 0 . The w<strong>in</strong>d effect<br />

(u = 3 m.s -1 at ro<strong>of</strong> level) on the greenhouse created a<br />

pressure field around the w<strong>in</strong>dows whose characteristic<br />

coefficients were taken from the technical data <strong>of</strong><br />

Kozai and Sase (1978) for w<strong>in</strong>dward (0°) and lee-side<br />

(180°) w<strong>in</strong>dows (Table 1).<br />

Table 1. The surface w<strong>in</strong>d pressure loss coefficient through<br />

the w<strong>in</strong>dows — Coefficient de perte de pression du vent à<br />

travers les ouvrants.<br />

W<strong>in</strong>d direction Ro<strong>of</strong> w<strong>in</strong>dow Side wall w<strong>in</strong>dow<br />

0° -0.3 0.4<br />

180° -0.7 -0.6<br />

The comb<strong>in</strong>ed <strong>ventilation</strong> <strong>flux</strong> was obta<strong>in</strong>ed for the<br />

two opposite w<strong>in</strong>d directions as a function <strong>of</strong> the ro<strong>of</strong><br />

open<strong>in</strong>g angle, with 45° <strong>of</strong> side wall open<strong>in</strong>g angle<br />

(Figure 9). The <strong>flux</strong> through lee-side w<strong>in</strong>d was larger<br />

than that for w<strong>in</strong>dward one and the difference between<br />

them <strong>in</strong>creased with ro<strong>of</strong> open<strong>in</strong>g angle.<br />

The values <strong>of</strong> the <strong>ventilation</strong> <strong>flux</strong> <strong>in</strong> figure 9<br />

(comb<strong>in</strong>ed effect) and <strong>in</strong> figure 7 (temperature effect<br />

only) had the same magnitude. In this two open<strong>in</strong>gs<br />

case, the temperature effect rema<strong>in</strong>ed important even<br />

when the external w<strong>in</strong>d speed reached 4 m.s -1 while it<br />

was negligible as soon as u ≥ 1.5 m.s -1 for the s<strong>in</strong>gle<br />

ro<strong>of</strong> open<strong>in</strong>g case.<br />

The comb<strong>in</strong>ed <strong>ventilation</strong> <strong>flux</strong> as a function <strong>of</strong> the<br />

side open<strong>in</strong>g angle was shown <strong>in</strong> figure 10 with 22°<br />

ro<strong>of</strong> open<strong>in</strong>g angle under w<strong>in</strong>dward orientation. This<br />

<strong>flux</strong> <strong>in</strong>creased with the side open<strong>in</strong>g angle and the<br />

curve type was similar to that <strong>of</strong> figure 8. When the<br />

side open<strong>in</strong>g was closed, the comb<strong>in</strong>ed <strong>ventilation</strong><br />

Ro<strong>of</strong> open<strong>in</strong>g angle (°)<br />

Figure 9. Comb<strong>in</strong>ed temperature and w<strong>in</strong>d effects <strong>in</strong>duced<br />

<strong>ventilation</strong> <strong>flux</strong> as a function <strong>of</strong> the ro<strong>of</strong> open<strong>in</strong>g angle for<br />

leeside (180°) and w<strong>in</strong>dward (0°) w<strong>in</strong>ds — Flux de<br />

<strong>ventilation</strong> comb<strong>in</strong>é sous l’effet du vent et de la température<br />

en fonction de l’angle d’ouverture de l’ouvrant de toiture<br />

sous le vent (180°) et face au vent (0°).


262 Biotechnol. Agron. Soc. Environ. 1998 2 (4), 256–263 S. Wang, J. Deltour<br />

<strong>flux</strong> was not zero as was expla<strong>in</strong>ed <strong>in</strong> previous section<br />

s<strong>in</strong>ce the greenhouse was then reduced to the s<strong>in</strong>gle<br />

ro<strong>of</strong> open<strong>in</strong>g case.<br />

CONCLUSIONS<br />

Side open<strong>in</strong>g angle (°)<br />

Figure 10. Comb<strong>in</strong>ed w<strong>in</strong>d and temperature effects <strong>in</strong>duced<br />

<strong>ventilation</strong> <strong>flux</strong> as a function <strong>of</strong> the side open<strong>in</strong>g angle —<br />

Flux de <strong>ventilation</strong> comb<strong>in</strong>é sous l’effet du vent et de la<br />

température en fonction de l’angle d’ouverture de paroi<br />

latérale.<br />

Natural <strong>ventilation</strong> <strong>in</strong> greenhouses was <strong>in</strong>duced by<br />

both temperature and w<strong>in</strong>d effects. The simple case <strong>of</strong><br />

a greenhouse with a s<strong>in</strong>gle sided longitud<strong>in</strong>al ro<strong>of</strong><br />

open<strong>in</strong>g allowed us to perform the exact theoretical<br />

calculation <strong>of</strong> the <strong>natural</strong> <strong>ventilation</strong> <strong>flux</strong>. It was<br />

helpful to understand the <strong>ventilation</strong> mechanism under<br />

different greenhouse operat<strong>in</strong>g conditions based on the<br />

mass conservation.<br />

The <strong>ventilation</strong> <strong>flux</strong> <strong>of</strong> a s<strong>in</strong>gle <strong>span</strong> greenhouse<br />

with a ro<strong>of</strong> w<strong>in</strong>dow <strong>in</strong>creased with the square root <strong>of</strong><br />

the temperature difference and l<strong>in</strong>early with the<br />

external w<strong>in</strong>d speed. The w<strong>in</strong>d effect was largely<br />

dom<strong>in</strong>ant when its speed was larger than about<br />

1 . 5 m.s - 1. It was a simple and good choice for<br />

estimat<strong>in</strong>g the total airflow caused by comb<strong>in</strong>ed w<strong>in</strong>d<br />

and temperature effects to use the quadratic<br />

superposition. However, the temperature effect was<br />

very important when side wall open<strong>in</strong>gs were <strong>in</strong>stalled<br />

and the external w<strong>in</strong>d speed was lower than 4 m.s -1.<br />

The comb<strong>in</strong>ed <strong>flux</strong> <strong>in</strong>creased with both the ro<strong>of</strong> and<br />

side open<strong>in</strong>g angles. This <strong>flux</strong> through lee-side w<strong>in</strong>ds<br />

was larger than that for w<strong>in</strong>dward side ones. The<br />

difference between them <strong>in</strong>creased with ro<strong>of</strong> open<strong>in</strong>g<br />

angle. It seemed that the w<strong>in</strong>d effect through lee-side<br />

open<strong>in</strong>g was re<strong>in</strong>forced by the temperature effect <strong>in</strong><br />

this case.<br />

LIST OF SYMBOLS<br />

A w<br />

B 1<br />

C d<br />

C p<br />

w<strong>in</strong>dow front aperture area, [m 2]<br />

coefficient, [-]<br />

discharge coefficient, [-]<br />

surface pressure coefficient, [-]<br />

D vertical distance between ro<strong>of</strong> and side w<strong>in</strong>dows, [m]<br />

g gravity acceleration, [9.81 m.s -2 ]<br />

h height <strong>of</strong> the w<strong>in</strong>dow aperture, [m]<br />

h 1<br />

h 2<br />

H 0<br />

L 0<br />

T e<br />

T i<br />

height above the NPL <strong>of</strong> the w<strong>in</strong>dow aperture, [m]<br />

height below the NPL <strong>of</strong> the w<strong>in</strong>dow aperture, [m]<br />

w<strong>in</strong>dow width, [m]<br />

w<strong>in</strong>dow length, [m]<br />

exterior air temperature, [K]<br />

<strong>in</strong>terior air temperature, [K]<br />

u w<strong>in</strong>d speed, [m.s -1]<br />

v(z) velocity <strong>in</strong> the open<strong>in</strong>g at distance z, [m.s -1]<br />

z distance from the NPL, [m]<br />

Z 1<br />

Z 2<br />

distance between the NPLand the side w<strong>in</strong>dow, [m]<br />

distance between the NPLand the ro<strong>of</strong> w<strong>in</strong>dow, [m]<br />

α open<strong>in</strong>g angle <strong>of</strong> the ro<strong>of</strong> w<strong>in</strong>dow, [°]<br />

α' open<strong>in</strong>g angle <strong>of</strong> the side w<strong>in</strong>dow, [°]<br />

β ro<strong>of</strong> slope <strong>of</strong> the greenhouse, [°]<br />

ΔP pressure difference, [Pa]<br />

ΔP T pressure difference due to temperature effect, [Pa]<br />

ΔP T (z) pressure difference due to temperature effect at<br />

height z, [Pa]<br />

ΔP w w<strong>in</strong>d pressure relative to the undisturbed flow, [Pa]<br />

ΔT temperature difference, [K]


<strong>Theoretical</strong> <strong>study</strong> <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> <strong>flux</strong> 263<br />

ρ mean air density <strong>in</strong> the open<strong>in</strong>g, [kg.m -3]<br />

ρ e<br />

ρ i<br />

φ v<br />

exterior air density, [kg.m -3]<br />

<strong>in</strong>terior air density, [kg.m -3]<br />

<strong>ventilation</strong> <strong>flux</strong>, [m3.s-1.m-1] φv,1 <strong>ventilation</strong> <strong>flux</strong> through the upper part <strong>of</strong> the w<strong>in</strong>dow,<br />

[m3.s-1.m-1] φv,2 <strong>ventilation</strong> <strong>flux</strong> through the lower part <strong>of</strong> the w<strong>in</strong>dow,<br />

[m3.s-1.m-1] φv,ro<strong>of</strong> <strong>ventilation</strong> <strong>flux</strong> through the ro<strong>of</strong> ventilator,<br />

[m3.s-1.m-1] φv,side <strong>ventilation</strong> <strong>flux</strong> through the side ventilator, [m3.s - 1.m- 1]<br />

φv,T <strong>ventilation</strong> <strong>flux</strong> due to temperature effect, [m3.s - 1.m- 1]<br />

φv,W <strong>ventilation</strong> <strong>flux</strong> due to w<strong>in</strong>d effect, [m3.s-1.m-1] Acknowledgement<br />

This is a part <strong>of</strong> Dr. Wa n g ’s Ph. D. thesis supported<br />

f<strong>in</strong>ancially by a scholarship <strong>of</strong> “Bourse Coopération<br />

Stagiaires Ch<strong>in</strong>ois” awarded by the FUSAGx. We wish to<br />

express our deepest thanks to Dr. J . Pieters for his<br />

comments and useful suggestions.<br />

Bibliography<br />

A l b r i g h t LD., A d r e N., Rousseau A. (1992). S y s t e m<br />

characteristic graph as a basis for <strong>ventilation</strong> system.<br />

ASAE Paper No. 92–4045.<br />

ASHRAE (1985). Natural <strong>ventilation</strong> and <strong>in</strong>filtration. In<br />

ASHRAE Handbook <strong>of</strong> Fundamentals. Chapter 22. New<br />

York.<br />

Bot GPA. (1983). G reenhouse climate: from physical<br />

process to a dynamic model. Ph. D. Thesis, Agricultural<br />

University, Wagen<strong>in</strong>gen, The Netherlands, 240 p.<br />

Boulard T., Baille A. (1995). Model<strong>in</strong>g <strong>of</strong> air exchange rate<br />

<strong>in</strong> a greenhouse equipped with cont<strong>in</strong>uous ro<strong>of</strong> vents. J.<br />

Agric. Eng. Res. 61, p. 37–48.<br />

Bruce JM. (1975). A computer program for the calculation<br />

<strong>of</strong> <strong>natural</strong> <strong>ventilation</strong> due to w<strong>in</strong>d. Farm Build. R. & D.<br />

Stud. 7.<br />

B r u c e JM. (1977). Natural <strong>ventilation</strong> - its role and<br />

application <strong>in</strong> the bio-climate system. Farm Build. R. & D.<br />

Stud. 8, p. 1–8.<br />

De Jong T. (1990). Natural <strong>ventilation</strong> <strong>of</strong> large multi-<strong>span</strong><br />

greenhouses. Ph. D. Thesis, Agricultural University,<br />

Wagen<strong>in</strong>gen, The Netherlands, 116 p.<br />

E m s w i l e r JE. (1962). The <strong>natural</strong> zone <strong>in</strong> <strong>ventilation</strong>.<br />

ASHVE Trans. 32, p. 59–74.<br />

Kozai T., Sase S. (1978). A simulation <strong>of</strong> <strong>natural</strong> <strong>ventilation</strong><br />

for a multi-<strong>span</strong> greenhouse. Acta Hort i c . 8 7,<br />

p. 339–349.<br />

Lee Y., Tanaka H., Shaw CY. (1982). Distribution <strong>of</strong> w<strong>in</strong>d<br />

and temperature-<strong>in</strong>duced pressure differences across the<br />

walls <strong>of</strong> a twenty-story compartmentalised build<strong>in</strong>g. J.<br />

W<strong>in</strong>d Eng. Ind. Aerodyn. 10, p. 287–301.<br />

P e r e r a M. (1986). Natural <strong>ventilation</strong> <strong>in</strong> large and<br />

multicelled build<strong>in</strong>gs: theory, measurement and<br />

prediction. CEC: Energy Report, EUR10552. Bruxelles.<br />

R a n d a l l JM., Patal R. (1994). Thermally <strong>in</strong>duced <strong>ventilation</strong><br />

<strong>of</strong> livestock transporters. J. Agric. Eng. Res. 5 7,<br />

p. 99–107.<br />

S h e r m a n MH., Grimsrud D T. (1980). Infiltrationpressurization<br />

correlation: simplified physical<br />

model<strong>in</strong>g. Trans. ASHRAE 86, p. 778–807.<br />

S h r e s t h a GL., Cramer CO., Holmes BJ., Kammel D W.<br />

(1993). W<strong>in</strong>d-<strong>in</strong>duced <strong>ventilation</strong> <strong>of</strong> an enclosed<br />

livestock build<strong>in</strong>g. Trans. ASAE 36 (3), p. 921–932.<br />

Vandaele L., Wouters P. (1994). Model<strong>in</strong>g <strong>ventilation</strong>: basic<br />

mechanisms. Documentation for BAG meet<strong>in</strong>g on<br />

<strong>ventilation</strong> related aspects <strong>in</strong> build<strong>in</strong>gs, Liège, Belgium,<br />

p. 1–25.<br />

Walker IS., Wilson DJ. (1993). Evaluat<strong>in</strong>g models for<br />

superposition <strong>of</strong> w<strong>in</strong>d and stack effect <strong>in</strong> air <strong>in</strong>filtration.<br />

Build. Environ. 28 (2), p. 201–210.<br />

Zhang JS., Janni KA., Jacobson LD. (1989). Model<strong>in</strong>g<br />

<strong>natural</strong> <strong>ventilation</strong> <strong>in</strong>duced by comb<strong>in</strong>ed thermal<br />

buoyancy and w<strong>in</strong>d. Trans. ASAE 32 (6), p. 2165–2174.<br />

(17 ref.)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!