15.07.2013 Views

Magnetic Fields, Turbulence and Cosmic Rays in Galaxy Clusters

Magnetic Fields, Turbulence and Cosmic Rays in Galaxy Clusters

Magnetic Fields, Turbulence and Cosmic Rays in Galaxy Clusters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Magnetic</strong> <strong>Fields</strong>, <strong>Turbulence</strong> <strong>and</strong><br />

<strong>Cosmic</strong> <strong>Rays</strong> <strong>in</strong> <strong>Galaxy</strong> <strong>Clusters</strong><br />

Klaus Dolag (∗)<br />

A.Bonafede, J.Donnert, I.Zhuravleva, H.Kotarba, A.Geng <strong>and</strong> A.Beck<br />

(∗) Universitäts-Sternwarte München<br />

14/3/2011 – p. 1


The Cluster Bermuda-Triangle<br />

amplification<br />

B<br />

?<br />

v CR<br />

(turb)<br />

acceleration<br />

radio emission<br />

(e,p)<br />

14/3/2011 – p. 2


Where are we ?<br />

<strong>Magnetic</strong> Field<br />

Schlickeiser et al. 1987<br />

transport koefficient<br />

~ 0.1 * v * L<br />

turb<br />

turbulence (IGM/ICM)<br />

=> radio emission<br />

Burbidge 1958 (!!)<br />

14/3/2011 – p. 3


Problem 1: Orig<strong>in</strong> of B<br />

Orig<strong>in</strong><br />

• Primordial<br />

• Battery<br />

• Dynamo (<strong>Turbulence</strong>)<br />

• Stars<br />

• Supernovae<br />

• Galactic W<strong>in</strong>ds<br />

• AGNs, Jets<br />

• Rees 1994<br />

Shocks<br />

+ further amplification by structure formation<br />

- dissipation ?<br />

14/3/2011 – p. 4


Problem 2: <strong>Turbulence</strong><br />

Observed turbulece <strong>in</strong> clusters: (see talk by de Plaa, ...)<br />

Ddiff = 0.1 × vturb × λturb , vturb(l) ∝ λ (1/3)<br />

turb<br />

Schuecker et al. 2004<br />

14/3/2011 – p. 5


Problem 2: <strong>Turbulence</strong><br />

Simulations: Simulated turbulece <strong>in</strong> clusters (I):<br />

SPH ENZO<br />

log(E turb)[erg]<br />

62.0<br />

61.5<br />

61.0<br />

60.5<br />

60.0<br />

13.4 13.6 13.8 14.0 14.2 14.4 14.6<br />

log(M merg)[M sun]<br />

Dolag et al. 2005 / Vazza et al. 2006 Vazza et al. 2010 Iapich<strong>in</strong>o et al. 2009/2010<br />

Dolag et al. 2005 (see also Iapich<strong>in</strong>o et al. 2008/2009, Vazza et al. 2006/2009/2010, ...)<br />

Need to dist<strong>in</strong>guish bulk <strong>and</strong> turbulent motions.<br />

⇒ strongly depend on operational def<strong>in</strong>itions !<br />

Orig<strong>in</strong> (<strong>in</strong> cosmological context):<br />

• Beh<strong>in</strong>d shocks (mostly beyond core radius)<br />

• Passage of gas rich substructure (whole cluster)<br />

• Passage of dm substructure (mostly cluster core)<br />

14/3/2011 – p. 5


Problem 2: <strong>Turbulence</strong><br />

Simulated turbulece <strong>in</strong> clusters (II):<br />

(Dolag et al 2005, Vazza et al 2009, Maier et al 2009, ...)<br />

(Gadget)<br />

(Enzo)<br />

SGS (Fearless)<br />

see talk by I.Zhuravleva<br />

14/3/2011 – p. 5


Problem 3: Low B<br />

Please:<br />

(numbers are from private communication)<br />

Cluster Pthermal B 2 /8π β<br />

Coma 1.02e-10 1.63e-12 1.6<br />

A2255 5.016e-11 2.487e-13 0.5<br />

A400 1.927e-11 1.681e-12 8.7<br />

A119 3.63e-11 1.204e-12 3.3<br />

A2382 1.21e-11 3.581e-13 3.0<br />

Note on <strong>Turbulence</strong>:<br />

10% (Observed, Coma)<br />

10-20% (Simulations)<br />

14/3/2011 – p. 6


Problem 3: Low B<br />

Observed B <strong>in</strong> clusters: (Bonafede et al. 2010, ...)<br />

B(r) = B0<br />

Decl<strong>in</strong>ation<br />

1 + (r/rc) 2 −1.5η , |Bk| 2 ∝ k −n , (km<strong>in</strong>,kmax)<br />

29:00:00.0<br />

30:00.0<br />

28:00:00.0<br />

30:00.0<br />

27:00:00.0<br />

500 kpc<br />

5C4.152<br />

5C4.127<br />

5C4.114<br />

5C4.85<br />

5C4.81<br />

2 Mpc<br />

5C4.74<br />

04:00.0 02:00.0 13:00:00.0 58:00.0 12:56:00.0<br />

Right ascension<br />

5C4.42<br />

Bonafede et al. 2010<br />

14/3/2011 – p. 6


Problem 3: Low B<br />

B(r) = B0<br />

1 + (r/rc) 2 −1.5η , |Bk| 2 ∝ k −n , (km<strong>in</strong>,kmax)<br />

• S(dx,dy) = [RM(x,y) − RM(x + dx,y + dy)] 2<br />

• A(dx,dy) = 〈RM(x,y) × RM(x + dx,y + dy)〉<br />

• 〈|RM|〉 scale , 〈σRM〉 scale<br />

η<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

2 4 6 8 10<br />

Β [µG]<br />

< 0 ><br />

⇒ constra<strong>in</strong>s on magnetic field strength !<br />

B [µG]<br />

8<br />

6<br />

4<br />

2<br />

Analytic profile<br />

Power spectrum<br />

fluctuations<br />

0<br />

0 500 1000<br />

r [kpc]<br />

1500 2000<br />

14/3/2011 – p. 6


Problem 3: Low B<br />

B(r) = B0<br />

1 + (r/rc) 2 −1.5η , |Bk| 2 ∝ k −n , (km<strong>in</strong>,kmax)<br />

⇒ A655: Inferred outer scale ≈450 kpc (Vacca et al. 2010) !<br />

• Depolarization <strong>in</strong>dicates truncation at small scales !<br />

⇒ No fluctuations at scales below ≈ (.1 − .5) kpc !<br />

Govoni et al. 2010, Vacca et al. 2010, Guidetti et al. 2010, Bonafede et al. 2010, Guidetti et al.<br />

2008, Govoni et al. 2006, La<strong>in</strong>g et al. 2006, Vogt & Enssl<strong>in</strong> 2005, Murgia et al. 2004,<br />

Ennsl<strong>in</strong> & Vogt 2003, ... , Tribble 1991.<br />

14/3/2011 – p. 6


Problem 3: Low B<br />

Govoni et al. 2010<br />

• Comb<strong>in</strong>ation of RM measured <strong>in</strong> many clusters.<br />

• How does B scale with cluster temperature ?<br />

• <strong>Magnetic</strong> Field <strong>in</strong> Radio quiet/active clusters ? 14/3/2011 – p. 6


Problem 4: Radio Emission<br />

Radio Relic<br />

Radio Halo<br />

1 Mpc<br />

Feretti 1999<br />

M<strong>in</strong>iati et al. 2001<br />

Dolag & Enssl<strong>in</strong> 2000<br />

Pfromer et al. 2007<br />

Dolag & Enssl<strong>in</strong> 2000<br />

Cluster wide diffuse synchrotron emission connected to<br />

merger events, periferal emission directly connected to shocks.<br />

• Radio halo: <strong>Turbulence</strong>, shocks, secondary ?<br />

• Relics: Primary from shocks or compressed radio plasma ?<br />

14/3/2011 – p. 7


The Big Picture<br />

see talk by I.Zhuravleva<br />

B [G]<br />

B [G]<br />

MHD Simulations<br />

Bonafede et al. 2011<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -5<br />

10 -6<br />

10 -7<br />

g1657050<br />

g4606589<br />

Coma<br />

100 1000<br />

R [kpc]<br />

100 1000<br />

R [kpc]<br />

η m =5<br />

η m =10<br />

η m =20<br />

Coma<br />

η m =5<br />

η m =10<br />

η m =20<br />

COMA<br />

B [G]<br />

(Gadget)<br />

(Enzo)<br />

SGS (Fearless)<br />

see talk by I.Zhuravleva<br />

10 -5<br />

10 -6<br />

10 -7<br />

g0016649 g0272097<br />

g1212639<br />

g1657050<br />

g3327821<br />

g4606589<br />

g5699754<br />

g1680241<br />

g3346905<br />

g1987669<br />

g3888703<br />

g6287794 g6348555<br />

Bonafede et al., work <strong>in</strong> progress<br />

g0272097<br />

g1483463<br />

g2980844<br />

g4425770<br />

g4915399 g5265133 g5503149<br />

g6802296<br />

5E-08 8E-07 2.66E-05 0.0043659<br />

g735 g7570 g7577<br />

g726<br />

Coma<br />

100 1000<br />

R [kpc]<br />

η m =5<br />

η m =10<br />

η m =20<br />

Schlickeiser et al. 1987<br />

Decl<strong>in</strong>ation<br />

29:00:00.0<br />

30:00.0<br />

28:00:00.0<br />

30:00.0<br />

27:00:00.0<br />

500 kpc<br />

5C4.152<br />

5C4.127<br />

5C4.114<br />

5C4.85<br />

5C4.81<br />

2 Mpc<br />

5C4.74<br />

5C4.42<br />

04:00.0 02:00.0 13:00:00.0 58:00.0 12:56:00.0<br />

Right ascension<br />

Bonafede et al. 2010<br />

Bonafede et al. 2010<br />

Schuecker et al. 2004<br />

14/3/2011 – p. 8


Cluster MHD simulations<br />

14/3/2011 – p. 9


Cluster MHD simulations<br />

DEC<br />

Observation<br />

3C449<br />

Feretti et al. 1999<br />

RA<br />

(RAD/M/M)<br />

Simulation<br />

RM<br />

(counts)<br />

684 Mpc<br />

684 kpc<br />

68.4 Mpc<br />

6.84 Mpc<br />

“Zoomed” cluster simulation (Dolag & Stasyszyn 2009). Movie: u,v 14/3/2011 – p. 9


Cluster MHD simulations<br />

Simulation<br />

Dolag et al. 2002<br />

ε(k) [erg cm -2 ]<br />

Simulation<br />

1e-10<br />

1e-11<br />

1e-12<br />

1e-13<br />

1e-14<br />

1e-15<br />

0.1 1 10<br />

k [kpc -1 ]<br />

REALMAF<br />

Vogt<br />

Observation<br />

Kuchar & Enssl<strong>in</strong> 2009<br />

Pakmor & Dolag 2006<br />

<strong>Magnetic</strong> field power spectra: predictions vs. observations.<br />

See also Brüggen et al. 2005, Xu et al. 2009<br />

14/3/2011 – p. 9


<strong>Magnetic</strong> Field buildup<br />

Simulations on galaxy scales ...<br />

M51 (Fletcher & Beck 2006) <strong>and</strong> a simulation us<strong>in</strong>g the MHD<br />

implementation <strong>in</strong> Gadget (Kotarba et al. 2009).<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

Simulat<strong>in</strong>g the magnetic field amplification dur<strong>in</strong>g galaxy<br />

mergers like <strong>in</strong> the Antennae system. F<strong>in</strong>al magnetic field<br />

strength <strong>and</strong> field configuration <strong>in</strong> broad agreement with<br />

observations.<br />

(Chyzy & Beck 2005 Kortarba et al. 2010)<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

F<strong>in</strong>al magnetic field close to equipartition with turbulent velocity<br />

component, largely <strong>in</strong>dependent of <strong>in</strong>itial field values.<br />

⇒ Hierarchical buildup of magnetic field<br />

(Kortarba et al. 2010)<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

y [kpc/h]<br />

y [kpc/h]<br />

y [kpc/h]<br />

y [kpc/h]<br />

100<br />

0<br />

-100<br />

100<br />

0<br />

-100<br />

100<br />

0<br />

-100<br />

100<br />

0<br />

-100<br />

-100 0 100<br />

x [kpc/h]<br />

t=982 Myr t=1483 Myr t=1984 Myr t=2486 Myr<br />

t=2987 Myr<br />

-100 0 100 200<br />

x [kpc/h]<br />

(A. Geng, work <strong>in</strong> progress)<br />

t=3488 Myr<br />

-100 0 100<br />

x [kpc/h]<br />

-100 0 100 200<br />

x [kpc/h]<br />

t=3989 Myr<br />

-100 0 100<br />

x [kpc/h]<br />

-100 0 100 200<br />

x [kpc/h]<br />

t=4490 Myr<br />

-100 0 100<br />

x [kpc/h]<br />

-100 0 100 200<br />

x [kpc/h]<br />

-25<br />

-26<br />

-27<br />

-28<br />

-29<br />

-7<br />

-8<br />

-9<br />

log < density [g cm -2 ] ><br />

log < |B| [G] ><br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

Smaller merger less efficient <strong>in</strong> driv<strong>in</strong>g turbulence.<br />

(Geng et al., <strong>in</strong> prep)<br />

14/3/2011 – p. 10


DECLINATION (J2000)<br />

<strong>Magnetic</strong> Field buildup<br />

34 00 00<br />

33 59 30<br />

00<br />

58 30<br />

00<br />

57 30<br />

00<br />

56 30<br />

00<br />

55 30<br />

PLot file version 2 created 11-SEP-2009 16:13:17<br />

ICONT:SQ IPOL 4860.100 MHZ SQ 6.I.3<br />

22 36 10 05 00 35 55 50<br />

RIGHT ASCENSION (J2000)<br />

Cont peak flux = 9.4028E-03 JY/BEAM<br />

Levs = 9.000E-06 * (3, 5, 8, 12, 20, 30, 50, 80,<br />

120, 200, 300, 500, 800)<br />

Pol l<strong>in</strong>e 1 arcsec = 4.1667E-06 JY/BEAM<br />

Soida et al., <strong>in</strong> prep. Kortarba et al. 2010<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

Kortarba et al. 2010<br />

• Merg<strong>in</strong>g drives shocks, turbulence <strong>and</strong> star-formation<br />

• Star-formation drives w<strong>in</strong>ds<br />

• W<strong>in</strong>ds transport out magnetic fields<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

Comparison of magnetic growth <strong>and</strong> simple expectation for<br />

vturb = 100km/s <strong>and</strong> λ = 25kpc.<br />

A. Beck, diploma thesis<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

z=4<br />

z=0<br />

primordial<br />

galactic outflows<br />

Seed<strong>in</strong>g from galactic outflows (Donnert et al. 2009)<br />

14/3/2011 – p. 10


z=0<br />

<strong>Magnetic</strong> Field buildup<br />

dipole (10x)<br />

dipole<br />

quadrupole (10x) cont<strong>in</strong>uously seed<strong>in</strong>g<br />

Different w<strong>in</strong>d parameters (Donnert et al. 2009)<br />

dipole (1/10)<br />

primordial<br />

14/3/2011 – p. 10


<strong>Magnetic</strong> Field buildup<br />

⇒ Galactic seed<strong>in</strong>g models also reproduce observed RM<br />

profile with<strong>in</strong> galaxy clusters (Donnert et al. 2009)<br />

14/3/2011 – p. 10


Madgetic diffusion <strong>in</strong> clusters<br />

η = ηcoulomb + ηturb ≈ 0.1 × vturb × λvturb<br />

g0016649 g0272097<br />

g1212639<br />

g1657050<br />

g1483463<br />

g1680241 g1987669 g2980844<br />

g3327821 g3346905 g3888703 g4425770<br />

g4606589<br />

g4915399<br />

g5265133<br />

g5503149<br />

g5699754 g6287794 g6348555 g6802296<br />

g7263961<br />

g7358274 g7570066<br />

g7577931<br />

Selected 24 most massive clusters from a 1Gpc/h box.<br />

Bonafede et al. 2011<br />

0.00000 0.00003 0.00012 0.00028 0.00050 0.00078 0.00112 0.00153 0.00200 0.00253 0.00312<br />

14/3/2011 – p. 11


Madgetic diffusion <strong>in</strong> clusters<br />

B [G]<br />

B [G]<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -5<br />

10 -6<br />

10 -7<br />

g0272097<br />

COMA: best fit<br />

COMA: 3 σ profiles<br />

100 1000<br />

R [kpc]<br />

g4606589<br />

COMA: best fit<br />

COMA: 3 σ profiles<br />

η m =5<br />

η m =10<br />

η m =20<br />

η m =5<br />

η m =10<br />

η m =20<br />

100 1000<br />

R [kpc]<br />

0.003534<br />

0.001773<br />

0.000889<br />

0.000442<br />

0.000220<br />

0.000109<br />

0.000052<br />

0.000025<br />

0.000010<br />

0.000004<br />

0.000000<br />

0.00592<br />

0.00297<br />

0.00149<br />

0.00074<br />

0.00037<br />

0.00018<br />

0.00009<br />

0.00004<br />

0.00002<br />

0.00001<br />

0.00000<br />

B [G]<br />

B [G]<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -5<br />

10 -6<br />

10 -7<br />

g1657050<br />

COMA: best fit<br />

COMA: 3 σ profiles<br />

η m =5<br />

η m =10<br />

η m =20<br />

100 1000<br />

R [kpc]<br />

COMA: best fit<br />

g6802296<br />

COMA: 3 σ profiles<br />

100 1000<br />

R [kpc]<br />

Subset of 4 Coma-like clusters with η = 1.5, 3, 6 × 10 27 cm 2 /s. (Bonafede et al. 2011) 14/3/2011 – p. 11<br />

η m =5<br />

η m =10<br />

η m =20<br />

0.01473<br />

0.00739<br />

0.00371<br />

0.00184<br />

0.00092<br />

0.00045<br />

0.00022<br />

0.00010<br />

0.00004<br />

0.00001<br />

0.00000<br />

0.002587<br />

0.001298<br />

0.000651<br />

0.000323<br />

0.000161<br />

0.000080<br />

0.000038<br />

0.000018<br />

0.000008<br />

0.000003<br />

0.000000


Madgetic diffusion <strong>in</strong> clusters<br />

B [G]<br />

10 -5<br />

10 -6<br />

10 -7<br />

g0016649<br />

g1212639<br />

g1483463<br />

g1680241<br />

g1987669<br />

g2980844<br />

g3327821<br />

g3346905<br />

g3888703<br />

g4425770<br />

g4915399<br />

g5265133<br />

Bonafede et al. 2011<br />

g5503149<br />

g5699754<br />

g6287794<br />

g6348555<br />

g7263961<br />

g7358274<br />

g7570066<br />

g7577931<br />

g0272097<br />

g1657050<br />

g4606589<br />

g6802296<br />

η m =20<br />

100 1000<br />

R [kpc]<br />

⇒ Profiles of 24 Coma-like galaxy clusters<br />

14/3/2011 – p. 11


Madgetic diffusion <strong>in</strong> clusters<br />

B [G]<br />

10 -5<br />

10 -6<br />

10 -7<br />

Bonafede et al. 2011<br />

COMA: best fit<br />

Dianoga set<br />

η m =20<br />

100 1000<br />

R [kpc]<br />

⇒ Profiles of 24 Coma-like galaxy clusters<br />

14/3/2011 – p. 11


Madgetic diffusion <strong>in</strong> clusters<br />

B 0 [µG]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Bonafede et al. 2011<br />

Coma<br />

1.0 1.5 2.0<br />

M [10<br />

v<br />

2.5 3.0<br />

15 M h<br />

sol -1 ]<br />

⇒ Central B of 24 Coma-like galaxy clusters<br />

14/3/2011 – p. 11


Radio emission of cluster<br />

⇒ Solve Fokker-Planck equation for CRe population<br />

+ H(p)n + Q(t)<br />

∂n<br />

∂t<br />

= ∂<br />

∂p<br />

Dpp ∂n<br />

∂p<br />

− n<br />

T(t)<br />

• 10% turbulent energy <strong>in</strong> fast mhd modes <strong>and</strong> reacceleration<br />

by those only<br />

• Momentum Diffusion Coefficient<br />

Dpp ∝ v 4 turb /hsml/csound<br />

• cool<strong>in</strong>g with <strong>in</strong>verse compton, synchrotron <strong>and</strong><br />

bremsstrahlung<br />

• See also Cassano & Brunetti 05, Brunetti & Lazarian 2007<br />

• 1% CRp as seed for CRe (hadronic background)<br />

Donnert et al. 2011<br />

14/3/2011 – p. 12


Radio emission of cluster<br />

Idealized 1:4 merger, solv<strong>in</strong>g Fokker-Planck equation for all<br />

particles. (2x128 3 ). (Donnert et al. 2011)<br />

14/3/2011 – p. 12


Radio emission of cluster<br />

Synthetic radio emission, smoothed to coma observation by<br />

Deiss et al. 1996 (right). (Donnert et al. 2011)<br />

14/3/2011 – p. 12


Radio emission of cluster<br />

Evolution of vturb (black), B (green) <strong>and</strong> P1.4 (red).<br />

Donnert et al. 2011<br />

14/3/2011 – p. 12


Radio emission of cluster<br />

P1.4<br />

Lx<br />

10x<br />

Evolution of the spectrum of the radio emission <strong>and</strong><br />

the Lx-P1.4 relation (<strong>in</strong>lay). Donnert et al. 2011<br />

14/3/2011 – p. 12


Conclusions<br />

Zhuravleva (see poster)<br />

B [G]<br />

10 -5<br />

10 -6<br />

10 -7<br />

(Gadget)<br />

(Enzo)<br />

SGS (Fearless)<br />

see talk by I.Zhuravleva<br />

Bonafede et al. 2011<br />

COMA: best fit<br />

Dianoga set<br />

Kulpa−Dybel et al. 2011<br />

η m =20<br />

100 1000<br />

R [kpc]<br />

MHD Cluster Simulations<br />

Schlickeiser et al. 1987<br />

Decl<strong>in</strong>ation<br />

29:00:00.0<br />

30:00.0<br />

28:00:00.0<br />

30:00.0<br />

27:00:00.0<br />

500 kpc<br />

5C4.152<br />

5C4.127<br />

5C4.114<br />

5C4.85<br />

5C4.81<br />

2 Mpc<br />

5C4.74<br />

5C4.42<br />

04:00.0 02:00.0 13:00:00.0 58:00.0 12:56:00.0<br />

Right ascension<br />

Bonafede et al. 2010<br />

Bonafede et al. 2010<br />

Donnert et al. 2011<br />

Schuecker et al. 2004<br />

14/3/2011 – p. 13


Conclusions<br />

Observations (RM & Radio probes µG)<br />

• Measurement of magnetic field power spectra<br />

• Clear <strong>in</strong>dication of magnetic field shape<br />

• Indications for m<strong>in</strong>imum/maximum length scale<br />

Simulations (hydro):<br />

• Motions with<strong>in</strong> the ICM are unavoidable (> 100 km/s)<br />

• Overall good agreement with (rare) observations<br />

• Overall good agreement between different simulations<br />

Simulations (MHD):<br />

• Overall good agreement with observed magnetic fields<br />

• Detailed comparison reveal dissipative processes<br />

Simulations (Radio Halo):<br />

• Turbulent re-acceleration reproduce on/off <strong>and</strong> spectra<br />

• Secondary floor emission at best at 10% level<br />

14/3/2011 – p. 13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!