14.07.2013 Views

Deploying liquid biomethane in the Dutch transport sector

Deploying liquid biomethane in the Dutch transport sector

Deploying liquid biomethane in the Dutch transport sector

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

University of Gron<strong>in</strong>gen<br />

CIO, Center for Isotope Research<br />

IVEM, Center for Energy and Environmental Studies<br />

Master Programme Energy and Environmental Sciences<br />

<strong>Deploy<strong>in</strong>g</strong> <strong>liquid</strong> <strong>biomethane</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong><br />

Analys<strong>in</strong>g economic, environmental and<br />

organisational susta<strong>in</strong>ability<br />

Jelco Breeuwer<br />

EES 2012-159 M


Master report of Jelco Breeuwer<br />

Supervised by: Prof.dr. H.C. Moll (IVEM)<br />

Dr. R.M.J. Benders (IVEM)<br />

Dhr. R. van der Velde, Msc. (Witteveen+Bos)<br />

University of Gron<strong>in</strong>gen<br />

CIO, Center for Isotope Research<br />

IVEM, Center for Energy and Environmental Studies<br />

Nijenborgh 4<br />

9747 AG Gron<strong>in</strong>gen<br />

The Ne<strong>the</strong>rlands<br />

http://www.rug.nl/fmns-research/cio<br />

http://www.rug.nl/fmns-research/ivem


INDEX p.<br />

GLOSSARY AND ABBREVIATIONS<br />

LIST OF TABLES<br />

LIST OF FIGURES<br />

FOREWORD<br />

SUMMARY (EN)<br />

SAMENVATTING (NL)<br />

1. INTRODUCTION 1<br />

1.1. Background 1<br />

1.2. Problem sett<strong>in</strong>g 2<br />

1.3. Production and usage of LBM 4<br />

1.4. Research set-up 5<br />

1.5. Structure of this report 7<br />

2. POTENTIAL AVAILIBITY OF BIOMASS FOR LBM PRODUCTION 9<br />

2.1. Current situation for biomass usage 9<br />

2.1.1. Situation for <strong>the</strong> Ne<strong>the</strong>rlands 9<br />

2.1.2. Situation for Overijssel 11<br />

2.2. Biomass available for production of end-use biogas 12<br />

2.2.1. Total potential <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and Overijssel 13<br />

2.2.2. Government objectives 14<br />

2.2.3. Total overview 14<br />

2.3. Trends and developments 15<br />

2.3.1. Trends from <strong>the</strong> years 1990-2011 16<br />

2.3.2. Projections to 2020 18<br />

2.4. Scenarios for LBM production till 2020 20<br />

3. POTENTIAL FOR LBM USAGE 23<br />

3.1. Feasibility users stage 23<br />

3.1.1. The LNG and LBM cha<strong>in</strong> 23<br />

3.1.2. Technical feasibility users stage 24<br />

3.2. Potential for use <strong>in</strong> different types of <strong>transport</strong> 25<br />

3.2.1. Usage <strong>in</strong> heavy duty vehicles 25<br />

3.2.2. Usage <strong>in</strong> shipp<strong>in</strong>g 30<br />

3.2.3. Possible usage <strong>in</strong> tra<strong>in</strong>s 30<br />

4. ENVIRONMENTAL PERFORMANCE FOR LBM USAGE 31<br />

4.1. Environmental susta<strong>in</strong>ability 31<br />

4.2. Emission patterns for LBM use <strong>in</strong> trucks & buses 32<br />

4.2.1. Well-to-wheel emissions 32<br />

4.2.2. CO2 reduction 34<br />

4.2.3. NOx and PM10 reduction 35<br />

4.3. Contribution to susta<strong>in</strong>ability goals 36<br />

5. ECONOMICS OF LBM PRODUCTION AND USE 39<br />

5.1. LBM production options 40


5.2. Production costs 41<br />

5.2.1. F<strong>in</strong>anceability 41<br />

5.2.2. Costs of produc<strong>in</strong>g biogas 42<br />

5.2.3. Costs of upgrad<strong>in</strong>g biogas to LBM 43<br />

5.2.4. Total costs for produc<strong>in</strong>g LBM 44<br />

5.3. Production capacity and <strong>transport</strong> kilometres 45<br />

5.3.1. Optimal production scale 45<br />

5.3.2. Properties of LBM fuel 46<br />

5.3.3. Production scale related to <strong>transport</strong> 47<br />

5.4. Market<strong>in</strong>g possibilities and LNG overlap 48<br />

5.4.1. The LBM comparison: diesel or LNG? 48<br />

5.4.2. Possibilities to distribute LBM 49<br />

5.4.3. Revenue picture 51<br />

5.4.4. Price sett<strong>in</strong>g of LBM fuel 51<br />

6. ORGANISING AN LBM INFRASTRUCTURE 53<br />

6.1. Production & distribution 53<br />

6.2. Fill<strong>in</strong>g stations 55<br />

6.3. Preconditions for successful <strong>in</strong>troduction 56<br />

6.4. O<strong>the</strong>r considerations 57<br />

6.4.1. Bio tickets 58<br />

7. CONCLUSIONS AND RECCOMENDATIONS 61<br />

7.1. Conclusions 61<br />

7.2. Recommendations 64<br />

8. REFERENCES 67<br />

last page 74<br />

APPENDICES number of p.<br />

I Characteristics of LBM & LNG 3<br />

II Overview of current subsidy schemes and tax regulations 3<br />

III Regulations relevant to <strong>the</strong> LBM <strong>in</strong>frastructure 3<br />

IV Values of parameters used <strong>in</strong> this study 2<br />

V Summary of <strong>the</strong> LNG4Trucks&Ships workshop (<strong>in</strong> <strong>Dutch</strong>) 10<br />

VI Overview of <strong>the</strong> current active stakeholders <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry 3


GLOSSARY AND ABBREVIATIONS<br />

Anaerobic digestion - Oxygen free breakdown of biomass by microorganisms.<br />

Bi-fuel - Eng<strong>in</strong>e that runs ei<strong>the</strong>r on LNG/LBM or on diesel.<br />

Biodiesel - Renewable equivalent of diesel. Produced from vegetable<br />

oil or animal fats.<br />

Bio-ethanol - Renewable equivalent of petrol. Produced by <strong>the</strong> fermentation<br />

of different k<strong>in</strong>ds of biomass.<br />

Biogas - Gas which is generated by (accelerated) natural proc -<br />

esses.<br />

Biomethane - Biogas upgraded to almost pure methane.<br />

Bio tickets - Commodity to support <strong>the</strong> adm<strong>in</strong>istrative trade <strong>in</strong> bio fuels.<br />

Boil-off - Vaporized LBM or LNG due to heat <strong>in</strong>put from <strong>the</strong> environment.<br />

CBM - Compressed Biomethane<br />

CBS - Centraal Bureau voor de Statistiek. <strong>Dutch</strong> agency for collect<strong>in</strong>g<br />

statistical data.<br />

CHP - Comb<strong>in</strong>ed heat and power.<br />

Co-digestion - Anaerobic digestion of manure mixed with o<strong>the</strong>r biomass.<br />

Cryogenic technique - Biogas upgrad<strong>in</strong>g technique where <strong>the</strong> gas is cooled and<br />

<strong>the</strong> CO2 is removed as a <strong>liquid</strong>.<br />

Dual-fuel - Eng<strong>in</strong>es runn<strong>in</strong>g on a mixture of diesel and LNG/LBM.<br />

EC - European Commission.<br />

End-use biogas - Biogas available for upgrad<strong>in</strong>g (i.e. not used for <strong>the</strong> generation<br />

of heat or electricity.<br />

EU - European Union.<br />

Gas clean<strong>in</strong>g - Biogas upgrad<strong>in</strong>g technique where <strong>the</strong> CO2 is removed by<br />

dissolv<strong>in</strong>g it <strong>in</strong> a <strong>liquid</strong> which is run through <strong>the</strong> gas.<br />

Gasification - Technique which uses dry biomass to produce syngas.<br />

Green gas - Biogas which is upgraded to natural gas quality.<br />

Hold<strong>in</strong>g time - The maximum time a LNG tank can hold boil-off without<br />

vent<strong>in</strong>g it <strong>in</strong>to <strong>the</strong> atmosphere.<br />

Hub - A collection po<strong>in</strong>t of biogas produced from multiple digesters.<br />

IEA - International Energy Agency.<br />

Industrial digestion - Anaerobic digestion of waste from <strong>the</strong> food <strong>in</strong>dustry or nature.<br />

Landfill gas - Captured biogas from landfill sites.<br />

LBM - Liquid Biomethane.<br />

LNG - Liquefied Natural Gas.<br />

LPG - Liquid Petroleum Gas.<br />

NVWA - Nederlandse Voedsel en Warenautoriteit. Supervises <strong>the</strong><br />

abidance of environmental law.<br />

OECD - Organisation for Economic Co-operation and Development.<br />

S<strong>in</strong>gle-fuel - Eng<strong>in</strong>es runn<strong>in</strong>g solely on LNG/LBM.<br />

Syngas - A mixture of hydrogen- and carbon monoxide gas.<br />

Thermal conversion - Burn<strong>in</strong>g biomass to power a steam-turb<strong>in</strong>e.<br />

VPSA - Vacuum sw<strong>in</strong>g pressure adsorption. Biogas upgrad<strong>in</strong>g<br />

technique where <strong>the</strong> CO2 of <strong>the</strong> biogas is adsorbed by active<br />

carbon.


LIST OF TABLES<br />

Table 1.1. Susta<strong>in</strong>ability objectives at different levels of government <strong>in</strong> <strong>the</strong> EU ....... 1<br />

Table 1.2. Production costs of different biomass options .......................................... 3<br />

Table 1.3. Factors relevant to LBM research............................................................. 7<br />

Table 2.1. Energy production from biogas produc<strong>in</strong>g plants <strong>in</strong> 2011 ........................ 9<br />

Table 2.2. Energy production from biogas produc<strong>in</strong>g plants <strong>in</strong> 2011 <strong>in</strong> Overijssel . 12<br />

Table 3.1. Application of alternative fuels <strong>in</strong> different vehicle types ........................ 25<br />

Table 3.2. Technical specifications of available LNG trucks <strong>in</strong> Europe ................... 26<br />

Table 3.3. Number of heavy duty vehicles after 10, 20, 30 and 40 years ............... 29<br />

Table 4.1. Compar<strong>in</strong>g different biomass options ..................................................... 32<br />

Table 4.2. Well-to-wheel emissions for trucks 1 ........................................................ 33<br />

Table 5.1. Size of <strong>Dutch</strong> digestion plants and trends .............................................. 46<br />

Table 5.2. Raw prices for LNG, diesel and LBM ..................................................... 49<br />

Table 5.3. LBM cost and revenue trajectory for different options ............................ 51<br />

Table 5.4. Pric<strong>in</strong>g of different fossil and renewable fuels <strong>in</strong> EUR*GJ -1 ................... 51<br />

Table 7.1. Pro’s and con’s for LBM compared with o<strong>the</strong>r biomass options ............ 62<br />

Table 7.2. F<strong>in</strong>ancial picture for LBM production ...................................................... 63


LIST OF FIGURES<br />

Figure 1.1. Energy produced from biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2011 1 ................... 3<br />

Figure 1.2. Distribution of energy use <strong>in</strong> <strong>transport</strong> <strong>in</strong> 2009 (563 PJ) .......................... 4<br />

Figure 1.3. Representation of <strong>the</strong> LBM system and <strong>the</strong> followed research l<strong>in</strong>e 1 ........ 6<br />

Figure 2.1. Energy from biogas produc<strong>in</strong>g plants <strong>in</strong> 2011 1 ....................................... 10<br />

Figure 2.2. Energy production from biomass <strong>in</strong> 2011 <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands ................ 11<br />

Figure 2.3. Energy from biogas produc<strong>in</strong>g plants <strong>in</strong> Overijssel <strong>in</strong> 2011 1 .................. 12<br />

Figure 2.4. Figures of <strong>the</strong> energy potential for LBM production ............................... 15<br />

Figure 2.5. Energy production for biogas and biomass as a whole .......................... 16<br />

Figure 2.6. Produced biogas for <strong>the</strong> four types of production facilities ..................... 17<br />

Figure 2.7. Production of f<strong>in</strong>al energy from biogas and efficiency 1 .......................... 18<br />

Figure 2.8. Growth paths for <strong>the</strong> production of end-use biogas <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands 1 19<br />

Figure 2.9. Growth paths for <strong>the</strong> production of end-use biogas <strong>in</strong> Overijssel 1 ......... 19<br />

Figure 2.10. LBM production for <strong>the</strong> Ne<strong>the</strong>rlands 1 ...................................................... 20<br />

Figure 2.11. LBM production for <strong>the</strong> prov<strong>in</strong>ce of Overijssel ........................................ 21<br />

Figure 3.1. LBM and LNG cha<strong>in</strong> from production till end-use ................................... 23<br />

Figure 3.2. The first operation public LNG fill<strong>in</strong>g station <strong>in</strong> Zwolle ........................... 24<br />

Figure 3.3. The Volvo FM Methane-Diesel ............................................................... 26<br />

Figure 3.4. L<strong>in</strong>ear growth patterns for <strong>the</strong> number of LNG/LBM vehicles ................ 28<br />

Figure 3.5. Exponential growth patterns for <strong>the</strong> number LNG/LBM vehicles 1 .......... 28<br />

Figure 3.6. Development of <strong>the</strong> amount of kilometres driven on LBM/LNG trucks .. 29<br />

Figure 4.1. Well-to-wheel emissions for different <strong>transport</strong> fuels 1 ............................ 32<br />

Figure 4.2. Relative reduction potential for different well-to-wheel emissions ......... 33<br />

Figure 4.3. Projected CO2 emissions for <strong>the</strong> Ne<strong>the</strong>rlands 1 ....................................... 34<br />

Figure 4.4. Projected CO2 emissions for <strong>the</strong> prov<strong>in</strong>ce of Overijssel ......................... 35<br />

Figure 4.5. Well-to-wheel PM10 emissions for heavy duty vehicles <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands ............................................................................................. 36<br />

Figure 4.6. Well-to-wheel NOx emissions for heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands .<br />

................................................................................................................ 36<br />

Figure 4.7. Potential contributions to susta<strong>in</strong>ability goals for 2020 1 ......................... 38<br />

Figure 5.1. Production routes for <strong>biomethane</strong> .......................................................... 40<br />

Figure 5.2. Production possibilities for LBM 1 ............................................................ 41<br />

Figure 5.3. Investment costs for LBM production facilities 1 ...................................... 42<br />

Figure 5.4. Cost development of biogas production with scale 1 ............................... 43<br />

Figure 5.5. Cost development of LBM production with scale 1 .................................. 44<br />

Figure 5.6. Total production costs for LBM 1 .............................................................. 45<br />

Figure 5.7. LBM <strong>in</strong>stallations needed to drive x trucks y kilometres per year 1 ......... 48<br />

Figure 5.8. Options to distribute LBM 1 ...................................................................... 50<br />

Figure 5.9. Relative build-up of <strong>the</strong> prices of different fuels ..................................... 52<br />

Figure 6.1. Production and location options parallel to development LNG <strong>sector</strong> ... 55


ACKNOWLEDGEMENTS<br />

I want to thank Raphaël van der Velde for provid<strong>in</strong>g me with <strong>the</strong> opportunity to do my<br />

graduate <strong>in</strong>ternship at Witteveen+Bos. I want to thank all my colleagues <strong>the</strong>re for provid<strong>in</strong>g<br />

an excellent work<strong>in</strong>g atmosphere.<br />

From <strong>the</strong> University of Gron<strong>in</strong>gen, I would like to thank Henk Moll and René Benders for<br />

supervis<strong>in</strong>g this project and provid<strong>in</strong>g <strong>the</strong> necessary <strong>in</strong>put.


SUMMARY (EN)<br />

The <strong>Dutch</strong> government has set susta<strong>in</strong>ability goals for <strong>the</strong> year 2020. In that year, 16 % of<br />

<strong>the</strong> energy use must come from renewable sources and <strong>the</strong> emissions of greenhouse<br />

gasses must be reduced by 20 % with respect to 1990. These goals are part of a plan<br />

which must eventually reduce <strong>the</strong> <strong>Dutch</strong> dependence on fossil fuels and <strong>the</strong> related<br />

emissions of greenhouse- and o<strong>the</strong>r harmful gasses. LNG fuel usage is <strong>in</strong>ternationally<br />

considered as a viable option to replace oil products <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong>. LBM is <strong>the</strong><br />

“green” variant of LNG and can expand <strong>in</strong> <strong>the</strong> wake of <strong>the</strong> LNG market development. LBM<br />

usage may be an option to achieve <strong>the</strong> government goals. The central research question is:<br />

‘What is needed to maximise <strong>the</strong> use of LBM <strong>in</strong> <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong> and what is <strong>the</strong><br />

optimum from an economic, environmental and organisational perspective?’<br />

To maximise LBM use <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands a strong growth of <strong>the</strong> LNG <strong>sector</strong> is necessary<br />

along with government support for produc<strong>in</strong>g LBM. The organisation of an LBM<br />

<strong>in</strong>frastructure is preferably fully <strong>in</strong>tegrated with <strong>the</strong> LNG <strong>in</strong>frastructure. From an economic<br />

po<strong>in</strong>t of view LBM is more advantageous for <strong>the</strong> government than grid <strong>in</strong>jected green gas,<br />

but <strong>the</strong> environmental benefits only become apparent after 2020.<br />

LNG is natural gas which is liquefied by cool<strong>in</strong>g it to a temperature of -162 °C. This is <strong>the</strong>n<br />

<strong>transport</strong>ed by bunker ship to well isolated LNG storage term<strong>in</strong>als <strong>in</strong> Zeebrugge and<br />

Rotterdam. LBM is produced by upgrad<strong>in</strong>g biogas and <strong>the</strong>n liquefy<strong>in</strong>g it. LBM is an option<br />

to extract energy from biomass, next to green gas and CHP. An analysis of <strong>the</strong> production<br />

costs of LBM shows that <strong>the</strong>se are about 2 times higher than <strong>the</strong> market price of LNG and<br />

what LNG distributors are will<strong>in</strong>g to pay. In <strong>the</strong> total picture however, LBM is probably a<br />

cheaper option than green gas <strong>in</strong>jected <strong>in</strong> <strong>the</strong> natural gas grid. Therefore LBM should be<br />

<strong>in</strong>corporated <strong>in</strong> <strong>the</strong> SDE+ scheme. To create a level play<strong>in</strong>g field between LBM and green<br />

gas, <strong>the</strong> excise taxes for <strong>the</strong>se fuels have to be equalised. The price of LNG at <strong>the</strong> pump is<br />

currently lower than that of diesel, but it is uncerta<strong>in</strong> how <strong>the</strong>se prices develop when <strong>the</strong><br />

LNG market grows. The <strong>Dutch</strong> availability of biomass for <strong>the</strong> production of energy is limited<br />

to about 8 % of <strong>the</strong> primary energy use. Gasification is not expected to take-off before<br />

2020, but has <strong>the</strong> most potential. Anaerobic digestion has less potential and, on top of that,<br />

is used for different forms of energy generation. Moreover, <strong>the</strong> current government policies<br />

are focussed on stimulation <strong>the</strong> production of green gas <strong>in</strong>stead of LBM. LBM production<br />

thus has limited potential and can only fuel a part of <strong>the</strong> <strong>transport</strong> <strong>sector</strong>. LBM fuel is best<br />

suited for use <strong>in</strong> heavy duty vehicles and shipp<strong>in</strong>g. For shipp<strong>in</strong>g, large storage bunkers<br />

have to be realised along harbours. A network of refill<strong>in</strong>g stations has to be created to<br />

service heavy duty vehicles. The properties of an LNG truck are comparable to diesel and<br />

<strong>in</strong>vestments pay <strong>the</strong>mselves back <strong>in</strong> three years. LNG and LBM are most likely offered as<br />

s<strong>in</strong>gle fuel at <strong>the</strong> fill<strong>in</strong>g stations. If all heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands would run on<br />

LBM, CO2 emissions would be reduced by 3 % with respect to 1990 levels. The energy<br />

usage would <strong>the</strong>n be about 2 % of <strong>the</strong> <strong>Dutch</strong> primary energy use. This scenario is unlikely,<br />

given <strong>the</strong> limited availability of biomass. The shipp<strong>in</strong>g <strong>sector</strong> approximately has <strong>the</strong> same<br />

environmental potential but LNG use develops even more slowly <strong>the</strong>re. The contribution to<br />

<strong>the</strong> 2020 goals is almost noth<strong>in</strong>g, ma<strong>in</strong>ly because <strong>the</strong> number of LNG trucks grows slowly<br />

<strong>in</strong> <strong>the</strong> com<strong>in</strong>g years. The conclusion must be that, although LBM is an <strong>in</strong>terest<strong>in</strong>g option to<br />

reduce <strong>the</strong> CO2, NOx and PM10 emissions <strong>in</strong> a part of <strong>the</strong> <strong>transport</strong> <strong>sector</strong>, <strong>the</strong> total<br />

potential is limited. Moreover, <strong>the</strong> development of <strong>the</strong> LNG market is <strong>in</strong> a too early stage to<br />

already start <strong>in</strong>troduc<strong>in</strong>g LBM next to it. Short term <strong>in</strong>troduction of LBM thus means a high<br />

risk compared to o<strong>the</strong>r forms of biomass conversion and generates relatively little<br />

advantages. Replac<strong>in</strong>g LBM with LNG is preferably done when LNG has established itself<br />

firmly as a <strong>transport</strong> fuel <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.


SAMENVATTING (NL)<br />

Om m<strong>in</strong>der afhankelijk te worden van fossiele brandstoffen en om de uitstoot van<br />

broeikasgassen en andere schadelijke stoffen terug te dr<strong>in</strong>gen, is men <strong>in</strong> Nederland op<br />

zoek naar alternatieven voor de huidige energievoorzien<strong>in</strong>g. Voor het jaar 2020 heeft<br />

Nederland hier specifieke doelstell<strong>in</strong>gen voor gesteld: 20 % van de energievoorzien<strong>in</strong>g<br />

moet dan hernieuwbaar zijn en de uitstoot van broeikasgassen moet met 20 % verm<strong>in</strong>derd<br />

zijn ten opzichte van 1990. Een mogelijke optie om deze doelen te bereiken is de <strong>in</strong>zet van<br />

bio-LNG <strong>in</strong> de <strong>transport</strong><strong>sector</strong>. Bio-LNG is de “groene” variant van het fossiele LNG. LNG<br />

gebruik als brandstof, ter vervang<strong>in</strong>g van olieproducten, is een markt die <strong>in</strong>ternationaal <strong>in</strong><br />

ontwikkel<strong>in</strong>g is en waar bio-LNG op kan meeliften. De centrale onderzoeksvraag is:<br />

‘Wat is er nodig om het gebruik van bio-LNG <strong>in</strong> de Nederlandse <strong>transport</strong><strong>sector</strong> te<br />

maximaliseren en wat is het optimum vanuit milieukundig, economisch en organisatorisch<br />

oogpunt?’<br />

Om LBM gebruik <strong>in</strong> Nederland te maximaliseren is er een sterke groei nodig van de LNG<br />

<strong>sector</strong>. De organisatie van een LBM <strong>in</strong>frastructuur wordt dan bij voorkeur volledig<br />

geïntegreerd met de LNG <strong>in</strong>frastructuur. Vanuit economisch oogpunt is LBM voor de<br />

overheid voordeliger dan geïnjecteerd groen gas, hoewel de milieuvoordelen zich pas na<br />

2020 zullen laten gelden.<br />

LNG is aardgas wat vloeibaar gemaakt is door het te koelen naar een temperatuur van -<br />

162 °C. Dit wordt per schip aangeleverd bij LNG term<strong>in</strong>als <strong>in</strong> de havens van Zeebrugge en<br />

Rotterdam. Bio-LNG wordt geproduceerd door biogas, uit vergist<strong>in</strong>g of vergass<strong>in</strong>g van<br />

biomassa, op te werken. Een analyse van de productiekosten van bio-LNG uit (co-<br />

)vergist<strong>in</strong>g laat zien dat deze ongeveer 2 keer hoger liggen dan wat LNG distributeurs<br />

bereid zijn ervoor te betalen. Om dit op te lossen moet bio-LNG worden opgenomen <strong>in</strong> de<br />

SDE+ regel<strong>in</strong>g. De accijns op bio-LNG is gelijk aan LNG maar hoger dan CNG. Dit moet<br />

worden gelijkgetrokken omdat dit een oneerlijk voordeel voor CNG is. In Nederland is de<br />

beschikbaarheid van biomassa voor energieproductie beperkt tot ongeveer 8 % van het<br />

primaire energieverbruik. Vergass<strong>in</strong>g van droge biomassa heeft het meeste potentieel<br />

maar lijkt pas na 2020 zijn <strong>in</strong>trede te gaan doen. Vergist<strong>in</strong>g heeft m<strong>in</strong>der potentieel en moet<br />

bovendien worden verdeeld over elektriciteit, warmte en gas. Het productiepotentieel van<br />

bio-LNG is dus beperkt en kan slechts een deel van de vervoers<strong>sector</strong> van brandstof<br />

voorzien. Vrachtvervoer en de scheepvaart zijn de meest geschikte <strong>sector</strong>en voor de <strong>in</strong>zet<br />

van bio-LNG. Voor de scheepvaart moeten er grootschalige opslagbunkers nabij havens<br />

worden gerealiseerd. Voor het vrachtvervoer moet er een netwerk van tankstations komen.<br />

De rijeigenschappen van een LNG voertuig zijn vergelijkbaar met die van diesel en de<br />

terugverdientijd is ongeveer drie jaar. Het meest waarschijnlijk is dat bio-LNG en LNG als<br />

dezelfde brandstof wordt aangeboden aan de pomp, gemengd of per tankstation. Als al het<br />

vrachtvervoer <strong>in</strong> Nederland gaat rijden op bio-LNG wordt de CO2 uitstoot met ongeveer<br />

3 % verm<strong>in</strong>derd t.o.v. 1990 en heeft dit een aandeel van 2 % op het totale energieverbruik.<br />

Gegeven de beperkte hoeveelheid biomassa is dit een onwaarschijnlijk scenario. De<br />

bijdrage van bio-LNG aan de doelstell<strong>in</strong>gen voor 2020 zal nihil zijn. Dit komt doordat het<br />

aantal vrachtwagens op LNG <strong>in</strong> de eerste jaren langzaam zal groeien. Concluderend kan<br />

worden gezegd dat, hoewel bio-LNG een <strong>in</strong>teressante optie is om de CO2, NOx, en PM10<br />

uitstoot <strong>in</strong> de scheepvaart- en vrachtvervoer<strong>sector</strong> te verm<strong>in</strong>deren, het totale potentieel<br />

beperkt is. Bovendien is de LNG <strong>sector</strong> nog onvoldoende ver ontwikkeld om daar nu al bio-<br />

LNG naast te gaan <strong>in</strong>troduceren. Op korte termijn bio-LNG produceren levert dus een<br />

hoger economisch risico op dan andere vormen van bio-energie en relatief we<strong>in</strong>ig<br />

voordelen. Het vergroenen van LNG met bio-LNG kan dus beter wachten totdat LNG<br />

gebruik zich <strong>in</strong> Nederland zich stevig heeft geïntroduceerd.


1. INTRODUCTION<br />

With<strong>in</strong> <strong>the</strong> context of susta<strong>in</strong>ability, deploy<strong>in</strong>g <strong>liquid</strong> <strong>biomethane</strong> (LBM) <strong>in</strong> <strong>the</strong> <strong>Dutch</strong><br />

<strong>transport</strong> <strong>sector</strong> appears to be an <strong>in</strong>terest<strong>in</strong>g option. The usage of LBM <strong>in</strong> <strong>the</strong> <strong>transport</strong><br />

<strong>sector</strong> has <strong>the</strong> potential to significantly cut greenhouse gas emissions, improve local air<br />

quality and reduce <strong>the</strong> dependence on fossil fuel imports for <strong>the</strong> Ne<strong>the</strong>rlands. LBM is a<br />

<strong>liquid</strong> fuel which consists almost entirely of methane (CH4) and is stored at a temperature of<br />

-162 °C. LBM can be produced by upgrad<strong>in</strong>g biogas to <strong>biomethane</strong> and cool<strong>in</strong>g this to <strong>the</strong><br />

required temperature. Biogas is produced by anaerobic digestion or gasification of (waste)<br />

biomass. The EU and <strong>the</strong> <strong>Dutch</strong> government consider <strong>the</strong> usage of biomass to produce<br />

some form of useable energy as a viable route to achieve <strong>the</strong> goals set out by <strong>the</strong> Kyoto<br />

Protocol. Different subsidy programs are currently runn<strong>in</strong>g <strong>in</strong> order to support this.<br />

This report gives an assessment on <strong>the</strong> sensibility & viability on- and different options of<br />

<strong>in</strong>troduc<strong>in</strong>g LBM <strong>in</strong> <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong>. An analysis is made of different factors<br />

associated with successfully <strong>in</strong>troduc<strong>in</strong>g LBM as a <strong>transport</strong> fuel. The three ma<strong>in</strong> aspects<br />

studied are <strong>the</strong> economic, environmental and organisational susta<strong>in</strong>ability. This project was<br />

carried out at Witteveen+Bos Deventer <strong>in</strong> co-operation with <strong>the</strong> University of Gron<strong>in</strong>gen.<br />

1.1. Background<br />

Global warm<strong>in</strong>g, resource depletion and air pollution are some of <strong>the</strong> most important<br />

environmental problems that today’s world faces. These problems are <strong>in</strong>extricably l<strong>in</strong>ked to<br />

<strong>the</strong> use of fossil fuels. Humanity is largely depended on <strong>the</strong> Earth’s fossil supplies. It is<br />

estimated that oil reserves are depleted before <strong>the</strong> end of this century (Mck<strong>in</strong>ney et al,<br />

2007).<br />

To prevent escalation of global warm<strong>in</strong>g, most countries <strong>in</strong> <strong>the</strong> world have constructed and<br />

signed <strong>the</strong> Kyoto Protocol. They have agreed to cut CO2 emission by 5 % <strong>in</strong> 2012 with<br />

respect to 1990 levels. For <strong>the</strong> EU and <strong>the</strong> Ne<strong>the</strong>rlands an 8 % cutback was agreed (United<br />

Nations, 1998). It is unclear whe<strong>the</strong>r <strong>the</strong>se target are met before <strong>the</strong> end of 2012, but<br />

governments <strong>in</strong> <strong>the</strong> EU have set out new goals for <strong>the</strong> year 2020. The prov<strong>in</strong>ce of<br />

Overijssel has set its own goals with<strong>in</strong> <strong>the</strong> policy framework of <strong>the</strong> Ne<strong>the</strong>rlands. These<br />

goals are summarised <strong>in</strong> Table 1.1.<br />

Table 1.1. Susta<strong>in</strong>ability objectives at different levels of government <strong>in</strong> <strong>the</strong> EU<br />

objective<br />

reduce greenhouse gas emissions 3<br />

European<br />

target percentage for 2020<br />

Commission <strong>Dutch</strong> government<br />

20 % 20 %<br />

Prov<strong>in</strong>ce of<br />

Overijssel<br />

<strong>in</strong>crease share renewable energy use 20 % 16 % 20 % 1<br />

<strong>in</strong>crease share renewable energy use <strong>transport</strong> 10 % 10 % 2<br />

Source: Eurostat (2011), Rijksoverheid (2012a), Rijksoverheid (2012b), Rijksoverheid (2012c), European Commission,<br />

(2012) & Prov<strong>in</strong>cie Overijssel (2011).<br />

1 70 % of this number must come from biomass.<br />

2<br />

3<br />

This must be 10 % bio fuels.<br />

With respect to 1990 levels.<br />

The <strong>transport</strong> <strong>sector</strong> plays a key role <strong>in</strong> achiev<strong>in</strong>g <strong>the</strong> emission reduction targets. The<br />

follow<strong>in</strong>g numbers illustrate this. In 2010, <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong> was responsible for<br />

21 % of all <strong>the</strong> CO2 emissions and 42 % of <strong>the</strong> total emission of particulate matter <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands (CBS, 2012a). The <strong>transport</strong> <strong>sector</strong> accounted for 25 % of <strong>the</strong> total f<strong>in</strong>al<br />

1


energy consumption <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2009 (IEA, 2011). Fur<strong>the</strong>rmore, carbon<br />

emissions <strong>in</strong> this <strong>sector</strong> are expected to <strong>in</strong>crease by 50 % <strong>in</strong> <strong>the</strong> year 2030 (OECD/IEA,<br />

2009). The EC and <strong>the</strong> <strong>Dutch</strong> government have set out special targets for <strong>the</strong> <strong>transport</strong><br />

<strong>sector</strong>, which are displayed <strong>in</strong> Table 1.1.<br />

Renewable energy <strong>in</strong> <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong> ma<strong>in</strong>ly has to come from <strong>the</strong> use of waste<br />

biomass. Different options are available:<br />

- burn<strong>in</strong>g biomass to produce electricity;<br />

- chemical process<strong>in</strong>g of biomass to produce biodiesel;<br />

- anaerobic digestion of biomass to produce bio-ethanol or biogas<br />

- gasification of biomass to produce syngas.<br />

Bio-ethanol and biodiesel are <strong>the</strong> fossil equivalents of petrol and diesel respectively.<br />

Syngas and biogas can be used to produce electricity or can be upgraded to produce green<br />

gas, CBM (compressed <strong>biomethane</strong>) or LBM. Electricity can be used to power battery<br />

electric vehicles. Green gas, CBM and LBM are vehicle fuels.<br />

LBM has a relative high energy density compared to green gas or CBM (approximately<br />

60 % <strong>the</strong> energy density of diesel). Therefore <strong>the</strong> higher <strong>the</strong> mileage average of a vehicle,<br />

<strong>the</strong> more suitable LBM becomes. The comb<strong>in</strong>ation of <strong>the</strong>se two factors makes LBM ideal<br />

for usage <strong>in</strong> freight and public <strong>transport</strong>.<br />

The development of an <strong>in</strong>frastructure for LBM use runs parallel to <strong>the</strong> development of <strong>the</strong><br />

use of liquefied natural gas (LNG). LNG is essentially <strong>the</strong> fossil equivalent of LBM. The<br />

differences and similarities between LBM and LNG are analysed fur<strong>the</strong>r on <strong>in</strong> this research.<br />

1.2. Problem sett<strong>in</strong>g<br />

LBM is not yet used as a <strong>transport</strong> fuel <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Successful implementation of<br />

this energy commodity generally depends on <strong>the</strong> economic, environmental and<br />

organisational susta<strong>in</strong>ability. Large scale <strong>in</strong>troduction of LBM as a fuel <strong>in</strong> <strong>the</strong> <strong>Dutch</strong><br />

<strong>transport</strong> <strong>sector</strong> is hampered by several issues:<br />

- uncerta<strong>in</strong>ty about <strong>the</strong> potential of LBM production compared to o<strong>the</strong>r uses of biomass;<br />

- unclarity on how to make LBM production and use profitable, also <strong>in</strong> light of LNG use;<br />

- uncerta<strong>in</strong>ty about <strong>the</strong> potential for LNG use <strong>in</strong> different parts of <strong>the</strong> <strong>transport</strong> <strong>sector</strong>;<br />

- government subsidies, taxes, environmental law and safety regulations;<br />

- uncerta<strong>in</strong>ty on <strong>the</strong> possible contribution to <strong>the</strong> climate goals for 2020;<br />

- lack of an <strong>in</strong>frastructure <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands to produce, distribute and use LBM.<br />

Biomass can be used <strong>in</strong> different ways to produce energy. Figure 1.1 gives <strong>the</strong> situation for<br />

energy production from biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2011. A total amount of 34.1 PJ was<br />

produced from biomass. The largest part of <strong>the</strong> biomass is burned to produce electricity.<br />

Only 2.60% of <strong>the</strong> energy used from biomass is actually used as biogas itself. S<strong>in</strong>ce<br />

biomass energy use accounted for only 1.05 % of <strong>the</strong> total energy use (CBS, 2012b), <strong>the</strong><br />

energy use from biogas is very low <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (only 0.0272 % <strong>in</strong> 2011). The relative<br />

distribution of biomass usage as depicted <strong>in</strong> Figure 1.1, illustrates that a lot is needed to<br />

<strong>in</strong>troduce LBM as a fuel is <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong>. More specifically: if <strong>the</strong> Ne<strong>the</strong>rlands<br />

wants 10 % of <strong>the</strong> energy used <strong>in</strong> <strong>transport</strong> (563 PJ <strong>in</strong> 2009) to come from biogas (or<br />

related fuels), <strong>the</strong> production of biogas would have to grow by a factor 64, given <strong>the</strong> fact<br />

that only 0.89 PJ of biogas was produced <strong>in</strong> 2011 which was not used for <strong>the</strong> generation for<br />

electricity and heat.<br />

2


Figure 1.1. Energy produced from biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2011 1<br />

electricity production burn<strong>in</strong>g<br />

electricity production anaerobic<br />

digestion<br />

electricity production landfill gas<br />

heat production burn<strong>in</strong>g<br />

heat production anaerobic<br />

digestion<br />

heat production landfill gas<br />

biogas production anaerobic<br />

digestion<br />

biogas production landfill gas<br />

Source: CBS (2012c).<br />

9%<br />

1 This picture gives <strong>the</strong> relative distribution of f<strong>in</strong>al energy produced from biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2011.<br />

1%<br />

56%<br />

The total amount of f<strong>in</strong>al energy produced <strong>in</strong> that year was 43,5 PJ.<br />

F<strong>in</strong>ancial survey for different biomass options<br />

Different options exist to produce and use energy from biomass. The ECN (<strong>Dutch</strong> research<br />

centre for susta<strong>in</strong>able energy) publishes annual reports to determ<strong>in</strong>e <strong>the</strong> average<br />

production costs of different types of susta<strong>in</strong>able energy. The <strong>Dutch</strong> m<strong>in</strong>istry of economic<br />

affairs, agriculture and <strong>in</strong>novation uses <strong>the</strong>se numbers to determ<strong>in</strong>e subsidy schemes (see<br />

section 6.4). Tak<strong>in</strong>g some numbers out of <strong>the</strong> 2011 report, allows one to compare <strong>the</strong><br />

economic viability of different options. This is displayed <strong>in</strong> Table 1.2 (production- and<br />

<strong>in</strong>vestment costs)<br />

Table 1.2. Production costs of different biomass options<br />

production costs (EUR*GJ -1 )<br />

conversion option heat CHP green gas<br />

<strong>in</strong>dustrial digestion (hub) 15.10 19.20 18.91<br />

<strong>in</strong>dustrial digestion 14.80 27.30 18.50<br />

co-digestion (hub) 18.40 22.50 22.13<br />

co-digestion 17.70 30.80 22.78<br />

landfill gas 22.10 11.59<br />

gasification 30.47<br />

<strong>the</strong>rmal conversion<br />

Source: ECN (2011).<br />

Heat production is on average <strong>the</strong> cheapest option but production and use of heat is very<br />

conf<strong>in</strong>ed <strong>in</strong> terms of <strong>the</strong> location and is <strong>the</strong>refore limited. The heat produced <strong>in</strong> a CHP plant<br />

is often not used. The production of green gas (or biogas) <strong>the</strong>n appears to be <strong>the</strong> best<br />

22.20<br />

29%<br />

3%<br />

0%<br />

2%<br />

1%<br />

3


option for energy production from biomass. Chapter 5 deals with <strong>the</strong> bus<strong>in</strong>ess case for <strong>the</strong><br />

production of LBM out of this biomass.<br />

1.3. Production and usage of LBM<br />

The technical feasibility for <strong>the</strong> production of LBM from biogas is already established <strong>in</strong><br />

practice. For example, <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom <strong>the</strong> company of Gasrec already produces<br />

LBM for <strong>the</strong> <strong>transport</strong> <strong>sector</strong>, albeit still only at a relatively small scale. Different production<br />

options for LBM are elaborated <strong>in</strong> section 5.1. 180 PJ worth of biomass energy was<br />

available <strong>in</strong> 2009 (SenterNovem, 2009). Given <strong>the</strong> total energy use of <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong><br />

<strong>sector</strong> that year (563 PJ) (Compendium voor de leefomgev<strong>in</strong>g, 2012), <strong>the</strong> technical<br />

potential to use bio energy <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong> is 32 % at best. The comb<strong>in</strong>ation of a<br />

grow<strong>in</strong>g <strong>transport</strong> <strong>sector</strong> and <strong>the</strong> expected growth of <strong>the</strong> biomass availability determ<strong>in</strong>es if<br />

<strong>the</strong> technical potential for 2020 goes up or down. To give an <strong>in</strong>dication of <strong>the</strong> potential for<br />

LBM usage (from <strong>the</strong> available biomass) <strong>in</strong> different parts of <strong>the</strong> <strong>transport</strong> <strong>sector</strong>, Figure 1.2<br />

displays <strong>the</strong> distribution of <strong>the</strong> energy use <strong>in</strong> <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong> <strong>in</strong> 2009. The<br />

<strong>sector</strong>s of freight <strong>transport</strong> and shipp<strong>in</strong>g appear to be <strong>in</strong>terest<strong>in</strong>g for <strong>the</strong> deployment of<br />

LBM.<br />

Figure 1.2. Distribution of energy use <strong>in</strong> <strong>transport</strong> <strong>in</strong> 2009 (563 PJ)<br />

4<br />

passenger cars<br />

light commercial vehicles<br />

large goods vehicles<br />

motorcycles<br />

shipp<strong>in</strong>g<br />

aviation<br />

rail <strong>transport</strong><br />

o<strong>the</strong>r equipment<br />

1%<br />

16%<br />

Source: Compendium voor de leefomgev<strong>in</strong>g (2012).<br />

17%<br />

0% 7%<br />

2%<br />

Storage and distribution are also part of an LBM <strong>in</strong>frastructure. LBM first has to be stored at<br />

<strong>the</strong> production site, to accommodate differences between production and collection. LBM<br />

<strong>the</strong>n has to be distributed to <strong>the</strong> fill<strong>in</strong>g stations where it must aga<strong>in</strong> be stored. LBM and<br />

LNG can be <strong>transport</strong>ed by ship or truck. LNG-ships are used to export LBM or LNG to<br />

o<strong>the</strong>r countries via <strong>the</strong> seas. Trucks are used to <strong>transport</strong> LBM and LNG over <strong>the</strong> land. To<br />

keep <strong>the</strong> LBM/LNG at <strong>the</strong> right temperature, special tank conta<strong>in</strong>ers are required. These<br />

conta<strong>in</strong>ers are often double walled with a vacuum to provide isolation. Rolande LNG for<br />

example, <strong>transport</strong>s LNG <strong>in</strong> conta<strong>in</strong>ers with a 30-day hold<strong>in</strong>g time (Rolande LNG, 2012).<br />

This means that excess boil off due to warm<strong>in</strong>g only has to be vented when <strong>the</strong> LNG has<br />

10%<br />

47%


een stored for a period longer than 30 days. This maximum duration for LBM storage at<br />

<strong>the</strong> production and fill<strong>in</strong>g station site is also of importance. The production- and abatement<br />

capacities have to be harmonised to prevent boil-off wastes. Not only is boil-off a waste of<br />

fuel, boil-off also affects <strong>the</strong> quality of LNG (see Appendix I) and vent<strong>in</strong>g <strong>the</strong> excess boil-off<br />

is a source of greenhouse gas emissions.<br />

1.4. Research set-up<br />

Aim<br />

All <strong>the</strong> factors related to <strong>the</strong> economic, organisational and environmental susta<strong>in</strong>ability and<br />

<strong>the</strong>ir <strong>in</strong>terdependence are researched <strong>in</strong> this report and are put <strong>in</strong>to context. One can <strong>the</strong>n<br />

get a good overview on <strong>the</strong> optimal strategy for LBM implementation <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

The aim of this research is two-fold. The first is to analyse <strong>the</strong> potential for <strong>in</strong>troduc<strong>in</strong>g LBM<br />

<strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. This is done by consider<strong>in</strong>g <strong>the</strong> economic, environmental and<br />

organisational aspects specifically for <strong>the</strong> <strong>Dutch</strong> situation. The second goal is to determ<strong>in</strong>e<br />

what is actually needed to <strong>in</strong>troduce LBM <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. A case-study was made of<br />

<strong>the</strong> prov<strong>in</strong>ce of Overijssel, analys<strong>in</strong>g opportunities to contribute to <strong>the</strong> development of LBM<br />

<strong>in</strong> that prov<strong>in</strong>ce.<br />

Questions<br />

The follow<strong>in</strong>g question is central <strong>in</strong> this research.<br />

Ma<strong>in</strong> research question<br />

‘What is needed to maximise <strong>the</strong> use of LBM <strong>in</strong> <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong> and what is <strong>the</strong> optimum from an<br />

economic, environmental and organisational perspective?’<br />

An answer to this question is formulated by consider<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g three research subquestions.<br />

Sub-question 1<br />

‘What is <strong>the</strong> potential for <strong>the</strong> usage of LBM <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong> as a replacement of fossil fuels and how can this<br />

be organised <strong>in</strong> an optimal way?’<br />

Sub-question 2<br />

‘What is <strong>the</strong> environmental performance of LBM use <strong>in</strong> terms of energy and emissions of CO2 & particulate matter<br />

and what will consequently be <strong>the</strong> contribution to <strong>the</strong> susta<strong>in</strong>ability directives of <strong>the</strong> government?’<br />

Sub-question 3<br />

‘What are <strong>the</strong> current drawbacks and obstacles encountered <strong>in</strong> creat<strong>in</strong>g a viable bus<strong>in</strong>ess case for LBM usage and<br />

what are possible solutions?’<br />

Methodology<br />

The research on <strong>the</strong> <strong>in</strong>troduction of LBM as a <strong>transport</strong> fuel <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is performed<br />

along <strong>the</strong> follow<strong>in</strong>g scheme <strong>in</strong> this study.<br />

1. Explor<strong>in</strong>g <strong>the</strong> options for LBM use <strong>in</strong> general.<br />

2. Analys<strong>in</strong>g <strong>the</strong> bus<strong>in</strong>ess case for LBM production.<br />

3. Determ<strong>in</strong><strong>in</strong>g <strong>the</strong> price sett<strong>in</strong>g for LBM fuel <strong>in</strong> contrast to LNG and diesel.<br />

4. Assess<strong>in</strong>g <strong>the</strong> availability of biomass for LBM production and <strong>the</strong> potential for use.<br />

5. Establish<strong>in</strong>g <strong>the</strong> subsequent environmental consequences.<br />

5


6. Consider<strong>in</strong>g ways to organise LBM as a fuel.<br />

The ‘LBM system’ and <strong>the</strong> followed l<strong>in</strong>e of research are displayed graphically <strong>in</strong> Figure 1.3.<br />

Figure 1.3. Representation of <strong>the</strong> LBM system and <strong>the</strong> followed research l<strong>in</strong>e 1<br />

6<br />

LBM system Research items and sequence related to different parts of <strong>the</strong> LBM<br />

system<br />

biomass supply<br />

potential<br />

available<br />

description of <strong>the</strong><br />

available for LBM<br />

biomass <strong>in</strong> <strong>the</strong><br />

available types of<br />

production<br />

Ne<strong>the</strong>rlands<br />

biomass<br />

LBM production<br />

and distribution<br />

LBM usage<br />

LBM<br />

<strong>in</strong>frastructure<br />

bus<strong>in</strong>ess case<br />

LBM production<br />

usage <strong>in</strong> different<br />

<strong>transport</strong><br />

commodities<br />

obstacles,<br />

solutions and<br />

stakeholders<br />

optimal scale for<br />

LBM production<br />

plant<br />

determ<strong>in</strong>e actual<br />

usage potential<br />

review<strong>in</strong>g needed<br />

<strong>in</strong>frastructure to<br />

<strong>in</strong>troduce LBM<br />

price sett<strong>in</strong>g LBM<br />

fuel<br />

establish<br />

environmental<br />

consequences<br />

1 The LBM system is displayed on <strong>the</strong> left side and <strong>the</strong> correspond<strong>in</strong>g research topics for each part of <strong>the</strong><br />

system on <strong>the</strong> right side. The grey block demarks <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> research. From <strong>the</strong>re <strong>the</strong> arrows can<br />

be followed for each next step.<br />

After a general survey of <strong>the</strong> possibilities for LBM fuel, <strong>the</strong> economic feasibility of LBM<br />

production is established, to get a good feel<strong>in</strong>g of a reasonable production scale. The price<br />

sett<strong>in</strong>g of LBM fuel is determ<strong>in</strong>ed secondly. The price sett<strong>in</strong>g of LBM is <strong>in</strong>terl<strong>in</strong>ked with<br />

prices for diesel and LNG. The availability of biomass and <strong>the</strong> subsequent potential for<br />

usage <strong>in</strong> different parts of <strong>the</strong> <strong>transport</strong> <strong>sector</strong> is determ<strong>in</strong>ed thirdly, us<strong>in</strong>g <strong>the</strong> established<br />

parameters for <strong>the</strong> production scale. This <strong>in</strong>formation is <strong>the</strong>n used to determ<strong>in</strong>e <strong>the</strong><br />

possible environmental consequences. Hav<strong>in</strong>g established <strong>the</strong> desirability of LBM fuel from<br />

an economic and environmental po<strong>in</strong>t of view, <strong>the</strong> organisational aspects of <strong>in</strong>troduc<strong>in</strong>g<br />

LBM <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands are assessed.<br />

Most data used <strong>in</strong> this study comes from literature sources and statistical databases.<br />

Miss<strong>in</strong>g data comes from personal contact with companies and can be extrapolated from<br />

o<strong>the</strong>r data. Excel sheets are used to process all <strong>the</strong> data. The development of energy<br />

production from biomass, and <strong>the</strong> environmental contribution for LBM use <strong>in</strong> <strong>the</strong> truck fleet<br />

will also be modelled <strong>in</strong> Excel for different scenarios.<br />

If <strong>the</strong> economic, environmental and organisational aspects are ‘plotted’ aga<strong>in</strong>st a people,<br />

planet and profit outl<strong>in</strong>e, one gets a good overview of <strong>the</strong> important factors relevant to this<br />

research. This is displayed <strong>in</strong> Table 1.3 and may serve as guidance.


Table 1.3. Factors relevant to LBM research<br />

economic aspects cost of LBM fuel<br />

people planet profit<br />

transition costs<br />

bio tickets<br />

environmental aspects environmental law<br />

use potential<br />

organisational aspects convenience and<br />

1.5. Structure of this report<br />

practicality<br />

use scale<br />

available biomass<br />

production scale<br />

o<strong>the</strong>r use of biomass<br />

greenhouse gas emissions<br />

pollutant emissions<br />

<strong>in</strong>frastructure needed<br />

relation to o<strong>the</strong>r fuels<br />

profitable LBM production<br />

subsidies<br />

market<strong>in</strong>g<br />

susta<strong>in</strong>ability goals<br />

government<br />

exploitation of fill<strong>in</strong>g<br />

stations<br />

supply & demand cha<strong>in</strong><br />

This report is read as follows. Chapter 2 beg<strong>in</strong>s with an assessment on <strong>the</strong> potential for<br />

LBM production from <strong>Dutch</strong> biomass. Chapter 3 assesses <strong>the</strong> potential for LBM usage <strong>in</strong><br />

different types of <strong>transport</strong>. Chapter 4 <strong>the</strong>n analyses <strong>the</strong> potential consequences for <strong>the</strong><br />

environment and <strong>the</strong> contribution to <strong>the</strong> susta<strong>in</strong>ability goals. Chapter 5 provides an<br />

economic analysis of LBM production and usage. Chapter 6 determ<strong>in</strong>es how to organise an<br />

LBM <strong>in</strong>frastructure optimally. The conclusions and recommendations can be found <strong>in</strong><br />

chapter 7.<br />

7


2. POTENTIAL AVAILIBITY OF BIOMASS FOR LBM PRODUCTION<br />

To analyse how much biomass is available <strong>in</strong> <strong>the</strong> future to produce LBM <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

an analysis is needed of <strong>the</strong> current situation and <strong>the</strong> expected developments. A number of<br />

studies have made projections for <strong>the</strong> availability of biomass for energy production <strong>in</strong> <strong>the</strong><br />

future. Toge<strong>the</strong>r with statistical data from <strong>the</strong> CBS <strong>the</strong>y can be used to make realistic<br />

assumptions about how LBM production (for <strong>the</strong> moment disregard<strong>in</strong>g <strong>the</strong> economic<br />

issues) develops from now to 2020.<br />

2.1. Current situation for biomass usage<br />

The analysis of <strong>the</strong> potential for LBM production beg<strong>in</strong>s with a detailed analysis of <strong>the</strong><br />

current use of biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

2.1.1. Situation for <strong>the</strong> Ne<strong>the</strong>rlands<br />

For LBM production, it is important to know how and how much biogas is currently<br />

produced <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and how this is used. Table 2.1 and Figure 2.1 provide a good<br />

overview of this.<br />

Table 2.1. Energy production from biogas produc<strong>in</strong>g plants <strong>in</strong> 2011<br />

# <strong>in</strong>stallations<br />

produced<br />

biogas (TJ)<br />

flared biogas<br />

(TJ)<br />

electricity<br />

produced f<strong>in</strong>al energy<br />

(TJ) heat (TJ) biogas (TJ) total (TJ) efficiency<br />

co-digestion 97 5,632 - 1858 447 0 2305 41 %<br />

<strong>in</strong>dustrial<br />

digestion<br />

sewage<br />

treatment<br />

20 3,091 - 688 352 520 1560 50 %<br />

74 2,315 159 605 161 71 837 39 %<br />

landfill sites 41 1,663 345 274 55 295 624 47 %<br />

total 232 12,701 504 3424 1015 886 5325 44 %<br />

Source: (Rijksoverheid, 2012d; CBS, 2012i).<br />

9


Figure 2.1. Energy from biogas produc<strong>in</strong>g plants <strong>in</strong> 2011 1<br />

10<br />

energy (PJ)<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

produced<br />

biogas<br />

total f<strong>in</strong>al<br />

energy<br />

electricity heat end-use<br />

biogas<br />

landfill sites<br />

sewage and wastewater<br />

treatment<br />

<strong>in</strong>dustrial digestion<br />

co-digestion<br />

1 Total f<strong>in</strong>al energy is <strong>the</strong> sum of <strong>the</strong> produced electricity, heat and end-use biogas. The energy of <strong>the</strong> produced<br />

biogas m<strong>in</strong>us <strong>the</strong> total f<strong>in</strong>al energy is <strong>the</strong> efficiency loss due to <strong>the</strong> conversion process.<br />

In <strong>the</strong> Ne<strong>the</strong>rlands, a total amount of 12,196 TJ of biogas was produced <strong>in</strong> 2011. Should all<br />

this biogas be used for <strong>the</strong> production of LBM, 5.8*10 8 litres of LBM fuel could be<br />

generated <strong>the</strong>oretically. This is enough to have 20,000 trucks run 40,000 km per year,<br />

cover<strong>in</strong>g almost 13 % of <strong>the</strong> total energy use of heavy duty vehicles <strong>in</strong> 2010.<br />

The reality is that only a fraction of <strong>the</strong> produced biogas is used as ‘biogas’. The rest is<br />

mostly used to generate heat and electricity. Biogas as an end product is used <strong>in</strong> <strong>transport</strong><br />

or <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> natural gas grid of <strong>the</strong> Ne<strong>the</strong>rlands. With <strong>the</strong> amount produced <strong>in</strong> 2011,<br />

one would only cover 1 % of <strong>the</strong> energy need of heavy duty vehicles.<br />

Energetic use of biomass<br />

There are three streams of biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands: production, import and export. The<br />

Ne<strong>the</strong>rlands is a net importer of biomass. The most part, about 85 %, of our biomass is<br />

used for food production (ei<strong>the</strong>r directly or <strong>in</strong>directly). The rema<strong>in</strong><strong>in</strong>g 15 % can, <strong>in</strong> <strong>the</strong>ory,<br />

be used for <strong>the</strong> production of energy. Export<strong>in</strong>g less biomass is also an option to <strong>in</strong>crease<br />

<strong>the</strong> availability but is unlikely because <strong>the</strong> biomass exported by <strong>the</strong> Ne<strong>the</strong>rlands is mostly<br />

food. Figure 2.2 displays <strong>the</strong> biomass streams and energy generation <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.


Figure 2.2. Energy production from biomass <strong>in</strong> 2011 <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

BIOMASS STREAMS ENERGY PRODUCTION FINAL ENERGY<br />

export<br />

(35 %)<br />

domestic<br />

production<br />

(46 %)<br />

import<br />

(54 %)<br />

food & feed<br />

(86 %)<br />

net amount<br />

available<br />

(100 %)<br />

manure &<br />

o<strong>the</strong>r<br />

<strong>in</strong>c<strong>in</strong>eration<br />

92 PJ<br />

(78 %)<br />

energy<br />

production<br />

(117 PJ)<br />

digestion<br />

12 PJ<br />

(10 %)<br />

electricity<br />

22 PJ<br />

(52 %)<br />

heat<br />

20 PJ<br />

(46 %)<br />

biogas<br />

0.9 PJ<br />

(2 %)<br />

Source: this picture was produced with data from CBS (2012i) & Platform Groene Grondstoffen (2006).<br />

The total energy embodied <strong>in</strong> <strong>the</strong> biomass used for energy production was 117 PJ <strong>in</strong> 2011.<br />

The production of f<strong>in</strong>al energy from this biomass was 43.5 PJ. The efficiency of <strong>the</strong> energy<br />

conversion from biomass to a f<strong>in</strong>al form of energy, was thus 37% (exclud<strong>in</strong>g bio fuels).<br />

Biogas production<br />

One can deduce from Figure 2.2 that only a small part of <strong>the</strong> generated energy from<br />

biomass was produced as “biogas”. Most biogas derived from digestion was used to<br />

generate heat or electricity. The rema<strong>in</strong><strong>in</strong>g part can be upgraded and used <strong>in</strong> <strong>transport</strong>, for<br />

example by produc<strong>in</strong>g LBM from it.<br />

2.1.2. Situation for Overijssel<br />

With<strong>in</strong> <strong>the</strong> prov<strong>in</strong>ce of Overijssel <strong>the</strong> situation for energy produced from biomass is as<br />

follows.<br />

At this moment a total number of 25 <strong>in</strong>stallations are active <strong>in</strong> produc<strong>in</strong>g energy from<br />

biomass streams. Three of <strong>the</strong>se <strong>in</strong>stallations <strong>in</strong>c<strong>in</strong>erate waste or biomass to produce<br />

electricity and heat. The o<strong>the</strong>r <strong>in</strong>stallations produce biogas which is used for different<br />

purposes. There are:<br />

- 6 co-digestion plants;<br />

- 2 <strong>in</strong>dustrial digestion plants;<br />

- 8 sewage and wastewater treatment plants;<br />

- 6 landfill sites produc<strong>in</strong>g biogas.<br />

Comb<strong>in</strong><strong>in</strong>g this data with data on <strong>the</strong> total generated primary energy <strong>in</strong> Overijssel from<br />

biomass, <strong>the</strong> situation of Overijssel can be depicted analogues to section 2.1.1. This is<br />

depicted <strong>in</strong> Table 2.2 and Figure 2.3.<br />

11


Table 2.2. Energy production from biogas produc<strong>in</strong>g plants <strong>in</strong> 2011 <strong>in</strong> Overijssel<br />

12<br />

produced biogas<br />

(TJ)<br />

flared biogas<br />

(TJ)<br />

electricity<br />

produced f<strong>in</strong>al energy<br />

(TJ) heat (TJ) biogas (TJ) total (TJ) efficiency<br />

co-digestion 172 0 57 14 0 70 41 %<br />

<strong>in</strong>dustrial<br />

digestion 57 0 13 7 10 29 50 %<br />

sewage<br />

treatment 230 16 60 16 7 83 39 %<br />

landfill sites 172 36 28 6 31 65 47 %<br />

total 631 51 158 42 47 247 43 %<br />

Source: data on <strong>the</strong> number of <strong>in</strong>stallations (Rijksoverheid, 2012d) and <strong>the</strong> total amount of primary energy produced<br />

from biogas <strong>in</strong> Overijssel (Prov<strong>in</strong>cie Overijssel, 2012e) is comb<strong>in</strong>ed with <strong>the</strong> efficiencies <strong>in</strong> Table 2.1 to<br />

calculate <strong>the</strong> figures for <strong>the</strong> produced f<strong>in</strong>al energy. For <strong>the</strong> prov<strong>in</strong>ce of Overijssel, data is available on how<br />

much energy was generated with anaerobic digestion.<br />

Figure 2.3. Energy from biogas produc<strong>in</strong>g plants <strong>in</strong> Overijssel <strong>in</strong> 2011 1<br />

1<br />

energy (TJ)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

produced<br />

biogas<br />

total f<strong>in</strong>al<br />

energy<br />

electricity heat end-use<br />

biogas<br />

landfill sites<br />

sewage and wastewater<br />

treatment<br />

<strong>in</strong>dustrial digestion<br />

co-digestion<br />

The figures for <strong>the</strong> produced electricity heat and end-use biogas are estimates on <strong>the</strong> basis of <strong>the</strong> national<br />

figures. The actual distribution of <strong>the</strong> production of heat, electricity and end-use biogas may <strong>the</strong>refore be<br />

slightly different <strong>in</strong> reality.<br />

The produced biogas <strong>in</strong> Overijssel is mostly used to produce electricity. With <strong>the</strong> current<br />

capacity, an amount of 2.7*10 7 litres of LBM could be produced annually. This is enough to<br />

have 400 trucks run 100,000 km a year.<br />

2.2. Biomass available for production of end-use biogas<br />

The availability of biomass for <strong>the</strong> production of LBM for 2020 and beyond depends on<br />

several factors. Predictions on future development paths always have an <strong>in</strong>herent degree<br />

of uncerta<strong>in</strong>ty which cannot be quantified. Therefore, it is best to make a number of


scenarios for <strong>the</strong> development of LBM production. These scenarios vary between zero LBM<br />

production and <strong>the</strong> maximal potential for LBM production. To do this, data on <strong>the</strong> total<br />

potential for energy generation from biomass is comb<strong>in</strong>ed with data on <strong>the</strong> expected<br />

availability for <strong>transport</strong> and <strong>the</strong> government objectives for biomass usage. Subsequently,<br />

past trends of biomass energy production is used to make future predictions. Comb<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong>se results gives a number of development scenarios for <strong>the</strong> production of LBM to 2020.<br />

2.2.1. Total potential <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and Overijssel<br />

The total potential for energy generation from biomass consists ma<strong>in</strong>ly of <strong>the</strong> biomass<br />

produced <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Import<strong>in</strong>g biomass, (additional biomass specifically for energy<br />

generation) is not considered <strong>in</strong> this study. The total energy content of <strong>the</strong> biomass<br />

produced <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is given by SenterNovem (2009) as 843 PJ HHV (Higher<br />

Heat<strong>in</strong>g Value). Only a part of this is available for <strong>the</strong> production of energy. An estimated<br />

amount of 450 PJ is potentially available accord<strong>in</strong>g to Platform Groene Grondstoffen<br />

(2006).<br />

For <strong>the</strong> Prov<strong>in</strong>ce of Overijssel <strong>the</strong> potential for energy generation is 14 PJ (G3 Advies,<br />

2008). With <strong>the</strong> current efficiency for energy conversion (37 %) this comes down to a gross<br />

availability of 38 PJ. The potential for <strong>the</strong> production of f<strong>in</strong>al energy from consists of two<br />

parts.<br />

Yearly energy potential from digestion<br />

Us<strong>in</strong>g data from SenterNovem (2009) it is calculated that <strong>the</strong> gross energy available for<br />

digestion is 91 PJ <strong>in</strong> 2020, out of a total availability of 281 PJ. This study expects that only<br />

13 PJ of f<strong>in</strong>al energy is available as green gas, <strong>in</strong> <strong>the</strong> most optimistic scenario (based on<br />

certa<strong>in</strong> policy scenarios). The rest is used for <strong>the</strong> generation of electricity and heat.<br />

Platform Groene Grondstoffen (2006) gives <strong>the</strong> amount of biomass available for electricity<br />

and production as 355 PJ. 35 PJ of this is available for <strong>the</strong> production of biogas (gross<br />

energy).<br />

Ano<strong>the</strong>r study by SenterNovem (2007) estimates <strong>the</strong> potential for <strong>the</strong> production of green<br />

gas at 1,500 million m 3 , equivalent to 48 PJ of f<strong>in</strong>al energy or roughly 80 PJ of gross<br />

energy.<br />

In <strong>the</strong> prov<strong>in</strong>ce of Overijssel, anaerobic digestion has a potential of 8.5 PJ of f<strong>in</strong>al energy<br />

(G3 advies, 2008). Under <strong>the</strong> present market conditions this equals 20 PJ gross energy.<br />

This equals roughly 12 PJ of green gas.<br />

Yearly energy potential for gasification<br />

The potential for energy production from gasification of biomass is larger than for digestion.<br />

However, this technique is expected to become available commercially no sooner than 5<br />

years from now. Gasification will thus probably not play a role before 2020.<br />

Gasification is expected to compete with <strong>the</strong>rmal conversion of biomass <strong>in</strong> <strong>the</strong> future. The<br />

efficiency of energy conversion is much higher with this process (75 % compared with 30 %<br />

(ECN, 2011a)).<br />

The potential for <strong>the</strong>rmal conversion of biomass is 190 PJ of gross energy <strong>in</strong> 2020<br />

(SenterNovem, 2009). This is equivalent to 133 PJ green gas.<br />

13


Ano<strong>the</strong>r study by SenterNovem (2007) gives <strong>the</strong> potential for gasification as 3.5 million m 3<br />

green gas, equivalent to 112 PJ.<br />

No exact figures are available for <strong>the</strong> prov<strong>in</strong>ce of Overijssel, but with <strong>the</strong> above figures one<br />

can make an estimation of 21 PJ of green gas from gasification.<br />

2.2.2. Government objectives<br />

Also important are <strong>the</strong> government objectives for green gas. The current policy regard<strong>in</strong>g<br />

green gas is focussed entirely on produc<strong>in</strong>g green gas for <strong>in</strong>jection <strong>in</strong> <strong>the</strong> natural gas grid.<br />

In <strong>the</strong>ory, this green gas can also be used to produce LBM (directly upgraded from biogas).<br />

Therefore this objective can still be taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> calculations.<br />

The <strong>Dutch</strong> government has set no specific objectives for biogas use <strong>in</strong> <strong>transport</strong>. The goals<br />

for 2020 are 24 PJ worth of green gas <strong>in</strong>jected <strong>in</strong> <strong>the</strong> grid.<br />

Platform Nieuw Gas (2007) aims at a green gas production (<strong>in</strong>jected <strong>in</strong> <strong>the</strong> grid) between<br />

121 PJ and 181 PJ, which is ambitious to say <strong>the</strong> least.<br />

The prov<strong>in</strong>ce of Overijssel has set no specific objectives for <strong>the</strong> production of green gas.<br />

2.2.3. Total overview<br />

An overview of <strong>the</strong> different most realistic potentials and objectives is given <strong>in</strong> Figure 2.4,<br />

also <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> equivalent amount of LBM that can be produced.<br />

14


Figure 2.4. Figures of <strong>the</strong> energy potential for LBM production<br />

f<strong>in</strong>al energy (PJ)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

133<br />

A - <strong>Dutch</strong> potential for gasification SenterNovem (2009)<br />

112<br />

B - <strong>Dutch</strong> potential for gasification SenterNovem (2007)<br />

55<br />

C - <strong>Dutch</strong> potential for anaerobic digestion SenterNovem (2009)<br />

48<br />

D - <strong>Dutch</strong> potential for anaerobic digestion SenterNovem (2007)<br />

21<br />

E - <strong>Dutch</strong> potential for anaerobic digestion Platform Groene<br />

Grondstoffen (2006)<br />

13<br />

23 21<br />

De maximum availability for <strong>the</strong> production of green gas (or potentially LBM) is no more<br />

than 190 PJ, which is equal to 9 billion litres of LBM.<br />

2.3. Trends and developments<br />

The <strong>Dutch</strong> market for <strong>the</strong> generation of energy from biomass took off <strong>in</strong> <strong>the</strong> late<br />

eighties/early n<strong>in</strong>eties. The CBS has kept track of <strong>the</strong>se developments from 1990 onwards.<br />

F - Expected production of green gas <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2020<br />

SenterNovem (2009)<br />

G - Total energy potential for biomass <strong>in</strong> Overijssel G3 Advies<br />

(2008)<br />

H - Gasification potential for Overijssel (estimation)<br />

12<br />

I - Potential for anaerobic digestion <strong>in</strong> Overijssel G3 Advies (2008)<br />

151<br />

J - Production objective green gas Task Force Green Gas (2007)<br />

24<br />

K - Production goal green gas from <strong>Dutch</strong> government<br />

15


The development of bio-energy generation <strong>in</strong> de years 1990-2011 may give some<br />

<strong>in</strong>dications on how it develops <strong>in</strong> <strong>the</strong> future (to <strong>the</strong> year 2020 and beyond). The predictions<br />

have a certa<strong>in</strong> degree of uncerta<strong>in</strong>ty because <strong>the</strong> developments are very depended on<br />

market conditions and government policies. For developments to <strong>the</strong> year 2020 <strong>the</strong><br />

predictions, <strong>in</strong> comb<strong>in</strong>ation data from <strong>the</strong> previous paragraph, provides a good handle,<br />

none<strong>the</strong>less.<br />

2.3.1. Trends from <strong>the</strong> years 1990-2011<br />

Figure 2.5 gives <strong>the</strong> development of primary energy from <strong>the</strong> total biomass energy<br />

production and anaerobic digestion and <strong>the</strong> total f<strong>in</strong>al energy produced from those two<br />

types. Important to notice is that <strong>the</strong> produced primary energy has risen more rapidly than<br />

<strong>the</strong> produced f<strong>in</strong>al energy, especially for biogas. This means that <strong>the</strong> efficiency of energy<br />

conversion has decl<strong>in</strong>ed.<br />

Figure 2.5. Energy production for biogas and biomass as a whole<br />

16<br />

energy from biomass (PJ)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2011<br />

2010<br />

2009<br />

2008<br />

2007<br />

2006<br />

2005<br />

2004<br />

2003<br />

2002<br />

2001<br />

2000<br />

1999<br />

1998<br />

1997<br />

1996<br />

1995<br />

1994<br />

1993<br />

1992<br />

1991<br />

1990<br />

Source: adaptation from CBS (2012i).<br />

year<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

energy from biogas (PJ)<br />

primary energy biomass<br />

f<strong>in</strong>al energy biomass<br />

primary energy biogas<br />

f<strong>in</strong>al energy biogas<br />

Zoom<strong>in</strong>g <strong>in</strong> specifically at anaerobic digestion of biomass <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, Figure 2.6<br />

<strong>in</strong>dicates <strong>the</strong> trend for <strong>the</strong> past years. Co-digestion made a strong march from 2005<br />

onwards and is now <strong>the</strong> largest source of biogas. This strong march was supported by a<br />

new system of government subsidies which made it possible to use manure for digestion<br />

purposes. With <strong>the</strong> arrival of a new subsidy system and <strong>the</strong> fact that <strong>the</strong>se subsidies only<br />

run for a certa<strong>in</strong> time span, a number of digesters have gone bankrupt recently because<br />

<strong>the</strong>y did not receive subsidies anymore. This partly expla<strong>in</strong>s <strong>the</strong> apparent dip <strong>in</strong> 2011. The<br />

production of landfill gas had peaked from 1995 till 2002 and is now slowly decl<strong>in</strong><strong>in</strong>g, due to<br />

government policies. Less waste is brought to landfill sites nowadays and <strong>the</strong> exist<strong>in</strong>g<br />

landfill sites produce less biogas each year because <strong>the</strong>y have already given up most of<br />

<strong>the</strong>ir potential. Biogas production from sewage- and wastewater treatment plants has<br />

rema<strong>in</strong>ed more or less constant.


Figure 2.6. Produced biogas for <strong>the</strong> four types of production facilities<br />

primary energy (PJ)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2011<br />

2010<br />

2009<br />

2008<br />

2007<br />

2006<br />

2005<br />

2004<br />

2003<br />

2002<br />

2001<br />

2000<br />

1999<br />

1998<br />

1997<br />

1996<br />

1995<br />

1994<br />

1993<br />

1992<br />

1991<br />

1990<br />

Source: adaptation from CBS (2012i).<br />

year<br />

total biogas<br />

co-digestion<br />

<strong>in</strong>dustrial digestion<br />

sewage treatment<br />

landfill sites<br />

The produced biogas can be used for <strong>the</strong> generation of heat and electricity or for o<strong>the</strong>r<br />

purposes (such as upgrad<strong>in</strong>g it to green gas). If one looks at <strong>the</strong> past development of <strong>the</strong><br />

ratios (electricity/heat/biogas) of <strong>the</strong>se three types of f<strong>in</strong>al energy production, two alarm<strong>in</strong>g<br />

trends come to light. This is displayed <strong>in</strong> Figure 2.7. Next to a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> total amount of<br />

end-use biogas produced (because biogas is <strong>in</strong>creas<strong>in</strong>gly used for <strong>the</strong> generation of<br />

electricity), <strong>the</strong> percentage of biogas which is used as end-use biogas has also decl<strong>in</strong>ed<br />

from 36 % <strong>in</strong> 1990 to only 7 % <strong>in</strong> 2011. The preferred method of biogas usage thus<br />

appears to be go<strong>in</strong>g towards <strong>the</strong> production of electricity and heat. This trend is concern<strong>in</strong>g<br />

for <strong>the</strong> prospects of <strong>the</strong> production of green gas or LBM. If <strong>the</strong> preference for <strong>the</strong> generation<br />

of electricity and heat from biogas persists <strong>in</strong> <strong>the</strong> future (possibly supported by <strong>in</strong>creas<strong>in</strong>g<br />

prices for electricity), <strong>the</strong>re will be little or no production of LBM and green gas <strong>in</strong> <strong>the</strong> future.<br />

17


Figure 2.7. Production of f<strong>in</strong>al energy from biogas and efficiency 1<br />

18<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

2011<br />

2010<br />

2009<br />

2008<br />

2007<br />

2006<br />

2005<br />

2004<br />

2003<br />

2002<br />

2001<br />

2000<br />

1999<br />

1998<br />

1997<br />

1996<br />

1995<br />

1994<br />

1993<br />

1992<br />

1991<br />

1990<br />

Source: adaptation from CBS (2012i).<br />

year<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

end-use biogas<br />

heat<br />

electricity<br />

produced biogas<br />

total efficiency<br />

1 In this picture, end-use biogas means produced biogas which was not used for <strong>the</strong> generation of electricity<br />

2.3.2. Projections to 2020<br />

and heat. The electricity and heat may be produced separately or <strong>in</strong> CHP plants.<br />

With <strong>the</strong> obta<strong>in</strong>ed data, one can make different projections for <strong>the</strong> development of biogas<br />

production, which can be converted to LBM or green gas, to <strong>the</strong> year 2020. In any case <strong>the</strong><br />

real value lies between 0 PJ (no production of green gas or LBM <strong>in</strong> 2020 at all) or 188 PJ<br />

(<strong>the</strong> potential of digestion and gasification <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is used to its full capability).<br />

Between <strong>the</strong>se two extreme values, <strong>the</strong>re are four more scenarios. This gives six possible<br />

growth paths to 2020.<br />

- Maximum potential: <strong>the</strong> potential of gasification and digestion is used maximally. This<br />

requires a growth of 81 % per year.<br />

- Extrapolation trend 1990-2011: extrapolation of <strong>the</strong> 1990-2011 trend for biogas<br />

production. This requires a growth of 62 % per year, ma<strong>in</strong>ly because of <strong>the</strong> rapid rise of<br />

co-digestion.<br />

- Anaerobic digestion potential: only <strong>the</strong> potential of anaerobic digestion is used<br />

maximally. This requires a growth of 58 % per year.<br />

- Government objective: government objectives for green gas production <strong>in</strong> 2020. This<br />

requires a growth 51 % per year.<br />

- Expectation: projected production of green gas <strong>in</strong> 2020 by SenterNovem (2009). This<br />

requires a growth of 35 % per year.<br />

- No growth: no growth of <strong>the</strong> produced biogas for upgrad<strong>in</strong>g.<br />

Elaborat<strong>in</strong>g <strong>the</strong>se scenarios for <strong>the</strong> period 2012-2020, assum<strong>in</strong>g constant annual growth<br />

percentages, gives Figure 2.8 for <strong>the</strong> Ne<strong>the</strong>rlands as a whole and Figure 2.9 for <strong>the</strong><br />

prov<strong>in</strong>ce of Overijssel. Four of <strong>the</strong> above scenarios are shown <strong>in</strong> <strong>the</strong>se figures.


Figure 2.8. Growth paths for <strong>the</strong> production of end-use biogas <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands 1<br />

produced f<strong>in</strong>al energy (PJ)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021<br />

year<br />

maximum potential<br />

extrapolation trend<br />

government objective<br />

expectation<br />

1 The annual growth percentages for <strong>the</strong> displayed scenarios are 81 %, 62 %, 51 % and 35 % respectively. The<br />

figure starts <strong>in</strong> 2012 at a value of 886 TJ, which was <strong>the</strong> produced f<strong>in</strong>al biogas not used for <strong>the</strong> generation of<br />

electricity and heat.<br />

Figure 2.9. Growth paths for <strong>the</strong> production of end-use biogas <strong>in</strong> Overijssel 1<br />

produced f<strong>in</strong>al energy (PJ)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021<br />

year<br />

maximum potential<br />

extrapolation trend<br />

government objective<br />

expectation<br />

1 The annual growth percentages for <strong>the</strong> displayed scenarios are 105 %, 83 %, 71 % and 52 %. The<br />

government objective for Overijssel is not an actual goal, but is deduced from <strong>the</strong> national goal for green gas.<br />

The figure starts <strong>in</strong> 2012 at a value of 47 TJ, which was <strong>the</strong> produced f<strong>in</strong>al biogas not used for <strong>the</strong> generation<br />

of electricity and heat.<br />

19


2.4. Scenarios for LBM production till 2020<br />

The growths scenarios, as depicted <strong>in</strong> Figure 2.8 and Figure 2.9, only display <strong>the</strong> technical<br />

potential and not <strong>the</strong> growth paths which are realistically possible. Scenarios 1-4 can be<br />

regarded as technically possible, but unrealistic for <strong>the</strong> <strong>in</strong>dicated period of development.<br />

These scenarios are not <strong>in</strong> agreement with <strong>the</strong> current status of renewable energy<br />

production from biogas. The actual development path is somewhere between zero growth<br />

and a maximum of 13 PJ of produced f<strong>in</strong>al energy. The zero growth scenario is when <strong>the</strong><br />

government decides not to support any k<strong>in</strong>d of LBM production. The 13 PJ scenario is <strong>the</strong><br />

expected amount of green gas produced <strong>in</strong> 2020 (SenterNovem, 2009). With <strong>the</strong> proper<br />

developments <strong>in</strong> <strong>the</strong> LNG <strong>sector</strong> and proper government stimulation, this could also LBM<br />

production <strong>in</strong>stead of green gas production. For <strong>the</strong> development of LBM production, one<br />

can <strong>the</strong>n project more realistic growth paths.<br />

Figure 2.10 and Figure 2.11 give <strong>the</strong>se growth paths for <strong>the</strong> Ne<strong>the</strong>rlands and Overijssel.<br />

The higher <strong>the</strong> growth path, <strong>the</strong> more <strong>the</strong> government must do to stimulate <strong>the</strong> production<br />

of LBM <strong>in</strong>stead of green gas. The maximum production would be able to fuel approximately<br />

25,000 average heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands or travel almost 1 billion kilometres.<br />

Figure 2.10. LBM production for <strong>the</strong> Ne<strong>the</strong>rlands 1<br />

20<br />

millions of litres of produced LBM<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021<br />

year<br />

LBM, no green gas<br />

75 % LBM, 25 &<br />

green gas<br />

25 % LBM, 75 %<br />

green gas<br />

green gas, no LBM<br />

1 The zero-l<strong>in</strong>e <strong>in</strong> this graph (green gas, no LBM) means no domestic LBM production <strong>in</strong> 2020. The o<strong>the</strong>r<br />

scenarios represent different production scenarios of green gas and LBM.


Figure 2.11. LBM production for <strong>the</strong> prov<strong>in</strong>ce of Overijssel<br />

millions of litres of produced LBM<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021<br />

year<br />

LBM, no green gas<br />

75 % LBM, 25 &<br />

green gas<br />

25 % LBM, 75 %<br />

green gas<br />

green gas, no LBM<br />

1 The zero-l<strong>in</strong>e <strong>in</strong> this graph (green gas, no LBM) means no domestic LBM production <strong>in</strong> 2020. The o<strong>the</strong>r<br />

scenarios represent different production scenarios of green gas and LBM.<br />

21


3. POTENTIAL FOR LBM USAGE<br />

LBM and LNG are actually <strong>the</strong> same fuels produced from two different sources. LNG is<br />

produced from natural gas. LBM is produced from upgrad<strong>in</strong>g biogas. The differences <strong>in</strong> <strong>the</strong><br />

orig<strong>in</strong> of natural and <strong>the</strong> <strong>in</strong>herent differences between LBM and LNG give rise to quality<br />

differences. The exact characteristics of LBM and LBM are given <strong>in</strong> appendix I. S<strong>in</strong>ce LNG<br />

and LBM are essentially <strong>the</strong> same fuel, projections for usage <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong> can be<br />

done without mak<strong>in</strong>g a dist<strong>in</strong>ction between LNG and LBM<br />

3.1. Feasibility users stage<br />

3.1.1. The LNG and LBM cha<strong>in</strong><br />

Develop<strong>in</strong>g an <strong>in</strong>dustry around LBM cannot be seen apart from developments <strong>in</strong> <strong>the</strong> LNG<br />

<strong>sector</strong>. The whole cha<strong>in</strong>, from production till end-use, is displayed <strong>in</strong> Figure 3.1.<br />

Figure 3.1. LBM and LNG cha<strong>in</strong> from production till end-use<br />

regasification (to<br />

gas grid)<br />

passenger cars<br />

commercial vans<br />

natural gas<br />

reserves<br />

biomass<br />

LNG LBM<br />

CNG/CBM<br />

fill<strong>in</strong>g station<br />

LNG-term<strong>in</strong>al<br />

buses<br />

trucks<br />

LNG/LBM fill<strong>in</strong>g<br />

station<br />

ships<br />

tra<strong>in</strong>s<br />

aviation<br />

production of<br />

LNG and LBM<br />

distribution to<br />

LNG term<strong>in</strong>al<br />

via ship or<br />

truck; direct<br />

distribution of<br />

LBM to fill<strong>in</strong>g<br />

station is also<br />

possible<br />

regasification<br />

to grid and/or<br />

production of<br />

CNG/CBM<br />

us<strong>in</strong>g <strong>the</strong> fuel<br />

<strong>in</strong> different<br />

means of<br />

<strong>transport</strong><br />

In <strong>the</strong> whole LBM and LNG cha<strong>in</strong>, <strong>the</strong>re are a vast number of different stakeholders active,<br />

rang<strong>in</strong>g from LNG distributors to governments and suppliers of different technologies. An<br />

23


overview of <strong>the</strong> most important stakeholders currently <strong>in</strong>volved <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry is given <strong>in</strong><br />

Appendix VI.<br />

3.1.2. Technical feasibility users stage<br />

The technical feasibility of <strong>the</strong> LBM users stage is determ<strong>in</strong>ed by <strong>the</strong> technical feasibility of:<br />

1. dispens<strong>in</strong>g LBM;<br />

2. LBM eng<strong>in</strong>es.<br />

The users stage beg<strong>in</strong>s when <strong>the</strong> LBM is delivered to a fill<strong>in</strong>g station. A fill<strong>in</strong>g station could<br />

potentially also be available at <strong>the</strong> production site. Fill<strong>in</strong>g stations are often comb<strong>in</strong>ed with<br />

<strong>the</strong> possibility to deliver CBM as well as LBM, because this conversion is relatively simple.<br />

The technical feasibility of LNG and LBM fill<strong>in</strong>g stations is well demonstrated <strong>in</strong> practice<br />

(UK, USA, Sweden). The speed of refuell<strong>in</strong>g a truck runn<strong>in</strong>g on LBM/LNG is equivalent to<br />

that of fuell<strong>in</strong>g a diesel truck. LNG24, Rolande LNG, LNG Europe and BER are <strong>the</strong> ma<strong>in</strong><br />

companies <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands currently <strong>in</strong>volved with <strong>the</strong> construction and exploitation of<br />

fill<strong>in</strong>g stations and <strong>the</strong> delivery of LNG and LBM. Operational LNG fill<strong>in</strong>g stations <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands can be found <strong>in</strong> <strong>the</strong> cities of Oss and Zwolle. Figure 3.2 gives a photograph of<br />

<strong>the</strong> latter. This is <strong>the</strong> first publically accessible fill<strong>in</strong>g station. LNG24 Clean Fuel exploits this<br />

station.<br />

Figure 3.2. The first operation public LNG fill<strong>in</strong>g station <strong>in</strong> Zwolle<br />

Three techniques are available for eng<strong>in</strong>e technology: bi-fuel, s<strong>in</strong>gle-fuel and dual-fuel. Bifuel<br />

eng<strong>in</strong>es appear to be <strong>in</strong>terest<strong>in</strong>g ma<strong>in</strong>ly for CNG applications. Dual-fuel and s<strong>in</strong>gle-fuel<br />

eng<strong>in</strong>es are most <strong>in</strong>terest<strong>in</strong>g for heavy duty vehicles. These eng<strong>in</strong>es are essentially an<br />

adaptation of <strong>the</strong> CNG eng<strong>in</strong>e. Special tanks have to be built <strong>in</strong> to store <strong>the</strong> LNG/LBM. The<br />

24


LBM has to be vaporised and pressurised pre-<strong>in</strong>jection. Most major truck produc<strong>in</strong>g<br />

companies are concerned with <strong>the</strong> development of LNG vehicles. Two examples are<br />

Scania, which has developed a s<strong>in</strong>gle-fuel LNG truck with a range of 450 km (Scania,<br />

2011) and Volvo, which has developed a dual-fuel LNG truck. This truck runs on a mixture<br />

of diesel and LNG/LBM (stored <strong>in</strong> separate tanks), but can run solely on diesel as well<br />

(Volvo, 2011). These trucks meet <strong>the</strong> emission norms set by <strong>the</strong> EU. For <strong>the</strong> shipp<strong>in</strong>g<br />

<strong>sector</strong> similar eng<strong>in</strong>es are available. The methane number of <strong>the</strong> LNG/LBM is <strong>the</strong> most<br />

important quality parameter relevant for smooth runn<strong>in</strong>g of <strong>the</strong> eng<strong>in</strong>es (see appendix I).<br />

3.2. Potential for use <strong>in</strong> different types of <strong>transport</strong><br />

Natural gas or biogas - <strong>in</strong> <strong>liquid</strong> or compressed form - is actually <strong>the</strong> only fuel which can be<br />

applied <strong>in</strong> virtually all types of <strong>transport</strong> compared with o<strong>the</strong>r fossil fuel alternatives toge<strong>the</strong>r<br />

with o<strong>the</strong>r <strong>liquid</strong> bio fuels. However, natural gas is <strong>the</strong> only fuel which can satisfy <strong>the</strong> entire<br />

energy need of <strong>the</strong> <strong>transport</strong> <strong>sector</strong>, given <strong>the</strong> world’s natural gas reserves. Table 3.1<br />

displays an overview of different alternative fuel options for different vehicle types.<br />

Table 3.1. Application of alternative fuels <strong>in</strong> different vehicle types<br />

vehicle type present fuel LPG<br />

<strong>liquid</strong><br />

biofuels full electric hybrid<br />

biogas or<br />

natural gas<br />

three wheelers petrol yes (refit) yes (max. %) no no yes (CNG)<br />

cars petrol/diesel yes (refit) yes (max. %) yes (city use) yes yes (CNG)<br />

commercial vans diesel yes (refit) yes (max. %) yes (city use) yes yes (CNG)<br />

heavy urban trucks diesel no yes (max. %) no yes yes (CNG)<br />

buses diesel no yes (max. %) yes (wired) yes yes (LCNG 1 )<br />

coaches diesel no yes (max. %) no no yes (LNG)<br />

heavy on-road trucks diesel no yes (max. %) no no yes (LNG)<br />

heavy off-road trucks diesel no yes (max. %) no no yes (LCNG)<br />

tra<strong>in</strong>s electric/diesel no yes (max. %) yes (wired) no yes (LNG)<br />

ships diesel yes (<strong>in</strong>land) yes (max. %) no no yes (LNG)<br />

aircrafts kerosene no yes (max. %) no no yes (LNG)<br />

Source: NGVA Europe (2012).<br />

1 LCNG means <strong>liquid</strong> or compressed (natural) gas.<br />

Usage of LNG or LBM <strong>in</strong> airplanes is not considered here. The development of such a<br />

plane is still <strong>in</strong> <strong>the</strong> experimental stage.<br />

3.2.1. Usage <strong>in</strong> heavy duty vehicles<br />

LNG/LBM usage <strong>in</strong> heavy duty trucks appears to have <strong>the</strong> largest potential <strong>in</strong> terms of<br />

energy. As <strong>in</strong>dicated, <strong>the</strong>re are currently four trucks types available <strong>in</strong> Europe which run on<br />

LNG/LBM. Ano<strong>the</strong>r option which some companies offer is to refit a CNG truck or bus with<br />

an LNG tank. Table 3.2 displays some technical specifications of <strong>the</strong> four LNG trucks.<br />

Figure 3.3 displays a photograph of <strong>the</strong> Volvo FM Methane-Diesel. One can see <strong>the</strong> LNG<br />

tank <strong>in</strong> <strong>the</strong> foreground.<br />

25


Table 3.2. Technical specifications of available LNG trucks <strong>in</strong> Europe<br />

26<br />

dual-fuel s<strong>in</strong>gle-fuel<br />

Volvo FM<br />

Methane-Diesel Iveco Stralis Mercedes Econic Scania P310 LNG<br />

power 460 HP 270-330 HP 270 HP 305 HP<br />

Maximum torque 2,300 Nm 1,100 Nm 1,100 Nm 1,250 Nm<br />

LNG tank capacity 280 L 250-330 kg variable (145 + 100) kg<br />

Diesel tank capacity 240 L 0 L 0 L 0 L<br />

driv<strong>in</strong>g range 1,000 km 600 km variable 450 km<br />

m<strong>in</strong>imal tank pressure 6 bar 7 bar 16 bar 7 bar<br />

maximum tank pressure 16 bar 16 bar 24 bar 24 bar<br />

fill<strong>in</strong>g system vapour collapse vapour collapse vapour return vapour return<br />

Figure 3.3. The Volvo FM Methane-Diesel<br />

To get a grip on <strong>the</strong> potential for LBM usage <strong>in</strong> heavy duty vehicles, an overview of <strong>the</strong><br />

present situation is needed. At <strong>the</strong> reference date of January 1, 2012, 152,018 heavy duty<br />

vehicles were registered <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and 11,592 specifically <strong>in</strong> Overijssel. Only 0.4<br />

% of <strong>the</strong>se trucks ran on CNG (CBS, 2012o). The number of trucks which run on LNG is no<br />

more than 50 at this moment <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

The average age of a heavy duty vehicle <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is 8.6 years (CBS, 2012p).<br />

Assum<strong>in</strong>g that <strong>the</strong> amount of 2 nd hand vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is m<strong>in</strong>imal, this means<br />

that an average heavy duty vehicle has a service span of 8.6 years before it is written of.<br />

This has to be kept <strong>in</strong> m<strong>in</strong>d when <strong>in</strong>troduc<strong>in</strong>g trucks runn<strong>in</strong>g on alternative fuels. The


success or failure of this <strong>in</strong>troduction can only be really determ<strong>in</strong>ed at <strong>the</strong> end of <strong>the</strong><br />

average write-off period.<br />

The most limit<strong>in</strong>g factor to <strong>the</strong> development of LNG and LBM for trucks use appears to be<br />

<strong>the</strong> renewable rate of <strong>the</strong> vehicle fleet. It is unlikely that companies replace <strong>the</strong>ir diesel<br />

trucks by LNG trucks when <strong>the</strong>y are not fully written of yet. In o<strong>the</strong>r words, every new diesel<br />

trucks <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> fleet today rema<strong>in</strong>s <strong>in</strong> service for ano<strong>the</strong>r 8.6 years, averagely.<br />

The average service lifetime of 8.6 year for a truck means that <strong>the</strong> <strong>Dutch</strong> heavy duty<br />

vehicle fleet can welcome 17,681 new vehicles each year (1,350 for Overijssel). This figure<br />

corresponds with figures given on <strong>the</strong> sold vehicles and <strong>the</strong> exported and demolished<br />

vehicles. In <strong>the</strong> timeframe 2000-2010, 15,310 heavy duty vehicles were sold each year and<br />

16,555 vehicles exited <strong>the</strong> fleet (due to export or retirement) each year on average (CBS,<br />

2012j; CBS, 2012m). The number of heavy duty vehicles stayed more or less constant <strong>in</strong><br />

<strong>the</strong> past 12 year, averag<strong>in</strong>g at 155,222 vehicles.<br />

For now, it is assumed that 17,500 new heavy duty vehicles enter <strong>the</strong> <strong>Dutch</strong> fleet on a<br />

yearly basis. This determ<strong>in</strong>es <strong>the</strong> possibilities for <strong>the</strong> <strong>in</strong>troduction of a new fuel. The<br />

development of this depends on <strong>the</strong> percentage of vehicles sold as LNG trucks each year.<br />

Assum<strong>in</strong>g that LNG/LBM fully replaces diesel at some unknown po<strong>in</strong>t <strong>in</strong> history, this<br />

percentage <strong>in</strong>creases from virtually 0 % today to 100 % at a given po<strong>in</strong>t. After <strong>the</strong> 100 %<br />

po<strong>in</strong>t each reached, it still takes a number of years before diesel is phased out. One can<br />

make projections on <strong>the</strong> possible growth paths of <strong>the</strong> LNG/LBM truck fleet. This can be<br />

done by analys<strong>in</strong>g different scenarios for <strong>the</strong> growth of this “replacement percentage”.<br />

The replacement percentage can grow l<strong>in</strong>early or by a certa<strong>in</strong> factor each year to 100 %.<br />

For both cases, 4 scenarios are analysed:<br />

1. a “crash” scenario where <strong>the</strong> replacement percentage grows to 100 % <strong>in</strong> 10 years;<br />

2. a 20-year scenario where <strong>the</strong> replacement percentage grows to 100 % <strong>in</strong> 20 years;<br />

3. a 30-year scenario where <strong>the</strong> replacement percentage grows to 100 % <strong>in</strong> 30 years;<br />

4. a realistic scenario where <strong>the</strong> replacement percentage grows to 100 % <strong>in</strong> 40 years.<br />

In <strong>the</strong> calculations, it is assumed that <strong>the</strong> average age of a truck is 9 years and that 17,500<br />

trucks are replaced yearly. The results for <strong>the</strong> l<strong>in</strong>ear growth are given <strong>in</strong> Figure 3.4 and <strong>the</strong><br />

results for exponential growth are given <strong>in</strong> Figure 3.5, assum<strong>in</strong>g one starts <strong>in</strong> 2013. The<br />

graphs conta<strong>in</strong> <strong>the</strong> l<strong>in</strong>es for <strong>the</strong> crash scenario and <strong>the</strong> realistic scenario. The o<strong>the</strong>r<br />

scenarios lie between <strong>the</strong>se two extremes.<br />

27


Figure 3.4. L<strong>in</strong>ear growth patterns for <strong>the</strong> number of LNG/LBM vehicles<br />

28<br />

number of heavy duty vehicles (*1000)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2012 2022 2032 2042 2052 2062<br />

year<br />

crash scenario<br />

realistic<br />

scenario<br />

Figure 3.5. Exponential growth patterns for <strong>the</strong> number LNG/LBM vehicles 1<br />

1<br />

number of heavy duty vehicles (*1000)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2012 2022 2032 2042 2052 2062<br />

year<br />

crash scenario<br />

realistic<br />

scenario<br />

This graph starts at a number of 50 LNG trucks. For <strong>the</strong> “realistic scenario” <strong>the</strong> annual growth percentage<br />

between 2020 and 2050 is 16 %. In comparison: <strong>the</strong> NGVA assumes an annual growth for trucks and buses of 14 %.<br />

The l<strong>in</strong>ear growth paths have <strong>the</strong> advantage that <strong>the</strong> number of vehicles develops relatively<br />

quickly with<strong>in</strong> a ten year timeframe. The exponential growth paths are more likely to occur,<br />

which means a slow start of <strong>the</strong> growth. The NGVA (Natural Gas Vehicles Adm<strong>in</strong>istrations)


expects a 14 % annual growth on <strong>the</strong> number of natural gas trucks <strong>in</strong> <strong>the</strong> period 2012-<br />

2020. This is even less than <strong>the</strong> 40 years exponential growth pattern suggests. This<br />

scenario is thus <strong>the</strong> most optimistic scenario, and <strong>the</strong> o<strong>the</strong>r scenarios can only happen<br />

under (extreme) pressure of <strong>the</strong> government. Table 3.3 gives for all scenarios, for <strong>the</strong><br />

Ne<strong>the</strong>rlands and <strong>the</strong> prov<strong>in</strong>ce of Overijssel <strong>the</strong> expected number of heavy duty vehicles on<br />

LNG/LBM for 10, 20, 30 and 40 years after <strong>the</strong> <strong>in</strong>troduction. For <strong>the</strong> most realistic scenario<br />

of a 40 years <strong>in</strong>troduction path, <strong>the</strong> halfway po<strong>in</strong>t (50 % of <strong>the</strong> trucks are LNG) lies <strong>in</strong> <strong>the</strong><br />

year 2051.<br />

Table 3.3. Number of heavy duty vehicles after 10, 20, 30 and 40 years<br />

years<br />

l<strong>in</strong>ear growth scenarios (thousands) exponential growth scenarios (thousands)<br />

crash 20 30 40 crash 20 30 realistic<br />

Ne<strong>the</strong>rlands 10 100 53 36 27 39 3 2 1<br />

20 158 128 86 65 158 64 12 5<br />

30 158 158 137 104 158 158 82 22<br />

40 158 158 158 142 158 158 158 94<br />

Overijssel 10 8 4 3 2 3 0.3 0.1 0.1<br />

20 12 10 7 5 12 5 0.1 0.4<br />

30 12 12 10 8 12 12 6 2<br />

40 12 12 12 11 12 12 12 7<br />

The average mileage of a <strong>Dutch</strong> heavy duty vehicle <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands was 38,100 km.<br />

Assum<strong>in</strong>g a growth of 161 km each year (obta<strong>in</strong>ed by l<strong>in</strong>early extrapolat<strong>in</strong>g data from CBS<br />

(2012e) and CBS (2012g), one can calculate <strong>the</strong> expected amount of kilometres driven on<br />

a LNG/LBM truck <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and Overijssel. This is displayed <strong>in</strong> Figure 3.6.<br />

Figure 3.6. Development of <strong>the</strong> amount of kilometres driven on LBM/LNG trucks<br />

kilometres driven on LNG/LBM trucks (billions)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

2012 2022 2032 2042 2052 2062<br />

year<br />

Ne<strong>the</strong>rlands<br />

Overijssel<br />

Any scenario which develops faster than displayed <strong>in</strong> Figure 3.6 requires coercive<br />

government measures or escalat<strong>in</strong>g oil prices.<br />

29


3.2.2. Usage <strong>in</strong> shipp<strong>in</strong>g<br />

<strong>Deploy<strong>in</strong>g</strong> LNG and LBM as a fuel <strong>in</strong> <strong>in</strong>land as well as sea shipp<strong>in</strong>g is also possible. It is<br />

currently not yet permitted to use LNG for <strong>in</strong>land navigation on a large scale. A legal<br />

framework thus has to be established first. S<strong>in</strong>ce <strong>the</strong> <strong>Dutch</strong> energy usage for shipp<strong>in</strong>g is<br />

approximately <strong>the</strong> same as <strong>the</strong> energy usage for heavy duty vehicles (96 PJ and 92 PJ<br />

respectively <strong>in</strong> 2010; (Compendium voor de Leefomgev<strong>in</strong>g, 2012)) <strong>the</strong> potential reduction<br />

of CO2 emissions is about <strong>the</strong> same as <strong>the</strong> potential reduction for trucks. The potential<br />

reduction for PM10 and NOx emissions is higher because <strong>the</strong> shipp<strong>in</strong>g <strong>sector</strong> uses fuel oil<br />

which is more pollut<strong>in</strong>g than diesel. Ships can emit up to three times as much NOx per<br />

kilogram of used fuel than trucks. In this report no scenarios are given for <strong>the</strong> reduction<br />

trends <strong>in</strong> shipp<strong>in</strong>g. The future for <strong>the</strong> shipp<strong>in</strong>g <strong>in</strong>dustry is more difficult to predict, and <strong>the</strong><br />

replacement of <strong>the</strong> shipp<strong>in</strong>g fleet takes considerably longer given that a ship has to last<br />

much longer than a truck, on average. The average age of a ship before it is recycled is 28<br />

years (Mikelis, 2007). Chang<strong>in</strong>g <strong>the</strong> fuel use <strong>in</strong> <strong>the</strong> shipp<strong>in</strong>g <strong>sector</strong> is thus a slow dynamic<br />

process. Convert<strong>in</strong>g a ships eng<strong>in</strong>e to run on LNG/LBM is also a possibility. At this moment<br />

it is unclear which ships are eligible for such a conversion and what <strong>the</strong> costs of such a<br />

conversion would be.<br />

3.2.3. Possible usage <strong>in</strong> tra<strong>in</strong>s<br />

LNG or LBM can also be used to replace diesel as a fuel <strong>in</strong> tra<strong>in</strong>s. An example of this can<br />

be found <strong>in</strong> Russia, where a locomotive is runn<strong>in</strong>g on LNG. The advantage of replac<strong>in</strong>g<br />

tra<strong>in</strong> diesel with LNG could be that <strong>the</strong>re are fixed locations for fill<strong>in</strong>g stations. The potential<br />

for <strong>the</strong> Ne<strong>the</strong>rlands is limited, because most tra<strong>in</strong>s are electrified and <strong>the</strong> diesel energy use<br />

of tra<strong>in</strong>s is only 0.25 % of <strong>the</strong> total <strong>transport</strong> energy usage (Compendium voor de<br />

Leefomgev<strong>in</strong>g, 2012). LNG/LBM usage <strong>in</strong> tra<strong>in</strong>s is <strong>the</strong>refore not taken <strong>in</strong>to account <strong>in</strong> this<br />

analysis.<br />

30


4. ENVIRONMENTAL PERFORMANCE FOR LBM USAGE<br />

4.1. Environmental susta<strong>in</strong>ability<br />

LBM fuel usage must also be susta<strong>in</strong>able from an environmental po<strong>in</strong>t of view. This is <strong>the</strong><br />

reason for <strong>in</strong>troduc<strong>in</strong>g LBM <strong>in</strong> <strong>the</strong> first place. The environmental performance depends on<br />

<strong>the</strong> follow<strong>in</strong>g factors:<br />

- <strong>the</strong> amount of LBM used;<br />

- where and how <strong>the</strong> LBM is produced;<br />

- where LBM is used;<br />

- contribution to <strong>the</strong> government goals for 2020;<br />

- Interdependence of LBM fuel and o<strong>the</strong>r renewable energy production from biomass.<br />

The potential for LBM usage <strong>in</strong> trucks and buses (from chapter 3) is coupled to <strong>the</strong> specific<br />

emissions for <strong>the</strong>se vehicles to determ<strong>in</strong>e <strong>the</strong> development of <strong>the</strong> emission sav<strong>in</strong>gs and <strong>the</strong><br />

contribution to <strong>the</strong> 2020 goals.<br />

Desirability<br />

The ma<strong>in</strong> reason for <strong>the</strong> <strong>in</strong>troduction of LBM <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong> is to decrease <strong>the</strong><br />

negative <strong>in</strong>fluence of this <strong>sector</strong> on <strong>the</strong> environment. Prior to any research regard<strong>in</strong>g <strong>the</strong><br />

implementation of LBM, one would like to confirm <strong>the</strong> general environmental benefits of<br />

LBM. To do this, <strong>the</strong> lifecycle CO2 emissions of LBM have to be compared to o<strong>the</strong>r<br />

<strong>transport</strong> fuels as well as o<strong>the</strong>r energy uses of biomass. Once <strong>the</strong> general environmental<br />

susta<strong>in</strong>ability is established, one can <strong>in</strong>vestigate <strong>the</strong> specific environmental benefits for <strong>the</strong><br />

Ne<strong>the</strong>rlands. To compare <strong>the</strong> well-to-wheel emissions of different <strong>transport</strong> fuels, data from<br />

multiple literature resources are comb<strong>in</strong>ed. The results are displayed <strong>in</strong> Figure 4.1. They<br />

are given for passenger cars, to make a valid comparison. The error bars for CO2 <strong>in</strong>dicate<br />

<strong>the</strong> standard deviation of <strong>the</strong> values found <strong>in</strong> literature. For <strong>the</strong> NOx and PM10 emissions<br />

<strong>the</strong>re are less data available so no error bars are <strong>in</strong>dicated for <strong>the</strong>se two. They are large for<br />

<strong>the</strong> bio-fuels because of <strong>the</strong> different production options. It is clear that LBM and CBM are<br />

cleaner than fossil fuels and can compete with o<strong>the</strong>r bio fuels.<br />

31


Figure 4.1. Well-to-wheel emissions for different <strong>transport</strong> fuels 1<br />

32<br />

CO2 emissions (g*km -1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

petrol<br />

diesel<br />

carbondioxide particulate matter nitrogen oxides<br />

LPG<br />

LNG/CNG<br />

electric<br />

bio-ethanol<br />

bio-diesel<br />

LBM/CBM<br />

Source: Milieu Centraal (2012), FUELswitch (2012), TNO/CE Delft (2011), CE Delft (2008) & Wikimobi (2012).<br />

1 The error bars for <strong>the</strong> CO2 emissions <strong>in</strong>dicate <strong>the</strong> standard deviation of <strong>the</strong> values found <strong>in</strong> literature.<br />

Compar<strong>in</strong>g <strong>the</strong> emissions of different options for biomass usage is difficult because that<br />

depends on <strong>the</strong> end-use. In this case, it is better to look at <strong>the</strong> life-cycle emissions per MJ<br />

of delivered energy. Natuur & Milieu has looked at <strong>the</strong> amount of avoided CO2 emissions<br />

for certa<strong>in</strong> types of biomass usage and related costs. The data is presented <strong>in</strong> Table 4.1. It<br />

must be noted that electricity can also be used <strong>in</strong> <strong>transport</strong>, lead<strong>in</strong>g to a greater reduction <strong>in</strong><br />

CO2 emissions. From <strong>the</strong> figures <strong>in</strong> this table it appears that LBM/CBM use <strong>in</strong> <strong>transport</strong> is<br />

<strong>the</strong> most cost-effective route to reduce CO2 emissions. Heat production has <strong>the</strong> highest<br />

potential <strong>in</strong> terms of CO2 avoidance, but <strong>the</strong> production of heat is often conf<strong>in</strong>ed to specific<br />

locations where <strong>the</strong>re is a demand and is <strong>the</strong>refore limited.<br />

Table 4.1. Compar<strong>in</strong>g different biomass options<br />

option for biomass replac<strong>in</strong>g energy source avoided CO2 (g*MJ -1 ) additional cost (EUR*MJ -1 )<br />

electricity electricity from gas turb<strong>in</strong>e 26 0.030<br />

CHP plant electricity from gas turb<strong>in</strong>e 57 0.026<br />

green gas <strong>in</strong>jection natural gas 48 0.019<br />

driv<strong>in</strong>g on green gas diesel 52 0.013<br />

driv<strong>in</strong>g on LBM/CBM diesel 55 0.010<br />

heat production natural gas 56 0.010<br />

Source: Natuur & Milieu (2011).<br />

4.2. Emission patterns for LBM use <strong>in</strong> trucks & buses<br />

4.2.1. Well-to-wheel emissions<br />

To calculate <strong>the</strong> reductions for <strong>the</strong> emissions of CO2, PM10, and NOx, <strong>the</strong> well-to-wheel<br />

emissions of trucks are used. These well-to-wheel for trucks and passengers cars given by<br />

different sources are put toge<strong>the</strong>r to obta<strong>in</strong> <strong>the</strong> three values for <strong>the</strong> truck well-to-wheel<br />

0.7<br />

0.56<br />

0.42<br />

0.28<br />

0.14<br />

0<br />

emissions of PM10 and Nox (g*km -1 )


emissions. Sometimes, <strong>the</strong> emissions are given for passenger cars only and have to be<br />

converted to trucks on <strong>the</strong> basis of <strong>the</strong> specific energy use of <strong>the</strong>se vehicles. Well-to-wheel<br />

emissions mean <strong>the</strong> emissions of LNG/LBM use <strong>in</strong> trucks and buses from <strong>the</strong> production<br />

source till <strong>the</strong> power transfer to <strong>the</strong> wheels. These well-to-wheel emissions will of course<br />

vary with truck type, orig<strong>in</strong> of <strong>the</strong> LNG, orig<strong>in</strong> of <strong>the</strong> LBM and how <strong>the</strong> LBM is produced.<br />

The values used here <strong>the</strong>refore only give an “average” value. When <strong>the</strong> LNG and LBM<br />

market has scaled up <strong>in</strong> a later stage, <strong>the</strong>se numbers can be made more specific. These<br />

numbers are displayed <strong>in</strong> Table 4.2.<br />

Table 4.2. Well-to-wheel emissions for trucks 1<br />

emissions <strong>in</strong> g*km -1<br />

CO2 PM10 NOx<br />

diesel trucks 695 0.23 7<br />

LNG trucks 587 0.04 0.3<br />

LBM trucks 112 0.03 0.2<br />

Source: Milieu Centraal (2012), FUELswitch (2012), TNO/CE Delft (2011), CE Delft (2008) & Wikimobi (2012), DENA<br />

(2010) and Torchio & Santarelli (2010).<br />

1 The numbers for passenger cars are converted to number for trucks and buses on <strong>the</strong> basis of specific energy<br />

use of <strong>the</strong>se vehicles. Some sources give a certa<strong>in</strong> range for <strong>the</strong> well-to-wheel emissions, dependent on how<br />

<strong>the</strong> fuel is produced and where <strong>the</strong> biomass comes from. The lowest values are taken <strong>in</strong> this case.<br />

In comparison, CBS (2012r) gives <strong>the</strong> follow<strong>in</strong>g emissions (<strong>the</strong> <strong>Dutch</strong> average, <strong>in</strong> g*km -1 )<br />

for <strong>the</strong> total cycle: CO2 - 870; PM10 - 0.1; NOx - 6.4. These are <strong>the</strong> total emissions for trucks<br />

and buses as calculated by <strong>the</strong> CBS. The well-to-wheel emissions used <strong>in</strong> this report thus<br />

seem to agree reasonably with <strong>the</strong>se numbers. The potential reduction is displayed <strong>in</strong><br />

Figure 4.2.<br />

Figure 4.2. Relative reduction potential for different well-to-wheel emissions<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

CO2 particulate matter nitrogen oxides<br />

diesel<br />

LNG<br />

LBM<br />

33


4.2.2. CO2 reduction<br />

Assum<strong>in</strong>g <strong>the</strong> development path as displayed <strong>in</strong> Figure 3.6, one can calculate <strong>the</strong><br />

emissions when replac<strong>in</strong>g diesel trucks fully with LNG or LBM trucks. In this projection, <strong>the</strong><br />

yearly <strong>in</strong>crease <strong>in</strong> <strong>transport</strong> kilometres and <strong>the</strong> trend of yearly improv<strong>in</strong>g CO2 emissions per<br />

kilogram are taken <strong>in</strong>to account. The results are displayed Figure 4.3 for <strong>the</strong> Ne<strong>the</strong>rlands<br />

and <strong>in</strong> Figure 4.4 for Overijssel.<br />

Figure 4.3. Projected CO2 emissions for <strong>the</strong> Ne<strong>the</strong>rlands 1<br />

34<br />

CO 2 emissions (million tonnes)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0<br />

0%<br />

2012 2022 2032 2042 2052 2062<br />

year<br />

sav<strong>in</strong>g percentage<br />

100 % diesel<br />

LNG replacement<br />

LBM replacement<br />

sav<strong>in</strong>gs (LNG)<br />

sav<strong>in</strong>gs (LBM)<br />

1 This picture represents <strong>the</strong> emission paths of ei<strong>the</strong>r 100 % LNG replacement or 100 % LBM replacement.<br />

With <strong>the</strong> potential production of LBM from <strong>Dutch</strong> biomass, <strong>the</strong> most likely scenario will be a mixture of LNG<br />

and LBM. The actual emission path will thus lie between <strong>the</strong> LNG and LBM l<strong>in</strong>es, dependent on <strong>the</strong> mix<strong>in</strong>g<br />

percentage.


Figure 4.4. Projected CO2 emissions for <strong>the</strong> prov<strong>in</strong>ce of Overijssel<br />

CO 2 emissions (thousand tonnes)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

4.2.3. NOx and PM10 reduction<br />

100%<br />

86%<br />

71%<br />

57%<br />

43%<br />

29%<br />

14%<br />

0<br />

0%<br />

2012 2022 2032 2042 2052 2062<br />

year<br />

sav<strong>in</strong>g percentage<br />

100 % diesel<br />

LNG replacement<br />

LBM replacement<br />

sav<strong>in</strong>gs (LNG)<br />

sav<strong>in</strong>gs (LBM)<br />

To project <strong>the</strong> development of NOx and PM10, <strong>the</strong> projections of Figure 3.6 are also used,<br />

but <strong>the</strong> average mileage and <strong>the</strong> specific emissions of NOx and PM10 are kept constant,<br />

because it is difficult to project how <strong>the</strong>se specific emissions develop <strong>in</strong> <strong>the</strong> future. The<br />

results are displayed <strong>in</strong> Figure 4.5 for PM10 and <strong>in</strong> Figure 4.6 for NOx. The sav<strong>in</strong>g<br />

percentages are identical for <strong>the</strong> Ne<strong>the</strong>rlands and Overijssel. In <strong>the</strong> calculations, <strong>the</strong><br />

emission data for LNG is used, because <strong>the</strong>se are approximately <strong>the</strong> same as LBM.<br />

35


Figure 4.5. Well-to-wheel PM10 emissions for heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

36<br />

PM 10 emissions (tonnes)<br />

1,400<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

100%<br />

86%<br />

71%<br />

57%<br />

43%<br />

29%<br />

14%<br />

0<br />

0%<br />

2012 2022 2032 2042 2052 2062<br />

year<br />

sav<strong>in</strong>g percentage<br />

emissions<br />

sav<strong>in</strong>gs<br />

Figure 4.6. Well-to-wheel NOx emissions for heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

NO X emissions (thousand tonnes)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

100%<br />

89%<br />

78%<br />

67%<br />

56%<br />

44%<br />

33%<br />

22%<br />

11%<br />

0<br />

0%<br />

2012 2022 2032 2042 2052 2062<br />

4.3. Contribution to susta<strong>in</strong>ability goals<br />

year<br />

sav<strong>in</strong>g percentage<br />

emissions<br />

sav<strong>in</strong>gs<br />

Introduc<strong>in</strong>g LNG and LBM as a <strong>transport</strong> fuel is environmentally beneficial. It can<br />

successfully reduce emissions of greenhouse gasses and pollutants and LNG can,<br />

potentially, fully replace fossil fuels <strong>in</strong> <strong>transport</strong>. It rema<strong>in</strong>s to be seen however, whe<strong>the</strong>r


LBM and LNG can significantly contribute to environmental susta<strong>in</strong>ability <strong>in</strong> <strong>the</strong> next 20<br />

years. Recall<strong>in</strong>g Table 1.1, <strong>the</strong> governments have set out specific susta<strong>in</strong>ability goals for<br />

<strong>the</strong> year 2020.<br />

The contribution of LBM to <strong>the</strong>se goals for 2020 ma<strong>in</strong>ly depends on four factors.<br />

1. F<strong>in</strong>ancial feasibility.<br />

2. Production potential.<br />

3. Speed of adoption.<br />

4. Government policy.<br />

Factors one and four cannot be quantified when determ<strong>in</strong><strong>in</strong>g <strong>the</strong> 2020 susta<strong>in</strong>ability<br />

potential. Assum<strong>in</strong>g that factors one and four are optimal <strong>in</strong> this case, one can quantify<br />

factors 2 and 3 and determ<strong>in</strong>e <strong>the</strong> potential for <strong>the</strong> 2020 government goals for <strong>the</strong> EU, <strong>the</strong><br />

Ne<strong>the</strong>rlands and Overijssel.<br />

The potential for <strong>the</strong> reduction of CO2 emissions <strong>in</strong>to <strong>the</strong> atmosphere is limited by <strong>the</strong><br />

speed of <strong>in</strong>troduction of new LNG/LBM vehicles. In <strong>the</strong> most favourable scenario, requir<strong>in</strong>g<br />

<strong>the</strong> immediate start of LBM production and coercive replacement of diesel trucks, <strong>the</strong>re are<br />

no more than 35,000 heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and 3,000 <strong>in</strong> Overijssel <strong>in</strong><br />

2020. The most realistic scenario is a growth to about 1,000 vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong><br />

and 100 <strong>in</strong> Overijssel <strong>in</strong> 2020.<br />

CO2 reduction <strong>in</strong> 2020<br />

The total CO2 emission was 159 million tonnes <strong>in</strong> 1990. The required reduction <strong>in</strong> 2020<br />

must thus be 32 million tonnes. The maximal potential for CO2 reduction is when all heavy<br />

duty vehicles run on LBM. This saves 84 % <strong>in</strong> CO2 emissions <strong>in</strong> <strong>the</strong> heavy duty <strong>transport</strong><br />

<strong>sector</strong>. This is a total sav<strong>in</strong>g of 82 % <strong>in</strong> that <strong>sector</strong> and a sav<strong>in</strong>g of 3 % of <strong>the</strong> <strong>Dutch</strong> total<br />

with respect to 1990 levels. Consequently, <strong>the</strong> contribution to <strong>the</strong> 20 % reduction goal is<br />

2.9 pp (percentage po<strong>in</strong>t). In <strong>the</strong> realistic scenario of <strong>in</strong>troduc<strong>in</strong>g LBM vehicles this<br />

contribution is only 0.02 pp.<br />

Share of renewable energy <strong>in</strong> 2020<br />

The exact figures for <strong>the</strong> renewable energy share <strong>in</strong> 2020 can only be calculated when <strong>the</strong><br />

exact energy use of <strong>the</strong> Ne<strong>the</strong>rlands is known for 2020. This is not <strong>the</strong> case, this study<br />

does not provide an analysis of <strong>the</strong> development of <strong>the</strong> total energy. However, us<strong>in</strong>g 2010<br />

values for <strong>the</strong> energy use <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, a good enough <strong>in</strong>dication can be provided.<br />

Compendium voor de leefomgev<strong>in</strong>g (2012) gives <strong>the</strong> total energy <strong>in</strong> <strong>transport</strong> as 558 PJ<br />

and <strong>the</strong> energy use of heavy duty vehicles as 96 PJ. The maximal share of renewable<br />

energy <strong>in</strong> <strong>transport</strong> by replac<strong>in</strong>g diesel for LBM <strong>in</strong> heavy duty vehicles is thus 17 %. This<br />

value is more or less equal for <strong>the</strong> Ne<strong>the</strong>rlands and Overijssel. When follow<strong>in</strong>g <strong>the</strong> realistic<br />

<strong>in</strong>troduction path <strong>the</strong> expected share of renewable energy <strong>in</strong> <strong>transport</strong> <strong>in</strong> 2020 is 0.1 %. If<br />

<strong>the</strong> total realistic potential for green gas (13 PJ, see chapter 2), is used for LBM production<br />

<strong>the</strong> renewable energy share is 2.3 %.<br />

The total energy usage <strong>in</strong> <strong>transport</strong> was 14.1 % of <strong>the</strong> <strong>Dutch</strong> total <strong>in</strong> 2010 (CBS, 2012s).<br />

This means <strong>the</strong> maximum share of renewable energy of heavy duty <strong>transport</strong> is 2.4 %. This<br />

means a maximum contribution of 12 % to <strong>the</strong> renewable energy goal of Overijssel and a<br />

contribution of 17 % to <strong>the</strong> <strong>Dutch</strong> renewable energy goal.<br />

The results for <strong>the</strong> contribution to <strong>the</strong> susta<strong>in</strong>ability goals for 2020 are summarised <strong>in</strong><br />

Figure 4.7. These are <strong>the</strong> potentials for LBM usage <strong>in</strong> heavy duty <strong>transport</strong> <strong>in</strong> <strong>the</strong><br />

37


Ne<strong>the</strong>rlands. The potential for 2020 is very limited for Overijssel as well as for <strong>the</strong><br />

Ne<strong>the</strong>rlands. Significant environmental benefits are possible, but not before <strong>the</strong> year 2020.<br />

Figure 4.7. Potential contributions to susta<strong>in</strong>ability goals for 2020 1<br />

38<br />

maximum and LBM production potential<br />

20%<br />

18%<br />

16%<br />

14%<br />

12%<br />

10%<br />

8%<br />

6%<br />

4%<br />

2%<br />

0%<br />

CO2 reduction renewable<br />

energy<br />

renewable<br />

energy<br />

Overijssel<br />

renewable<br />

energy<br />

<strong>transport</strong><br />

0.10%<br />

0.09%<br />

0.08%<br />

0.07%<br />

0.06%<br />

0.05%<br />

0.04%<br />

0.03%<br />

0.02%<br />

0.01%<br />

0.00%<br />

potential for expected truck fleet size<br />

maximum<br />

LBM production 2020<br />

truck fleet 2020<br />

1 The maximum potential <strong>in</strong>dicates <strong>the</strong> percentages when all heavy duty vehicles run on LBM (left axis). LBM<br />

production 2020 <strong>in</strong>dicates <strong>the</strong> potential when <strong>the</strong> expected green gas production is used as LBM (left axis)<br />

and truck fleet 2020 <strong>in</strong>dicates <strong>the</strong> potential if <strong>the</strong> truck fleet grows <strong>in</strong> a normal growth pattern (right axis).


5. ECONOMICS OF LBM PRODUCTION AND USE<br />

Successful <strong>in</strong>troduction of LBM depends on whe<strong>the</strong>r <strong>the</strong>re is a bus<strong>in</strong>ess case to produce<br />

and use it. From <strong>the</strong> production side this depends on:<br />

- <strong>the</strong> production scale;<br />

- competition with o<strong>the</strong>r fuels and o<strong>the</strong>r usage of biomass;<br />

- <strong>the</strong> comb<strong>in</strong>ation with LNG usage;<br />

- subsidy schemes.<br />

Firstly, <strong>the</strong> agricultural <strong>sector</strong> <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands determ<strong>in</strong>es to a large extend <strong>the</strong> optimal<br />

production scale. A small scale means relatively high production costs but choos<strong>in</strong>g <strong>the</strong><br />

scale to large means that <strong>the</strong> <strong>transport</strong> costs of biomass get too high. The construction of<br />

LBM production hubs (equivalent to green gas hubs) may also be <strong>in</strong>terest<strong>in</strong>g (see <strong>the</strong><br />

glossary for <strong>the</strong> explanation of a hub). Secondly, LBM production must be competitive<br />

compared to <strong>the</strong> production of o<strong>the</strong>r bio fuels and o<strong>the</strong>r uses of biomass. This is closely<br />

related to subsidy schemes. Subsidy regulations may, <strong>in</strong>tentionally or un<strong>in</strong>tentionally, lead<br />

to an unfair playground when it comes to <strong>the</strong> production of renewable energy. Lastly LNG<br />

production and availability plays a role. Differences between costs and quality between<br />

LNG versus LBM determ<strong>in</strong>e <strong>in</strong> part <strong>the</strong> feasibility of LBM fuel.<br />

From <strong>the</strong> users side, successful LBM implementation depends on:<br />

- <strong>the</strong> presence of sufficient demand for LBM;<br />

- sufficient means to distribute LBM;<br />

- fuel taxes and <strong>the</strong> price sett<strong>in</strong>g of LBM fuel;<br />

- advantages and disadvantages compared to o<strong>the</strong>r fuels.<br />

Demand for LBM will only develop if <strong>the</strong>re is enough production and distribution capacity.<br />

LNG usage can help <strong>in</strong> creat<strong>in</strong>g this capacity, because <strong>the</strong> creation of an LNG<br />

<strong>in</strong>frastructure automatically generates <strong>in</strong>frastructure needed for LBM. Creat<strong>in</strong>g sufficient<br />

distribution options for LBM is also important. The number of fill<strong>in</strong>g stations for LBM <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands determ<strong>in</strong>es which <strong>transport</strong> companies are will<strong>in</strong>g to make a switch to LBM<br />

fuel. The types of LBM propulsion technologies (s<strong>in</strong>gle or dual fuel for example) are also<br />

related to this. The price sett<strong>in</strong>g of LBM fuel is also vital. If this turns out to be too high<br />

compared to diesel for example, <strong>the</strong> payback time for <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> LBM trucks is too high<br />

result<strong>in</strong>g <strong>in</strong> a lowered will<strong>in</strong>gness of <strong>transport</strong> companies to <strong>in</strong>vest <strong>in</strong> LBM. The user<br />

friendl<strong>in</strong>ess of LBM fuel may not differ greatly compared to already established fuels.<br />

The whole LBM cha<strong>in</strong>, from biomass to end use, can actually be split up <strong>in</strong>to three phases:<br />

1. <strong>the</strong> supply of biomass;<br />

2. <strong>the</strong> production of LBM;<br />

3. distribution and usage of LBM.<br />

Production and usage of LBM do not appear to be l<strong>in</strong>ked to each o<strong>the</strong>r <strong>in</strong> a geographical<br />

sense. This is equivalent to <strong>the</strong> production and usage of o<strong>the</strong>r fuels. For example, LPG and<br />

diesel are available throughout <strong>the</strong> country, but are <strong>transport</strong>ed from a s<strong>in</strong>gle source.<br />

It must be determ<strong>in</strong>ed whe<strong>the</strong>r LBM production can be made profitable under <strong>the</strong> present<br />

market situation. Different companies are contacted to review <strong>the</strong> possibilities for<br />

distribut<strong>in</strong>g and sell<strong>in</strong>g LBM. The price sett<strong>in</strong>g of LBM fuel can be determ<strong>in</strong>ed from <strong>the</strong><br />

obta<strong>in</strong>ed <strong>in</strong>formation and is compared with o<strong>the</strong>r <strong>transport</strong> fuels. The <strong>in</strong>fluence of<br />

government subsidies and extra <strong>in</strong>comes from <strong>the</strong> production of by-products is also<br />

considered.<br />

39


5.1. LBM production options<br />

LBM is produced from upgrad<strong>in</strong>g syngas or biogas. The different production options for<br />

LBM can be regarded as a two-stage composition:<br />

1. <strong>the</strong> production of biogas or syngas;<br />

2. <strong>the</strong> production of LBM out of biogas or syngas.<br />

Before LBM can be produced, <strong>the</strong> biogas first has to be upgraded to <strong>biomethane</strong>. In<br />

pr<strong>in</strong>ciple <strong>the</strong>re are four techniques to do this: gas clean<strong>in</strong>g, cryogenic techniques, VPSA<br />

and membrane filtration (Platform Nieuw Gas, 2009). Syngas is produced by gasification of<br />

woody biomass and can be converted directly to methane. Biogas can be produced from<br />

co-digestion, <strong>in</strong>dustrial digestion, <strong>in</strong>dustrial water treatment and landfill gas. This is<br />

displayed graphically <strong>in</strong> Figure 5.1.<br />

Figure 5.1. Production routes for <strong>biomethane</strong><br />

The obta<strong>in</strong>ed <strong>biomethane</strong> consists for more than 98 % of CH4. This can be compressed to<br />

obta<strong>in</strong> CBM or cooled to -162 °C to obta<strong>in</strong> LBM. For <strong>the</strong> production of LBM <strong>the</strong> cryogenic<br />

techniques to upgrade biogas seems to best suited. The cool<strong>in</strong>g trajectory dur<strong>in</strong>g <strong>the</strong><br />

upgrad<strong>in</strong>g process can <strong>the</strong>n be cont<strong>in</strong>ued to immediately obta<strong>in</strong> LBM. Production of LBM<br />

out of landfill gas, waste water treatment and gasification is location bound for <strong>the</strong> most<br />

part. For <strong>in</strong>dustrial digestion and co-digestion, which have <strong>the</strong> most production potential,<br />

<strong>the</strong> situation is more nuanced. For <strong>the</strong> end production of LBM three routes are th<strong>in</strong>kable<br />

(<strong>in</strong>dependent of <strong>the</strong> used production technique). These routes are depicted <strong>in</strong> Figure 5.2.<br />

40<br />

production of<br />

biogas<br />

anaerobic codigestion<br />

<strong>in</strong>dustrial<br />

digestion<br />

gasification<br />

biogas upgrad<strong>in</strong>g<br />

biogas<br />

waste water<br />

treatment<br />

landfill gas<br />

gas clean<strong>in</strong>g<br />

cryogenic<br />

techniques<br />

VPSA<br />

<strong>biomethane</strong>


Figure 5.2. Production possibilities for LBM 1<br />

ROUTE 1 ROUTE 2 ROUTE 3<br />

biomass<br />

at farm<br />

biogas<br />

prod.<br />

LBM<br />

prod.<br />

biogas<br />

producer<br />

biogas<br />

producer<br />

LBM<br />

prod.<br />

biogas<br />

producer<br />

biogas<br />

producer<br />

biomass biomass<br />

biogas<br />

production<br />

LBM<br />

production<br />

1 This figure represents <strong>the</strong> different options for LBM production. Route 1 <strong>in</strong>dicates a s<strong>in</strong>gle farm produc<strong>in</strong>g and<br />

upgrad<strong>in</strong>g biogas. Route 2 depicts multiple biogas producers connected to a LBM production hub via<br />

pipel<strong>in</strong>es. In route three <strong>the</strong> biomass of different farms (and o<strong>the</strong>r sources) is collected to be digested and<br />

upgraded <strong>in</strong> a s<strong>in</strong>gle location.<br />

The total cost for <strong>the</strong> production of LBM via digestion of biomass generally depends on <strong>the</strong><br />

production scale. The production cost asymptotically approaches a constant value when<br />

one makes size of <strong>the</strong> production plant sufficiently large.<br />

5.2. Production costs<br />

The production costs of biogas and <strong>the</strong> costs of upgrad<strong>in</strong>g biogas to LBM consist of <strong>the</strong><br />

<strong>in</strong>vestment costs and <strong>the</strong> operational costs. In this report, data of different studies on <strong>the</strong><br />

production costs related to scale are comb<strong>in</strong>ed. Given that <strong>the</strong>se are two separate stages,<br />

<strong>the</strong> production cost of biogas and for LBM are determ<strong>in</strong>ed separately. These results can be<br />

added toge<strong>the</strong>r to determ<strong>in</strong>e <strong>the</strong> overall production costs of LBM.<br />

5.2.1. F<strong>in</strong>anceability<br />

F<strong>in</strong>anc<strong>in</strong>g a LBM production facility actually consists of three parts.<br />

1. F<strong>in</strong>anc<strong>in</strong>g <strong>the</strong> facility for biogas production from:<br />

2. F<strong>in</strong>anc<strong>in</strong>g <strong>the</strong> facility for upgrad<strong>in</strong>g <strong>the</strong> biogas to <strong>biomethane</strong> by:<br />

3. F<strong>in</strong>anc<strong>in</strong>g a small-scale liquefaction plant to cool <strong>the</strong> obta<strong>in</strong>ed <strong>biomethane</strong>.<br />

One can comb<strong>in</strong>e <strong>the</strong> cryogenic upgrad<strong>in</strong>g technique with <strong>the</strong> small-scale liquefaction plant<br />

to obta<strong>in</strong> cost- and environmental benefits. These advantages are difficult to quantity at this<br />

moment. Exist<strong>in</strong>g biogas plants could also be l<strong>in</strong>ked via pipel<strong>in</strong>es to obta<strong>in</strong> a cost<br />

advantage for <strong>the</strong> production of <strong>biomethane</strong>.<br />

Gett<strong>in</strong>g f<strong>in</strong>ance for steps 2 and 3 is difficult due to <strong>the</strong> current subsidy scheme SDE+ (see<br />

Appendix II). Only <strong>the</strong> production of renewable heat, electricity and grid <strong>in</strong>jected green gas<br />

are subsidised at this moment. Moreover, gas and electricity companies are obliged to buy<br />

41


this electricity and green gas. This gives banks <strong>the</strong> guaranty of a stable <strong>in</strong>come stream.<br />

Banks are thus more <strong>in</strong>terested <strong>in</strong> f<strong>in</strong>anc<strong>in</strong>g renewable gas and electricity projects, than a<br />

project for LBM, at this moment.<br />

Investment costs<br />

The <strong>in</strong>vestments costs of different plants depend highly on <strong>the</strong> location and <strong>the</strong> chosen<br />

technique. To give an <strong>in</strong>dication, some numbers found <strong>in</strong> literature for <strong>the</strong> <strong>in</strong>vestment costs<br />

of different plants are given here. Figure 5.3 gives an overview of <strong>the</strong>se <strong>in</strong>vestment costs at<br />

a glance.<br />

Figure 5.3. Investment costs for LBM production facilities 1<br />

42<br />

<strong>in</strong>vestment costs<br />

€ 30,000,000<br />

€ 25,000,000<br />

€ 20,000,000<br />

€ 15,000,000<br />

€ 10,000,000<br />

€ 5,000,000<br />

€ -<br />

average biogas plant reference size (18 million litres<br />

of LBM per year)<br />

co-digestion<br />

upgrad<strong>in</strong>g<br />

liquefication<br />

1 These values are deduced with data on <strong>the</strong> <strong>in</strong>vestments costs for co-digestion, green gas or <strong>biomethane</strong><br />

upgrad<strong>in</strong>g and liquefication plants from ECN (2011), HIT (2008), E-Kwadraat Advies (2011) and CE Delft<br />

(2010). The “error” bars represent <strong>the</strong> standard deviation of <strong>the</strong> values found <strong>in</strong> literature.<br />

The total <strong>in</strong>vestment cost for a LBM production facility from co-digestion, with an equivalent<br />

production capacity of 1,500 m 3 green gas*hour -1 is about EUR 21 million. This comes<br />

down to EUR 9,500 per (litre LBM*hour -1 ) production capacity.<br />

5.2.2. Costs of produc<strong>in</strong>g biogas<br />

As mentioned <strong>in</strong> section 5.1, biogas can be produced <strong>in</strong> five ways: co-digestion, <strong>in</strong>dustrial<br />

digestion, land fill gas, waste water treatment and gasification. Gasification of woody<br />

biomass is as of this moment far more expensive than o<strong>the</strong>r processes of convert<strong>in</strong>g woody<br />

biomass or produc<strong>in</strong>g biogas from digestion processes (ECN, 2011). Gasification is a<br />

technique still under development and could be <strong>in</strong>terest<strong>in</strong>g for <strong>the</strong> future given <strong>the</strong> high<br />

conversion yield of 70% (ECN, 2011a). Biogas produced by waste water treatment plants is<br />

usually used to power <strong>the</strong> plant itself and is <strong>the</strong>refore also excluded <strong>in</strong> this study. From<br />

different sources, <strong>the</strong> total production costs of biogas related to <strong>the</strong> production scale are put<br />

toge<strong>the</strong>r. A trend (production costs versus production scale) is determ<strong>in</strong>ed with this. The<br />

results are displayed <strong>in</strong> Figure 5.4.<br />

total


Figure 5.4. Cost development of biogas production with scale 1<br />

production costs (EUR*GJ -1 )<br />

18.00<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

0 2,000 4,000 6,000 8,000 10,000<br />

production scale (m 3 green gas*hour -1 )<br />

Source: adaptation of E-Kwadraat Advies (2011), CE Delft (2010), ECN (2011) & HIT (2008).<br />

co-digestion<br />

<strong>in</strong>dustrial digestion<br />

landfill gas<br />

1 These graphs represent a trend of <strong>the</strong> production costs related to production scale, for a s<strong>in</strong>gle production<br />

plant (route 3).<br />

Landfill gas is by far <strong>the</strong> cheapest option and this is logical because this gas is essentially<br />

produced for free, only some light <strong>in</strong>stallations are needed to capture <strong>the</strong> gas. Transport<br />

distances of biomass and o<strong>the</strong>r digestible material does not seem to have an effect on <strong>the</strong><br />

production costs for larger scales (for <strong>the</strong> scale <strong>in</strong>dicated). Industrial digestion is on<br />

average 23 % cheaper than co-digestion. This is because of <strong>the</strong> differences <strong>in</strong> market price<br />

of different digestible waste streams. The waste streams used for <strong>in</strong>dustrial digestion often<br />

have a negative value.<br />

5.2.3. Costs of upgrad<strong>in</strong>g biogas to LBM<br />

Data for <strong>the</strong> production costs of LBM from biogas is scarcely available from literature<br />

(because <strong>the</strong>re is little experience <strong>in</strong> practice). With <strong>the</strong> obta<strong>in</strong>ed data, <strong>the</strong> production costs<br />

depend<strong>in</strong>g on <strong>the</strong> scale are determ<strong>in</strong>ed similarly to section 5.2.2. The results are displayed<br />

<strong>in</strong> Figure 5.5. In comparison with <strong>the</strong> production costs for biogas, LBM production takes up<br />

about 20 % of <strong>the</strong> production costs of co-digestion for <strong>the</strong> <strong>in</strong>dicated range of production<br />

scales. The relative distribution of <strong>the</strong> LBM production costs for different scales is larger<br />

however.<br />

43


Figure 5.5. Cost development of LBM production with scale 1<br />

44<br />

production costs (EUR*GJ -1 )<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

0 2,000 4,000 6,000 8,000 10,000<br />

production scale (m 3 green gas*hour -1 )<br />

Source: adaptation from E-Kwadraat Advies (2011), CE Delft (2010) & HIT (2008).<br />

LBM production<br />

1 This graph represent a trend of <strong>the</strong> production costs related to production scale, for a s<strong>in</strong>gle production plant<br />

(route 3).<br />

5.2.4. Total costs for produc<strong>in</strong>g LBM<br />

The comb<strong>in</strong>ation of <strong>the</strong> two trends obta<strong>in</strong>ed <strong>in</strong> section 5.2.2 and section 5.2.3 gives <strong>the</strong><br />

total costs of produc<strong>in</strong>g LBM out of biomass for a specific scale of production. The three<br />

routes displayed <strong>in</strong> Figure 5.2 come <strong>in</strong> to play here. The <strong>transport</strong> costs are already taken<br />

<strong>in</strong>to account <strong>in</strong> Figure 5.4. Hav<strong>in</strong>g done a short analysis it appears that <strong>the</strong> cost of route 1<br />

is always larger than route 3. Route 2 is also analysed and is also more expensive <strong>the</strong>n<br />

route 3 <strong>in</strong> every case. This f<strong>in</strong>d<strong>in</strong>g corresponds with conclusions from ECN (2011). The<br />

total cost for route 3 for landfill gas, <strong>in</strong>dustrial digestion and co-digestion are f<strong>in</strong>ally<br />

displayed <strong>in</strong> Figure 5.6.


Figure 5.6. Total production costs for LBM 1<br />

production costs (EUR*GJ -1 )<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

0 2,000 4,000 6,000 8,000 10,000<br />

production scale (m 3 green gas*hour -1 )<br />

co-digestion<br />

<strong>in</strong>dustrial digestion<br />

landfill gas<br />

1 This graph represent a trend of <strong>the</strong> production costs related to production scale, for a s<strong>in</strong>gle production plant<br />

(route 3).<br />

5.3. Production capacity and <strong>transport</strong> kilometres<br />

Up to now, <strong>the</strong> discussion of LBM has focussed on production scales <strong>in</strong> m 3 green gas*hour -<br />

1 and pric<strong>in</strong>g <strong>in</strong> EUR*GJ -1 . LBM production can be compared with o<strong>the</strong>r forms of produc<strong>in</strong>g<br />

energy from biomass and LBM usage can be compared with <strong>the</strong> performance of o<strong>the</strong>r fuels<br />

this way. To make this more tangible, <strong>the</strong>se units have to be l<strong>in</strong>ked to data from <strong>the</strong><br />

<strong>transport</strong> <strong>sector</strong>.<br />

5.3.1. Optimal production scale<br />

The determ<strong>in</strong>ation for an optimal production scale is subject to a number of criteria:<br />

- Indications for LBM/LNG pric<strong>in</strong>g;<br />

- <strong>transport</strong> distance of biomass streams;<br />

- <strong>the</strong> amount of biomass needed for a certa<strong>in</strong> <strong>in</strong>stallation;<br />

- <strong>the</strong> current situation of <strong>the</strong> biogas facilities <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and <strong>the</strong> expected<br />

development.<br />

The production price of LBM has to compete with LNG prices. The current landed price for<br />

LNG <strong>in</strong> Belgium is EUR 6.38 per GJ. To reta<strong>in</strong> a sufficient marg<strong>in</strong> of profit for LNG/LBM<br />

distributers, LBM prices cannot be much higher than this. One would thus like to produce<br />

LBM at such a scale <strong>the</strong> production costs rema<strong>in</strong> constant more or less. In Figure 5.6 this<br />

appear to happen at an equivalent production scale of about 2000 m 3 green gas*hour -1 .<br />

The costs, energy use and CO2 emissions due to <strong>the</strong> <strong>transport</strong> of biomass, will at some<br />

po<strong>in</strong>t be greater than <strong>the</strong> benefits from produc<strong>in</strong>g LBM. For <strong>the</strong> production costs, this effect<br />

is not significant for <strong>the</strong> production range 0-10,000 m 3 green gas*hour -1 . Biomass has to be<br />

<strong>transport</strong>ed at least 200 km before <strong>the</strong> energy use exceeds <strong>the</strong> yield (Berglund &<br />

45


Börjesson, 2006). This factor is thus not relevant for <strong>the</strong> Ne<strong>the</strong>rlands. The same goes for<br />

<strong>the</strong> CO2 emissions from <strong>transport</strong><strong>in</strong>g biomass over <strong>the</strong> road (CE Delft, 2010).<br />

From a cost perspective it appears, at first glance, that <strong>the</strong> higher <strong>the</strong> production capacity<br />

<strong>the</strong> better. Commission<strong>in</strong>g large plants however has two potential dangers. In <strong>the</strong> first<br />

place, a large LBM plant is consequently also dependent on a cont<strong>in</strong>uously large stream of<br />

biomass. For large production plants this has to come from large regions. The reliability of a<br />

constant supply decreases with larger volumes (because it has to come from multiple<br />

sources), which compromises bus<strong>in</strong>ess operations. The second danger is <strong>the</strong>n that larger<br />

production facilities pay higher biomass prices or receive less for biomass with a negative<br />

market value <strong>in</strong> order to ensure a cont<strong>in</strong>uous supply of biomass. As a consequence,<br />

(production) prices for LBM will go up. Unfortunately it is difficult to quantify this exactly<br />

because it is dependent on a lot of different factors.<br />

To fur<strong>the</strong>r demarcate <strong>the</strong> optimal LBM production scale it is also important to look at <strong>the</strong><br />

current size of digesters <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and <strong>the</strong> expected trends. This is displayed <strong>in</strong><br />

Table 5.1.<br />

Table 5.1. Size of <strong>Dutch</strong> digestion plants and trends<br />

46<br />

size (m 3 green gas*hour -1 )<br />

average 2011 reference ECN 2012 l<strong>in</strong>ear trend 2020 1<br />

expectations 2<br />

co-digestion 227 280 627 5000<br />

<strong>in</strong>dustrial digestion 603 527 no clear trend 5000<br />

landfill gas 158 80 not applicable not applicable<br />

Source: CBS (2012c), ECN (2011) & CE Delft (2010).<br />

1 Calculated with data from 2005-2011 (extrapolation).<br />

2 Term of development unknown.<br />

The expectations for a 5,000 m 3 green gas*hour -1 co-digestion plant do not correspond with<br />

<strong>the</strong> l<strong>in</strong>ear extrapolation. Given that co-digestion plants will not grow significantly <strong>in</strong> capacity<br />

<strong>in</strong> <strong>the</strong> com<strong>in</strong>g years, it may still be <strong>the</strong> case <strong>in</strong> practice that some co-digestion plants are<br />

<strong>in</strong>terconnected via a hub. For <strong>in</strong>dustrial <strong>in</strong>stallation <strong>the</strong> trend does lean towards larger<br />

<strong>in</strong>stallations (examples to be found <strong>in</strong> Denmark and Sweden for example (CE Delft, 2011)).<br />

Production of biogas from land fill site is expected to decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> future, because of a<br />

lower<strong>in</strong>g <strong>in</strong> <strong>the</strong> number of landfill sites and <strong>the</strong> amount of disposed waste (Compendium<br />

voor de leefomgev<strong>in</strong>g, 2012a).<br />

Consider<strong>in</strong>g <strong>the</strong> issues set out <strong>in</strong> this paragraph as well as <strong>the</strong> current subsidy regulations<br />

and <strong>the</strong> will<strong>in</strong>gness of banks to f<strong>in</strong>ance <strong>the</strong>se <strong>in</strong>stallations, a production scale bandwidth<br />

between 1,000 and 2,000 m 3 green gas*hour -1 is considered optimal forthwith. This report<br />

<strong>the</strong>refore works with a production scale equivalent of 1,500 m 3 green gas*hour -1 . For a<br />

green gas hub, (ECN, 2011) gives a reference scale of 1,250 m 3 green gas*hour -1 . This<br />

confirms that 1,500 m 3 green gas*hour -1 is <strong>in</strong>deed a reasonable scale. To give ano<strong>the</strong>r<br />

<strong>in</strong>dication: <strong>in</strong> <strong>the</strong> region of Salland <strong>in</strong> <strong>the</strong> prov<strong>in</strong>ce of Overijssel <strong>the</strong> potential to produce<br />

green gas from different forms of waste is 22 million m 3 *year -1 . This comes down to a scale<br />

of 2,750 m 3 *hour -1 . Without mak<strong>in</strong>g fur<strong>the</strong>r assumptions, two production <strong>in</strong>stallations would<br />

suffice <strong>in</strong> this <strong>in</strong>stance.<br />

5.3.2. Properties of LBM fuel<br />

To make l<strong>in</strong>k between production scale and <strong>transport</strong> capacity, some general parameters of<br />

LBM fuel are discussed first. An overview of all <strong>the</strong> values and parameters used <strong>in</strong> this


study is given <strong>in</strong> Appendix IV. This report works with a methane content <strong>in</strong> <strong>the</strong> LBM of 100<br />

%. The actual value lies between 97 % and 99 %. Pure methane has an energy content of<br />

5.0*10 7 J*kg -1 and, at standard temperature and pressure, a density of 0.72 kg*m -3 . LBM<br />

has got a density of 424.14 kg*m -3 . This means that LBM conta<strong>in</strong>s 589 times more energy<br />

<strong>in</strong> <strong>the</strong> same space as <strong>the</strong> gas <strong>biomethane</strong>.<br />

2.3577 litres of LBM equals 1 kilogram. This means LBM has and energy density of<br />

21 MJ*L -1 . One cubic metre of green gas produces approximately 1.5 litres of LBM fuel.<br />

5.3.3. Production scale related to <strong>transport</strong><br />

The number of kilometres trucks are able to run on 1 litre of LBM depends on <strong>the</strong> type of<br />

eng<strong>in</strong>e (dual-fuel or s<strong>in</strong>gle fuel) and <strong>the</strong> eng<strong>in</strong>e efficiency. For dual-fuel applications <strong>the</strong><br />

eng<strong>in</strong>e efficiency is equal to that of diesel eng<strong>in</strong>es and for s<strong>in</strong>gle fuel application <strong>the</strong><br />

efficiency is slightly lower. Given <strong>the</strong> lack of any solid practical data on <strong>the</strong> energy use of<br />

different LNG/LBM trucks, <strong>the</strong> energy efficiency is assumed to be <strong>the</strong> same as diesel.<br />

Subsequently, statistical data of 2010 is used to calculate <strong>the</strong> capacity for a certa<strong>in</strong><br />

production scale to fuel a number of heavy duty vehicles <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

In 2010, a total number of 178,612 heavy duty vehicles (registered with a <strong>Dutch</strong> license<br />

plate) drove around <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (CBS, 2012e; CBS, 2012g). Toge<strong>the</strong>r <strong>the</strong>y<br />

consumed 96 PJ worth of energy (Compendium voor de leefomgev<strong>in</strong>g, 2012). A total<br />

distance of 6,805,200,000 km was travelled (CBS, 2012f). This means <strong>the</strong> follow<strong>in</strong>g.<br />

1. The average annual distance travelled by a heavy duty vehicle is 38,100 km.<br />

2. The average amount of energy used by a heavy duty vehicle annually is 537 GJ.<br />

3. The average specific energy use of a heavy duty vehicle was 1,411 MJ * 100 km -1 .<br />

This energy use comes down to about 39 litres of diesel per 100 km. An LBM production<br />

facility with a capacity of 1,500 m 3 green gas*hour -1 , produces 18.2 million litres of LBM fuel<br />

<strong>in</strong> a year. This is enough for 27.2 million kilometres or 714 heavy duty vehicles. Such a<br />

production capacity would replace 10.7 million litres of diesel fuel on an annual basis. This<br />

accounts for 0.1388 % of <strong>the</strong> <strong>Dutch</strong> diesel use <strong>in</strong> <strong>transport</strong> <strong>in</strong> 2010 (CBS, 2012h). To satisfy<br />

<strong>the</strong> total fuel demand of <strong>the</strong> heavy duty vehicles, 250 of <strong>the</strong>se <strong>in</strong>stallations are required.<br />

250 <strong>in</strong>stallations would replace 35 % of <strong>the</strong> <strong>Dutch</strong> diesel need and this number corresponds<br />

with data given <strong>in</strong> Compendium voor de leefomgev<strong>in</strong>g (2012), which gives 36 % for 2010.<br />

To give a graphical <strong>in</strong>dication on how much facilities are needed for a certa<strong>in</strong> number of<br />

vehicles and mileages, a 3D graph is presented <strong>in</strong> Figure 5.7.<br />

47


Figure 5.7. LBM <strong>in</strong>stallations needed to drive x trucks y kilometres per year 1<br />

1<br />

48<br />

LBM production <strong>in</strong>stallations<br />

180,000<br />

160,000<br />

140,000<br />

120,000<br />

100,000<br />

80,000<br />

number of trucks<br />

60,000<br />

40,000<br />

20,000<br />

0<br />

0<br />

50,000<br />

250<br />

225<br />

200<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

150,000 0<br />

100,000<br />

km*year -1<br />

This concerns production facilities with a capacity of 1,500 m 3 green gas*hour -1 . If <strong>the</strong> LBM is used <strong>in</strong> dual fuel<br />

applications or is mixed with LNG, <strong>the</strong> number of <strong>in</strong>stallations is simply multiplied with <strong>the</strong> mix<strong>in</strong>g percentage.<br />

5.4. Market<strong>in</strong>g possibilities and LNG overlap<br />

5.4.1. The LBM comparison: diesel or LNG?<br />

The development of an LBM <strong>in</strong>frastructure, next to <strong>the</strong> LNG <strong>in</strong>frastructure is not equivalent<br />

to <strong>the</strong> development of, for example, a biodiesel <strong>in</strong>frastructure next to a diesel <strong>in</strong>frastructure.<br />

This is also true for <strong>the</strong> development of o<strong>the</strong>r bio fuels next to <strong>the</strong>ir fossil equivalents. In <strong>the</strong><br />

case of LBM and LNG, <strong>the</strong>re are two fundamental differences:<br />

1. biodiesel was <strong>in</strong>troduced next to an already exist<strong>in</strong>g <strong>in</strong>frastructure for normal diesel,<br />

whereas LBM must by <strong>in</strong>troduced simultaneously with LNG;<br />

2. <strong>the</strong> quality of LBM is generally speak<strong>in</strong>g higher than LNG whereas <strong>the</strong> quality of<br />

biodiesel or bio-ethanol is lower than diesel or petrol respectively.<br />

Introduc<strong>in</strong>g LBM next to <strong>the</strong> develop<strong>in</strong>g <strong>in</strong>frastructure of LNG could both have advantages<br />

and disadvantages. The advantage is that, while <strong>the</strong> LNG <strong>sector</strong> develops more rapidly<br />

than <strong>the</strong> LBM <strong>sector</strong>, <strong>the</strong> <strong>in</strong>troduction of LBM can be run congruent with <strong>the</strong> developments<br />

<strong>in</strong> <strong>the</strong> LNG <strong>sector</strong>. Introduction of, for example mix<strong>in</strong>g obligations of LBM and LNG fuel<br />

could however slow down developments <strong>in</strong> <strong>the</strong> LNG <strong>sector</strong>, due to <strong>the</strong> limited availability of<br />

LBM <strong>in</strong> <strong>the</strong> early stages of development.<br />

Successful <strong>in</strong>troduction of LBM fuel also depends on <strong>the</strong> price sett<strong>in</strong>g. LNG can be<br />

successfully <strong>in</strong>troduced, because <strong>the</strong> pump price <strong>in</strong> lower than that of diesel. It is wrong<br />

however to make <strong>the</strong> same comparison for LBM. A lower pump price of LBM than that of<br />

diesel does not imply that LBM can be successfully <strong>in</strong>troduced. LBM is <strong>the</strong> replacement of<br />

<strong>the</strong> fossil fuel LNG and not <strong>the</strong> replacement of diesel. Prices of LBM and LNG <strong>the</strong>refore<br />

have to be kept equal at <strong>the</strong> pump. This puts limits on <strong>the</strong> price at which a production


company (a farm for example) can sell LBM to <strong>the</strong> market. Table 5.2 displays <strong>the</strong> current<br />

situation regard<strong>in</strong>g raw prices.<br />

Table 5.2. Raw prices for LNG, diesel and LBM<br />

raw prices <strong>in</strong> EUR * GJ -1<br />

landed LNG price off-term<strong>in</strong>al price maximum price for<br />

LBM 1<br />

ref<strong>in</strong>ery price diesel LBM production<br />

price 2<br />

6.39 9.05 12.07 17.81 19.49<br />

1 From personal communication with Rolande LCNG and LNG 24 CleanFuel.<br />

2 For a facility of 1,500 m 3 green gas*hour -1 , based on co-digestion.<br />

Table 5.2 shows that an LBM production plant cannot run without government support.<br />

However, this is also <strong>the</strong> case for production facilities of green gas and renewable<br />

electricity. Subsidis<strong>in</strong>g LBM fuel <strong>in</strong>stead of grid <strong>in</strong>jected green gas is <strong>the</strong> cheapest option<br />

for <strong>the</strong> government because <strong>the</strong> cost-revenue deficit if lower for LBM. At <strong>the</strong> current offterm<strong>in</strong>al<br />

price for LNG, <strong>the</strong> difference would already be EUR 1,67 per GJ at <strong>the</strong> least, for a<br />

facility of 1,500 m 3 green gas*hour -1 . Large scale implementation could save <strong>the</strong><br />

governmental a substantial amount on subsidy spend<strong>in</strong>g yearly.<br />

5.4.2. Possibilities to distribute LBM<br />

Once <strong>the</strong> LBM is produced one way or ano<strong>the</strong>r <strong>the</strong>re are essentially three options to<br />

distribute it.<br />

1. In option one, a LBM fuell<strong>in</strong>g station is directly attached to <strong>the</strong> LBM production facility.<br />

2. In option two, <strong>the</strong> produced LBM is collected by LNG trucks and <strong>the</strong>n distributed to<br />

LNG/LBM fuell<strong>in</strong>g stations.<br />

3. In option three, <strong>the</strong> produced LBM is collected and <strong>transport</strong>ed to storage and or mix<strong>in</strong>g<br />

facilities for LNG and LBM. From <strong>the</strong>re is can be distributed to LNG fuell<strong>in</strong>g stations or<br />

regasified <strong>in</strong>to <strong>the</strong> <strong>Dutch</strong> gas grid.<br />

These three options are depicted schematically <strong>in</strong> Figure 5.8.<br />

49


Figure 5.8. Options to distribute LBM 1<br />

50<br />

LBM<br />

production<br />

distribution<br />

by<br />

trucks<br />

storage<br />

or<br />

mix<strong>in</strong>g distribution<br />

by<br />

OPTION 3<br />

trucks<br />

OPTION 1<br />

distribution<br />

by<br />

trucks<br />

OPTION 2<br />

1 With option 1, <strong>the</strong> LBM fuel station is directly l<strong>in</strong>ked to <strong>the</strong> LBM production site.<br />

regasification<br />

LBM<br />

fuel<br />

station<br />

Option 1<br />

Option one appears to be <strong>the</strong> cheapest option for <strong>the</strong> producer. Plac<strong>in</strong>g a fuell<strong>in</strong>g station<br />

directly adjacent <strong>the</strong> LBM production facility avoids <strong>the</strong> need for third parties distribut<strong>in</strong>g <strong>the</strong><br />

LBM and exploit<strong>in</strong>g <strong>the</strong> fill<strong>in</strong>g stations. However, <strong>the</strong> LBM producer does take on <strong>the</strong><br />

additional concern of runn<strong>in</strong>g <strong>the</strong> fuell<strong>in</strong>g station. The outflow of LBM is also more<br />

discont<strong>in</strong>uous which has consequences for <strong>the</strong> production and storage capacity. Option<br />

one is <strong>in</strong> most cases unsuitable when it comes to strategically localiz<strong>in</strong>g LNG/LBM fuell<strong>in</strong>g<br />

locations.<br />

Option 2<br />

Option 2 is considered to be <strong>the</strong> most likely scenario <strong>in</strong> this report. In this case <strong>the</strong> LBM<br />

supplier can make arrangements with distribution companies to collect <strong>the</strong> LBM on a<br />

regular basis. The supplier can <strong>the</strong>n count on a periodical outflow of LBM which benefits<br />

<strong>the</strong> bus<strong>in</strong>ess cont<strong>in</strong>uity. The distributors of LNG/LBM take care of plac<strong>in</strong>g and exploit<strong>in</strong>g <strong>the</strong><br />

fuell<strong>in</strong>g station and creat<strong>in</strong>g a demand for LBM/LNG.<br />

Option 3<br />

Option 3 appears to be unlikely when <strong>the</strong> LNG market is still small, but could be <strong>in</strong>terest<strong>in</strong>g<br />

never<strong>the</strong>less. At this moment <strong>the</strong>re are two LNG term<strong>in</strong>als supply<strong>in</strong>g LNG for <strong>the</strong><br />

Ne<strong>the</strong>rlands: one <strong>in</strong> <strong>the</strong> port of Zeebrugge and one <strong>in</strong> <strong>the</strong> port of Rotterdam. Currently, only<br />

Zeebrugge has <strong>the</strong> ability to load LNG <strong>in</strong>to LNG trucks. In Rotterdam <strong>the</strong> LNG is regasified<br />

<strong>in</strong>to <strong>the</strong> grid. It could be <strong>in</strong>terest<strong>in</strong>g to br<strong>in</strong>g LBM to <strong>the</strong>se term<strong>in</strong>als (or possibly o<strong>the</strong>r<br />

term<strong>in</strong>als constructed <strong>in</strong> <strong>the</strong> future) and mix it with <strong>the</strong> regular LNG. This possibility does<br />

not exist currently. The advantage would be that LBM can be produced without wait<strong>in</strong>g for<br />

<strong>the</strong> development of a market for LBM use <strong>in</strong> <strong>transport</strong>. The LBM can <strong>in</strong> this be regasified<br />

<strong>in</strong>to <strong>the</strong> grid anyway. This option would be <strong>the</strong> most <strong>in</strong>terest<strong>in</strong>g when <strong>the</strong> government sets<br />

regulations for mix<strong>in</strong>g a certa<strong>in</strong> percentage of LBM <strong>in</strong>to LNG. The capacity of <strong>the</strong> LNG<br />

term<strong>in</strong>als <strong>in</strong> Zeebrugge and Rotterdam is so large that it would be un<strong>in</strong>terest<strong>in</strong>g for <strong>the</strong>m to<br />

accept LBM truck loads. With smaller <strong>in</strong>land term<strong>in</strong>als this would be less of a problem.


5.4.3. Revenue picture<br />

Table 5.3 <strong>in</strong>dicates <strong>the</strong> yearly operational costs and revenues for <strong>the</strong> different options<br />

described <strong>in</strong> section 5.4.2.<br />

Table 5.3. LBM cost and revenue trajectory for different options<br />

costs/revenues EUR*GJ -1 EUR*year -1<br />

<strong>liquid</strong> CO2 1<br />

LBM sale 2<br />

LBM production 4<br />

(co-digestion)<br />

LBM production 5<br />

(<strong>in</strong>d. digestion)<br />

<strong>transport</strong> 6<br />

total (co-<br />

digestion)<br />

total (<strong>in</strong>d.<br />

digestion)<br />

option 1 option 2 option 3<br />

3.78 1,453,000 3<br />

EUR*GJ -1 EUR*year -1<br />

EUR*GJ -1 EUR*year -1<br />

3.78 1,453,000 3.78 1,453,000<br />

22.97 8,819,000 12.07 4,634,000 9.05 3,475,000<br />

-19.26 -7,396,000 -19.26 -7,396,000 -19.26 -7,396,000<br />

-16.06 -6,166,000 -16.06 -6,166,000 -16.06 -6,166,000<br />

0.00 0 0.00 0 0.24 91,000<br />

7.49 2,876,000 -3.41 -1,310,000 -6.19 -2,377,000<br />

10.69 4,106,000 -0.21 -79,000 -2.99 -1,147,000<br />

1 The current market price of <strong>liquid</strong> CO2 is around EUR 100,- per tonne, i.a. (European Commission, 2010).<br />

2 Option 1 concerns <strong>the</strong> pump price (see section 4.6.). Option 2 concerns price <strong>in</strong>dications given, <strong>in</strong> personal<br />

<strong>in</strong>terviews, by Rolande LNG and LNG24. Option 3 concerns <strong>the</strong> off-term<strong>in</strong>al LNG price corrected for <strong>the</strong><br />

energy content <strong>in</strong> LNG compared to LBM.<br />

3 The figures for <strong>the</strong> yearly costs are rounded.<br />

4,5 For a production scale of 1,500 m 3 green gas*hour -1 .<br />

6<br />

This is an estimate on <strong>the</strong> basis of data from E-Kwadraat Advies (2011) and a <strong>transport</strong> distance of 100 km.<br />

5.4.4. Price sett<strong>in</strong>g of LBM fuel<br />

Companies are reluctant when it comes to giv<strong>in</strong>g <strong>in</strong>formation on LBM/LNG pric<strong>in</strong>g. With <strong>the</strong><br />

<strong>in</strong>formation obta<strong>in</strong>ed however, a reasonable picture can be formed on <strong>the</strong> gross profit<br />

marg<strong>in</strong>s for different fuels. To place LNG and LBM <strong>in</strong>to a broader perspective Table 5.4<br />

and Figure 5.9 gives <strong>the</strong> pric<strong>in</strong>g for different fossil and renewable fuels.<br />

Table 5.4. Pric<strong>in</strong>g of different fossil and renewable fuels <strong>in</strong> EUR*GJ -1<br />

petrol diesel LPG LNG CNG<br />

bio-<br />

ethanol biodiesel LBM CBM<br />

ref<strong>in</strong>ery 16.52 17.81 14.63 9.05 5.96 20.14 15.24 15.81 1<br />

15.07 1<br />

stock tax 0.18 0.16 0.13 0.12 0.00 0.28 0.18 0.12 0.00<br />

excise tax 22.14 11.97 3.64 3.37 0.00 22.85 12.08 3.37 0.00<br />

energy tax 0.00 0.00 0.00 0.00 1.29 0.00 0.00 0.00 1.29<br />

VAT 2<br />

gross marg<strong>in</strong><br />

8.33 6.39 5.11 3.67 3.11 11.27 7.30 3.67 3.11<br />

5.02 3.70 8.50 6.76 9.11 16.07 10.92 0.00 0.00<br />

pump price 52.18 40.03 32.00 22.97 19.47 70.62 45.73 22.97 19.47<br />

Source: Bovag (2012), Bovag (2012a), Bovag (2012b), LNG24 (2012), Orangegas (2012), FuelSwitch (2012a), EUBIA<br />

(2012) & EUBIA (2012a).<br />

1 These are <strong>the</strong> maximum ‘ref<strong>in</strong>ery’ prices so that <strong>the</strong> gross profit marg<strong>in</strong> is zero. In <strong>the</strong> current situation, a<br />

2<br />

higher price means <strong>the</strong> gross profit marg<strong>in</strong> turns negative.<br />

Based on <strong>the</strong> old VAT tariff of 19 %. On October, 1 2012, <strong>the</strong> VAT tariff is <strong>in</strong>creased to 21 %.<br />

51


Figure 5.9. Relative build-up of <strong>the</strong> prices of different fuels<br />

52<br />

CBM<br />

LBM<br />

biodiesel<br />

bio-ethanol<br />

CNG<br />

LNG<br />

LPG<br />

diesel<br />

petrol<br />

0% 20% 40% 60% 80% 100%<br />

ref<strong>in</strong>ery<br />

stock tax<br />

excise tax<br />

energy tax<br />

gross profit marg<strong>in</strong><br />

For <strong>the</strong> end-user, LBM en LNG are <strong>the</strong> cheapest fuels with respect to o<strong>the</strong>r <strong>liquid</strong> fuels.<br />

Costs like <strong>the</strong> <strong>transport</strong> of <strong>the</strong> fuels and <strong>the</strong> exploitation of fill<strong>in</strong>g stations still have to be<br />

paid out of <strong>the</strong> gross profit marg<strong>in</strong>. It is unclear what an acceptable profit marg<strong>in</strong> would be<br />

for LBM. Rolande LNG however, has <strong>in</strong>dicated that <strong>the</strong>y are able to purchase LBM (from<br />

production facilities) for a price of around EUR 0,60*kg -1 . At this price, it would appear that<br />

EUR 3.75*GJ -1 (16.3 %) is an acceptable gross profit marg<strong>in</strong> for LBM.<br />

VAT


6. ORGANISING AN LBM INFRASTRUCTURE<br />

A number a factors determ<strong>in</strong>e whe<strong>the</strong>r an LBM <strong>in</strong>frastructure can be organised effectively.<br />

These factors <strong>in</strong>clude:<br />

- production of <strong>liquid</strong> <strong>biomethane</strong>;<br />

- distribution of <strong>liquid</strong> <strong>biomethane</strong>;<br />

- environmental law;<br />

- safety regulations.<br />

Enough biomass has to be available to produce LBM <strong>in</strong> large quantities. A positive<br />

bus<strong>in</strong>ess case for <strong>the</strong> production of LBM does not necessarily mean that LBM usage is<br />

viable. LBM must be produced <strong>in</strong> such quantities, that a significant portion of <strong>the</strong> <strong>transport</strong><br />

<strong>sector</strong> can use it. There is also a time factor related to this. LBM as a fuel has to be realised<br />

with<strong>in</strong> a reasonable term, to be viable as a “transition” fuel. European and <strong>Dutch</strong><br />

environmental- and safety laws may impose restrictions on LBM production and usage.<br />

This chapter describes how to <strong>in</strong>troduce and organise an <strong>in</strong>frastructure for LBM <strong>in</strong> <strong>the</strong> most<br />

optimal way. This is done apart from <strong>the</strong> question whe<strong>the</strong>r one wants to <strong>in</strong>troduce LBM at<br />

all. That question ultimately has to be answered by governments and producers and is<br />

more difficult to answer given all <strong>the</strong> different <strong>in</strong>terrelated factors <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry of bio<br />

energy.<br />

To come to a successful <strong>in</strong>troduction of LBM, <strong>the</strong> entire cha<strong>in</strong> from production till delivery<br />

must be organised optimally. This is considered <strong>in</strong> section 6.1 and section 6.2. In section<br />

6.3, <strong>the</strong> preconditions needed for LBM <strong>in</strong>troduction are analysed. The last paragraph<br />

<strong>in</strong>cludes <strong>the</strong> role of <strong>the</strong> government and gives some o<strong>the</strong>r considerations.<br />

6.1. Production & distribution<br />

The development of a production and distribution cha<strong>in</strong> for LBM runs parallel with <strong>the</strong><br />

developments of LNG <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong>. Organis<strong>in</strong>g this optimally basically boils down<br />

to two issues:<br />

- production location;<br />

- production scale.<br />

LBM is distributed by trucks or ships. The trucks and ships which are able to <strong>transport</strong> LNG<br />

and LBM are already available. LNG trucks can <strong>transport</strong> LBM from <strong>the</strong> production location<br />

or term<strong>in</strong>al to <strong>the</strong> fill<strong>in</strong>g stations. Bunker<strong>in</strong>g ships are used for more large scale <strong>transport</strong> of<br />

LBM. Distribution by ships is only possible when <strong>the</strong> entire LNG <strong>sector</strong> has grown<br />

significantly. In <strong>the</strong> start-up phase, <strong>the</strong> produced LBM is most probably distributed directly<br />

to small, dedicated LBM fill<strong>in</strong>g stations. In <strong>the</strong> case of a larger LBM production market, it is<br />

most likely mixed with LNG first.<br />

Production scale<br />

The optimal production scale was partly discussed <strong>in</strong> chapter 5. To keep <strong>the</strong> cost of<br />

biomass and <strong>the</strong> cont<strong>in</strong>uous supply of biomass under control, it is important not to choose<br />

<strong>the</strong> production scale too large. To start up a LBM production cha<strong>in</strong> it would be wise to beg<strong>in</strong><br />

with small-scale production plants, given <strong>the</strong> fact also that <strong>the</strong> use of LNG <strong>in</strong> <strong>the</strong> <strong>transport</strong><br />

<strong>sector</strong> is still <strong>in</strong> <strong>the</strong> start-up phase.<br />

An example to start up LBM production would be to place an LBM upgrad<strong>in</strong>g plant near a<br />

landfill site produc<strong>in</strong>g biogas. This way, <strong>the</strong> f<strong>in</strong>ancial risks are limited. Biogas from landfill<br />

sites is much cheaper than from co-digestion and because of <strong>the</strong> relatively low production<br />

53


scale <strong>the</strong>re are enough possibilities to sell <strong>the</strong> LBM. This also ensures a cont<strong>in</strong>uous outflow<br />

of LBM, <strong>in</strong> a still grow<strong>in</strong>g LNG market. For <strong>the</strong> future <strong>the</strong> potential for LBM from landfill gas<br />

is limited, but this way one can at least start-up a relative low cost LBM project. In <strong>the</strong> UK<br />

<strong>the</strong>re is already an example of a plant which produces LBM from landfill gas.<br />

A second step would be to connect different, already exist<strong>in</strong>g, biogas produc<strong>in</strong>g facilities to<br />

a hub via biogas pipel<strong>in</strong>es. This hub would <strong>the</strong>n process <strong>the</strong> biogas to produce LBM. This<br />

way <strong>the</strong> risk is spread out over multiple biogas producers and only <strong>the</strong> upgrad<strong>in</strong>g facility<br />

would have to be built. The scale of production is higher <strong>in</strong> this case and <strong>the</strong> facility would<br />

have to process a cont<strong>in</strong>uous stream of biogas. This means <strong>the</strong>re has to be a cont<strong>in</strong>uous<br />

demand for LBM, to avoid storage problems. This production form is more expensive than<br />

production of LBM from landfill gas and is, just like green gas production, not possible<br />

without government support at present. The development of <strong>the</strong> hub itself can be seen<br />

separate from LBM, because one can also do o<strong>the</strong>r th<strong>in</strong>gs with <strong>the</strong> biogas.<br />

The last option would be to build larger comb<strong>in</strong>ed facilities for <strong>the</strong> digestion or gasification<br />

of biomass and upgrad<strong>in</strong>g to LBM. Given <strong>the</strong> problems of f<strong>in</strong>anc<strong>in</strong>g such facilities and <strong>the</strong><br />

uncerta<strong>in</strong>ty regard<strong>in</strong>g <strong>the</strong> price development of LNG fuel, it stands to reason that <strong>the</strong>se<br />

facilities can only be realised when <strong>the</strong> use of LNG <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong> has grown<br />

sufficiently to allow for larger amounts of LBM. This is also one of <strong>the</strong> differences when<br />

compar<strong>in</strong>g LBM with biodiesel or green gas. Biodiesel and green gas are already ensured<br />

of a large diesel <strong>sector</strong> and a large natural gas grid to accommodate this.<br />

Production location<br />

The location of a LBM production facility depends on <strong>the</strong> production scale, <strong>the</strong> market<strong>in</strong>g<br />

possibilities and <strong>the</strong> availability of biomass or biogas. It also depends on how LBM and<br />

LNG are comb<strong>in</strong>ed <strong>in</strong> <strong>the</strong> future (see section 7.2.).<br />

In a start<strong>in</strong>g LBM and LNG market, <strong>the</strong> production locations for small scale LBM plants are<br />

probably, except for restrictions imposed by different laws, not restricted. These locations<br />

are thus determ<strong>in</strong>ed by <strong>the</strong> locations of landfill gas sites or <strong>the</strong> possibilities to create a<br />

biogas hub <strong>in</strong> a certa<strong>in</strong> region. Because of <strong>the</strong> low production scale few trucks <strong>transport</strong>s<br />

are needed to distribute <strong>the</strong> LBM to a fill<strong>in</strong>g station. The most important th<strong>in</strong>g is to offer <strong>the</strong><br />

LBM at a compet<strong>in</strong>g price with LNG. Distributers of LNG are <strong>the</strong>n <strong>in</strong>terested <strong>in</strong> collect<strong>in</strong>g<br />

<strong>the</strong> LBM and <strong>transport</strong><strong>in</strong>g it to <strong>the</strong> fill<strong>in</strong>g stations <strong>the</strong>y exploit.<br />

Larger production facilities are most conveniently located near major <strong>in</strong>land waterways or<br />

LNG buffer<strong>in</strong>g term<strong>in</strong>als. This limits <strong>the</strong> amount of <strong>transport</strong> needed over <strong>the</strong> road to<br />

distribute and re-distribute LBM. Production near an LBM buffer<strong>in</strong>g facility has <strong>the</strong><br />

advantage that LBM can be mixed with LNG <strong>the</strong>reby ‘green<strong>in</strong>g’ <strong>the</strong> LNG. Such buffer<strong>in</strong>g<br />

facilities would also be ideally localized near major <strong>in</strong>land waterways to have LNG supplied<br />

by ships. In <strong>the</strong> case of a production plant near an <strong>in</strong>land waterway, <strong>the</strong>re is also a<br />

possibility of load<strong>in</strong>g <strong>the</strong> LBM directly <strong>in</strong> a LNG bunker<strong>in</strong>g ship. This bunker<strong>in</strong>g ship can<br />

supply future fill<strong>in</strong>g stations near <strong>in</strong>land waterways or <strong>transport</strong> <strong>the</strong> LBM back to LNG<br />

term<strong>in</strong>al <strong>in</strong> <strong>the</strong> port of Rotterdam where it can be mixed with LNG.<br />

The different possibilities for <strong>the</strong> production and distribution, runn<strong>in</strong>g parallel to<br />

developments <strong>in</strong> <strong>the</strong> LNG <strong>sector</strong>, are displayed aga<strong>in</strong> <strong>in</strong> Figure 6.1.<br />

54


Figure 6.1. Production and location options parallel to development LNG <strong>sector</strong><br />

6.2. Fill<strong>in</strong>g stations<br />

production of LBM on a<br />

small scale, for example<br />

from landfill gas<br />

anywhere where <strong>the</strong>re is<br />

a landfill gas produc<strong>in</strong>g<br />

site. no problem for<br />

distribution given low<br />

scale production<br />

PRODUCTION OPTIONS LBM<br />

production of LBM from<br />

different biogas<br />

sources; a "LBM hub"<br />

LOCATION OPTIONS LBM PRODUCTION<br />

use with exist<strong>in</strong>g biogas<br />

producers which can be<br />

connected via a pipel<strong>in</strong>e<br />

DEVELOPMENT LNG TRANSPORT SECTOR<br />

production of LBM from<br />

an a s<strong>in</strong>gle factory for<br />

digestion and upgrad<strong>in</strong>g<br />

depended on<br />

possibilities to distribute<br />

<strong>the</strong> LBM. an option<br />

would along <strong>in</strong>land<br />

waterways near future<br />

LNG buker<strong>in</strong>g facilities<br />

To stimulate driv<strong>in</strong>g on LNG requires <strong>the</strong> presence of sufficient and well-work<strong>in</strong>g refill<strong>in</strong>g<br />

stations. This means <strong>the</strong> fill<strong>in</strong>g operation itself must be easily manageable and <strong>the</strong> refill<strong>in</strong>g<br />

technique must be standardised. The way <strong>the</strong> LNG <strong>in</strong>frastructure is set-up along with <strong>the</strong><br />

LBM <strong>in</strong>frastructure must be unambiguous. Especially with s<strong>in</strong>gle-fuel eng<strong>in</strong>es, it is<br />

important to have new refill<strong>in</strong>g capacity available with<strong>in</strong> driv<strong>in</strong>g range of <strong>the</strong> truck.<br />

Technical set-up<br />

The technical details of <strong>the</strong> fill<strong>in</strong>g stations itself are described <strong>in</strong> Appendix V (<strong>in</strong> <strong>Dutch</strong>).<br />

Important to mention is that <strong>the</strong>re is no uniform technique for LNG fill<strong>in</strong>g and no standard<br />

for LNG/LBM fuel quality. For different trucks <strong>the</strong>re currently exists different ways to fill <strong>the</strong><br />

tank with LNG. Offer<strong>in</strong>g different fill<strong>in</strong>g techniques at a refill<strong>in</strong>g station makes <strong>the</strong> refill<strong>in</strong>g<br />

process more difficult. An additional difficulty is that for LNG refill<strong>in</strong>g, 2 hoses have to be<br />

connected <strong>in</strong>stead of one.<br />

To scale-up LNG use, truck manufacturers and fill<strong>in</strong>g station constructors have to come to<br />

a uniform technique for LNG tanks and <strong>the</strong> fill<strong>in</strong>g process. The <strong>in</strong>dustry is work<strong>in</strong>g on this.<br />

The EU supports a project to make it possible to fuel with LNG along major highway routes<br />

<strong>in</strong> Europe. The quality of <strong>the</strong> LNG can vary with where it is imported from. LBM is usually of<br />

even higher quality than LNG. This means that a standard for LNG fuel quality has to be set<br />

or that <strong>the</strong> pump price has to vary accord<strong>in</strong>g to <strong>the</strong> actual quality. The first option is<br />

preferable because one than gets one standard fuel quality at every fill<strong>in</strong>g station <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands. Different prices at different fill<strong>in</strong>g stations for LNG and LBM creates confusion.<br />

55


Organisational set-up<br />

The organisational set-up of <strong>the</strong> LBM/LNG refill<strong>in</strong>g stations relates to <strong>the</strong> size and location<br />

of <strong>the</strong>se stations, but <strong>the</strong> most important th<strong>in</strong>g how LNG fuel and LBM fuel is comb<strong>in</strong>ed.<br />

Location and size<br />

In a still small and grow<strong>in</strong>g LNG market, <strong>the</strong> best option is to start with small-scale LNG<br />

refill<strong>in</strong>g stations. Small-scale refill<strong>in</strong>g stations are actually <strong>the</strong> only viable option <strong>in</strong> a small<br />

market because LNG/LBM can only be stored for a limited amount of time (because of <strong>the</strong><br />

boil-off problem) and <strong>the</strong> demand is small <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g. The best way is thus to beg<strong>in</strong><br />

with refill<strong>in</strong>g station which are compact, easy to build up and break down and relatively<br />

easily <strong>transport</strong>able to o<strong>the</strong>r locations. Potential new customers for LNG or LBM can be<br />

served quickly <strong>in</strong> this way. If <strong>the</strong> market for LNG fuel use has expanded sufficiently, <strong>the</strong><br />

small stations can be replaced with larger more permanent constructions. These smallscale<br />

refill<strong>in</strong>g stations are most probably situated at <strong>in</strong>dustrial or bus<strong>in</strong>ess areas, ma<strong>in</strong>ly to<br />

serve regional <strong>transport</strong>. To serve national and <strong>in</strong>ternational <strong>transport</strong> <strong>the</strong> fill<strong>in</strong>g stations<br />

have to be situated along major roads (European “LNG blue-corridors project”, see<br />

Appendix V, <strong>in</strong> <strong>Dutch</strong>).<br />

Comb<strong>in</strong>ation of LBM & LNG<br />

There are basically a number of options to organise <strong>the</strong> comb<strong>in</strong>ation of an LNG and LBM<br />

<strong>in</strong>frastructure (partly discussed <strong>in</strong> chapter 5). One option would be for one or more<br />

<strong>transport</strong> companies to make contract to directly purchase LBM from a production facility.<br />

Conclud<strong>in</strong>g such separate contracts is not wise because a dangerous <strong>in</strong>terdependency is<br />

created <strong>in</strong> this way. If <strong>the</strong> <strong>transport</strong> company decides to stop us<strong>in</strong>g LBM or goes bankrupt,<br />

<strong>the</strong> LBM facility would have a problem sell<strong>in</strong>g its LBM.<br />

The second option is to create a separate <strong>in</strong>frastructure for LNG and LBM, where both fuels<br />

are publically available. This scenario is also not recommendable. The <strong>in</strong>troduction of LBM<br />

as a <strong>transport</strong> fuel is actually hampered when choos<strong>in</strong>g this scenario, because it cannot<br />

fully profit from <strong>the</strong> developments <strong>in</strong> <strong>the</strong> LNG <strong>sector</strong>. Moreover LBM will never exceed LNG<br />

<strong>in</strong> terms of capacity and <strong>the</strong> fuel price of LBM is higher. Transport companies will <strong>the</strong>n of<br />

course choose LNG as <strong>the</strong> fuel.<br />

The most likely scenario is <strong>the</strong> option where it is assumed that refill<strong>in</strong>g stations offer a<br />

s<strong>in</strong>gle fuel called “LNG”. This can <strong>the</strong>n be LNG, LBM or a mixture. In a small market for<br />

LNG use, some refill<strong>in</strong>g stations are dedicated to LBM and <strong>the</strong> most for LNG. In a larger<br />

market it is th<strong>in</strong>kable that all refill<strong>in</strong>g stations receive a mixture of LNG and LBM at a certa<strong>in</strong><br />

percentage (just like biodiesel and bio-ethanol).<br />

6.3. Preconditions for successful <strong>in</strong>troduction<br />

Successful <strong>in</strong>troduction of LBM only happens when LNG is <strong>in</strong>troduced successfully as a<br />

<strong>transport</strong> fuel <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. The potential scale for <strong>the</strong> production of LBM from <strong>Dutch</strong><br />

biomass is too small to <strong>in</strong>troduce this separate from LNG. LNG cannot be replaced fully by<br />

LBM when applied <strong>in</strong> shipp<strong>in</strong>g and heavy duty <strong>transport</strong>.<br />

LNG can be <strong>in</strong>troduced successfully if <strong>transport</strong> companies “voluntarily” make <strong>the</strong> transfer<br />

from diesel trucks. This happens when 5 important conditions are met.<br />

1. There must be a f<strong>in</strong>ancial advantage.<br />

2. The reliability and performance of <strong>the</strong> trucks has to be equal to established standards.<br />

3. There has to be ample capacity to refuel and <strong>the</strong> ease of use must not be<br />

compromised.<br />

56


4. The environmental advantages must be obvious and meet <strong>the</strong> different norms<br />

5. LNG must compete with o<strong>the</strong>r alternative options for diesel.<br />

Condition one is of vital importance. If <strong>the</strong>re is no f<strong>in</strong>ancial advantage when replac<strong>in</strong>g diesel<br />

trucks with LNG trucks, <strong>transport</strong> companies will not switch. The f<strong>in</strong>ancial advantage<br />

depends on <strong>the</strong> prices of diesel and LNG at <strong>the</strong> pump and <strong>the</strong> capital costs of trucks. The<br />

payback time for and LNG of Methane-Diesel truck lies <strong>in</strong> <strong>the</strong> range of 3 to 5 years at <strong>the</strong><br />

present market prices. However, this can change <strong>in</strong> both directions given <strong>the</strong> variations of<br />

diesel and LNG prices at <strong>the</strong> pump.<br />

Conditions 2, 4 and 5 are met for <strong>the</strong> most part. The performances of LNG trucks no not<br />

deviate significantly from <strong>the</strong> performances of diesel trucks. The environmental<br />

performance is also secured. LNG trucks meet <strong>the</strong> strictest European emission norms for<br />

truck and <strong>the</strong>re is a noise reduction of 50 % on top of that.<br />

Condition 3 is <strong>the</strong> only one which has to develop. An extensive network of refill<strong>in</strong>g stations<br />

has to be developed to get enough capacity to fuel a significant amount of trucks and make<br />

travell<strong>in</strong>g over longer distances possible. This develops slowly because supply and<br />

demand have to balance each o<strong>the</strong>r. More over issues regard<strong>in</strong>g standardisation of fill<strong>in</strong>g-<br />

and eng<strong>in</strong>e technologies and <strong>the</strong> quality of LNG fuel still have to be solved.<br />

6.4. O<strong>the</strong>r considerations<br />

Basically, <strong>the</strong>re are three ways to implement LBM <strong>in</strong> comb<strong>in</strong>ation with LNG:<br />

1. completely separate <strong>in</strong>troduction of LBM and LNG;<br />

2. <strong>the</strong> government requires a certa<strong>in</strong> amount of blend<strong>in</strong>g of LNG and LBM;<br />

3. <strong>the</strong> <strong>in</strong>volved <strong>in</strong>dustry decides whe<strong>the</strong>r <strong>the</strong>y will <strong>in</strong>clude LBM <strong>in</strong> <strong>the</strong>ir fuel mix.<br />

Option 1 seems unlikely, because of <strong>the</strong> similarities between LNG and LBM. Separate<br />

implementation of <strong>the</strong>se two tracts would be unbeneficial to <strong>the</strong> speed of LBM <strong>in</strong>troduction.<br />

Moreover mix<strong>in</strong>g also occurs of bio- and fossil fuels also occurs with biodiesel and bioethanol<br />

for example.<br />

With option 3, <strong>the</strong> f<strong>in</strong>ancial aspect plays a large role. Assum<strong>in</strong>g that <strong>the</strong> cost of LBM and<br />

LNG at <strong>the</strong> pump station are equal, <strong>the</strong> will<strong>in</strong>gness of LNG/LBM suppliers to distribute LBM<br />

depends on <strong>the</strong> market price of LBM. That price has to be comparable to LNG market<br />

prices.<br />

Option 2 would be comparable to <strong>the</strong> current system of bio ticket trade for biodiesel and<br />

bio-ethanol and <strong>the</strong> trade of green gas certificates for green gas and natural gas <strong>in</strong><br />

<strong>transport</strong>. The government has to require a m<strong>in</strong>imum percentage of mix<strong>in</strong>g LBM with LNG.<br />

This system would be less dependent on <strong>the</strong> production costs of LBM but quality control<br />

would be more of an issue with this system. In <strong>the</strong> case of bio tickets, LBM can also be<br />

seen as a replacement for diesel (see section 6.4.1).<br />

Environmental effects and emission trad<strong>in</strong>g<br />

Emission trad<strong>in</strong>g (of CO2 and NOx) and <strong>the</strong> total environment consequences of <strong>in</strong>troduc<strong>in</strong>g<br />

LBM <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands are related to each o<strong>the</strong>r. This could potentially be important for<br />

governments, oil companies (or o<strong>the</strong>r companies) that produce and distribute LNG and<br />

LBM and large <strong>transport</strong> companies.<br />

57


Regulations for <strong>the</strong> production of biogas<br />

Production of LBM usually beg<strong>in</strong>s with <strong>the</strong> digestion of biomass to produce biogas. The<br />

commission<strong>in</strong>g of a (co-) digestion plant <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is subject to a number of<br />

restrictions an regulations. The ‘Meststoffenwet’ determ<strong>in</strong>es whe<strong>the</strong>r <strong>the</strong> waste product of<br />

digestate may be used as fertiliser or must be view as waste. Only when 50 % of <strong>the</strong><br />

digested biomass is manure, <strong>the</strong> digestate may be marked as fertiliser. Less than 50 %<br />

manure means <strong>the</strong> digestate has to be disposed of as waste and that has consequences<br />

for <strong>the</strong> economics of a digestion plant. Moreover limitations are set for which materials may<br />

or may not be used <strong>in</strong> a digestion plant. The reader is referred to Appendix III for an<br />

overview of <strong>the</strong> requirements regard<strong>in</strong>g biogas production.<br />

Regulations regard<strong>in</strong>g LBM storage, distribution and fill<strong>in</strong>g stations<br />

It is assumed that <strong>the</strong> build<strong>in</strong>g and safety standard for <strong>the</strong> entire LBM/LNG <strong>in</strong>frastructure is<br />

<strong>the</strong> same. Much of <strong>the</strong> regulatory requirements for LBM and LNG are still under<br />

development or are still to be developed (LNGBrandstof, 2012). An overview of <strong>the</strong> current<br />

situation is given <strong>in</strong> Appendix III.<br />

Subsidies and tax regulations<br />

Susta<strong>in</strong>ability policies often change due to switch<strong>in</strong>g governments. It is <strong>the</strong>refore difficult to<br />

predict how subsidy schemes and tax regulations are arranged <strong>in</strong> <strong>the</strong> future. This report<br />

does not <strong>in</strong>tend to do so. This report only considers different k<strong>in</strong>ds of subsidies and taxes<br />

which are useful for or adverse to <strong>the</strong> <strong>in</strong>troduction of LBM as a <strong>transport</strong> fuel. Taxes are<br />

important for <strong>the</strong> purchase of vehicles runn<strong>in</strong>g on LNG/LBM and <strong>the</strong> purchase of <strong>the</strong> fuel.<br />

Subsidies can be important for <strong>the</strong> production of LBM and <strong>the</strong> purchase of LBM vehicles.<br />

An overview of <strong>the</strong> current subsidy schemes and tax regulations at different levels of<br />

governments which are relevant to <strong>the</strong> <strong>in</strong>troduction of LBM are given <strong>in</strong> Appendix II.<br />

The key to <strong>the</strong> development of an LBM market <strong>in</strong> <strong>transport</strong> currently lies with <strong>the</strong> national<br />

government. They have <strong>the</strong> power to stimulate LBM production and use via a number of<br />

methods:<br />

- subsidy policies for alternative trucks;<br />

- subsidy policies for <strong>the</strong> production of LBM;<br />

- tax policies for different fuels;<br />

- mak<strong>in</strong>g a certa<strong>in</strong> mix<strong>in</strong>g percentage for biofuels and fossil fuels obligated;<br />

- creat<strong>in</strong>g norms for vehicle emissions.<br />

The subsidies for alternatives trucks are already <strong>in</strong> place, but LBM production is be<strong>in</strong>g held<br />

back, because <strong>the</strong> important SDE+ subsidy is only given for <strong>the</strong> production of green gas<br />

<strong>in</strong>jected <strong>in</strong> <strong>the</strong> grid. Moreover <strong>the</strong>re is still an unclear tax policy regard<strong>in</strong>g <strong>the</strong> prices of LNG,<br />

CNG and <strong>the</strong>ir green variants at <strong>the</strong> pump. The best option would be to delete taxes on<br />

<strong>the</strong>se fuels all toge<strong>the</strong>r to speed up <strong>the</strong>ir <strong>in</strong>troduction. This has little f<strong>in</strong>ancial consequences<br />

for <strong>the</strong> government, because <strong>the</strong>se fuels are currently only used on a very small scale. An<br />

obligated mix<strong>in</strong>g percentage for biofuels of 10 % is currently <strong>in</strong> place <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands.<br />

The European union has set truck emissions standards for newly build trucks.<br />

6.4.1. Bio tickets<br />

Ano<strong>the</strong>r option for producers of LBM would <strong>the</strong> emission of bio tickets. Producers of diesel<br />

can <strong>the</strong>n adm<strong>in</strong>istratively comply with <strong>the</strong> so called “bijmengverplicht<strong>in</strong>g” <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands. LBM would be a replacement of diesel <strong>in</strong> this case. For <strong>the</strong> producers or<br />

distributors of LBM this would generate extra <strong>in</strong>come, mak<strong>in</strong>g it more <strong>in</strong>terest<strong>in</strong>g to start<br />

with LBM.<br />

58


It can be calculated how much LBM bio tickets would fetch at current market prices. In <strong>the</strong><br />

Ne<strong>the</strong>rlands <strong>the</strong> value of a bio ticket are <strong>the</strong> additional costs made <strong>in</strong> lett<strong>in</strong>g 1 m 3 of diesel<br />

comply with <strong>the</strong> “bijmengverplicht<strong>in</strong>g”. For <strong>the</strong> year 2012 <strong>the</strong> “bijmengverplicht<strong>in</strong>g” was<br />

4.5 %, which means that 4.5 % of <strong>the</strong> marketed fuels have to consist of biofuels, physically<br />

of adm<strong>in</strong>istratively. The 4.5 % number is on <strong>the</strong> basis of <strong>the</strong> energy content of <strong>the</strong> fuels.<br />

Calculation example bio tickets for LBM<br />

The price of a bio ticket for diesel was EUR 9.25 per m 3 diesel at august 13, 2012 (STX<br />

Services, 2012). 1,000 litres of diesel is equal to 36 GJ. When 1,000 litres of diesel are<br />

marketed, <strong>the</strong> equivalent amount of biofuels added must thus be:<br />

4.5 % * 36 GJ = 1.6 GJ.<br />

The bio ticket price is thus EUR 9.25 / 1.6 GJ = EUR 5.71 per GJ.<br />

This means producers of biofuels can earn an additional EUR 5.71 per GJ with <strong>the</strong><br />

emissions of bio tickets. In some cases one could even double count <strong>the</strong>se bio tickets, but<br />

this heavily depends on what type of biomass was used for <strong>the</strong> production of <strong>the</strong> biofuel.<br />

For biodiesel this means that 49 litres of biodiesel must be marketed. Producers of<br />

biodiesel thus receive an additional EUR 0.19 per litre.<br />

For LBM this means that 77 litres or 33 kilograms of LBM must be marketed for <strong>the</strong><br />

“bijmengverplicht<strong>in</strong>g” of 1000 L of diesel. Producers of LBM thus receive an additional EUR<br />

284,- per 1000 kg of produced LBM deployed <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong>.<br />

For LBM distributors and exploiters of refill<strong>in</strong>g stations such an additional <strong>in</strong>come would<br />

mean that LBM can be bought at approximately <strong>the</strong> same price as LNG from <strong>the</strong> ref<strong>in</strong>ery<br />

and that <strong>the</strong> gross profit marg<strong>in</strong> when sell<strong>in</strong>g LBM at a refill<strong>in</strong>g station is approximately <strong>the</strong><br />

same as for LNG. For LBM producers this would mean a higher <strong>in</strong>come and more certa<strong>in</strong>ty<br />

of sell<strong>in</strong>g <strong>the</strong> <strong>liquid</strong> <strong>biomethane</strong>.<br />

It should be noted that <strong>the</strong> prices of bio tickets can vary significantly and that <strong>the</strong>re is no<br />

certa<strong>in</strong>ty that <strong>the</strong> emitted bio tickets are actually bought, or how much bio tickets are<br />

marketed. Thus, while emitt<strong>in</strong>g bio tickets when produc<strong>in</strong>g LBM is possible and does<br />

improve <strong>the</strong> f<strong>in</strong>ancial situation of LBM production, it is unwise to construct a bus<strong>in</strong>ess case<br />

solely of <strong>the</strong> basis of <strong>in</strong>come out of bio tickets.<br />

59


7. CONCLUSIONS AND RECCOMENDATIONS<br />

7.1. Conclusions<br />

The ma<strong>in</strong> research question was:<br />

‘What is needed to maximise <strong>the</strong> use of LBM <strong>in</strong> <strong>the</strong> <strong>Dutch</strong> <strong>transport</strong> <strong>sector</strong> and what is <strong>the</strong><br />

optimum from an economic, environmental and organisational perspective?’<br />

To maximise LBM use <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands a strong growth of <strong>the</strong> LNG <strong>sector</strong> is necessary<br />

along with government support for produc<strong>in</strong>g LBM (by <strong>in</strong>clud<strong>in</strong>g it <strong>in</strong> <strong>the</strong> SDE+). The<br />

organisation of an LBM <strong>in</strong>frastructure is preferably fully <strong>in</strong>tegrated with <strong>the</strong> LNG<br />

<strong>in</strong>frastructure. For <strong>the</strong> short term environmental goals (2020), <strong>the</strong> contribution of LBM will<br />

be limited. The advantages will become more apparent <strong>in</strong> a later stage. Support<strong>in</strong>g <strong>the</strong><br />

production of LBM is f<strong>in</strong>ancially attractive for <strong>the</strong> government when compar<strong>in</strong>g it with green<br />

gas.<br />

Production of <strong>liquid</strong> <strong>biomethane</strong> (LBM) is a way to extract usable energy from wet biomass<br />

(via anaerobic digestion) and dry biomass (via gasification).<br />

The LBM can be used as a fuel <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong>. It is especially suited for use <strong>in</strong><br />

shipp<strong>in</strong>g and heavy duty <strong>transport</strong>, because of <strong>the</strong> high energy density compared to CNG<br />

(a CNG tank is about 4 times as big as an LNG tank for <strong>the</strong> same amount of fuel) and <strong>the</strong><br />

higher operational time of <strong>the</strong>se two types of <strong>transport</strong>. Just like bio-ethanol is <strong>the</strong><br />

replacement of fossil petrol and biodiesel is <strong>the</strong> replacement of fossil diesel, LBM can be<br />

seen as <strong>the</strong> replacement of <strong>the</strong> fossil LNG. The difference is that while bio-ethanol and<br />

biodiesel replace <strong>the</strong> fossil fuels of an already established <strong>sector</strong>, LBM has to be produced<br />

simultaneously with LNG. LNG use <strong>in</strong> <strong>transport</strong> is itself a <strong>sector</strong> which is just beg<strong>in</strong>n<strong>in</strong>g to<br />

develop.<br />

Assum<strong>in</strong>g that LNG is successfully <strong>in</strong>troduced as a <strong>transport</strong> fuel, <strong>the</strong> feasibility of<br />

<strong>in</strong>troduc<strong>in</strong>g LBM as a <strong>transport</strong> fuel <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands depends on two tracks.<br />

1. The specific f<strong>in</strong>ancial, environmental and organisational susta<strong>in</strong>ability.<br />

2. The specific advantages of LBM compared to o<strong>the</strong>r bio energy options.<br />

Po<strong>in</strong>t one also depends on how <strong>the</strong> LNG <strong>sector</strong> develops. Production and usage of LBM<br />

thus has to compete with fossil LNG and o<strong>the</strong>r options of us<strong>in</strong>g biomass.<br />

LBM compared to o<strong>the</strong>r bio energy options<br />

The comparison and competition of LBM with respect to o<strong>the</strong>r biomass options partly<br />

determ<strong>in</strong>es <strong>the</strong> potential to use LBM <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. LBM has to compete with <strong>the</strong><br />

production of grid <strong>in</strong>jected green gas or <strong>the</strong> production of heat and electricity from biogas.<br />

Every option has advantages and disadvantages <strong>in</strong> <strong>the</strong> f<strong>in</strong>ancial, environmental and<br />

organisations sense. The f<strong>in</strong>d<strong>in</strong>gs on LBM <strong>in</strong> this study can be compared with <strong>the</strong> known<br />

advantages and disadvantages of o<strong>the</strong>r biomass options. The results can be put <strong>in</strong> a matrix<br />

which gives a good <strong>in</strong>sight <strong>in</strong> which factors are important. This “matrix” is displayed <strong>in</strong> Table<br />

7.1.<br />

61


Table 7.1. Pro’s and con’s for LBM compared with o<strong>the</strong>r biomass options<br />

biomass option advantages disadvantages<br />

anaerobic digestion directly applicable, established<br />

62<br />

technologies, solves methane emissions<br />

CHP - provides electricity for <strong>the</strong> <strong>in</strong>stallation<br />

- guarantied market<strong>in</strong>g for electricity<br />

grid <strong>in</strong>jected green gas - extensive gas grid already present<br />

- guarantied market<strong>in</strong>g for green gas<br />

LBM - highest environment benefits per MJ<br />

- lowest production cost profile<br />

gasification larger potential, better efficiency and<br />

applicable to coal<br />

<strong>in</strong>c<strong>in</strong>eration - most cost-efficient option<br />

- multiple deployment options<br />

limited potential and possible <strong>in</strong>terference<br />

with food production<br />

- heat often not used effectively<br />

- relative low conversion efficiency<br />

- quality issues for produced gas<br />

- relative low environmental benefits<br />

- no significant market present<br />

- slow development of LNG vehicles<br />

not commercially available before 2020,<br />

competition with o<strong>the</strong>r dry biomass use<br />

- competition with coal power plants<br />

- limits green gas options<br />

chemical process<strong>in</strong>g - dependent on type of process<strong>in</strong>g - dependent on type of process<strong>in</strong>g<br />

biodiesel - can be mixed directly with diesel<br />

- certa<strong>in</strong> market<strong>in</strong>g options<br />

LBM - low energy loss<br />

- best option to produce fuel<br />

- lowest environmental benefits<br />

- higher energy loss<br />

- uncerta<strong>in</strong>ty about costs<br />

- uncerta<strong>in</strong> development LNG market<br />

Overall feasibility of a LBM <strong>in</strong>frastructure<br />

Introduction of an extensive LBM <strong>in</strong>frastructure, especially on <strong>the</strong> short term (before 2020),<br />

is heavily depended on <strong>the</strong> development of <strong>the</strong> market for LNG fuel usage. LBM replaces<br />

diesel as a <strong>transport</strong> fuel, but is de facto a replacement of LNG. This means LBM has to be<br />

competitive with LNG and must be compared with LNG ra<strong>the</strong>r than with diesel. If LBM can<br />

be made competitive with LNG, one way or <strong>the</strong> o<strong>the</strong>r, <strong>the</strong> LBM market expands<br />

automatically, when <strong>the</strong> LNG market has sufficiently expanded.<br />

The market for LNG fuel usage is only just beg<strong>in</strong>n<strong>in</strong>g to develop <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands and <strong>the</strong><br />

rest of Europe. Technical standards still have to be set perta<strong>in</strong><strong>in</strong>g to refill<strong>in</strong>g stations and<br />

eng<strong>in</strong>e technology. It is also unclear how to deal with different fuel qualities. A network of<br />

LNG distribution and refill<strong>in</strong>g stations has to be unrolled. Unroll<strong>in</strong>g this <strong>in</strong>frastructure and<br />

exploit<strong>in</strong>g <strong>the</strong> refill<strong>in</strong>g stations is at this moment a loss mak<strong>in</strong>g bus<strong>in</strong>ess and depends on<br />

<strong>the</strong> companies currently <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> such an <strong>in</strong>frastructure. For LBM, this means that <strong>the</strong><br />

most prudent course of action is to wait with <strong>the</strong> <strong>in</strong>troduction until <strong>the</strong> LNG <strong>sector</strong> has<br />

established itself more firmly <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Decisions on how to <strong>in</strong>troduce <strong>the</strong> LBM<br />

<strong>in</strong>frastructure which possibly prove unwise <strong>in</strong> a later stage can <strong>the</strong>n be avoided.<br />

Production and distribution possibilities & costs<br />

Production of LBM out of biogas is technically possible and proven <strong>in</strong> practice. LBM is most<br />

likely produced from co-digestion or <strong>in</strong>dustrial digestion of biomass. Industrial digestion is<br />

on average 23 % cheaper than co-digestion. The optimal production scale lies around a<br />

capacity of 1,500 m 3 green gas*hour -1 (equivalent). The cost of upgrad<strong>in</strong>g biogas goes up<br />

at a smaller scale. At a larger scale, cost and supply of biomass becomes a problem. The<br />

f<strong>in</strong>ancial picture for LBM production from co-digestion at a capacity of 1,500 green<br />

gas*hour -1 is as follows <strong>in</strong> <strong>the</strong> most favourable and least favourable cases (Table 7.2):


Table 7.2. F<strong>in</strong>ancial picture for LBM production<br />

costs and revenues (EUR*GJ -1 )<br />

most favourable case least favourable case<br />

LBM production 19.26 19.26<br />

LBM sale 12.07 9.05<br />

sale <strong>liquid</strong> CO2 3.78 0.00<br />

bio tickets 5.71 0.00<br />

bus<strong>in</strong>ess case 2.30 10.21<br />

The most optimal circumstances give a slight positive bus<strong>in</strong>ess case. In <strong>the</strong> most negative<br />

case LBM production is still a cheaper option than produc<strong>in</strong>g green gas <strong>in</strong>jected <strong>in</strong> <strong>the</strong><br />

natural gas grid. Includ<strong>in</strong>g LBM <strong>in</strong> <strong>the</strong> SDE+ subsidy scheme <strong>the</strong>refore provides a f<strong>in</strong>ancial<br />

benefit for <strong>the</strong> government. For reference, <strong>the</strong> SDE+ subsidy for produc<strong>in</strong>g green gas lies <strong>in</strong><br />

<strong>the</strong> range of 7.37 – 15.06 EUR*GJ -1 .<br />

Given that LBM can only replace LNG as a fuel up to a certa<strong>in</strong> percentage, <strong>the</strong><br />

<strong>in</strong>frastructure must be organised <strong>in</strong> such a way that LBM can be <strong>in</strong>tegrated directly with<br />

LNG. At a larger scale, LBM can possibly be mixed with LNG <strong>in</strong> storage term<strong>in</strong>als. These<br />

storage term<strong>in</strong>als can fuel LNG ships when located near <strong>in</strong>land waterways. At a smaller<br />

scale, refill<strong>in</strong>g station can be alternately supplied with LNG or LBM. The pump price of LBM<br />

is thus <strong>the</strong> same as LNG. This price must be lower than diesel, if <strong>transport</strong> companies are<br />

to switch to LNG trucks. LNG currently is about 50 % cheaper than diesel. Investments <strong>in</strong><br />

LNG trucks pay <strong>the</strong>mselves back <strong>in</strong> 3 to 5 years at this price. The tax policy for vehicles on<br />

natural- or biogas currently favours <strong>the</strong> compressed from <strong>in</strong>stead of <strong>the</strong> <strong>liquid</strong> form,<br />

because <strong>the</strong> government dist<strong>in</strong>guishes between <strong>the</strong> phase of <strong>the</strong> gas.<br />

Potential for LBM<br />

The availability of biomass for energy production <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is limited. On top of<br />

that, production of comb<strong>in</strong>ed heat and power, grid <strong>in</strong>jected green gas and LBM compete for<br />

<strong>the</strong> same biomass. One cannot just assume that all <strong>the</strong> potentially available biomass is<br />

used for LBM production.<br />

Most of <strong>the</strong> biomass is used for food or feed. A small part (less than 15 %) can be used for<br />

energy production. The total availability of biomass for energy production is estimated to be<br />

approximately 281 PJ of gross energy from digestion and gasification. This is equivalent to<br />

181 PJ of green gas (f<strong>in</strong>al energy). Currently, about 13 PJ of gross energy is produced out<br />

of biomass, which means only 4.5 % of this potential is used at this moment. An analysis of<br />

<strong>the</strong> 1990-2011 trend of energy production from biogas shows that this has <strong>in</strong>creased<br />

sharply from 2005 onwards due to <strong>the</strong> rapid march of co-digestion. Most important is <strong>the</strong><br />

trend that <strong>the</strong> produced biogas was <strong>in</strong>creas<strong>in</strong>gly used for <strong>the</strong> production of heat and power<br />

from 1990 onwards and less for <strong>the</strong> production of green gas. This trend has to be turned to<br />

make production of LBM realistic.<br />

The most optimistic estimate for <strong>the</strong> production of green gas <strong>in</strong> 2020 is 13 PJ of f<strong>in</strong>al<br />

energy. The rest is produced as heat and power. This potentially available biogas for green<br />

gas production could also be used for LBM production. To reach 13 PJ <strong>in</strong> 2020, an annual<br />

growth rate of 35 % is needed. 13 PJ of f<strong>in</strong>al energy is equivalent to about 600 million litres<br />

of LBM.<br />

The most limit<strong>in</strong>g factor for LBM <strong>in</strong>troduction is <strong>the</strong> growth rate of <strong>the</strong> heavy duty vehicle<br />

fleet and LNG ships. The most realistic growth path <strong>in</strong>dicates that about 1,000 vehicles<br />

drive on LNG <strong>in</strong> 2020. This rises to almost 17,000 <strong>in</strong> 2040. In <strong>the</strong> shipp<strong>in</strong>g <strong>sector</strong>, <strong>the</strong><br />

63


<strong>in</strong>troduction of LNG goes even slower, because <strong>the</strong> average age of a ship is about 3.2 time<br />

as high as for heavy duty vehicles. For heavy duty vehicles as well as for trucks it takes a<br />

long time before <strong>the</strong> diesel variants are completely phased out. Start<strong>in</strong>g immediately with<br />

large scale LBM production is po<strong>in</strong>tless, because <strong>transport</strong> companies do not write-off <strong>the</strong>ir<br />

vehicles sooner than normal. Faster <strong>in</strong>troduction of LNG and LBM vehicles thus requires<br />

explicit governmental measures or escalat<strong>in</strong>g oil prices.<br />

LBM and consequences for <strong>the</strong> environment<br />

Us<strong>in</strong>g LNG and LBM <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong> can reduce emissions of CO2, NOx and PM10<br />

<strong>in</strong>to <strong>the</strong> atmosphere. LBM use <strong>in</strong> heavy duty vehicles can reduce CO2 emissions with 84 %,<br />

NOx emissions with 97 % and PM10 emissions with 85 % with respect to diesel. NOx<br />

reductions for LBM used <strong>in</strong> shipp<strong>in</strong>g are somewhat higher, because <strong>the</strong> shipp<strong>in</strong>g <strong>sector</strong><br />

currently uses fuel oil which is more pollut<strong>in</strong>g.<br />

The total potential to reduce <strong>the</strong> emissions of <strong>the</strong>se three substances by us<strong>in</strong>g LBM <strong>in</strong><br />

heavy duty vehicles and ships is limited because <strong>the</strong>se two <strong>sector</strong>s use up a relative small<br />

amount of energy with respect to <strong>the</strong> total energy use <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (about 5 % and<br />

heavy duty vehicles and shipp<strong>in</strong>g use an equal amount of energy). The <strong>Dutch</strong> CO2<br />

emissions can be reduced by maximally 3 % with respect to <strong>the</strong> 1990 total when LBM<br />

replaces all heavy duty vehicles.<br />

Because <strong>the</strong> market for LNG vehicles only grows slowly <strong>in</strong> <strong>the</strong> com<strong>in</strong>g years, <strong>the</strong><br />

contribution that LBM can make to <strong>the</strong> government’s 2020 susta<strong>in</strong>ability goals is small. The<br />

slow growth dynamic of <strong>the</strong> LNG vehicle <strong>sector</strong> is <strong>the</strong> most critical factor for <strong>the</strong><br />

development of LBM. The CO2 emissions reduction goal is 20 % with respect to 1990, to<br />

which LBM can contribute 0.02 pp maximally. The total share of renewable energy use is<br />

<strong>the</strong>n 0.01 %, compared to <strong>the</strong> 16 % goal for <strong>the</strong> Ne<strong>the</strong>rlands and 20 % goal for Overijssel.<br />

The market for LNG and LBM usage does not develop fast enough make significant<br />

contributions to <strong>the</strong> susta<strong>in</strong>ability goals on <strong>the</strong> short term.<br />

7.2. Recommendations<br />

For <strong>the</strong> longer term <strong>the</strong>re are environmental advantages for <strong>in</strong>troduc<strong>in</strong>g LBM <strong>in</strong> conjunction<br />

with LNG. For <strong>the</strong> government, it is important to make def<strong>in</strong>ite choices regard<strong>in</strong>g <strong>the</strong> use of<br />

biomass. When <strong>the</strong> <strong>Dutch</strong> government chooses to stimulate LBM as an option it is best to:<br />

- Simultaneously stimulate developments <strong>in</strong> <strong>the</strong> LNG <strong>sector</strong> and wait until this market<br />

has matured more, before <strong>in</strong>tegrat<strong>in</strong>g LBM <strong>in</strong>to it. It is unwise to create an entirely<br />

separate <strong>in</strong>frastructure for <strong>the</strong> distribution of LBM;<br />

- try to create <strong>the</strong> conditions <strong>in</strong> which <strong>transport</strong> companies automatically switch to LNG,<br />

by ensur<strong>in</strong>g a low vehicle payback time and provid<strong>in</strong>g enough refill<strong>in</strong>g locations);<br />

- beg<strong>in</strong> production of LBM on a small scale (i.e. start<strong>in</strong>g with low risk and manageable<br />

projects).<br />

To stimulate <strong>the</strong> <strong>in</strong>troduction of LNG fuel use <strong>in</strong> <strong>the</strong> <strong>transport</strong> <strong>sector</strong>, <strong>the</strong> follow<strong>in</strong>g th<strong>in</strong>gs<br />

should happen:<br />

- <strong>the</strong> excise tax on LNG must be separated from <strong>the</strong> excise tax on LPG;<br />

- <strong>the</strong> difference between <strong>the</strong> excise taxes on LNG and CNG must vanish, by lower<strong>in</strong>g <strong>the</strong><br />

LNG tax to <strong>the</strong> CNG level;<br />

- agreements with <strong>the</strong> <strong>in</strong>dustry must be made on how to cope with different fuel qualities;<br />

- It must be made possible for <strong>in</strong>land shipp<strong>in</strong>g to use LNG as a fuel.<br />

To <strong>in</strong>troduce LBM next to LNG, at least <strong>the</strong> follow<strong>in</strong>g th<strong>in</strong>gs should happen:<br />

- production of LBM should be <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> SDE+ subsidy scheme;<br />

64


- <strong>the</strong> possibility of distribut<strong>in</strong>g LBM to <strong>the</strong> LNG term<strong>in</strong>al with LNG trucks must be<br />

considered.<br />

Fur<strong>the</strong>r research<br />

The results of this study could be fur<strong>the</strong>r optimised by more research of <strong>the</strong> follow<strong>in</strong>g<br />

topics:<br />

- an <strong>in</strong>-depth comparison of different bio energy options (heat, electricity, green gas,<br />

LBM and chemical use);<br />

- an analysis of <strong>the</strong> energy requirements and payback times for different production<br />

forms of LBM;<br />

- a detailed life-cycle analysis of LBM use <strong>in</strong> trucks and ships;<br />

- a comparison of LBM fuel with o<strong>the</strong>r potential options for <strong>the</strong> truck and shipp<strong>in</strong>g <strong>sector</strong>.<br />

65


8. REFERENCES<br />

AgentschapNL. (2010). Intelligent Energy Europe. Retrieved from<br />

http://www.agentschapnl.nl/programmas-regel<strong>in</strong>gen/<strong>in</strong>telligent-energy-europe-iee<br />

AgentschapNL. (2010). Groen beleggen en f<strong>in</strong>ancieren. Retrieved from<br />

http://www.agentschapnl.nl/nl/programmas-regel<strong>in</strong>gen/groen-beleggen-enf<strong>in</strong>ancieren<br />

AgentschapNL. (2011). Zevende Kaderprogramma (KP7). Retrieved from<br />

http://www.agentschapnl.nl/nl/node/100372<br />

AgentschapNL. (2011a). Marco Polo II. Retrieved from<br />

http://www.agentschapnl.nl/nl/node/100478<br />

AgentschapNL. (2011b). Co-vergisten en regelgev<strong>in</strong>g. Retrieved from<br />

http://www.agentschapnl.nl/nl/node/178427<br />

AgentschapNL. (2012). Maak kennis met de SDE+ 2012. Zwolle: NL Energie en Klimaat.<br />

AgentschapNL. (2012a). MIA (Milieu Invester<strong>in</strong>gsaftrek) en Vamil (willekeurige afschrijv<strong>in</strong>g<br />

milieu-<strong>in</strong>vester<strong>in</strong>gen). Retrieved from http://www.agentschapnl.nl/nl/node/100318<br />

AgentschapNL. (2012b). Energie Invester<strong>in</strong>gsaftrek (EIA). Retrieved from<br />

http://www.agentschapnl.nl/programmas-regel<strong>in</strong>gen/energie-<strong>in</strong>vester<strong>in</strong>gsaftrek-eia<br />

AgentschapNL. (2012c). Stimuler<strong>in</strong>g Duurzame Energieproductie (SDE). Retrieved from<br />

http://www.agentschapnl.nl/programmas-regel<strong>in</strong>gen/stimuler<strong>in</strong>g-duurzameenergieproductie-sde<br />

Arcadis. (2011). Gaskwaliteit voor de toekomst [part 2]. Rotterdam: Klooster, J., Metselaar,<br />

E., Warr<strong>in</strong>ga, G., Lev<strong>in</strong>sky, H., & van Rij, M.<br />

Belast<strong>in</strong>gdienst. (2012). Kle<strong>in</strong>schaligheids<strong>in</strong>vester<strong>in</strong>gsaftrek (KIA). Retrieved from<br />

http://www.belast<strong>in</strong>gdienst.nl/wps/wcm/connect/bldcontentnl/belast<strong>in</strong>gdienst/zakelijk<br />

/ondernemen/bedrijfskosten_en_<strong>in</strong>vesteren/<strong>in</strong>vester<strong>in</strong>gsregel<strong>in</strong>gen/kle<strong>in</strong>schaligheid<br />

s<strong>in</strong>vester<strong>in</strong>gsaftrek<br />

Berglund, M., & Börjesson, P. (2006). Assessment of energy performance <strong>in</strong> <strong>the</strong> life-cycle<br />

of biogas production. Biomass and Bioenergy 30 254-266<br />

Bovag. (2012). Opbouw bez<strong>in</strong>eprijs Euro 95 [Data file].<br />

Bovag. (2012a). Opbouw Dieselprijs [Data file].<br />

Bovag. (2012b). Opbouw LPG prijs [Data file].<br />

Bovag. (2012c). 1.1 Ontwikkel<strong>in</strong>g van het autopark. Retrieved from<br />

http://www.bovagrai.<strong>in</strong>fo/auto/2012/1.1.html<br />

CBS. (2012). Hernieuwbare energie; e<strong>in</strong>dverbruik en vermeden fossiele energie [Data file].<br />

Retrieved from<br />

67


68<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=7516&D1=0&D2=a&D3=l<br />

&D4=20&HDR=T&STB=G1,G2,G3&VW=T<br />

CBS. (2012a). Luchtverontre<strong>in</strong>ig<strong>in</strong>g, feitelijke emissies door alle bronnen [data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=37221&D1=0,2,8&D2=0,<br />

15&D3=l&VW=T<br />

CBS. (2012b). Energiebalans; kerncijfers [data file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=37281&D1=11&D2=0&D<br />

3=l&VW=T<br />

CBS. (2012c). Hernieuwbare energie; capaciteit, b<strong>in</strong>nenlandse productie en verbruik [Data<br />

file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=71457NED&D1=2,5,8,12<br />

-18&D2=26-44&D3=l&HDR=T&STB=G1,G2&VW=T<br />

CBS. (2012d). Heff<strong>in</strong>gen op energiedragers [Data file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/default.aspx?DM=SLNL&PA=7522&D1=0-<br />

3&D2=a&D3=l&VW=T<br />

CBS. (2012e). Verkeersprestaties vrachtvoertuigen; kilometers, laadvermogen,<br />

grondgebied [Data file] Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/default.aspx?DM=SLNL&PA=80392NED&<br />

D1=6-9&D2=1%2c4&D3=0&D4=a&HDR=G2%2cT&STB=G3%2cG1&VW=T<br />

CBS. (2012f). Verkeersprestaties; kilometers naar voertuigtype en grondgebied [Data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=80302NED&D1=4&D2=3<br />

-5&D3=a&HDR=T,G1&STB=G2&VW=T<br />

CBS. (2012g). Verkeersprestaties autobussen; kilometers, bouwjaar en grondgebied [Data<br />

file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/default.aspx?DM=SLNL&PA=80589NED&<br />

D1=a&D2=0&D3=0&D4=a&HDR=T&STB=G2%2cG3%2cG1&VW=T<br />

CBS. (2012h). Motorbrandstoffen voor vervoer; afzet [Data file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=80101NED&D1=53&D2=<br />

1&D3=240&HDR=G1,G2&STB=T&VW=T<br />

CBS. (2012i). Hernieuwbare energie; capaciteit, b<strong>in</strong>nenlandse productie en verbruik [Data<br />

file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=71457NED&D1=a&D2=2<br />

6-44&D3=a&HDR=T&STB=G1,G2&VW=T<br />

CBS. (2012j). Motorvoertuigen; sloop, export en overige uitval per regio [Data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/default.aspx?DM=SLNL&PA=80360NED&<br />

D1=4-5%2c7&D2=0&D3=0&D4=a&VW=T<br />

CBS. (2012k). Motorvoertuigen; sloop, export en overige uitval per regio [Data file].<br />

Retrieved from


http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=80360NED&D1=4-<br />

5,7&D2=0&D3=8&D4=a&HDR=T&STB=G1,G2,G3&VW=T<br />

CBS. (2012l). Motorvoertuigen; aantal voertuigen en autodich<strong>the</strong>id per prov<strong>in</strong>cie [Data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/default.aspx?DM=SLNL&PA=7374HVV&D<br />

1=11-12%2c14&D2=0%2c8&D3=a&HDR=G2%2cT&STB=G1&VW=T<br />

CBS. (2012m). Motorvoertuigen; verkopen naar voertuigtypen, per maand [Data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=37803HVV&D1=48-<br />

50&D2=0-<br />

1,18,35,52,69,86,103,120,137,154,171,188,205,222&HDR=T&STB=G1&VW=T<br />

CBS. (2012o). Motorvoertuigen; bedrijfvoertuigen per periode naar technische kenmerken<br />

[Data file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=71407NED&D1=4,13-<br />

19&D2=2-3,5&D3=l&D4=0&VW=T<br />

CBS. (2012p). Motorvoertuigen; bedrijfvoertuigen per periode naar technische kenmerken<br />

[Data file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?VW=T&DM=SLNL&PA=71407NED&D1=<br />

0&D2=2-3,5&D3=l&D4=0,13-124&HD=121017-1136&HDR=G3,T&STB=G1,G2<br />

CBS. (2012q). Luchtverontre<strong>in</strong>ig<strong>in</strong>g, feitelijke emissies door wegverkeer [Data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/default.aspx?DM=SLNL&PA=7063&D1=12<br />

%2c16%2c24&D2=5-7&D3=a&HDR=T%2cG1&STB=G2&VW=D<br />

CBS. (2012r). Luchtverontre<strong>in</strong>ig<strong>in</strong>g, feitelijke emissies door wegverkeer [Data file].<br />

Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=7063&D1=44,48,56&D2=<br />

5-7&D3=a&VW=T<br />

CBS. (2012s). Energiebalans; aanbod, omzett<strong>in</strong>g en verbruik [Data file]. Retrieved from<br />

http://statl<strong>in</strong>e.cbs.nl/StatWeb/publication/?DM=SLNL&PA=70846NED&D1=0&D2=1<br />

5&D3=0,27&D4=15&VW=T<br />

CE Delft. (2008). STREAM: Studie naar Transport Emissies van Alle Modaliteiten versie<br />

2.0 (publicatienummer 08.4482.11). Delft: den Boer, L.C., Brouwer, F.P.E., & van<br />

Essen, H.P.<br />

CE Delft. (2010). Kosten en milieueffecten van aardgas en groen gas <strong>in</strong> <strong>transport</strong><br />

(publicatienummer 10.4124.43). Delft: Kapman, B.E., Croezen, H.J., Verbaak,<br />

G.M., & Brouwer, F.P.E.<br />

Compendium voor de leefomgev<strong>in</strong>g. (2012). Energieverbruik door verkeer en vervoer,<br />

1990-2010 [data file]. Retrieved from<br />

http://www.compendiumvoordeleefomgev<strong>in</strong>g.nl/<strong>in</strong>dicatoren/nl0030-Energieverbruikdoor-verkeer-en-vervoer.html?i=6-40<br />

Compendium voor de leefomgev<strong>in</strong>g. (2012a). Stortplaatsen, aantal en capaciteit, 1991-<br />

2010. Retrieved from<br />

69


70<br />

http://www.compendiumvoordeleefomgev<strong>in</strong>g.nl/<strong>in</strong>dicatoren/nl0393-<br />

Stortplaatsen.html?i=1-3<br />

Compendium voor de leefomgev<strong>in</strong>g. (2012b). Emissies broeikasgassen, 1990-2011 [Data<br />

file]. Retrieved from<br />

http://www.compendiumvoordeleefomgev<strong>in</strong>g.nl/<strong>in</strong>dicatoren/nl0165-<br />

Broeikasgasemissies-<strong>in</strong>-Nederland.html?i=5-20<br />

DENA. (2010). The role of natural gas and <strong>biomethane</strong> <strong>in</strong> <strong>the</strong> fuel mix of <strong>the</strong> future <strong>in</strong><br />

Germany. Required action and potential solutions to accelerate adoption <strong>in</strong><br />

<strong>transport</strong> applications. Berl<strong>in</strong>.<br />

DR-Loket. (2012). Co-vergist<strong>in</strong>g. Retrieved from<br />

http://www.hetlnvloket.nl/onderwerpen/mest/dossiers/dossier/mestbewerk<strong>in</strong>g-enverwerk<strong>in</strong>g/co-vergist<strong>in</strong>g<br />

ECN. (2011). Basisbedragen <strong>in</strong> de SDE 2012 - Conceptadvies ten behoeve van de<br />

marktconsultatie (projectnummer 5.1123.01.01). Petten: Lens<strong>in</strong>k, S.M., Wassenaar,<br />

J.A., Mozaffarian, M., Luxembourg, S.L., & Faasen, C.J.<br />

ECN. (2011). Basisbedragen <strong>in</strong> de SDE+ 2012 - E<strong>in</strong>dadvies (projectnummer 5.1123.09.01).<br />

Petten: Lens<strong>in</strong>k, S.M., Wassenaar, J.A., Mozaffarian, M., Luxembourg, S.L., &<br />

Faasen, C.J.<br />

ECN. (2011a). Vergass<strong>in</strong>g van biomassa. Alkmaar: van der Drift, B.<br />

EG. (1999). RICHTLIJN 1999/100/EG VAN DE COMMISSIE van 15 december 1999 tot<br />

aanpass<strong>in</strong>g aan de technische vooruitgang van Richtlijn 80/1268/EEG van de Raad<br />

betreffende de emissie van kooldioxide en het brandstofverbruik van<br />

motorvoertuigen. Publicatieblad van de Europese Gemeenschappen.<br />

E-Kwadraat Advies. (2011). Biogas <strong>in</strong> de mobiliteit - Lokale productie, <strong>transport</strong>systemen<br />

en afzet <strong>in</strong> de mobiliteit (projectnummer 100604).Leeuwarden: Verbeek, H.<br />

EU. (2005). Bijlage II - Energie-<strong>in</strong>houd van geselecteerde brandstoffen voor het<br />

e<strong>in</strong>dgebruik [Data file]. Retrieved from<br />

https://docs.google.com/viewer?a=v&q=cache:ow2c-t6KFyQJ:eurlex.europa.eu/LexUriServ/LexUriServ.do?uri%3DOJ:C:2006:286E:0187:0187:NL:P<br />

DF+energie+<strong>in</strong>houd+LPG&hl=nl&gl=nl&pid=bl&srcid=ADGEEShKokCaIXuSSl0P-<br />

9LIKGVvWioCh7FPmS0B0Idvlgz5Y16Ue468laVxrooAnoiNV4PDqjDdEPykXTsJJ721oRfDMpHO0Ytwf4iLKYl1OwWwBfdQAU9gRfRDInTHlIHN05RXcw&sig=AHIEtbSg1aMgcgQIAMo5uv6<br />

91Hhj-6ChLQ<br />

EU. (2012). Intelligent Energy Europe - about <strong>the</strong> program. Retrieved from<br />

http://ec.europa.eu/energy/<strong>in</strong>telligent/about/<strong>in</strong>dex_en.htm<br />

EUBIA. (2012). Biodiesel. Retrieved from http://www.eubia.org/214.0.html<br />

EUBIA. (2012a). Bioethanol. Retrieved from http://www.eubia.org/212.0.html


European Commission. (2010). Betreft: steunmaatregel N 208/2010 - Nederland (kenmerk<br />

C(2010)8949 def<strong>in</strong>itief).<br />

European Commission. (2012). Biofuels and o<strong>the</strong>r renewable energy <strong>in</strong> <strong>the</strong> <strong>transport</strong><br />

<strong>sector</strong>. Retrieved from<br />

http://ec.europa.eu/energy/renewables/biofuels/biofuels_en.htm<br />

Eurostat. (2011). Europe 2020 <strong>in</strong>dicators: Headl<strong>in</strong>e <strong>in</strong>dicators. Retrieved from<br />

http://epp.eurostat.ec.europa.eu/portal/page/portal/europe_2020_<strong>in</strong>dicators/headl<strong>in</strong><br />

e_<strong>in</strong>dicators<br />

FERC. (2012). Natural gas overview: World LNG Prices [Data file]. Retrieved from<br />

http://www.ferc.gov/oversight<br />

FERC. (2012). World LNG Estimates October 2012 Landed Prices. Retrieved from<br />

http://www.ferc.gov/market-oversight/mkt-gas/overview/ngas-ovr-lng-wld-pr-est.pdf<br />

FUELswitch. (2012). Emissies. Retrieved from<br />

http://www.fuelswitch.nl/<strong>in</strong>dex.php?mod=pages&item=37<br />

FUELswitch. (2012a). Brandstofkosten. Retrieved from<br />

http://www.fuelswitch.nl/<strong>in</strong>dex.php?mod=pages&item=28<br />

G3 Advies. (2008). Energiekansenoverzicht In Overijssel E<strong>in</strong>drapport (projectnumber<br />

06.029-2). Waardenburg: Voogd, W., Maris, M.J., & van Twillert, H.J.<br />

GIE. (2011). GIE Position Paper on Gas Quality [reference 11GIE129]. Brussels: Gas<br />

Infrastructure Europe.<br />

Google. (2012, august 8). euro dollar. Retrieved from<br />

http://www.google.nl/#hl=nl&q=euro+dollar&oq=euro+dollar&gs_l=serp.3..0l10.2665<br />

.2665.2.4433.1.0.0.1.1.0.0.0..0.0...0.0...1c.v6K4rJYA6rI&bav=on.2,or.r_gc.r_pw.&fp<br />

=693a86e11ed54b0b&biw=1280&bih=883<br />

HIT. (2008). Productie en <strong>in</strong>zetbaarheid van Bio-lNG <strong>in</strong> de Nederlandse <strong>transport</strong><strong>sector</strong>.<br />

Rotterdam: Gaag van der, P., Sapulette, N., & Stenhuis, E.<br />

IEA. (2011). 2009 Energy Balance for Ne<strong>the</strong>rlands [data file]. Retrieved from<br />

http://www.iea.org/stats/balancetable.asp?COUNTRY_CODE=NL<br />

ILT. (2012). Gevaarlijke stoffen: Wet- en Regelgev<strong>in</strong>g. Retrieved from<br />

http://www.ilent.nl/onderwerpen/<strong>transport</strong>/gevaarlijke_stoffen/wetenregelgev<strong>in</strong>g/<br />

ISO. (2012). ISO/CD 16924 - Liquefied Natural Gas (LNG) vehicle fill<strong>in</strong>g stations. Retrieved<br />

from http://www.iso.org/iso/catalogue_detail.htm?csnumber=57960<br />

LNG24. (2012). Wat kost LNG? - LNG is kostenconcurrerend met Diesel. Retrieved from<br />

http://www.lng24.com/nl/rijden-op-lng/wat-kost-lng/<br />

LNGBrandstof. (2012). Welke eisen stelt de overheid? Retrieved from<br />

http://www.lng.nl/veiligheidoverheid.html<br />

71


McK<strong>in</strong>ney, M.L., Schoch, R.M., & Yonavjak, L. (2007). Environmental Science: Systems<br />

and Solutions (4th ed). Sudbury: Jones and Bartlett Publishers.<br />

Mikelis, N.E. (2007). A statistical overview of ship recycl<strong>in</strong>g. A<strong>the</strong>ns: International<br />

Symposium on Maritime safety.<br />

Milieu Centraal. (2012). Factsheet nieuwe brandstoffen januari 2012.<br />

Natuur & Milieu. (2011). Heldergroen gas: een visie op de duurzaamheid van groen gas.<br />

Utrecht: Wiskerke, W.<br />

NEN. (2012). NEN. Retrieved from http://www.nen.nl/web/Home.htm<br />

NGVA Europe. (2012). LNG & LBG <strong>in</strong> Europe and <strong>the</strong> world - The LNG Blue<br />

Corridor project. Amsterdam: Lage, M.<br />

NVON. (2004). B<strong>in</strong>as (5th ed.). Gron<strong>in</strong>gen: Wolters-Noordhoff.<br />

OECD/IEA. (2009). Transport, energy and CO2. Paris: International Energy Agency.<br />

Orangegas. (2012). Prijs aan de pomp. Retrieved from http://www.orangegas.nl/prijs-aande-pomp/<br />

Peace Software (2012). Berechnung der <strong>the</strong>rmodynamischen Zustandsgrößen von<br />

Methan. Retrieved from http://www.peacesoftware.de/e<strong>in</strong>igewerte/methan.html<br />

Platform Groene Grondstoffen (2006). Duurzame productie en ontwikkel<strong>in</strong>g van biomassa,<br />

zowel <strong>in</strong> Nederland als <strong>in</strong> het buitenland. Sanders, J.P.M. et al.<br />

Platform Nieuw Gas. (2007). Vol gas vooruit! De rol van groen gas <strong>in</strong> de Nederlandse<br />

energiehuishoud<strong>in</strong>g. Werkgroep Groen Gas.<br />

Platform Nieuw Gas. (2009). Van biogas naar groengas: opwaarder<strong>in</strong>gstechnieken en<br />

leveranciers. AgentschapNL: Dumont, M.H.M.<br />

Policy Research Corporation en NEA (2007). Nota Toekomstverkenn<strong>in</strong>g vrachtvervoer over<br />

de weg (e<strong>in</strong>drapport). Rijswijk/Rotterdam.<br />

Prov<strong>in</strong>cie Overijssel. (2011). Bio-energie. Retrieved from<br />

http://www.overijssel.nl/<strong>the</strong>ma's/economie/nieuweenergie/energiebronnen/biomassa-bio-energie/<br />

Prov<strong>in</strong>cie Overijssel. (2012). Duurzame energieopwekk<strong>in</strong>g en energiebespar<strong>in</strong>g, subsidie.<br />

Retrieved from<br />

http://www.overijssel.nl/loket/loketverwijz<strong>in</strong>g/productcatalogus/?PdcItmIdt=143060<br />

Prov<strong>in</strong>cie Overijssel. (2012a). Haalbaarheidsstudies nieuwe energie en energiescans,<br />

subsidie. Retrieved from<br />

http://www.overijssel.nl/loket/loketverwijz<strong>in</strong>g/productcatalogus/?PdcItmIdt=153761<br />

Prov<strong>in</strong>cie Overijssel. (2012b). Logistieke biomassa projecten, subsidie. Retrieved from<br />

http://www.overijssel.nl/loket/loketverwijz<strong>in</strong>g/productcatalogus/?PdcItmIdt=168110<br />

72


Prov<strong>in</strong>cie Overijssel. (2012c). Rijden op groengas en electriciteit, subsidie. Retrieved from<br />

http://www.overijssel.nl/loket/loketverwijz<strong>in</strong>g/productcatalogus/?PdcItmIdt=164489<br />

Prov<strong>in</strong>cie Overijssel. (2012e). Nieuwe energie. Retrieved from<br />

http://www.overijssel.nl/overijssel/cijfers-kaarten/staat-overijssel-1/milieuenergie/nieuwe-energie/<br />

Rijksoverheid. (2012). Duurzame economie - Green Deal. Retrieved from<br />

http://www.rijksoverheid.nl/onderwerpen/duurzame-economie/green-deal<br />

Rijksoverheid. (2012a). Duurzame energie: bio-energie. Retrieved from<br />

http://www.rijksoverheid.nl/onderwerpen/duurzame-energie/bio-energie<br />

Rijksoverheid. (2012b). Doel: meer duurzame energie. Retrieved from<br />

http://www.rijksoverheid.nl/onderwerpen/duurzame-energie/doel-meer-duurzameenergie<br />

Rijksoverheid. (2012c). Klimaatverander<strong>in</strong>g en klimaatbeleid. Retrieved from<br />

http://www.rijksoverheid.nl/onderwerpen/klimaatverander<strong>in</strong>g/klimaatverander<strong>in</strong>g-enklimaatbeleid<br />

Rijksoverheid. (2012d). Bestaande Bio-energie<strong>in</strong>stallaties [Data file]. Retrieved from<br />

http://www.b-i-o.nl/<br />

RIVM. (2012). Risico's van stoffen - gevaars<strong>in</strong>del<strong>in</strong>g (methaan). Retrieved from<br />

http://www.rivm.nl/rvs/Gevaars<strong>in</strong>del<strong>in</strong>g/E<strong>in</strong>dresultaat?groep=gevaars<strong>in</strong>del<strong>in</strong>g&waar<br />

de=methaan,sterkgekoeld,vloeibaarofaardgas,sterkgekoeld,vloeibaar,methoogmeth<br />

aangehalte&lijst=adr&veld=substancename_tagged<br />

Rolande LNG. (2012). Transport. Retrieved from http://www.rolandelng.nl/nl/<strong>transport</strong>.htm<br />

Scania. (2011). Scania LNG truck voldoet aan verwacht<strong>in</strong>gen. Retrieved from<br />

http://www.scania.nl/about-scania/media/press-releases/2011/Q4/Scania-LNGtruck-voldoet-aan-verwacht<strong>in</strong>gen.aspx<br />

SenterNovem. (2007). Groen Gas - Gas van aardgaskwaliteit uit biomassa, update van de<br />

studie uit 2004 (concept). Wel<strong>in</strong>g, J., Dumont, M., Kwant, K.<br />

SenterNovem. (2009). Beschikbaarheid van Nederlandse biomassa voor elektriciteit en<br />

warmte <strong>in</strong> 2020 (projectnumber 200809). The Ne<strong>the</strong>rlands: Koppejan, J., Elbersen,<br />

W., Meeusen, M., & B<strong>in</strong>draban, P.<br />

STX Services. (2012). STX Market Update. STX Services newsletter issue 33.<br />

Technisch Weekblad (2011). Kunnen we overschakelen op duurzame energie? Retrieved<br />

from http://www.technischweekblad.nl/rubrieken/energieserie/kunnen-weoverschakelen-op-duurzame-energie.151296.lynkx<br />

TNO/CE Delft. (2011). Brandstoffen voor het wegverkeer: kenmerken en perspectief.<br />

Verbeek, R., & Kampman, B.<br />

Torchio, M.F., & Santarelli, M.G. (2010). Energy, environmental and economic comparison<br />

of different powertra<strong>in</strong>/fuel options us<strong>in</strong>g well-to-wheels assessment, energy and<br />

73


74<br />

external costs - European market analysis. Energy 35 4156-4171<br />

United Nations. (1998). Kyoto protocol to <strong>the</strong> United Nations framework convention on<br />

climate change.<br />

Volvo. (2011). A high-perform<strong>in</strong>g, competitive vehicle - and a susta<strong>in</strong>able solution.<br />

Retrieved from http://www.volvotrucks.com/trucks/global/en-gb/trucks/newtrucks/Pages/volvo-fm-methanediesel.aspx<br />

Wesport Power Inc. (2011). What is Boil-off? Brussels: The LNG taskforce meet<strong>in</strong>g.<br />

Wikimobi. (2012). Personenauto. Retrieved from<br />

http://wikimobi.nl/wiki/<strong>in</strong>dex.php/Personenauto<br />

Wikipedia. (2012). British <strong>the</strong>rmal unit. Retrieved from<br />

http://en.wikipedia.org/wiki/British_<strong>the</strong>rmal_unit<br />

WUR. (20??). Biobased economy <strong>in</strong>fosheet. Wagen<strong>in</strong>gen: Food & Biobased<br />

research.


APPENDIX I LBM & LNG CHARACTERISTICS


LNG and LBM are produced from different sources. LNG is produced by just cool<strong>in</strong>g natural<br />

gas to a temperature of -162 °C. LBM is produced by upgrad<strong>in</strong>g biogas (which essentially<br />

comes down to remov<strong>in</strong>g <strong>the</strong> CO2) and <strong>the</strong>n cool<strong>in</strong>g it to <strong>the</strong> required temperature. S<strong>in</strong>ce<br />

LBM and LNG must be stored at -162 °C to keep it <strong>liquid</strong>, <strong>the</strong>y produce boil/off. If <strong>the</strong><br />

pressure <strong>in</strong> <strong>the</strong> storage tanks gets to high <strong>the</strong> excess gas is vented <strong>in</strong>to <strong>the</strong> atmosphere,<br />

wast<strong>in</strong>g fuel and contribut<strong>in</strong>g to <strong>the</strong> greenhouse gas effect. In <strong>the</strong> US and Canada, vehicle<br />

LNG tanks are required to be able to hold <strong>the</strong> LNG for at least 5 days before it must be<br />

vented. Ano<strong>the</strong>r effect off <strong>the</strong> boil-off process is that <strong>the</strong> relative concentration of o<strong>the</strong>r<br />

substances <strong>in</strong> <strong>the</strong> LBM and LNG <strong>in</strong>creases, which means a decrease <strong>in</strong> <strong>the</strong> quality of <strong>the</strong><br />

fuel.<br />

I.1. Quality parameters of LNG and LBM<br />

Equivalent to <strong>the</strong> differences <strong>in</strong> petrol of diesel qualities, <strong>the</strong>re are also differences <strong>in</strong> LBM<br />

and LNG qualities. To monitor <strong>the</strong>se differences <strong>in</strong> quality, different parameters to measure<br />

this have been called <strong>in</strong>to life. Here follows an account of <strong>the</strong> most important parameters.<br />

1. Calorific value. The calorific value of <strong>the</strong> fuel is given as [MJ*kg -1 ] and gives <strong>the</strong> energy<br />

output by combust<strong>in</strong>g one kilogram of LNG org LBM.<br />

2. Wobbe-<strong>in</strong>dex. Applies to <strong>biomethane</strong> and natural gas. The Wobbe-<strong>in</strong>dex is given as<br />

[MJ*kg -1 ] and basically <strong>in</strong>dicates <strong>the</strong> effect on <strong>the</strong> energy output by mix<strong>in</strong>g different<br />

gasses. This is important when different sources of LNG are mixed, for example.<br />

3. Propane equivalent. The propane equivalent is usually given <strong>in</strong> [Mol%] or [Vol%] and<br />

measures <strong>the</strong> presence of o<strong>the</strong>r alkanes <strong>in</strong> <strong>the</strong> fuel. This had and <strong>in</strong>fluence on <strong>the</strong><br />

calorific value and <strong>the</strong> methane number.<br />

4. Methane number. The methane number is given as a value <strong>in</strong> <strong>the</strong> range [0-100].<br />

Different methods are used to calculate <strong>the</strong> methane number, but <strong>in</strong> pr<strong>in</strong>ciple pure CH4<br />

has methane number 100 and pure H2 has methane number zero. The methane<br />

number of LNG and LBM is equivalent to <strong>the</strong> octane number of petrol and <strong>the</strong> cetane<br />

number for diesel. It <strong>in</strong>dicates <strong>the</strong> possibility of eng<strong>in</strong>e knock<strong>in</strong>g, which may cause<br />

damage to LNG or LBM eng<strong>in</strong>es. This is an important parameter for <strong>the</strong> quality of LNG<br />

or LBM if it is used as a <strong>transport</strong> fuel.<br />

5. CO2 emission factor. Given <strong>in</strong> [kg*MJ -1 ]. Determ<strong>in</strong>es <strong>the</strong> emission of CO2 <strong>in</strong>to <strong>the</strong><br />

atmosphere.<br />

I.2. Composition of LNG and LBM<br />

LNG is produced <strong>in</strong> and imported from different places <strong>in</strong> <strong>the</strong> world. LBM is also produced<br />

from different sources. Therefore, <strong>the</strong>re are different compositions for LBM and LNG. Table<br />

I.1 gives an overview of <strong>the</strong> possible compositions and effects on <strong>the</strong> quality. The o<strong>the</strong>r<br />

substances mentioned can also be present <strong>in</strong> <strong>the</strong> gas <strong>biomethane</strong> or dur<strong>in</strong>g <strong>the</strong> production<br />

of biogas. This is of importance when it comes to mix<strong>in</strong>g LNG and LBM of different<br />

qualities.<br />

Table I.1. Composition of LNG and LBM<br />

gas LNG (Vol%) 1<br />

LBM (Vol%) 2 description<br />

CH4 89.4 % > 98 % <strong>the</strong> ma<strong>in</strong> component<br />

C2H6 6.2% 0 % <strong>the</strong>se alkanes <strong>in</strong>fluence negatively <strong>in</strong>fluence <strong>the</strong><br />

C3H8 1.7 % 0 %<br />

C4H10 0.62 % 0 %<br />

C5H12 0 % 0 %<br />

methane number<br />

N2 2.045 % < 2 % <strong>in</strong>fluences <strong>the</strong> methane number


gas LNG (Vol%) 1<br />

LBM (Vol%) 2 description<br />

CO2 0 % 0 % removed dur<strong>in</strong>g liquefaction process<br />

O2 0 % present <strong>in</strong>creased <strong>in</strong>stallation corrosion<br />

o<strong>the</strong>r substances<br />

sulphur present present presence of toxic H2S<br />

ammonia not present present risk of corrod<strong>in</strong>g equipment<br />

siloxanes not present present create deposits on <strong>the</strong> <strong>in</strong>ternal surfaces of eng<strong>in</strong>es<br />

halocarbons not present present production of harmful diox<strong>in</strong>s dur<strong>in</strong>g combustion<br />

poly aromatic carbons not present present production of soot when combusted<br />

carbon monoxide not present present health risk<br />

particulate matter not present present clogg<strong>in</strong>g of filters<br />

biological components present present corrosion and clogg<strong>in</strong>g<br />

quality<br />

propane equivalent 5.7% 0 %<br />

methane number 76.5 ~100 determ<strong>in</strong>es <strong>the</strong> possibility of eng<strong>in</strong>e knock<strong>in</strong>g<br />

calorific value (MJ*kg -1 ) 38 3<br />

Wobbe-<strong>in</strong>dex (MJ*kg -1 ) 37 3<br />

Source: (GIE, 2011; Arcadis, 2011).<br />

50 4<br />

65 4<br />

determ<strong>in</strong>es <strong>the</strong> energy output<br />

quality parameter for mixed gasses<br />

1 These are average number for <strong>the</strong> LNG’s <strong>in</strong> <strong>the</strong> world. The methane number has a standard deviation of 8.6.<br />

2 Dependent on <strong>the</strong> production process <strong>the</strong>se o<strong>the</strong>r substances may or may not be present <strong>in</strong> <strong>the</strong> end product.<br />

3 On <strong>the</strong> basis of natural gas from Gron<strong>in</strong>gen.<br />

4 On <strong>the</strong> basis of 100 % methane.


APPENDIX II OVERVIEW OF CURRENT SUBSIDY SCHEMES AND TAX<br />

REGULATIONS


II.1. Subsidies<br />

European Union<br />

The EU currently has three subsidy programs runn<strong>in</strong>g which may be relevant to <strong>the</strong><br />

LNG/LBM <strong>sector</strong>. In<br />

Table II.1 one f<strong>in</strong>ds a complete overview of all <strong>the</strong> relevant subsidies.<br />

1. IEE - Intelligent Energy Europe. (AgentschapNL, 2010; EU, 2012).<br />

2. FP7 - Seventh Framework Program. (AgentschapNL, 2011).<br />

3. Marco Polo II. (AgentschapNL, 2011a).<br />

The IEE program is meant to help <strong>in</strong>crease <strong>the</strong> share of renewable energy <strong>in</strong> Europe. It<br />

supports projects where different stakeholders collaborate to expand <strong>the</strong> market for a<br />

certa<strong>in</strong> type of renewable energy. FP7 is a large EU subsidy program, divided <strong>in</strong> different<br />

categories. For LBM/LNG development <strong>the</strong> categories of <strong>transport</strong> and energy are relevant.<br />

Development of renewable energy technologies (for <strong>transport</strong>) to reduce CO2 emissions is<br />

central <strong>in</strong> this program. Marco Polo II supports projects which shift freight <strong>transport</strong> from <strong>the</strong><br />

road to o<strong>the</strong>r, more susta<strong>in</strong>able forms of <strong>transport</strong>.<br />

<strong>Dutch</strong> government<br />

The follow<strong>in</strong>g subsidies and tax deductions are currently <strong>in</strong> effect <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. In<br />

Table II.1 one f<strong>in</strong>ds a complete overview of all <strong>the</strong> relevant subsidies.<br />

1. KIA - Kle<strong>in</strong>schaligheids<strong>in</strong>vester<strong>in</strong>gsaftrek (tax deduction). (Belast<strong>in</strong>gdienst, 2012).<br />

2. Vamil - Willekeurige afschrijv<strong>in</strong>g milieu <strong>in</strong>vester<strong>in</strong>gen (tax decution). (AgentschapNL,<br />

2012a).<br />

3. MIA - Milieu Invester<strong>in</strong>gsaftrek (tax deduction). (AgentschapNL, 2012a).<br />

4. EIA - Energie Invester<strong>in</strong>gsaftrek (tax deduction). (AgentschapNL, 2012b).<br />

5. SDE - Stimuler<strong>in</strong>g Duurzame Energieproductie. (AgentschapNL, 2012c).<br />

6. Green deal. (Rijksoverheid, 2012d).<br />

7. Regel<strong>in</strong>g groenprojecten. (AgentschapNL, 2010).<br />

The KIA, EIA, MIA and Vamil are measures <strong>in</strong> which companies can deduct taxes when<br />

certa<strong>in</strong> <strong>in</strong>vestments <strong>in</strong> company assets are made. The goal of <strong>the</strong>se arrangements are to<br />

make <strong>in</strong> <strong>in</strong>terest<strong>in</strong>g for companies to <strong>in</strong>vest <strong>in</strong> renewable or susta<strong>in</strong>able solutions.<br />

The green deals and ‘regel<strong>in</strong>g groenprojecten’ are less focussed on f<strong>in</strong>ance but more on<br />

government support, <strong>in</strong> terms of br<strong>in</strong>g<strong>in</strong>g different party’s toge<strong>the</strong>r and creat<strong>in</strong>g a<br />

framework <strong>in</strong> which a companies can develop <strong>the</strong>ir susta<strong>in</strong>able endeavours.<br />

The SDE is <strong>the</strong> most important subsidy <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands for support<strong>in</strong>g energy generation<br />

from biomass (and o<strong>the</strong>r types of renewable energy). The SDE focuses on bridg<strong>in</strong>g <strong>the</strong> gap<br />

between <strong>the</strong> cost prices of fossil energy and <strong>the</strong> correspond<strong>in</strong>g ‘green energy’. Currently,<br />

<strong>the</strong> SDE support <strong>the</strong> production of renewable heat, renewable electricity and green gas.<br />

O<strong>the</strong>r forms of gas production (biogas or LBM for example) are not supported.<br />

Prov<strong>in</strong>ce of Overijssel<br />

The prov<strong>in</strong>ce of Overijssel has got an extensive subsidy program runn<strong>in</strong>g to support <strong>the</strong><br />

development of renewable energy <strong>in</strong> that region. Four subsidies <strong>in</strong> particular are relevant <strong>in</strong><br />

this report. In<br />

Table II.1 one f<strong>in</strong>ds a complete overview of all <strong>the</strong> relevant subsidies.<br />

1. Duurzame energieopwekk<strong>in</strong>g en energiebespar<strong>in</strong>g. (Prov<strong>in</strong>cie Overijssel, 2012).


2. Haalbaarheidsstudies nieuwe energie en energiescans. (Prov<strong>in</strong>cie Overijssel, (2012a).<br />

3. Logistieke biomassa projecten. (Prov<strong>in</strong>cie Overijssel, 2012b).<br />

4. Rijden op groengas en electriciteit. (Prov<strong>in</strong>cie Overijssel, 2012c).<br />

Table II.1. Overview of different subsidy regulations<br />

program available budget (EUR) 1 description<br />

IEE 727,000,000 2 provides subsidy for projects designed to elim<strong>in</strong>ate barriers for <strong>in</strong>creas<strong>in</strong>g<br />

<strong>the</strong> share of renewable energy<br />

FP7 energy 2,300,000,000 2 supports research on how to achieve <strong>the</strong> susta<strong>in</strong>ability goals (with<br />

respect to energy) of <strong>the</strong> EU<br />

FP7 <strong>transport</strong> 4,200,000,000 2 supports research on <strong>the</strong> development of new <strong>transport</strong> commodities and<br />

<strong>the</strong> <strong>transport</strong> system <strong>in</strong> general<br />

MPII 450,000,000 2 commercial projects focused on shift<strong>in</strong>g road freight <strong>transport</strong> to o<strong>the</strong>r<br />

forms of <strong>transport</strong> are subsidized<br />

KIA - relative small <strong>in</strong>vestments are eligible for a certa<strong>in</strong> tax deduction of <strong>the</strong><br />

profit.<br />

Vamil 24,000,000 Vamil allows for arbitrary write-off of <strong>in</strong>vestments which generates a tax<br />

advantage<br />

MIA 101,000,000 a tax deduction of <strong>the</strong> profit is possible of up to 36 % over <strong>the</strong> <strong>in</strong>vestment<br />

<strong>in</strong> a environmentally friendly technique<br />

EIA 151,000,000 a tax deduction of <strong>the</strong> profit is possible of up to 41.5 % over <strong>the</strong><br />

<strong>in</strong>vestment <strong>in</strong> a renewable energy technique<br />

SDE 1,700,000,000 <strong>the</strong> difference between <strong>the</strong> production cost of fossil energy and <strong>the</strong><br />

production cost of <strong>the</strong> equivalent renewable energy is covered, up to a<br />

certa<strong>in</strong> maximum<br />

Overijssel 1 1000,000 a maximum of EU 199,000 is be<strong>in</strong>g granted to projects (<strong>in</strong>vestments)<br />

meant to produce renewable energy, <strong>in</strong>clud<strong>in</strong>g biomass<br />

Overijssel 2 300,000 a maximum of EUR 15,000 is be<strong>in</strong>g granted for feasibility studies for<br />

renewable energy production<br />

Overijssel 3 100,000 a maximum of EUR 20,000 is beg<strong>in</strong> granted to project which organise<br />

and develop <strong>the</strong> harvest and <strong>transport</strong> of biomass<br />

Overijssel 4 700,000 subsidy is be<strong>in</strong>g grant for a maximum of 50 vehicles on (<strong>liquid</strong>) gas or<br />

1 For <strong>the</strong> year 2012.<br />

2 For <strong>the</strong> period 2007-2013.<br />

dual fuel per company with a maximum of EUR 50,000<br />

II.2. Tax<br />

There are currently no programs runn<strong>in</strong>g which give a tax advantage for renewable cars<br />

and trucks. With <strong>the</strong> elections <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands of 2012, it is unclear how such programs<br />

take shape <strong>in</strong> <strong>the</strong> future.<br />

LBM fuel is also subject to taxes. The government has set <strong>the</strong> tax policy for LBM and LNG<br />

fuel equal to <strong>the</strong> tax policy of LPG fuels. This means a stock charge of EUR 5.90 per 1000<br />

kg and an excise duty of EUR 167.54 per 1000 kg (CBS, 2012d). On top of this <strong>the</strong> normal<br />

turnover tax of 21 % has to be paid.


APPENDIX III REGULATIONS RELEVANT TO THE LBM INFRASTRUCTURE


Regulations relevant to <strong>the</strong> entire LBM <strong>in</strong>frastructure are divided <strong>in</strong> two parts:<br />

- <strong>the</strong> production of biogas and LBM;<br />

- <strong>the</strong> subsequent distribution and storage of LBM.<br />

The last part has an overlap with LNG because <strong>the</strong> fuel is essentially <strong>the</strong> same. This<br />

appendix gives an overview of <strong>the</strong> relevant regulations.<br />

III.1. Production of biogas<br />

The operation of a (co-) digestion plant to produce biogas is subject to government<br />

regulations. A summary is now given of which factors are important. The provided<br />

<strong>in</strong>formation is obta<strong>in</strong>ed from (AgentschapNL, 2011b; DR-Loket, 2012).<br />

Fertiliser law (Meststoffenwet)<br />

This law determ<strong>in</strong>es how and by who <strong>the</strong> <strong>transport</strong> of animal manure from farms takes<br />

place. It sets requirement on which materials may be used for co-digestion and determ<strong>in</strong>es<br />

when <strong>the</strong> produced digestate can be used as fertiliser or must be treated as waste.<br />

Adm<strong>in</strong>istrative requirements for a biogas plant are <strong>in</strong>corporated <strong>in</strong> this law. Moreover<br />

additional rules <strong>in</strong> this law apply when <strong>the</strong> digestate is <strong>in</strong>deed used as fertiliser.<br />

An important factor of <strong>the</strong> fertiliser law is <strong>the</strong> so-called “Bijlage Aa”. This annex gives a list<br />

of which substances can be legally co-digested with 50 % animal excrements. The annex<br />

also lists <strong>the</strong> substances which can be traded as fertiliser or must be treated as waste. The<br />

extensiveness of this determ<strong>in</strong>es <strong>the</strong> success of co-digestion. If to little substances are<br />

recognised as digestible products, this works oppressive to <strong>the</strong> development of codigestion.<br />

Enactment Animal By-products (Verorden<strong>in</strong>g Dierlijke Bijproducten)<br />

This enactment deals with <strong>the</strong> <strong>transport</strong>, treatment and disposal of animal by-products. This<br />

law sets additional requirements for <strong>the</strong> use of digestate as fertiliser. A bio mass digestions<br />

<strong>in</strong>stallation must me recognised as such accord<strong>in</strong>g to this law. Transporters of animal byproducts<br />

also have to deal with this law.<br />

Law Spatial Plann<strong>in</strong>g (Wet Ruimtelijke Orden<strong>in</strong>g)<br />

When one wants to build a digestion plant it has to fit <strong>in</strong> <strong>the</strong> current development plan of <strong>the</strong><br />

specific regions. This law deals with that.<br />

Law Environmental Management (Wet Milieubeheer)<br />

A digestion <strong>in</strong>stallation may cause environmental damage or nuisance to <strong>the</strong> region.<br />

Environmental damage may be caused, for example, by leach<strong>in</strong>g of harmful substances.<br />

Nuisance to people is often cause by noise or smell. This law sets requirements for <strong>the</strong><br />

construction of <strong>the</strong> digestion plant and regulates <strong>the</strong> <strong>transport</strong> of <strong>the</strong> <strong>in</strong>- and outgo<strong>in</strong>g<br />

substances to prevent <strong>the</strong>se k<strong>in</strong>ds of trouble.<br />

In order to protect wildlife and natural area’s <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, one also has to deal with<br />

<strong>the</strong> “Wet natuurbescherm<strong>in</strong>g”. Most of <strong>the</strong> above regulations are <strong>in</strong>tegrated <strong>in</strong> a s<strong>in</strong>gle law<br />

called “Omgev<strong>in</strong>gswet” <strong>in</strong> <strong>the</strong> future. This law is still under development.<br />

O<strong>the</strong>r requirements<br />

Next to <strong>the</strong> specific regulations mentioned above one also has to obey <strong>the</strong> general<br />

regulations regard<strong>in</strong>g work and safety. On top of this one has to deal with several bureaus<br />

and authorities <strong>in</strong> order to obta<strong>in</strong> <strong>the</strong> necessary permits. The municipality must provide <strong>the</strong><br />

permit ‘Milieu & Bouw’, required when one wants to digest biomass. Fur<strong>the</strong>rmore <strong>the</strong>


digestion <strong>in</strong>stallation have to be recognized by <strong>the</strong> nVWA. Additionally one also has to<br />

register with multiple o<strong>the</strong>r government bodies.<br />

III.2. Distribution and storage of LBM<br />

Given that LBM and LNG can be classified as possibly dangerous substances, certa<strong>in</strong> rules<br />

apply for <strong>transport</strong><strong>in</strong>g <strong>the</strong>m. LBM and LNG are described <strong>in</strong> <strong>the</strong> ADR (Accord européen<br />

relatif au <strong>transport</strong> <strong>in</strong>ternational des marchandises Dangereuses par Route) as liquefied<br />

and strongly cooled methane or natural gas. It falls under <strong>the</strong> category of flammable<br />

gasses. Transport of dangerous substances <strong>in</strong> Europe is arranges <strong>in</strong> <strong>the</strong> ADR system.<br />

Requirements regard<strong>in</strong>g LBM/LNG can be found <strong>in</strong> (RIVM, 2012) and subsequently <strong>in</strong> (ILT,<br />

2012).<br />

The International organisation for Standardisation (ISO) is currently develop<strong>in</strong>g a standard<br />

for LNG fill<strong>in</strong>g stations (ISO, 2012). The <strong>Dutch</strong> bureau of normalisation already has a<br />

number of directives <strong>in</strong> effect regard<strong>in</strong>g LNG facilities, NEN-EN 1474:2002, NEN-EN<br />

13645:2002 and NEN-EN 1473:2007 (NEN, 2012). Build<strong>in</strong>g LNG/LBM facilities of course<br />

also has to meet <strong>the</strong> requirement of <strong>the</strong> spatial plann<strong>in</strong>g law.


APPENDIX IV VALUES OF PARAMETERS USED IN THIS STUDY


Energy contents and densities<br />

Energy content gasol<strong>in</strong>e - 3.3*10 10 J*m -3<br />

Energy content LPG - 4.6000*10 7 J*kg -1<br />

Energy content Diesel - 3.6*10 10 J*m -3<br />

Energy content CNG - 4.97*10 7 J*kg -1<br />

Energy content biogas - 2.1*10 7 J*m -3<br />

Energy content natural gas - 3.2*10 7 J*m -3<br />

Energy content methane - 3.58*10 7 J*m -3<br />

Energy content biodiesel - 3.28*10 10 J*m -3<br />

Energy content bio-ethanol - 21.1*10 10 J*m -3<br />

Density natural gas - 0.833 kg*m -3<br />

Density Methane - 0.72 kg*m -3<br />

Density LPG - 0.538 kg*L -1<br />

LNG properties<br />

Density - 424.14 kg*m -3<br />

Energy content - 4.97 J*kg -1<br />

2.1*10 7 J*L -1<br />

LNG/methane - 1.7 L*m -3 methane<br />

LNG/natural gas - 1.8 L*kg -1 natural gas<br />

LNG (L/kg) - 2.36 L*kg -1<br />

O<strong>the</strong>r values<br />

CO2 content biogas - 40 %<br />

Density CO2 - 1.986 kg*m -3


APPENDIX V SUMMARY OF THE LNG4TRUCKS&SHIPS WORKSHOP (IN DUTCH)


onderwerp<br />

datum<br />

projectcode<br />

referentie<br />

opgemaakt door<br />

datum opmaak<br />

bijlagen<br />

aanwezig<br />

afwezig<br />

kopie<br />

LNG4Trucks&Ships Workshop<br />

24 september 2012<br />

ZL460-2-1<br />

-<br />

BREJ4<br />

24 september 2012<br />

workshop presentaties<br />

foto's LNG tank<strong>in</strong>stallatie<br />

BREJ4<br />

-<br />

VELR2<br />

1. INTRODUCTIE<br />

verslag<br />

Witteveen+Bos<br />

Postbus 233<br />

7400 AE Deventer<br />

telefoon 0570 69 79 11<br />

fax 0570 69 73 44<br />

In het kader van mijn onderzoek naar de <strong>in</strong>zet van vloeibaar biomethaan <strong>in</strong> de Nederlandse<br />

<strong>transport</strong><strong>sector</strong> heb ik van 19 tot en met 21 september de workshop “LNG4Trucks&Ships”<br />

<strong>in</strong> Amsterdam bijgewoond. Deze workshop g<strong>in</strong>g over de <strong>in</strong>zet van LNG en bio-LNG<br />

voornamelijk <strong>in</strong> het vrachtvervoer en de scheepvaart (niet specifiek voor Nederland). LNG<br />

staat voor “Liquefied Natural Gas” en is dus vloeibaar gemaakt aardgas. Bio-LNG is<br />

eigenlijk dezelfde brandstof (zij het met een wat hogere energie-<strong>in</strong>houd) maar wordt<br />

gewonnen door de vergist<strong>in</strong>g van biomassa en kan dus beschouwd worden als<br />

biobrandstof.<br />

1.1 LNG & bio-LNG<br />

LNG op zichzelf gezien is niet nieuw, maar komt de laatste jaren pas onder de aandacht<br />

als geschikte brandstof voor bijvoorbeeld vrachtauto’s. In de directe omgev<strong>in</strong>g van<br />

Nederland zijn twee zogeheten LNG term<strong>in</strong>als: één <strong>in</strong> Rotterdam en één <strong>in</strong> Zeebrugge<br />

(België). LNG wordt per schip naar geïmporteerd. Dit LNG kan uit meerdere bronnen over<br />

de hele wereld komen. Het geïmporteerde LNG wordt vervolgens <strong>in</strong> het gasnetwerk<br />

hervergast, of kan (momenteel alleen <strong>in</strong> Zeebrugge) ook afgenomen wordt door LNG<br />

vrachtwagens om zo over het cont<strong>in</strong>ent ge<strong>transport</strong>eerd te worden naar bijvoorbeeld<br />

tankstations.<br />

De <strong>in</strong>zet van LNG <strong>in</strong> de <strong>transport</strong><strong>sector</strong> kent een aantal mogelijke voordelen. Ten eerste<br />

verm<strong>in</strong>derd de uitstoot van fijnstof, NOx en SOx drastisch bij <strong>in</strong>zet van LNG t.o.v. diesel.<br />

Verder kan LNG een zeker energietoekomst leveren voor de <strong>transport</strong><strong>sector</strong> vanwege de<br />

enorme aardgasreserves <strong>in</strong> de wereld. Ook is LNG waarschijnlijk prijsstabieler <strong>in</strong><br />

vergelijk<strong>in</strong>g met diesel omdat de aardgasreserves <strong>in</strong> de wereld gelijkmatiger zijn verspreid<br />

dan de oliereserves. Bovendien is rijden op LNG onder de huidige marktprijzen goedkoper,


met een terugverdientijd voor <strong>transport</strong>bedrijven van slechts een paar jaar. De <strong>in</strong>zet van<br />

bio-LNG levert mogelijk, naast de eerdergenoemde milieuvoordelen, ook een grote CO2uitstoot<br />

reductie op.<br />

1.2 Marktontwikkel<strong>in</strong>g<br />

De ontwikkel<strong>in</strong>g van een <strong>in</strong>frastructuur voor LNG gebruik <strong>in</strong> <strong>transport</strong> (met alles wat daarbij<br />

hoort) staat nu nog <strong>in</strong> de k<strong>in</strong>derschoenen, maar de verwacht<strong>in</strong>g is dat dit de komende jaren<br />

een vlucht gaat nemen, <strong>in</strong> alle delen van de wereld. Gegeven dit feit, ligt het ook <strong>in</strong> lijn der<br />

verwacht<strong>in</strong>g dat er voor alle afdel<strong>in</strong>gen b<strong>in</strong>nen Witteveen+Bos ook voldoende<br />

mogelijkheden zijn om een rol te gaan spelen <strong>in</strong> deze <strong>sector</strong>. In dit verslag zal ik trachten<br />

om de belangrijkste gegevens die uit deze workshop naar voren zijn gekomen zo goed<br />

mogelijk samen te vatten.<br />

2. SAMENVATTING<br />

De workshop was opgedeeld <strong>in</strong> drie dagen. Dag één betrof een technische excursie naar<br />

Zwolle om daar de werk<strong>in</strong>g van een LNG tankstation te aanschouwen. Dagen twee en drie<br />

waren gereserveerd voor presentaties over verschillende aspecten gerelateerd aan LNG.<br />

Hierbij kwamen onder andere aan bod:<br />

1. technische aspecten met betrekk<strong>in</strong>g tot LNG motoren (voor scheepvaart en<br />

vrachtvervoer), tankstations, import- en opslag term<strong>in</strong>als, liqueficatie en hervergass<strong>in</strong>g;<br />

2. milieutechnische aspecten;<br />

3. marktontwikkel<strong>in</strong>g: trends en verwacht<strong>in</strong>gen en voorbeelden uit verschillende landen;<br />

4. productie en distributie van LNG en bio-LNG;<br />

5. veiligheidsaspecten en regelgev<strong>in</strong>g (bijvoorbeeld met betrekk<strong>in</strong>g tot de bouw van<br />

<strong>in</strong>stallaties;<br />

6. f<strong>in</strong>ancier<strong>in</strong>gsvraagstukken.<br />

2.1 Dag 1 - Technische excursie naar LNG tankstation Zwolle<br />

Deze dag stond <strong>in</strong> het teken van een technische demonstratie van het eerste openbare<br />

LNG tankstation voor vrachtwagens en bussen <strong>in</strong> Nederland. Dit tankstation is geopend op<br />

5 september jl. <strong>in</strong> Zwolle en is gebouwd door Ballast Nedam IPM. Een foto van dit<br />

tankstation staat <strong>in</strong> Afbeeld<strong>in</strong>g 1. Ballast Nedam exploiteert dit tankstation onder de<br />

bedrijfsnaam “LNG24 Clean fuel”.<br />

Het tankstation<br />

Het tankstation is zodanig ontworpen dat het kle<strong>in</strong> en “draagbaar” is en ook relatief<br />

makkelijk te bouwen. Zodoende kan het makkelijk verplaatst worden en eventueel<br />

plaatsmaken voor een permanente <strong>in</strong>stallatie. Op deze manier is het ook makkelijk om<br />

soortgelijke <strong>in</strong>stallaties elders <strong>in</strong> het land neer zetten om de markt snel te kunnen<br />

ontwikkelen. De tank op de foto heeft een <strong>in</strong>houd van 20 m 3 . Deze kan voor 90 % gevuld<br />

worden met LNG, wat neerkomt op 8000 kg. Dit komt (ongeveer) overeen met 11.000 liter<br />

diesel. Het tankstation heeft de capaciteit om maximaal 8 vrachtwagens per uur te vullen.<br />

Omdat LNG een cryogene brandstof is (vloeibaar bij -162° C) produceert het boil-off. Dit<br />

mag niet worden geventileerd naar de atmosfeer. Naast een goed geïsoleerde tank heeft<br />

dit station daarom ook een systeem om deze boil-off af te vangen. Zodoende v<strong>in</strong>dt er,<br />

afgezien van noodgevallen, geen vent-off van CH4 plaats.


De vrachtwagens<br />

Het tankstation <strong>in</strong> Zwolle is, na registratie bij Ballast Nedam, 24/7 publiekelijk toegankelijk<br />

voor alle LNG vrachtwagen types <strong>in</strong> Europa. Momenteel zijn er vier types LNG voertuigen<br />

op de markt: de Volvo Methaan-Diesel (rijdend op een mix van LNG en diesel, oftewel<br />

“dual-fuel”), de Iveco Stralis, de Mercedes Econic en de Scania P310 LNG. Deze laatste<br />

drie rijden puur op LNG, oftewel “s<strong>in</strong>gle-fuel”. De Volvo en de Iveco maken bij het tanken<br />

gebruik van een “vapour collapse” systeem (de druk <strong>in</strong> de tank bepaald wanneer de tank<br />

vol is). De Mercedes en de Scania maken gebruik van een “vapour return” systeem (het<br />

verdampte LNG <strong>in</strong> de tank wordt via een dampretour slang weer terug genomen).<br />

Afbeeld<strong>in</strong>g 1. Openbaar LNG tankstation <strong>in</strong> Zwolle<br />

Op dit moment bestaat er nog geen goede technologie om de tank<strong>in</strong>houd <strong>in</strong> de<br />

vrachtwagens zelf te meten (brandstofmeter). De vier verschillende vrachtwagens<br />

verschillend onderl<strong>in</strong>g weer <strong>in</strong> tankdruk- en temperatuur waaronder ze opereren. Het<br />

tankstation moet dus om kunnen gaan met deze verschillende specificaties. In vergelijk<strong>in</strong>g<br />

met het tanken van andere brandstoffen is dit dus nog relatief <strong>in</strong>gewikkeld, gelet ook op het<br />

feit dat er meerdere slangen moeten worden aangesloten. In het buitenland zijn nog weer<br />

andere mogelijkheden om te tanken aanwezig. De uitdag<strong>in</strong>g zal <strong>in</strong> de toekomst zijn om<br />

hiervoor 1 of 2 standaarden te ontwikkelen.<br />

Operatie & Veiligheid<br />

Vrachtwagens die bij het tankstation willen tanken moeten zich registreren bij Ballast<br />

Nedam. Dit komt neer op de registratie van het kenteken en de koppel<strong>in</strong>g van de<br />

technische specificaties van de vrachtwagens daaraan. Als een vrachtwagen arriveert op<br />

het station is er een kentekenregistratiesysteem die via een verb<strong>in</strong>d<strong>in</strong>g met een onl<strong>in</strong>e<br />

server (op het hoofdkantoor van LNG24) de technische gegevens van de vrachtwagen


ophaalt en het tankstation goed <strong>in</strong>stelt voor een tankbeurt. Vervolgens is het aan de<br />

chauffeur om de slagen goed aan de sluiten. Één voor de LNG aanvoer en één voor de<br />

damp retour of damp collapse. Op dat moment stromen er ook gegevens b<strong>in</strong>nen over de<br />

actuele toestand van de vrachtwagen (bijvoorbeeld temperatuur van de tank). Daarna kan<br />

het tanken beg<strong>in</strong>nen. De tanksnelheid varieert van 30 tot 100 kg*m<strong>in</strong> -1 .<br />

LNG tanken is momenteel <strong>in</strong>gewikkelder dan het tanken van andere brandstoffen die op de<br />

markt zijn. Er moeten namelijk twee verschillende slangen op de tank worden aangesloten.<br />

Bovendien moeten alle aansluitpunten eerst worden schoongeblazen met een derde slang.<br />

Aangezien het een onbemand tankstation is zijn er dan toch een aantal veiligheidsissues.<br />

Ten eerste kan de chauffeur de slangen verkeerd aansluiten. Uitgebreide tank<strong>in</strong>structies bij<br />

het station en kleurcoder<strong>in</strong>g van de aansluitpunten en de slangen moeten dit voorkomen.<br />

Indien het toch gebeurt is ervoor gezorgd dat de <strong>in</strong>stallatie niet werkt of afslaat. Ten tweede<br />

kan een voertuig worden bijgevuld op de verkeerde druk of temperatuur.<br />

Voertuigherkenn<strong>in</strong>g d.m.v. kentekenregistratie en een dispenser switch moeten dit<br />

voorkomen. Ten derde kunnen er gaslekken zijn. Daarom moet verplicht worden gebruik<br />

gemaakt van de zogenoemde dodemansknop. Tevens is er een noodsysteem voorzien<strong>in</strong>g<br />

die de hele <strong>in</strong>stallatie uitschakelt bij een te hoge of te lage temperatuur (als de druk <strong>in</strong> de<br />

tank te hoog wordt kan het teveel aan gas worden geventileerd), als er gaslekken worden<br />

gedetecteerd of als er sprake is van overvullen. Vanwege veiligheidsvereisten geschiedt<br />

het vullen van de tank<strong>in</strong>stallatie zelf nu met een vaste buis <strong>in</strong> plaats van een slang. De<br />

veiligheidsradius is ongeveer 35 meter.<br />

Kwaliteit<br />

De belangrijkste kwaliteitsparameter van de brandstof voor het goed lopen van de motor is<br />

het methaangetal. Deze bepaalt of motoren klopgedrag gaan vertonen en derhalve hoe<br />

snel de motoren slijten. De kwaliteit (methaangetal) wordt momenteel alleen bij de afname<br />

van LNG bij de LNG term<strong>in</strong>als gecontroleerd. Hier wordt namelijk ook LNG geïmporteerd<br />

van lagere kwaliteit. Bio-LNG is juist van zeer hoge kwaliteit. In de toekomst zou de<br />

kwaliteit ook op een technische manier gecontroleerd kunnen worden, bijvoorbeeld d.m.v.<br />

mengen.<br />

Markant detail: tijdens het tanken wordt bij beide technieken LNG damp of gas terug<br />

gewonnen. Vooral bij de Mercedes en de Scania is dit het geval omdat dat <strong>in</strong>herent is aan<br />

het ontwerp. Deze retourdamp wordt echter niet weer van de brandstof prijs of het aantal<br />

getankte kilogrammen afgetrokken, waardoor men dus per saldo meer betaalt voor een<br />

kilogram LNG dan de pompprijs.<br />

2.2 Dag 2 - Deel 1 workshop presentaties Amsterdam<br />

Dit evenement werd georganiseerd door de NGVA, ofwel de “Natural & bio Gas Vehicle<br />

Association”. Met ruim 150 leden <strong>in</strong> meer dan 38 landen, is het de organisatie die de<br />

belangen behartigd van de <strong>in</strong>dustrie rond aardgasvoertuigen en productie & distributie van<br />

aardgas en biogas voor <strong>transport</strong> doele<strong>in</strong>den. NGVA stelt dat overgaan op aardgas voor<br />

voertuigen de beste manier is om te gaan voldoen aan de aankomende Euro VI - norm.<br />

Bovendien is er een grote energiezekerheid omdat er, bij het huidige verbruik, nog voor<br />

340 jaar gas <strong>in</strong> de bodem zit. De markt voor aardgasvoertuigen groeit snel. In de periode<br />

2006-2011 is deze markt <strong>in</strong> Europa met 16 % gegroeid. NGVA gaat uit van een groei naar<br />

75 miljoen aardgasvoertuigen <strong>in</strong> 2023, wat dan een marktpercentage van 9 % zou<br />

<strong>in</strong>houden.


European LNG Blue Corridors<br />

Aardgas en biogas zijn eigenlijk de enige alternatieve brandstoffen die geschikt zijn voor<br />

alle vormen van <strong>transport</strong>. De vloeibare variant is met name geschikt voor lange afstand<br />

<strong>transport</strong>. Op dit moment zijn er al een aantal vrachtwagens die kunnen rijden op LNG.<br />

LNG kan ook worden toegepast <strong>in</strong> tre<strong>in</strong>en en <strong>in</strong> de scheepvaart. Zelfs LNG <strong>in</strong> vliegtuigen is<br />

een mogelijkheid. Momenteel worden er <strong>in</strong> de wereld <strong>in</strong> rap tempo LNG term<strong>in</strong>als<br />

gebouwd, voor import of export van gewonnen aardgas. Om de ontwikkel<strong>in</strong>g van LNG<br />

gebruik <strong>in</strong> vracht<strong>transport</strong> een boost te geven, loopt er nu een programma genaamd<br />

“European LNG Blue Corridors”. Dit programma moet <strong>in</strong> eerste <strong>in</strong>stantie 4 Europese routes<br />

ontwikkelen waarlangs strategisch LNG vulstations worden geplaatst om zo vrachtvervoer<br />

op LNG door Europa mogelijk te maken. Ter <strong>in</strong>dicatie staat er een afbeeld<strong>in</strong>g van deze<br />

mogelijke routes en de locatie van LNG term<strong>in</strong>als <strong>in</strong> Afbeeld<strong>in</strong>g 2.<br />

In de Verenigde Staten lopen soortgelijke projecten. In de VS is een snelle groei van LNG<br />

brandstof gebruik, door overheidsstimulatie en het aanboren van nieuwe gasbronnen.<br />

Afbeeld<strong>in</strong>g 2. LNG Blue Corridors en bestaande en geplande LNG term<strong>in</strong>als<br />

Productie & Distributie<br />

LNG kan geproduceerd worden uit de conventionele aardgasbronnen, de onconventionele<br />

aardgas bronnen (bijvoorbeeld schaliegas) en biogas. Het voordeel bij LNG is de<br />

onafhankelijkheid van pijpleid<strong>in</strong>gen. LNG wordt ge<strong>transport</strong>eerd per vrachtwagen en per<br />

schip. In de toekomst zullen er waarschijnlijk, naast grote term<strong>in</strong>als aan de kust, ook<br />

kle<strong>in</strong>schalige term<strong>in</strong>als voor LNG opslag <strong>in</strong> het b<strong>in</strong>nenland komen. Deze kunnen gevoed<br />

worden door kle<strong>in</strong>schalige LNG (LBG) productiefaciliteiten. Nog een voordeel van<br />

kle<strong>in</strong>schalige productie van LNG is dat het rendabel wordt om het affakkelen van aardgas<br />

te stoppen en <strong>in</strong> plaats daarvan LNG te maken. Op dit moment wordt er jaarlijks nog 150<br />

miljard m 3 aardgas afgefakkeld, wereldwijd.


Bio-LNG<br />

Opwerken van biogas tot bio-LNG, lijkt goedkoper te zijn dan verschillende pijplijnroute<br />

opties. Dit geldt voor zowel bio-CNG (niet geproduceerd uit pijplijngas) als bio-LNG, waarbij<br />

bio-CNG iets <strong>in</strong> het voordeel is. De reden waarom deze twee opties moeilijk van de grond<br />

komen <strong>in</strong> Nederland, is overheidsbeleid. Momenteel ontvangt men alleen een subsidie als<br />

men groengas produceert wat <strong>in</strong> het aardgasnet geïnjecteerd wordt. Voor bio-LNG is er<br />

nog een extra h<strong>in</strong>dernis t.o.v. bio-CNG: de accijns hierop is namelijk 5 keer zo hoog, terwijl<br />

het dezelfde stoffen zijn.<br />

In Nederland wordt nog geen bio-LNG geproduceerd. Volgens Rolande LNG gaat er <strong>in</strong><br />

oktober een faciliteit draaien die 10.000 ton bio-LNG per jaar gaat produceren.<br />

In het Verenigd Kon<strong>in</strong>krijk produceert het bedrijf Gasrec, als enige <strong>in</strong> Europa, bio-LNG uit<br />

stortgas (5000 ton per jaar). Om aan de vraag te blijven voldoen kan dit zo mogelijk<br />

gemengd worden met LNG uit andere bronnen.<br />

Om bio-LNG succesvol te <strong>in</strong>troduceren zou het verstandig kunnen zijn om eerst kle<strong>in</strong>e<br />

percentages te mengen met normaal LNG. Bovendien zou het ook naar LNG term<strong>in</strong>al<br />

gebracht kunnen worden. De ISO standaarden voor brandstofkwaliteit zouden dan wel<br />

moeten worden aangepast.<br />

Rijden op LNG<br />

AgentschapNL heeft op dit moment een testprogramma lopen genaamd “truck van de<br />

toekomst”. Dit programma heeft als doel om zoveel mogelijk praktijkgegevens te<br />

verzamelen over bijvoorbeeld het rijden op LNG vrachtwagens.<br />

In Nederland is o.a. Rolande LNG bezig met het uitrollen van een <strong>in</strong>frastructuur voor het<br />

rijden op (bio-)LNG. Zij hebben de mogelijkheid om specifieke klanten (bijvoorbeeld<br />

distributie bedrijven voor supermarkten) te bedienen met mobiele tankstations die b<strong>in</strong>nen 2<br />

dagen kunnen staan. Ook leveren ze de vrachtwagens (ombouw van CNG vrachtwagens).<br />

Het aanschaffen van een LNG truck is wel een meer<strong>in</strong>vester<strong>in</strong>g t.o.v. een dieseltruck. De<br />

terugverdientijd ligt op dit moment zo rond de 5 jaar.<br />

Voor dual-fuel toepass<strong>in</strong>gen ligt deze terugverdientijd lager, namelijk tussen de 16 en 24<br />

maanden. Dual-fuel lijkt dus de voorkeur te hebben, mede omdat er bij dual-fuel geen<br />

directe operationele gevolgen zijn voor het bedrijf. Er kan namelijk altijd worden<br />

teruggevallen op 100 % diesel en de prestaties van dual-fuel trucks zijn hetzelfde als<br />

gewone dieseltrucks. Dit zijn factoren die voor ondernemers belangrijk zijn bij de<br />

overweg<strong>in</strong>g om over te stappen naar LNG.<br />

De tankstations<br />

Het tankstation van Ballast Nedam had twee technieken om vrachtwagens te vullen met<br />

LNG. De Iveco en de Volvo werken bij een tankdruk van 8 bar of -153° C (gesatureerd<br />

LNG). De Mercedes en de Scania werken bij een tankdruk van 18 bar of -110° C (super<br />

gesatureerd LNG). Er is echter nog een derde mogelijkheid. Deze techniek wordt gebruik<br />

bij het tanken van vrachtwagens met een Wesport HPDI motor (voornamelijk actief <strong>in</strong><br />

Ch<strong>in</strong>a en de VS). Deze werkt met een tankdruk van 3 bar of -153° C. Al deze technieken<br />

hebben voor- en nadelen. Het is duidelijk dat hier standaardisatie nodig is. Belangrijk om te<br />

noemen is dat het <strong>in</strong> Europa verboden is om boil-off gas <strong>in</strong> de atmosfeer te ventileren. Bij<br />

alle tankstations moeten dus voorzien<strong>in</strong>gen aanwezig zijn om dit te voorkomen.<br />

Bij het tanken van LNG moet gemeten worden hoeveel brandstof er precies door de leid<strong>in</strong>g<br />

gaat. Hiervoor ontwikkeld Emerson Process Management de technologie, voor<br />

verschillende toepass<strong>in</strong>gen.


Momenteel zijn er ongeveer 51 LNG stations operationeel <strong>in</strong> Europa. Dit aantal zal snel<br />

gaan groeien, gezien de vele projecten die nu lopen. De verwacht<strong>in</strong>g voor Nederland is dat<br />

zij na de UK het grootste netwerk krijg van LNG tankstations. Dit komt o.a. door de centrale<br />

ligg<strong>in</strong>g <strong>in</strong> Europa, de beschikbaarheid van nabijgelegen LNG term<strong>in</strong>als en de <strong>in</strong>teresse<br />

voor LNG als brandstof voor de b<strong>in</strong>nenvaart.<br />

Op het terre<strong>in</strong> van de veiligheid van tankstations is <strong>in</strong> Nederlands de richtlijn PGS 33 nog <strong>in</strong><br />

ontwikkel<strong>in</strong>g. Deze zal standaarden neerzetten voor tankstations om de veiligheid te<br />

optimaliseren. Bovendien wordt <strong>in</strong>ternationaal gewerkt aan verschillende ISO standaarden<br />

gericht op verschillende onderdelen uit de LNG keten.<br />

2.3 Dag 3 - Deel 2 workshop presentaties Amsterdam<br />

LNG <strong>in</strong> de scheepvaart<br />

LNG kan ook als brandstof worden gebruikt <strong>in</strong> de scheepvaart <strong>sector</strong>. Hierbij vaart het<br />

schip dan meestal op het boil-off geproduceerd door het vloeibare LNG. Ook dual-fuel<br />

toepass<strong>in</strong>gen zijn mogelijk <strong>in</strong> de scheepvaart. Volgens MAN zou de terugverdientijd van<br />

een schip op LNG niet meer dan 2 jaar zijn ten opzichte van scheepvaart diesel. Dit is ook<br />

lager dan andere alternatieve toepass<strong>in</strong>gen zoals bijvoorbeeld LPG.<br />

Naast scheepvaart op open water, kan LNG kan met name ook <strong>in</strong>teressant zijn voor de<br />

b<strong>in</strong>nenvaart, bijvoorbeeld op de Rijn en de Donau. Hierbij zijn momenteel nog twee grote<br />

obstakels. 1: Het LNG moet getankt worden <strong>in</strong> Rotterdam of worden ge<strong>transport</strong>eerd naar<br />

nog niet bestaande tanklocaties aan grote scheepvaart routes. 2: Het is op dit moment nog<br />

verboden om LNG te gebruiken op de b<strong>in</strong>nenvaart. Alleen onder een aantal specifieke<br />

voorwaarden kan nu toch een vergunn<strong>in</strong>g verkregen worden (via de CCNR). Hier moet dus<br />

nog nieuwe wet- en regelgev<strong>in</strong>g voor worden ontworpen.<br />

Voor LNG scheepvaart dieper <strong>in</strong> Europa (bijvoorbeeld op de Donau) is dit een extra<br />

probleem omdat deze nu nog ver verwijderd zijn van de LNG term<strong>in</strong>als aan de kust en het<br />

dus moeilijker is om de brandstof daar naartoe te krijgen.<br />

Marktontwikkel<strong>in</strong>g LNG <strong>sector</strong><br />

De toename van het aantal LNG term<strong>in</strong>als <strong>in</strong> Europa en de rest van de wereld zal ervoor<br />

zorgen dat er een constante en betrouwbare lever<strong>in</strong>g komt van LNG als <strong>transport</strong>brandstof.<br />

LNG biedt de beste kansen om de voorraden aardgas de wereld zo goed mogelijk te<br />

benutten en te verspreiden. Bovendien geniet LNG ontwikkel<strong>in</strong>g overheidssteun <strong>in</strong> veel<br />

landen.<br />

3. CONCLUSIE<br />

De wereld staat aan de vooravond van grote verander<strong>in</strong>gen <strong>in</strong> de energievoorzien<strong>in</strong>g. De<br />

verwacht<strong>in</strong>g is dat aardgas hier<strong>in</strong> de komende jaren een steeds grotere rol <strong>in</strong> gaat spelen.<br />

Vooral het gebruik van aardgas <strong>in</strong> te <strong>transport</strong><strong>sector</strong>, ter vervang<strong>in</strong>g van diesel, lijkt <strong>in</strong><br />

opmars te komen. In 2035 zal naar verwacht<strong>in</strong>g bijna 40 % van het diesel gebruik <strong>in</strong> zwaar<br />

<strong>transport</strong> zijn vervangen door aardgas. Aardgas zal steeds meer over de wereld verspreid<br />

gaan worden via LNG tankers. Het gebruik van LNG <strong>in</strong> vrachtvervoer biedt eigenlijk 3<br />

voordelen:<br />

1. milieuvoordelen m.b.t. uitstoot van schadelijke gassen/stoffen;<br />

2. kosten voordelen (LNG is goedkoper dan diesel aan de pomp);


3. betrouwbaarheid (aardasbronnen zijn er nog <strong>in</strong> overvloed en zijn goed verspreid over<br />

de wereld.<br />

De <strong>in</strong>troductie van hernieuwbaar bio-LNG <strong>in</strong> deze markt biedt zo mogelijk nog grotere<br />

milieuvoordelen, met name wat betreft de uitstoot van CO2.<br />

Voor de succesvolle <strong>in</strong>troductie van LNG (en later bio-LNG) als brandstof <strong>in</strong> het<br />

vrachtvervoer en de scheepvaart zijn er een aantal hordes die nog genomen moeten<br />

worden.<br />

- Er moeten standaarden worden ontwikkeld voor LNG vulstations en vul methodes voor<br />

LNG tanks.<br />

- Voor de scheepvaart moet wet- en regelgev<strong>in</strong>g worden aangepast om varen op LNG<br />

mogelijk te maken op de b<strong>in</strong>nenvaart.<br />

- Er zal een strategisch netwerk van LNG vulstations uitgerold moeten worden om de<br />

bedrijfszekerheid van vervoersbedrijven niet <strong>in</strong> gevaar te brengen (Europe LNG Blue<br />

Corridors).<br />

- Er zal een netwerk van LNG term<strong>in</strong>als moeten komen om ook de b<strong>in</strong>nenvaart de<br />

voorzien van LNG. In deze term<strong>in</strong>als zou bijvoorbeeld ook bio-LNG kunnen worden<br />

bijgemengd.<br />

- In Nederland moet de scheve verhoud<strong>in</strong>g tussen de accijns op CNG en LNG worden<br />

opgeheven. Dit houd ook mede de productie van bio-LNG tegen.<br />

- Er moet praktijkervar<strong>in</strong>g worden opgegaan met het rijden op LNG om zo de voor- en<br />

nadelen goed op een rij te krijgen. Meer <strong>in</strong>formatie zal bedrijven stimuleren om over te<br />

stappen naar LNG dan wel bio-LNG.<br />

- Op het gebied van bio-LNG is nog vrij we<strong>in</strong>ig bekend/onderzocht, anders dan de<br />

milieuvoordelen die dit levert. Dit is dan ook onderwerp van mijn huidige<br />

afstudeeronderzoek. Huidige marktontwikkel<strong>in</strong>gen richten zich eigenlijk meer op LNG.<br />

Bio-LNG wordt er dan vaak bijgezet om het verhaal aantrekkelijker te laten kl<strong>in</strong>ken.<br />

Als laatste toevoeg<strong>in</strong>g staat <strong>in</strong> Afbeeld<strong>in</strong>g 3 nog een plaatje van de verspreid<strong>in</strong>g van LNG<br />

tankstations <strong>in</strong> Europa.


Afbeeld<strong>in</strong>g 3. LNG tankstations <strong>in</strong> Europa *<br />

* Zwarte driehoekjes zijn operationele stations en witte driehoekjes zijn geplande stations.


APPENDIX VI OVERVIEW OF THE CURRENT ACTIVE STAKEHOLDERS IN THE<br />

INDUSTRY


Table VI.1. Overview stakeholders LNG/LBM <strong>in</strong>dustry<br />

company/organisation description<br />

production<br />

Gasrec production of LBM <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom<br />

Fluxys LNG term<strong>in</strong>al <strong>in</strong> Zeebrugge<br />

Gate term<strong>in</strong>al LNG term<strong>in</strong>al <strong>in</strong> Rotterdam<br />

distribution<br />

Rolande LCNG supplier of LBM and LNG and fill<strong>in</strong>g stations<br />

LNG24 Clean Fuel supplier of LBM and LNG and fill<strong>in</strong>g stations<br />

LNG Europe supplier of LBM and LNG and fill<strong>in</strong>g stations<br />

Orangegas realisation of fill<strong>in</strong>g po<strong>in</strong>t for green gas fuel<br />

technology<br />

Westport eng<strong>in</strong>e technology for LNG and LBM for truck and ship applications<br />

Clean Air Power dual-fuel retrofit technology for trucks<br />

Cryostar deliverer of pump systems and liquefaction and degasification facilities<br />

Ballast Nedam LNG fill<strong>in</strong>g stations<br />

Vanzetti eng<strong>in</strong>eer<strong>in</strong>g technology for LNG fill<strong>in</strong>g stations<br />

Emerson Process Management measurement and dispens<strong>in</strong>g systems for LNG<br />

Peters Shipyards construction LNG ship<br />

Volvo Trucks supplier of methane-diesel technology<br />

Mercedes s<strong>in</strong>gle fuel LNG eng<strong>in</strong>e technology<br />

Iveco s<strong>in</strong>gle fuel LNG eng<strong>in</strong>e technology<br />

Man s<strong>in</strong>gle fuel LNG eng<strong>in</strong>e technology<br />

Cryonorm systems vaporisation systems for cryogenic <strong>liquid</strong>s<br />

end-users<br />

Vos Logistics operat<strong>in</strong>g trucks on LNG<br />

Boe<strong>in</strong>g operat<strong>in</strong>g trucks on LNG<br />

Jumbo operat<strong>in</strong>g trucks on LNG<br />

Peter Appel operat<strong>in</strong>g trucks on LNG<br />

Portena Logistics operat<strong>in</strong>g trucks on LNG<br />

research<br />

Kiwa regulations regard<strong>in</strong>g LBM/LNG<br />

Ecofys consultancy firm renewable energy<br />

TÜV Saarland regulations regard<strong>in</strong>g LBM/LNG<br />

AgentschapNL advice and support for government policy<br />

Holland Innovation Team research regard<strong>in</strong>g LNG and LBM<br />

advocacies and governments<br />

NGVA Europe organisation represent<strong>in</strong>g <strong>the</strong> <strong>in</strong>terests of <strong>the</strong> natural gas vehicle <strong>in</strong>dustry<br />

NGV Global new for <strong>the</strong> natural gas vehicle <strong>in</strong>dustry<br />

NGV Holland stimulat<strong>in</strong>g <strong>the</strong> usage of natural gas and biogas <strong>in</strong> <strong>transport</strong> for <strong>the</strong> Ne<strong>the</strong>rlands<br />

GIE represent<strong>in</strong>g <strong>the</strong> <strong>in</strong>frastructure <strong>in</strong>dustry of natural gas<br />

CCNR represent<strong>in</strong>g <strong>the</strong> <strong>in</strong>terests of <strong>in</strong>land shipp<strong>in</strong>g <strong>in</strong> Europe<br />

pro Danube stimulat<strong>in</strong>g logistics on <strong>the</strong> Danube<br />

LNG TR&D cluster<strong>in</strong>g of knowledge and expertise on <strong>the</strong> LNG cha<strong>in</strong><br />

European Union <strong>in</strong>terested <strong>in</strong> <strong>in</strong>troduc<strong>in</strong>g LNG and LBM as <strong>transport</strong> fuel<br />

<strong>Dutch</strong> Government <strong>in</strong>terested <strong>in</strong> <strong>in</strong>troduc<strong>in</strong>g LNG and LBM as <strong>transport</strong> fuel<br />

Prov<strong>in</strong>ce of Overijssel <strong>in</strong>terested <strong>in</strong> <strong>in</strong>troduc<strong>in</strong>g LNG and LBM as <strong>transport</strong> fuel<br />

Energy Valley development energy and susta<strong>in</strong>able energy <strong>in</strong> <strong>the</strong> north of <strong>the</strong> Ne<strong>the</strong>rlands

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!