14.07.2013 Views

The role of large scale energy storage systems in the electricity grid ...

The role of large scale energy storage systems in the electricity grid ...

The role of large scale energy storage systems in the electricity grid ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

University <strong>of</strong> Gron<strong>in</strong>gen<br />

CIO, Center for Isotope Research<br />

IVEM, Center for Energy and Environmental Studies<br />

Master Programme Energy and Environmental Sciences<br />

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong><br />

<strong>systems</strong> <strong>in</strong> <strong>the</strong> <strong>electricity</strong> <strong>grid</strong> <strong>of</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands <strong>in</strong> 2050<br />

Mart<strong>in</strong> Velthuis<br />

EES 2012-136 T


Tra<strong>in</strong><strong>in</strong>g report <strong>of</strong> Mart<strong>in</strong> Velthuis<br />

Supervised by: Dr. R.M.J. Benders (IVEM)<br />

Pr<strong>of</strong>.dr. F.A. de Bruijn (ESRIG)<br />

University <strong>of</strong> Gron<strong>in</strong>gen<br />

CIO, Center for Isotope Research<br />

IVEM, Center for Energy and Environmental Studies<br />

Nijenborgh 4<br />

9747 AG Gron<strong>in</strong>gen<br />

<strong>The</strong> Ne<strong>the</strong>rlands<br />

http://www.rug.nl/fmns-research/cio<br />

http://www.rug.nl/fmns-research/ivem


TABLE OF CONTENTS<br />

Samenvatt<strong>in</strong>g ................................................................................................................... 3<br />

Summary .......................................................................................................................... 5<br />

1 Introduction ............................................................................................................... 7<br />

1.1 Problem def<strong>in</strong>ition .......................................................................................................... 7<br />

1.2 Research aim .................................................................................................................. 8<br />

1.3 Ma<strong>in</strong> research question ................................................................................................... 8<br />

1.4 Sub questions .................................................................................................................. 8<br />

1.5 Methodology................................................................................................................... 8<br />

2 Potential renewable resources ................................................................................ 11<br />

2.1 W<strong>in</strong>d <strong>energy</strong> ................................................................................................................. 12<br />

2.2 Solar photovoltaic ......................................................................................................... 14<br />

2.3 Biomass ........................................................................................................................ 15<br />

3 Variability ................................................................................................................ 17<br />

3.1 W<strong>in</strong>d <strong>energy</strong> ................................................................................................................. 17<br />

3.2 Solar photovoltaic ......................................................................................................... 18<br />

3.3 Demand ........................................................................................................................ 18<br />

4 Future <strong>electricity</strong> mix .............................................................................................. 21<br />

5 Large <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> ..................................................................................... 23<br />

5.1 Pumped Hydro Storage or Energy Island ..................................................................... 23<br />

5.2 Compressed Air Energy Storage .................................................................................. 25<br />

5.3 Flow Battery Energy Storage (FBES) .......................................................................... 26<br />

6 GoldSim Model ........................................................................................................ 29<br />

7 GoldSim Results ...................................................................................................... 33<br />

7.1 Storage demand ............................................................................................................ 33<br />

7.2 Scenarios....................................................................................................................... 34<br />

8 Conclusion, discussion and Fur<strong>the</strong>r Research ...................................................... 39<br />

8.1 Conclusion .................................................................................................................... 39<br />

8.2 Discussion..................................................................................................................... 40<br />

8.3 F<strong>in</strong>al conclusion............................................................................................................ 41<br />

8.4 Fur<strong>the</strong>r research ............................................................................................................ 41<br />

Literature ....................................................................................................................... 43<br />

Appendix 1 – Powerplan scenarios .............................................................................. 47<br />

Appendix 2 – O<strong>the</strong>r Energy Storage Technologies .................................................... 55<br />

Appendix 3 – ESS model .............................................................................................. 57<br />

Appendix 4 – Storage demand ..................................................................................... 59<br />

Appendix 5 – ESS scenarios ......................................................................................... 63


SAMENVATTING<br />

De verbrand<strong>in</strong>g van fossiele brandst<strong>of</strong>fen voor elektriciteitsproductie heeft een wereldwijde impact op<br />

het milieu. Ook zullen de fossiele brandst<strong>of</strong>fen <strong>in</strong> deze <strong>of</strong> volgende eeuw opraken. Dit is de reden<br />

voor het toenemende gebruik van hernieuwbare energiebronnen. Het kan verwacht worden dat dit<br />

doorzet <strong>in</strong> de toekomst, vanwege de Europese doelstell<strong>in</strong>g die gesteld is om bijna 100% hernieuwbare<br />

energie <strong>in</strong> de elektriciteitsproductie te hebben <strong>in</strong> 2050.<br />

Het probleem met de elektriciteitsproductie van hernieuwbare energiebronnen is het verschil<br />

tussen vraag en aanbod. Het waait niet altijd op een w<strong>in</strong>dpark en de zon schijnt niet elke dag de hele<br />

dag op zonnepanelen. Dit kan variëren van m<strong>in</strong>uten tot seizoenen.<br />

Eén van de mogelijkheden om met dit probleem om te gaan is het (<strong>in</strong>)direct opslaan van de<br />

elektriciteit <strong>in</strong> een energieopslagvoorzien<strong>in</strong>g wanneer de elektriciteitsproductie hoger is dan de vraag.<br />

Wanneer de productie lager ligt dan de vraag, dan kan de opgeslagen energie gebruikt worden voor<br />

het leveren van elektriciteit.<br />

De ho<strong>of</strong>dvraag <strong>in</strong> dit onderzoek is:<br />

In hoeverre kunnen grootschalige energieopslagsystemen een rol spelen <strong>in</strong> het Nederlandse elektriciteitsnet<br />

om het verschil <strong>in</strong> de elektriciteitsvraag en elektriciteitsproductie van hernieuwbare bronnen<br />

op te vangen om zo de Europese doelstell<strong>in</strong>gen te halen <strong>in</strong> 2050?<br />

Uit literatuuronderzoek blijkt dat <strong>in</strong> grotere mate w<strong>in</strong>d op land en op zee en <strong>in</strong> m<strong>in</strong>dere mate zon fotovoltaïsch<br />

en biomassa de meest potentiële hernieuwbare bronnen zijn voor elektriciteitsproductie <strong>in</strong><br />

Nederland. Een patroon van de elektriciteitsproductie van w<strong>in</strong>d en van de elektriciteitsvraag met<br />

chronologische tijd <strong>in</strong>tervallen van 1 uur over een heel jaar zijn gebruikt <strong>in</strong> het simulatieprogramma<br />

PowerPlan. PowerPlan is gebruikt om de Nederlandse elektriciteitsvraag en –aanbod tot 2050 te genereren,<br />

waar<strong>in</strong> de Europese doelstell<strong>in</strong>g wordt gehaald.<br />

De chronologische uurpatronen van de elektriciteitsvraag en –aanbod <strong>in</strong> 2050 zijn gebruikt als<br />

<strong>in</strong>put voor een model die gemaakt is met GoldSim. In dit model worden de elektriciteitsoverschotten<br />

en tekorten berekend en wordt er gekeken <strong>in</strong> hoeverre opslagsystemen deze onbalans kunnen opvangen.<br />

Hiervoor zijn er vijf energieopslagsystemen gemodelleerd die met een literatuuronderzoek als<br />

meest geschikt voor grootschalige toepass<strong>in</strong>g <strong>in</strong> Nederland zijn bevonden. Dit zijn: Energie Eiland<br />

(een valmeer <strong>in</strong> de Noordzee), gecomprimeerde lucht (CAES, Crompressed Air Energy Storage) en<br />

drie soorten vloeist<strong>of</strong>accu’s.<br />

Uit de resultaten blijkt dat de totale elektriciteitstekort over 2050 6,4 TWh is. Om dit op te<br />

vangen is een opslagcapaciteit van 1,2 TWh nodig. Het vermogen dat de opslagsystemen nodig hebben<br />

zijn voor het opladen 10,3 GW en voor het ontladen 8,5 GW.<br />

Om een technisch betrouwbaar elektriciteitsnet te hebben <strong>in</strong> 2050, zijn er 40 Energie Eilanden,<br />

140 CAES systemen <strong>of</strong> 10.000 vloeist<strong>of</strong>accu’s nodig. Deze scenario’s zijn niet praktisch vanwege<br />

de benodigde ruimte en locaties. Een meer praktische scenario is een comb<strong>in</strong>atie van 2 Energie<br />

Eilanden, 20 CAES systemen en 100 van elk type vloeist<strong>of</strong>accu, maar dit scenario is dan niet technisch<br />

betrouwbaar. De enige economisch aantrekkelijke scenario’s zijn de technisch betrouwbare<br />

scenario met 140 CAES systemen en het praktische scenario zonder vloeist<strong>of</strong>accu’s. Maar deze zijn<br />

respectievelijk niet praktisch <strong>of</strong> technisch betrouwbaar.<br />

De ho<strong>of</strong>dconclusies van dit onderzoek zijn:<br />

Grootschalige energieopslagsystemen op het Nederlandse elektriciteitsnet kunnen technisch het verschil<br />

tussen elektriciteitsvraag en elektriciteitsproductie van hernieuwbare bronnen voor 100% opvangen<br />

om de Europese doelstell<strong>in</strong>g te halen <strong>in</strong> 2050, maar dit is niet praktisch door de benodigde ruimte<br />

en onder andere daardoor ook niet economisch aantrekkelijk.<br />

Uit de resultaten blijkt ook dat met 150 GWh opslagcapaciteit (12,5% van de 1,2 TWh dat<br />

nodig is) al de helft van het elektriciteitstekort opgevangen kan worden. Dit kan gedaan worden met 1<br />

Energie Eiland en 20 CAES systemen. Voor de andere helft is dus nog 1,05 TWh meer nodig. Deze<br />

zou opgevangen kunnen worden met andere alternatieven. Zoals het <strong>in</strong>zetten van gascentrales. Dit is<br />

economisch aantrekkelijk, maar dan wordt de Europese doelstell<strong>in</strong>g voor 2050 niet gehaald. Een ander<br />

alternatief is gebruik maken van een Europees elektriciteitsnetwerk.<br />

3


SUMMARY<br />

<strong>The</strong> burn<strong>in</strong>g <strong>of</strong> <strong>the</strong> fossil fuels for <strong>electricity</strong> generation has an environmental impact on a global<br />

<strong>scale</strong>. Also, <strong>the</strong> world is go<strong>in</strong>g to be runn<strong>in</strong>g out <strong>of</strong> <strong>the</strong> fossil fuels before or with<strong>in</strong> <strong>the</strong> next century.<br />

This is <strong>the</strong> reason why renewable <strong>energy</strong> sources are used more <strong>of</strong>ten. <strong>The</strong> growth <strong>of</strong> renewable <strong>energy</strong><br />

can be expected to cont<strong>in</strong>ue, because <strong>of</strong> <strong>the</strong> European targets which are set for future share <strong>of</strong> renewable<br />

<strong>energy</strong> <strong>of</strong> almost 100% <strong>in</strong> 2050.<br />

<strong>The</strong> problem with <strong>the</strong> <strong>electricity</strong> production from renewable sources is <strong>the</strong> mismatch between<br />

demand and supply. W<strong>in</strong>d is not always available at a w<strong>in</strong>d park and <strong>the</strong> sun does not always sh<strong>in</strong>e all<br />

day and every day on solar panels. This can vary from m<strong>in</strong>utes to seasons.<br />

One <strong>of</strong> <strong>the</strong> potential possibilities to cope with this problem is to store <strong>the</strong> <strong>electricity</strong> directly or<br />

<strong>in</strong>directly <strong>in</strong> an <strong>energy</strong> <strong>storage</strong> facility dur<strong>in</strong>g <strong>the</strong> time when <strong>the</strong> <strong>electricity</strong> production is higher than<br />

<strong>the</strong> <strong>electricity</strong> demand. When <strong>the</strong> <strong>electricity</strong> production is lower than <strong>the</strong> <strong>electricity</strong> demand, <strong>the</strong><br />

stored <strong>electricity</strong> is supplied to <strong>the</strong> <strong>electricity</strong> <strong>grid</strong>.<br />

<strong>The</strong> ma<strong>in</strong> research question <strong>in</strong> this research is:<br />

To which extend can be <strong>the</strong> <strong>role</strong> <strong>of</strong> <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> to<br />

<strong>in</strong>tercept <strong>the</strong> mismatch between <strong>the</strong> <strong>electricity</strong> demand and <strong>the</strong> <strong>electricity</strong> production from renewable<br />

sources to meet <strong>the</strong> European targets <strong>in</strong> 2050?<br />

Literature research shows that w<strong>in</strong>d onshore and <strong>of</strong>fshore, and fewer solar photovoltaic and biomass,<br />

are <strong>the</strong> most potential renewable <strong>energy</strong> sources for <strong>electricity</strong> production <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Data<br />

patterns <strong>of</strong> <strong>the</strong> w<strong>in</strong>d <strong>electricity</strong> production and <strong>electricity</strong> demand with chronological time <strong>in</strong>tervals <strong>of</strong><br />

1 hour over a whole year are used <strong>in</strong> <strong>the</strong> simulation program PowerPlan. PowerPlan is used to generate<br />

<strong>the</strong> Dutch <strong>electricity</strong> demand and production till 2050, where <strong>the</strong> European target is met.<br />

<strong>The</strong> chronological hourly patterns <strong>of</strong> <strong>the</strong> total <strong>electricity</strong> demand and production <strong>in</strong> 2050 are<br />

used as <strong>in</strong>put for <strong>the</strong> model made with GoldSim. This model is used to calculate <strong>the</strong> <strong>electricity</strong> surplus<br />

and shortage and to see to which extend <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> can dissolve <strong>the</strong> mismatch. For this,<br />

five <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> are <strong>in</strong>cluded, which are considered from a literature study as <strong>the</strong> best <strong>storage</strong><br />

<strong>systems</strong> for <strong>large</strong> <strong>scale</strong> use. <strong>The</strong>se are: an <strong>energy</strong> island (<strong>in</strong>verted pumped hydro <strong>storage</strong> on <strong>the</strong><br />

North Sea), Compressed Air Energy Storage (CAES) and three k<strong>in</strong>ds <strong>of</strong> Flow Battery Energy Storage<br />

(FBES).<br />

<strong>The</strong> results show that <strong>the</strong> total <strong>electricity</strong> shortage over 2050 is 6.4 TWh. An <strong>energy</strong> capacity<br />

<strong>of</strong> 1.2 TWh from <strong>the</strong> <strong>storage</strong> <strong>systems</strong> is needed to dissolve this <strong>electricity</strong> shortage. <strong>The</strong> needed power<br />

capacity <strong>of</strong> <strong>the</strong> <strong>storage</strong> <strong>systems</strong> is 10.3 GW for charg<strong>in</strong>g and 8.5 GW for discharg<strong>in</strong>g.<br />

To have a technical reliable Dutch <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> 2050, 40 Energy Islands, 140 CAES <strong>systems</strong><br />

or 10,000 PSB <strong>systems</strong> are needed. <strong>The</strong>se scenarios are not very practical, because <strong>of</strong> <strong>the</strong> required<br />

space and locations. A more practical scenario is a comb<strong>in</strong>ation <strong>of</strong> 2 Energy Islands, 20 CAES<br />

<strong>systems</strong> and 100 <strong>of</strong> each type Flow Battery Energy Storage, but this scenario is not technical reliable.<br />

<strong>The</strong> only economical attractive scenarios are <strong>the</strong> technical reliable scenario with140 CAES <strong>systems</strong><br />

and <strong>the</strong> practical scenario without FBES <strong>systems</strong>, but <strong>the</strong>se are respectively not practical and not<br />

technical reliable.<br />

<strong>The</strong> ma<strong>in</strong> conclusion <strong>of</strong> this research is:<br />

Large <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> can technically <strong>in</strong>tercept <strong>the</strong> mismatch<br />

between <strong>the</strong> <strong>electricity</strong> demand and <strong>the</strong> <strong>electricity</strong> production from renewable sources for 100%<br />

to meet <strong>the</strong> European targets <strong>in</strong> 2050, but this is not practical through <strong>the</strong> needed space and not economical<br />

attractive.<br />

<strong>The</strong> results also show that 150 GWh <strong>storage</strong> capacity (12.5% <strong>of</strong> <strong>the</strong> 1.2 TWh needed <strong>storage</strong><br />

capacity) dissolves 50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage. This can be done by 1 Energy Island and 20 CAES<br />

<strong>systems</strong>. For <strong>the</strong> o<strong>the</strong>r 50%, 1.05 TWh more capacity is needed. This could be dissolved with <strong>the</strong> use<br />

<strong>of</strong> o<strong>the</strong>r alternatives, for example <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> gas turb<strong>in</strong>es. This is economical attractive, but<br />

<strong>the</strong>n <strong>the</strong> European target for 2050 is not met. Ano<strong>the</strong>r alternative is <strong>the</strong> use <strong>of</strong> an European <strong>electricity</strong><br />

<strong>grid</strong>.<br />

5


1 INTRODUCTION<br />

S<strong>in</strong>ce <strong>the</strong> middle <strong>of</strong> <strong>the</strong> 20 th century <strong>the</strong> consumption <strong>of</strong> <strong>the</strong> <strong>energy</strong> has <strong>in</strong>creased <strong>in</strong>tensely worldwide<br />

from 3,813 million tones oil equivalent (toe) <strong>in</strong> 1965 to 11,164 million toe <strong>in</strong> 2009 (BP, 2010). That is<br />

an <strong>in</strong>crease <strong>of</strong> 293% <strong>in</strong> 44 years. This <strong>in</strong>crease is predicted to cont<strong>in</strong>ue <strong>in</strong> <strong>the</strong> future to 16,432 million<br />

toe <strong>in</strong> 2030 (BP, 2011). Electricity has a share <strong>of</strong> 17.3% <strong>of</strong> <strong>the</strong> world’s f<strong>in</strong>al <strong>energy</strong> consumption<br />

(21,6% <strong>in</strong> <strong>the</strong> OECD), distributed to consumers for lightn<strong>in</strong>g, runn<strong>in</strong>g appliances, air condition<strong>in</strong>g,<br />

heat<strong>in</strong>g, etc. This <strong>electricity</strong> is generated at different types <strong>of</strong> electrical power plants (McK<strong>in</strong>ney et al.,<br />

2007; OECD/IEA, 2011b).<br />

In 2008, <strong>the</strong> Ne<strong>the</strong>rlands produced almost 108 TWh <strong>electricity</strong>, where 85.7% was generated<br />

from fossil fuels (coal, oil and natural gas), 10.3 % from renewable sources (w<strong>in</strong>d, solar PV, biomass,<br />

waste and hydro), 3.8% from nuclear and 0.2% from o<strong>the</strong>r sources (OECD/IEA, 2011a).<br />

Currently <strong>the</strong> fossil fuels (specifically natural gas and coal) are <strong>the</strong> primary sources <strong>of</strong> generat<strong>in</strong>g<br />

<strong>electricity</strong>, because fossil fuels have been available <strong>in</strong> a plentiful supply that was easy to m<strong>in</strong>e.<br />

<strong>The</strong>y provide a form <strong>of</strong> concentrated <strong>energy</strong> that can be easily stored, transported and combusted. <strong>The</strong><br />

burn<strong>in</strong>g <strong>of</strong> coal and natural gas have an impact on a global <strong>scale</strong> and causes global warm<strong>in</strong>g, acid ra<strong>in</strong>,<br />

air pollution, water pollution and damage to <strong>the</strong> surface <strong>of</strong> <strong>the</strong> land as a result <strong>of</strong> m<strong>in</strong><strong>in</strong>g and drill<strong>in</strong>g<br />

activities (especially <strong>in</strong> <strong>the</strong> case <strong>of</strong> strip-m<strong>in</strong><strong>in</strong>g for coal). Beside <strong>of</strong> <strong>the</strong>se environmental impacts it is<br />

also <strong>the</strong> case that <strong>the</strong> world is go<strong>in</strong>g to be runn<strong>in</strong>g out <strong>of</strong> <strong>the</strong>se fossil fuels before or with<strong>in</strong> <strong>the</strong> next<br />

century. (McK<strong>in</strong>ney et al., 2007)<br />

Because <strong>of</strong> <strong>the</strong> environmental impacts related to <strong>the</strong> burn<strong>in</strong>g and <strong>the</strong> limited stock <strong>of</strong> <strong>the</strong> fossil<br />

fuels, renewable <strong>energy</strong> sources are used more <strong>of</strong>ten (McK<strong>in</strong>ney et al., 2007). <strong>The</strong> growth <strong>of</strong> renewable<br />

<strong>energy</strong> can be expected to cont<strong>in</strong>ue, because <strong>of</strong> <strong>the</strong> European targets which are set for future share<br />

<strong>of</strong> renewable <strong>energy</strong> <strong>of</strong> 20% <strong>in</strong> 2020 and almost 100% <strong>in</strong> 2050 (European Commission, 2011). <strong>The</strong><br />

target <strong>of</strong> <strong>the</strong> Dutch government is to have 14% renewable <strong>energy</strong> <strong>in</strong> 2020 (M<strong>in</strong>isterie van Economische<br />

Zaken, Landbouw & Innovatie, 2011). <strong>The</strong>re is no target set <strong>in</strong> <strong>the</strong> share <strong>of</strong> <strong>electricity</strong> from<br />

renewable sources by <strong>the</strong> Dutch government and <strong>the</strong>re are no targets set for 2050.<br />

1.1 Problem def<strong>in</strong>ition<br />

<strong>The</strong> problem with <strong>the</strong> <strong>electricity</strong> production from renewable sources is <strong>the</strong> mismatch between demand<br />

and supply.<br />

Demand-side:<br />

<strong>The</strong> <strong>electricity</strong> demand is not always <strong>the</strong> same and can differ from hours to seasons. Dur<strong>in</strong>g <strong>the</strong> day<br />

<strong>the</strong> <strong>electricity</strong> demand is higher than dur<strong>in</strong>g <strong>the</strong> night and peaks <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter due to <strong>the</strong> <strong>in</strong>creased<br />

light<strong>in</strong>g demand, heat<strong>in</strong>g demand and higher average economic activity (due to holidays <strong>in</strong> <strong>the</strong> summer)<br />

(Hekkenberg et al., 2009).<br />

Supply-side:<br />

A problem with <strong>the</strong> renewable sources is that <strong>the</strong>y cannot produce <strong>electricity</strong> on demand. <strong>The</strong> w<strong>in</strong>d<br />

will not always blow at a w<strong>in</strong>d park, <strong>the</strong> sun does not always sh<strong>in</strong>e all day on solar panels (dur<strong>in</strong>g<br />

nights and cloudy days) and <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> sunlight varies over <strong>the</strong> year (McK<strong>in</strong>ney et al., 2007). <strong>The</strong><br />

variability <strong>of</strong> <strong>the</strong> renewable sources occurs on different time <strong>scale</strong>s from m<strong>in</strong>utes to seasons (Beaud<strong>in</strong><br />

et al., 2010).<br />

<strong>The</strong> variability <strong>of</strong> <strong>the</strong> <strong>electricity</strong> demand and <strong>the</strong> renewable sources causes <strong>the</strong> mismatch between<br />

<strong>electricity</strong> demand and supply <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong>. Currently this is managed by <strong>the</strong><br />

use <strong>of</strong> gas power plants (Ummels et al., 2008), but this will be problematic when <strong>electricity</strong> from renewable<br />

sources have a <strong>large</strong>r share <strong>in</strong> <strong>the</strong> <strong>electricity</strong> mix (Ibrahim et al., 2008). Nuclear- and coal<br />

power plants are power plants which have to run at full capacity or are highly <strong>in</strong>efficient at a lower<br />

capacity and it is not possible to turn <strong>the</strong>se power plants <strong>of</strong>f and on <strong>in</strong> a short time (McK<strong>in</strong>ney et al.,<br />

2007). Because <strong>of</strong> <strong>the</strong>se characteristics <strong>of</strong> <strong>the</strong>se power plants, <strong>the</strong> <strong>electricity</strong> from renewable sources<br />

will be dumped when <strong>the</strong> production <strong>of</strong> <strong>electricity</strong> is higher than <strong>the</strong> <strong>electricity</strong> demand<br />

One <strong>of</strong> <strong>the</strong> potential possibilities to cope with this problem is to store <strong>the</strong> <strong>electricity</strong> directly or<br />

<strong>in</strong>directly <strong>in</strong> an <strong>energy</strong> <strong>storage</strong> facility dur<strong>in</strong>g <strong>the</strong> time when <strong>the</strong> <strong>electricity</strong> production is higher than<br />

7


<strong>the</strong> <strong>electricity</strong> demand. This <strong>energy</strong> can be discharged, when <strong>the</strong> <strong>electricity</strong> production is lower than<br />

<strong>the</strong> <strong>electricity</strong> demand. (Beaud<strong>in</strong> et al., 2010; Chen et al., 2009)<br />

1.2 Research aim<br />

<strong>The</strong> aim <strong>of</strong> <strong>the</strong> research is to have a share <strong>of</strong> reliable <strong>electricity</strong> from renewable sources <strong>of</strong> almost<br />

100% <strong>in</strong> 2050 <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> by us<strong>in</strong>g <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>. <strong>The</strong> European<br />

targets are chosen as <strong>the</strong> research aim, because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> clear targets by <strong>the</strong> Dutch government.<br />

1.3 Ma<strong>in</strong> research question<br />

<strong>The</strong> ma<strong>in</strong> research question for this research is:<br />

What can <strong>the</strong> <strong>role</strong> <strong>of</strong> <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> be <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> to <strong>in</strong>tercept<br />

<strong>the</strong> mismatch between <strong>the</strong> <strong>electricity</strong> demand and <strong>the</strong> <strong>electricity</strong> production from renewable sources to<br />

meet <strong>the</strong> European target <strong>in</strong> 2050?<br />

1.4 Sub questions<br />

To answer <strong>the</strong> ma<strong>in</strong> research question, six sub questions are formulated:<br />

1. Which <strong>of</strong> <strong>the</strong> renewable sources have a certa<strong>in</strong> potential <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> 2050?<br />

2. What is <strong>the</strong> variability <strong>of</strong> <strong>the</strong> renewable sources <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands?<br />

3. How variable is <strong>the</strong> <strong>electricity</strong> demand <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands?<br />

4. What will <strong>the</strong> <strong>electricity</strong> mix be <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> 2050?<br />

5. What is <strong>the</strong> <strong>storage</strong> demand <strong>in</strong> 2050 and which <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> are suitable<br />

for <strong>the</strong> Ne<strong>the</strong>rlands to fulfill <strong>the</strong> <strong>storage</strong> demand?<br />

6. What is <strong>the</strong> most economical, practical and technical reliable scenario for <strong>the</strong> Dutch <strong>electricity</strong><br />

<strong>grid</strong> with <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong>stalled?<br />

1.5 Methodology<br />

A schematic overview <strong>of</strong> <strong>the</strong> methodology is shown <strong>in</strong><br />

Figure 1.<br />

For <strong>the</strong> first sub question, literature is used to determ<strong>in</strong>e which renewable sources are relevant<br />

for <strong>the</strong> research. Results <strong>of</strong> this literature study are <strong>in</strong> chapter 2. In this way, <strong>the</strong> amount <strong>of</strong> renewable<br />

sources to study for sub question two can be limited.<br />

To answer sub question two and three, data is collected from literature about <strong>the</strong> hourly variability<br />

<strong>of</strong> <strong>the</strong> determ<strong>in</strong>ed renewable sources and hourly <strong>electricity</strong> demand (chapter 3).<br />

For <strong>the</strong> fourth sub question <strong>the</strong> computer program PowerPlan is used (chapter 4). This is an<br />

<strong>in</strong>teractive simulation model that plans <strong>the</strong> <strong>electricity</strong> supply <strong>of</strong> a country for several decades. This<br />

program calculates with patterns <strong>of</strong> hourly data <strong>of</strong> <strong>electricity</strong> production from renewable sources and<br />

<strong>electricity</strong> demand. With this program several scenarios for <strong>the</strong> Ne<strong>the</strong>rlands till 2050 are generated:<br />

Bus<strong>in</strong>ess as Usual (BaU), European target (95% RS), 95% RS +gas and five scenarios with different<br />

shares <strong>of</strong> w<strong>in</strong>d <strong>of</strong>fshore.<br />

With <strong>the</strong> results from sub questions two, three and four <strong>the</strong> hourly <strong>storage</strong> demand is determ<strong>in</strong>ed.<br />

In this way it is determ<strong>in</strong>ed which <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> are suitable for <strong>the</strong> Ne<strong>the</strong>rlands<br />

to cope with <strong>the</strong> mismatch between <strong>electricity</strong> demand and supply (chapter 5).<br />

All <strong>the</strong> data from <strong>the</strong> first five sub questions are used to make a model <strong>of</strong> <strong>the</strong> Dutch <strong>electricity</strong><br />

<strong>grid</strong> <strong>in</strong> <strong>the</strong> computer program GoldSim (chapter 6). GoldSim is a simulation program for dynamically<br />

model<strong>in</strong>g complex <strong>systems</strong>. With this model several scenarios for sub question six are generated<br />

(chapter 7). A conclusion and an answer to <strong>the</strong> research question are done <strong>in</strong> chapter 8, with some<br />

discussion po<strong>in</strong>ts and recommendations for fur<strong>the</strong>r research.<br />

8


Potential Renewable Sources<br />

Variability Renewable Sources PowerPlan<br />

Variability Electricity Demand<br />

Energy Storage Systems<br />

Figure 1 - Schematic overview <strong>of</strong> methodology<br />

GoldSim model<br />

Economical, technical reliable and practical<br />

scenarios<br />

Electricity mix scenarios 2050<br />

Electricity supply and demand patterns<br />

9


2 POTENTIAL RENEWABLE RESOURCES<br />

To determ<strong>in</strong>e <strong>the</strong> <strong>electricity</strong> production <strong>in</strong> <strong>the</strong> future, it is needed to know which potential renewable<br />

resources are available <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Table 1 gives an overview <strong>of</strong> <strong>energy</strong> sources which are<br />

considered as renewable and non-fossil <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. <strong>The</strong> technologies to convert <strong>the</strong>m <strong>in</strong>to a<br />

useful form are also <strong>in</strong>cluded <strong>in</strong> this table. Nuclear power is also considered as non-renewable source.<br />

Table 1 - Overview <strong>of</strong> <strong>the</strong> renewable sources <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (NL Agency, 2010)<br />

Renewable Resource Technology<br />

W<strong>in</strong>d - W<strong>in</strong>d turb<strong>in</strong>es*<br />

Sun - Photovoltaic <strong>systems</strong> (solar cells)*<br />

- <strong>The</strong>rmal <strong>systems</strong> (solar <strong>the</strong>rmal <strong>systems</strong>, dry swimm<strong>in</strong>g pool<br />

heat<strong>in</strong>g <strong>systems</strong>)<br />

Hydropower - Hydropower stations*<br />

Tides - Tidal <strong>energy</strong> power station*<br />

Waves - Wave <strong>energy</strong> power stations*<br />

Fresh/saltwater gradient - Fresh/saltwater gradient*<br />

Geo<strong>the</strong>rmal - Geo<strong>the</strong>rmal <strong>in</strong>stallations*<br />

Ground <strong>energy</strong> - Direct as heat/cold <strong>storage</strong><br />

- With a heat pump<br />

Aero<strong>the</strong>rm (air) - Heat pumps<br />

Biomass - <strong>The</strong>rmal conversion: combustion*, gasification*, pyrolysis<br />

- Biological conversion: digestion<br />

- Input as transport fuel<br />

* Used or can be used for <strong>electricity</strong> generation.<br />

This study is only focused on <strong>electricity</strong> production<br />

from renewable sources and not on heat production. In<br />

Table 1, <strong>the</strong> technologies which are or can be used for<br />

<strong>electricity</strong> production are marked with ‘*’.<br />

Figure 2 gives an impression <strong>of</strong> what <strong>the</strong> potential <strong>of</strong><br />

<strong>the</strong>se renewable sources are. W<strong>in</strong>d, sun and biomass are<br />

<strong>the</strong> most potential renewable resources for <strong>the</strong> Ne<strong>the</strong>rlands<br />

and will be used <strong>in</strong> this study. <strong>The</strong> potential <strong>of</strong> <strong>the</strong><br />

o<strong>the</strong>r renewable resources, like geo<strong>the</strong>rmal, hydro, tide,<br />

waves, fresh/saltwater gradient and solar <strong>the</strong>rmal, are<br />

too small or too uncerta<strong>in</strong> and are not <strong>in</strong>cluded <strong>in</strong> this<br />

study. <strong>The</strong> potential <strong>of</strong> w<strong>in</strong>d <strong>energy</strong>, solar photovoltaic<br />

and biomass <strong>in</strong> 2020 and 2050 will be described separately<br />

by a literature study <strong>in</strong> this chapter. <strong>The</strong> year<br />

2020 is also chosen, because more literature for 2020 is<br />

more available than for <strong>the</strong> year 2050.<br />

Figure 2 - Mid-term potentials <strong>of</strong> <strong>electricity</strong><br />

from renewable <strong>energy</strong> sources <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

(Commission <strong>of</strong> <strong>the</strong> European Communities, 2004)<br />

11


2.1 W<strong>in</strong>d <strong>energy</strong><br />

Compared with o<strong>the</strong>r renewable <strong>energy</strong> sources, w<strong>in</strong>d <strong>energy</strong> has <strong>the</strong> highest potential for <strong>large</strong>-<strong>scale</strong><br />

<strong>electricity</strong> production. <strong>The</strong> European W<strong>in</strong>d Energy Association (EWEA) predicts that w<strong>in</strong>d <strong>energy</strong><br />

will have a share <strong>of</strong> 24% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> consumption <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2020 or 32.4 TWh <strong>in</strong><br />

<strong>electricity</strong> production (EWEA, 2011). <strong>The</strong> European Commission made a scenario with a w<strong>in</strong>d <strong>energy</strong><br />

capacity <strong>of</strong> 9.7 GW <strong>in</strong> 2020 and 11.5 GW <strong>in</strong> 2030 (European Commission, 2010), but <strong>in</strong> this document<br />

<strong>the</strong>re is no dist<strong>in</strong>ction made between <strong>of</strong>fshore and onshore w<strong>in</strong>d <strong>energy</strong>. Offshore and onshore<br />

w<strong>in</strong>d farms have o<strong>the</strong>r characteristics, because <strong>the</strong>re is a difference <strong>in</strong> <strong>the</strong> cost, <strong>the</strong> foundation, <strong>the</strong><br />

electrical networks and <strong>the</strong> works <strong>in</strong> construction and operation (Esteban et al., 2011). In this study,<br />

<strong>of</strong>fshore and onshore are researched separately.<br />

2.1.1 Offshore<br />

<strong>The</strong>re are several reasons to generate <strong>electricity</strong><br />

from <strong>of</strong>fshore w<strong>in</strong>d turb<strong>in</strong>es. One <strong>of</strong> <strong>the</strong> ma<strong>in</strong> reasons<br />

is <strong>the</strong> availability <strong>of</strong> <strong>large</strong> cont<strong>in</strong>uous areas<br />

which are suitable for <strong>large</strong> w<strong>in</strong>d farms. Ano<strong>the</strong>r<br />

reason is that <strong>the</strong> w<strong>in</strong>d speeds are higher <strong>in</strong> <strong>the</strong>se<br />

areas. <strong>The</strong>se w<strong>in</strong>d speeds <strong>in</strong>creases with distance<br />

from <strong>the</strong> shore (Figure 3). <strong>The</strong>re is also less turbulence<br />

on <strong>the</strong> sea, which reduces <strong>the</strong> fatigue loads on<br />

<strong>the</strong> turb<strong>in</strong>es, so <strong>the</strong>y are able to produce <strong>the</strong> <strong>energy</strong><br />

more effectively. Compared with onshore w<strong>in</strong>d<br />

parks, <strong>of</strong>fshore w<strong>in</strong>d parks have fewer issues with<br />

visual impact and noise. (Bilgili et al., 2011)<br />

<strong>The</strong> ma<strong>in</strong> drawback <strong>of</strong> <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong> is that<br />

<strong>the</strong> costs are higher than onshore w<strong>in</strong>d <strong>energy</strong>, because<br />

<strong>of</strong> <strong>the</strong> more expensive mar<strong>in</strong>e foundations,<br />

<strong>in</strong>tegration to <strong>the</strong> electrical network (<strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

capacity <strong>of</strong> weak coastal <strong>grid</strong>s are necessary <strong>in</strong><br />

some cases), <strong>in</strong>stallation procedures and restricted<br />

access dur<strong>in</strong>g construction due to wea<strong>the</strong>r conditions.<br />

Ano<strong>the</strong>r drawback is <strong>the</strong> limited access for<br />

operations and ma<strong>in</strong>tenance dur<strong>in</strong>g operation.<br />

(Bilgili et al., 2011)<br />

2020:<br />

Several studies researched <strong>the</strong> potential <strong>of</strong> <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong>. In a report <strong>of</strong> ECN (Energy research<br />

Centre <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands) it is mentioned that <strong>the</strong> realizable potential <strong>of</strong> <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong> is 6<br />

GW <strong>in</strong>stalled capacity <strong>in</strong> 2020 (Noord, de et al., 2004). <strong>The</strong> EWEA sets a target <strong>of</strong> 14% (18.9 TWh)<br />

<strong>of</strong> <strong>the</strong> total <strong>electricity</strong> consumption <strong>in</strong> 2020, produced by <strong>of</strong>fshore w<strong>in</strong>d farms with a total capacity <strong>of</strong><br />

almost 5.2 GW (EWEA, 2011). In Odenberger & Johnsson (2010) <strong>the</strong> potential and upper limit <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands is 19.5 TWh <strong>in</strong> 2020. Jung<strong>in</strong>ger et al. (2004) gives predictions <strong>of</strong> potentials for <strong>electricity</strong><br />

from <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong> <strong>in</strong> 2020 from different po<strong>in</strong>ts <strong>of</strong> view, which are listed <strong>in</strong><br />

Table 2. <strong>The</strong> above literature shows that <strong>the</strong> potential <strong>of</strong> <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong> <strong>in</strong> 2020 is <strong>in</strong> a range<br />

from 2.6 GW to 6 GW <strong>in</strong>stalled capacity.<br />

2050:<br />

In <strong>the</strong> ECN report it is mentioned that <strong>the</strong> realistic potential <strong>of</strong> <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong> is 6 to 30 GW <strong>in</strong><br />

2050 (Noord, de et al., 2004). In Odenberger & Johnsson (2010) <strong>the</strong> potential and upper limit <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands is 28.6 TWh <strong>in</strong> 2050.<br />

12<br />

Figure 3 - Mean w<strong>in</strong>d speed at a height <strong>of</strong> 90<br />

meter <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands' Exclusive Economic<br />

Zone (Donkers, Brand, & Eecen, 2011)


Table 2 - Potential <strong>of</strong> <strong>electricity</strong> from <strong>of</strong>fshore w<strong>in</strong>d <strong>in</strong> 2020 from <strong>the</strong> study <strong>of</strong> (Jung<strong>in</strong>ger et al., 2004)<br />

Max. technical potential 10.000 – 56.000 MW<br />

Economical potential > 4400 MW<br />

Max. potential limited by production/<strong>in</strong>stallation capacity<br />

and technological development until 2020<br />

3250 – 4400 MW<br />

Max. environmental susta<strong>in</strong>able potential 100 MW nearshore, 3000 MW <strong>of</strong>fshore<br />

‘Best guess’ 2600 MW<br />

Range found <strong>in</strong> scenario studies for 2020 500 – 2600 MW<br />

2.1.2 Onshore<br />

<strong>The</strong> annual average w<strong>in</strong>d speed <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

is <strong>the</strong> highest <strong>in</strong> <strong>the</strong> coastal regions and around <strong>the</strong><br />

IJsselmeer (Figure 4). This is because <strong>the</strong> w<strong>in</strong>d<br />

encounters here <strong>the</strong> smallest friction from <strong>the</strong><br />

ground. Fur<strong>the</strong>r <strong>in</strong>land <strong>the</strong> friction from <strong>the</strong> ground<br />

<strong>in</strong>creases by build<strong>in</strong>gs and forested areas (KNMI,<br />

2002).<br />

2020:<br />

<strong>The</strong> EWEA sets a target to 10% (13.5 TWh) <strong>of</strong> <strong>the</strong><br />

total <strong>electricity</strong> production <strong>in</strong> 2020, produced by<br />

onshore w<strong>in</strong>d farms with a total capacity <strong>of</strong> 6 GW<br />

(EWEA, 2011). In Odenberger & Johnsson (2010)<br />

<strong>the</strong> potential and upper limit <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is<br />

5.5 TWh <strong>in</strong> 2020. In <strong>the</strong> Energy Report <strong>of</strong> 2011<br />

(M<strong>in</strong>isterie van Economische Zaken, Landbouw &<br />

Innovatie, 2011) <strong>the</strong> Dutch government sets <strong>the</strong>re<br />

target to 6 GW <strong>of</strong> <strong>in</strong>stalled capacity <strong>of</strong> onshore<br />

w<strong>in</strong>d <strong>energy</strong> <strong>in</strong> 2020.<br />

Jung<strong>in</strong>ger et al. (2004) studied <strong>the</strong> potential <strong>of</strong><br />

<strong>electricity</strong> from onshore w<strong>in</strong>d <strong>energy</strong> <strong>in</strong> 2020<br />

from different po<strong>in</strong>ts <strong>of</strong> view, which are listed <strong>in</strong><br />

Table 3.<br />

Figure 4 - Map <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands with average<br />

w<strong>in</strong>d speed at a height <strong>of</strong> 100 meters between<br />

1981 and 2010 (KNMI, 2011)<br />

Table 3 - Potential <strong>of</strong> <strong>electricity</strong> from onshore w<strong>in</strong>d <strong>in</strong> 2020 from <strong>the</strong> study <strong>of</strong> (Jung<strong>in</strong>ger et al., 2004)<br />

Max. technical potential 3000 – 6000 MW<br />

Economical potential > 3000 MW<br />

Max. potential limited by production/<strong>in</strong>stallation capacity<br />

and technological development until 2020<br />

> 6000 MW<br />

Max. environmental susta<strong>in</strong>able potential 700 – 2500 MW<br />

‘Best guess’ 2214 MW<br />

Range found <strong>in</strong> scenario studies for 2020 700 – 3100 MW<br />

2050:<br />

In <strong>the</strong> ECN report it is mentioned that <strong>the</strong> realistic potential <strong>of</strong> onshore w<strong>in</strong>d <strong>energy</strong> is 1.5 to 3.2 GW<br />

<strong>in</strong> 2050 (Noord, de et al., 2004). In Odenberger & Johnsson (2010) <strong>the</strong> potential and upper limit <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands is 17.2 TWh <strong>in</strong> 2050.<br />

13


2.2 Solar photovoltaic<br />

<strong>The</strong> average annual duration <strong>of</strong> sunsh<strong>in</strong>e and amount <strong>of</strong> global radiation <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands is <strong>the</strong><br />

highest <strong>in</strong> <strong>the</strong> coastal regions and <strong>the</strong> islands <strong>in</strong> <strong>the</strong> Waddenzee and <strong>the</strong> lowest <strong>in</strong> <strong>the</strong> eastern part <strong>of</strong><br />

<strong>the</strong> Ne<strong>the</strong>rlands (Figure 5 and Figure 6). Due to convection, more clouds orig<strong>in</strong>ate fur<strong>the</strong>r <strong>in</strong>lands<br />

(KNMI, 2002).<br />

Figure 5 - Map <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands with average<br />

annual amount <strong>of</strong> global radiation between 1981<br />

and 2010<br />

In <strong>the</strong> com<strong>in</strong>g decade <strong>the</strong> photovoltaic market will rema<strong>in</strong> to be ro<strong>of</strong>top <strong>systems</strong>. In <strong>the</strong> fur<strong>the</strong>r future<br />

more <strong>in</strong>terest is expected <strong>in</strong> build<strong>in</strong>g <strong>in</strong>tegrated PV and ground based PV.<br />

2020:<br />

<strong>The</strong> potentials for <strong>electricity</strong> from photovoltaic <strong>in</strong> 2020 studied <strong>in</strong> Jung<strong>in</strong>ger et al. (2004) are listed <strong>in</strong><br />

Table 4.<br />

Table 4 - Potential <strong>of</strong> <strong>electricity</strong> from solar photovoltaic <strong>in</strong> 2020 (Jung<strong>in</strong>ger et al., 2004)<br />

Max. technical potential 70.000 MWp<br />

Economical potential 0 MWp<br />

Max. potential limited by production/<strong>in</strong>stallation capacity<br />

and technological development until 2020<br />

1200 – 1800 MWp<br />

Max. environmental susta<strong>in</strong>able potential 20.000 – 60.000 MWp<br />

‘Best guess’ 580 MWp<br />

Range found <strong>in</strong> scenario studies for 2020 16 – 2000 MWp<br />

<strong>The</strong> European Commission has made a trend scenario with generation capacity <strong>of</strong> solar <strong>of</strong> 151 MW<br />

2020 and 241 MW <strong>in</strong> 2030 (European Commission, 2010).<br />

14<br />

Figure 6 - Map <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands with average<br />

annual duration <strong>of</strong> sunsh<strong>in</strong>e between 1981 and 2010


2050:<br />

Accord<strong>in</strong>g to ECN (Noord, de et al., 2004) <strong>the</strong> realistic potential for <strong>the</strong> Ne<strong>the</strong>rlands is 600 km 2 ,<br />

which will have a realizable potential <strong>of</strong> 49 (7 to 180) GW <strong>in</strong> 2050. <strong>The</strong> realizable potential is very<br />

wide ranged, because <strong>the</strong> development <strong>in</strong> technology (especially <strong>in</strong> power density) and cost reduction<br />

are very <strong>in</strong>fluenc<strong>in</strong>g uncerta<strong>in</strong> factors.<br />

2.3 Biomass<br />

Biomass can be processed <strong>in</strong> many ways for <strong>energy</strong> use. <strong>The</strong>rmo chemical and biochemical processes<br />

are <strong>the</strong> ma<strong>in</strong> technologies for <strong>electricity</strong> production. Technologies for <strong>the</strong>rmo chemical conversion are<br />

direct and <strong>in</strong>direct co-fir<strong>in</strong>g coal plant, <strong>in</strong>direct co-fir<strong>in</strong>g gas-fired plant, combustion, pyrolysis and<br />

gasification. <strong>The</strong> technology for biochemical conversion is digestion (Noord, de et al., 2004). <strong>The</strong><br />

ma<strong>in</strong> advantage <strong>of</strong> biomass compared to fossil fuels is <strong>the</strong> shorter carbon cycle. <strong>The</strong> growth <strong>of</strong> new<br />

biomass absorbs <strong>the</strong> carbon dioxide from <strong>the</strong> combustion <strong>of</strong> <strong>the</strong> old biomass (McK<strong>in</strong>ney et al., 2007).<br />

2020:<br />

<strong>The</strong> Dutch government has set <strong>the</strong> goal to get 33-50 PJ from biomass <strong>in</strong> 2020 (M<strong>in</strong>isterie van Economische<br />

Zaken, Landbouw & Innovatie, 2011). In <strong>the</strong> ECN report (Noord, de et al., 2004) <strong>the</strong>y estimate<br />

<strong>the</strong> potential <strong>of</strong> biomass <strong>in</strong> <strong>the</strong> range 87 to 146 PJ from <strong>energy</strong> crops, biomass residues and biomass<br />

waste.<br />

Jung<strong>in</strong>ger et al. (2004) studied <strong>the</strong> domestic biomass and organic waste potentials (Table 5) and <strong>the</strong><br />

potential <strong>of</strong> co-fir<strong>in</strong>g capacity <strong>of</strong> electrical power plants (Table 6) for renewable <strong>electricity</strong> <strong>in</strong> 2020.<br />

Table 5 - Domestic biomass and organic waste potentials for <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2020 (Jung<strong>in</strong>ger et al.,<br />

2004)<br />

Max. technical potential 146 PJth<br />

Economical potential 142 PJth<br />

Max. potential limited by production/<strong>in</strong>stallation<br />

capacity and technological development until<br />

2020<br />

142 PJth<br />

Max. environmental susta<strong>in</strong>able potential 40 PJth<br />

‘Best guess’ 65 – 75 PJth<br />

Range found <strong>in</strong> scenario studies for 2020 44 – 166 PJth<br />

Table 6 - Electrical (co-fir<strong>in</strong>g) capacity <strong>of</strong> power plants for <strong>the</strong> Ne<strong>the</strong>rlands <strong>in</strong> 2020 (Jung<strong>in</strong>ger et al., 2004)<br />

Max. technical potential > 5300 MW<br />

Economical potential 1080 MW<br />

Max. potential limited by production/<strong>in</strong>stallation 5300 MW (Based on a maximum co-fir<strong>in</strong>g ca-<br />

capacity and technological development until pacity <strong>of</strong> 20% for all exist<strong>in</strong>g coal-fired and gas-<br />

2020<br />

fired <strong>electricity</strong> plants, and a maximum <strong>of</strong><br />

3200MW new standalone capacity <strong>of</strong> (B)IG/CC<br />

plants.)<br />

Max. environmental susta<strong>in</strong>able potential M<strong>in</strong>imal emissions, high efficiency.<br />

‘Best guess’ 750 MW<br />

Range found <strong>in</strong> scenario studies for 2020 329 – 2270 MW<br />

2050<br />

No estimations for <strong>the</strong> year 2050 are found <strong>in</strong> <strong>the</strong> used literature. In <strong>the</strong> ECN report an estimation is<br />

made for <strong>the</strong> global biomass potential: 100-1250 EJ/year. <strong>The</strong>re are many factors to estimate to which<br />

extend <strong>the</strong> Ne<strong>the</strong>rlands can participate to this potential. <strong>The</strong> most important factor is <strong>the</strong> demand <strong>of</strong><br />

biomass from o<strong>the</strong>r countries (Noord, de et al., 2004).<br />

15


3 VARIABILITY<br />

<strong>The</strong> produced <strong>electricity</strong> from w<strong>in</strong>d turb<strong>in</strong>es and solar panels is different every hour. This is because<br />

<strong>the</strong> w<strong>in</strong>d speeds and sunsh<strong>in</strong>e vary on a location. <strong>The</strong> amount <strong>of</strong> w<strong>in</strong>d and solar power capacity is<br />

grow<strong>in</strong>g <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, which means that <strong>the</strong> variability <strong>of</strong> <strong>the</strong>se sources will have a bigger impact<br />

on <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong>. <strong>The</strong> produced <strong>electricity</strong> from biomass is not directly dependent on<br />

wea<strong>the</strong>r conditions and is controllable (McK<strong>in</strong>ney et al., 2007).<br />

3.1 W<strong>in</strong>d <strong>energy</strong><br />

<strong>The</strong> variability <strong>of</strong> w<strong>in</strong>d power production is measured by hourly w<strong>in</strong>d speed data from different locations.<br />

In <strong>the</strong> study <strong>of</strong> (Wijk, van et al., 1990), eleven meteorological stations were selected. Hourly<br />

w<strong>in</strong>d speed data at a height <strong>of</strong> 10m is used from each station from 1971 to 1980 to model <strong>the</strong> hourly<br />

w<strong>in</strong>d power production. To <strong>scale</strong> <strong>the</strong> w<strong>in</strong>d speed with height, (Wijk, van et al., 1990) used <strong>the</strong> Mon<strong>in</strong>-<br />

Obukhov similarity <strong>the</strong>ory, which takes <strong>in</strong>to account <strong>the</strong> roughness length and stability effects. <strong>The</strong>se<br />

w<strong>in</strong>d speed data are comb<strong>in</strong>ed with <strong>the</strong> power curves for <strong>the</strong> w<strong>in</strong>d turb<strong>in</strong>es, to calculate <strong>the</strong> hourly<br />

w<strong>in</strong>d power produced by 1000 MW w<strong>in</strong>d turb<strong>in</strong>e capacity <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Figure 7 shows <strong>the</strong><br />

hourly w<strong>in</strong>d power produced by 1000 MW <strong>in</strong>stalled capacity <strong>of</strong> onshore w<strong>in</strong>d turb<strong>in</strong>es for a typical<br />

January. In this figure, <strong>the</strong> w<strong>in</strong>d power fluctuates from almost 0 to over 80% <strong>of</strong> <strong>the</strong> <strong>in</strong>stalled capacity<br />

<strong>in</strong> a few days.<br />

Figure 7 - Hourly w<strong>in</strong>d power produced by 1000 MW w<strong>in</strong>d turb<strong>in</strong>e capacity for a typical January (Wijk,<br />

van et al., 1990)<br />

With this hourly w<strong>in</strong>d speed data for a perdiod <strong>of</strong> ten years, <strong>the</strong> mean capacity factor is determ<strong>in</strong>ed to<br />

be 22% (<strong>the</strong> annual capacity factor varies from 19% to 26%). This <strong>in</strong>dicates <strong>the</strong> <strong>electricity</strong> production<br />

over a certa<strong>in</strong> period <strong>of</strong> time, divided by <strong>the</strong> nom<strong>in</strong>al w<strong>in</strong>d turb<strong>in</strong>e capacity, times <strong>the</strong> number <strong>of</strong> hours<br />

<strong>in</strong> that period. <strong>The</strong> mean capacity factor reaches its m<strong>in</strong>imum <strong>in</strong> <strong>the</strong> summer period (15%) and his<br />

maximum <strong>in</strong> <strong>the</strong> months <strong>of</strong> November and December (30%). In <strong>the</strong> ten year period <strong>the</strong> w<strong>in</strong>d power<br />

production never have varied by more than 40% <strong>of</strong> <strong>the</strong> nom<strong>in</strong>al w<strong>in</strong>d turb<strong>in</strong>e capacity. Four times <strong>in</strong><br />

this period, <strong>the</strong> variations reached 30% to 40% <strong>of</strong> nom<strong>in</strong>al w<strong>in</strong>d turb<strong>in</strong>e capacity (Wijk, van et al.,<br />

1990). This pattern will be used for <strong>the</strong> simulation <strong>of</strong> <strong>the</strong> Dutch future <strong>electricity</strong> mix <strong>in</strong> <strong>the</strong> simulation<br />

program PowerPlan. For onshore w<strong>in</strong>d power, <strong>the</strong> pattern is modified to a capacity factor <strong>of</strong> 25% over<br />

a year. For <strong>of</strong>fshore w<strong>in</strong>d power, <strong>the</strong> pattern is modified to a capacity factor <strong>of</strong> 45% over a year.<br />

17


3.2 Solar photovoltaic<br />

<strong>The</strong> hourly pattern for solar PV is provided by Dr. R.M.J. Benders <strong>of</strong> <strong>the</strong> faculty <strong>of</strong> Ma<strong>the</strong>matics and<br />

Natural Sciences at <strong>the</strong> University <strong>of</strong> Gron<strong>in</strong>gen. <strong>The</strong> <strong>electricity</strong> power from solar PV is dependent on<br />

sunsh<strong>in</strong>e. <strong>The</strong>re are peaks dur<strong>in</strong>g <strong>the</strong> day and dur<strong>in</strong>g <strong>the</strong> night <strong>the</strong> <strong>electricity</strong> production is zero. This<br />

figure also shows that <strong>the</strong> solar radiation differs every day. <strong>The</strong> peaks are higher at clear days and<br />

lower at cloudy days. Figure 8 shows <strong>the</strong> <strong>electricity</strong> production <strong>of</strong> every month <strong>in</strong> a year. <strong>The</strong> <strong>electricity</strong><br />

production is <strong>the</strong> highest <strong>in</strong> <strong>the</strong> summer and <strong>the</strong> lowest <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter, due to <strong>the</strong> position <strong>of</strong> <strong>the</strong><br />

earth surface to <strong>the</strong> sun. <strong>The</strong> used capacity factor <strong>in</strong> this study for solar PV is 16%.<br />

Figure 8 - Monthly <strong>electricity</strong> production <strong>of</strong> 1000 MW <strong>in</strong>stalled photovoltaic panels<br />

3.3 Demand<br />

<strong>The</strong> hourly pattern for <strong>electricity</strong> demand used <strong>in</strong> this study is also provided by Dr. R.M.J. Benders <strong>of</strong><br />

<strong>the</strong> faculty <strong>of</strong> Ma<strong>the</strong>matics and Natural Sciences at <strong>the</strong> University <strong>of</strong> Gron<strong>in</strong>gen. <strong>The</strong> used pattern is<br />

based on <strong>the</strong> year 2009. <strong>The</strong> <strong>electricity</strong> demand <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rland is not <strong>the</strong> same over time, because<br />

appliances connected to <strong>the</strong> <strong>grid</strong> are switched on or <strong>of</strong>f at different times <strong>of</strong> <strong>the</strong> day, week, month and<br />

year. About half <strong>of</strong> <strong>the</strong> maximum demand, <strong>the</strong>re is a cont<strong>in</strong>uous demand for <strong>electricity</strong> (Figure 10).<br />

This is also called as <strong>the</strong> base load, which is caused by <strong>in</strong>dustries and appliances <strong>in</strong> <strong>the</strong> commercial<br />

and residential sector dur<strong>in</strong>g <strong>the</strong> night. Like refrigerators, freezers, standby televisions and appliances<br />

with timers. Figure 9 shows peaks <strong>in</strong> <strong>the</strong> <strong>electricity</strong> demand <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g and <strong>in</strong> <strong>the</strong> even<strong>in</strong>g. <strong>The</strong><br />

difference between work<strong>in</strong>g days and weekend is also recognizable <strong>in</strong> <strong>the</strong> figure. (Benders, 1996)<br />

18


Figure 9 – PowerPlan simulation <strong>of</strong> <strong>the</strong> hourly <strong>electricity</strong> demand <strong>in</strong> January 2050<br />

Figure 10 shows <strong>the</strong> seasonal fluctuation over a year. <strong>The</strong> <strong>electricity</strong> demand is <strong>the</strong> highest <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter<br />

and <strong>the</strong> lowest <strong>in</strong> <strong>the</strong> summer holidays. <strong>The</strong> peak <strong>in</strong> <strong>the</strong> summer can be <strong>the</strong> result <strong>of</strong> <strong>the</strong> use <strong>of</strong> fans<br />

and air conditioners (Hekkenberg et al., 2009).<br />

Figure 10 – PowerPlan simulation <strong>of</strong> <strong>the</strong> demand pattern over <strong>the</strong> year 2050<br />

19


4 FUTURE ELECTRICITY MIX<br />

PowerPlan is used <strong>in</strong> this study to design scenarios <strong>of</strong> <strong>the</strong> <strong>in</strong>stalled power capacity <strong>of</strong> power plants till<br />

2050. <strong>The</strong> target <strong>of</strong> <strong>the</strong> EU is used for <strong>the</strong> design <strong>of</strong> <strong>the</strong> future <strong>electricity</strong> mix, because <strong>of</strong> <strong>the</strong> lag <strong>of</strong><br />

clear targets to 2050 <strong>of</strong> <strong>the</strong> Dutch government. Figure 11 shows a scenario where <strong>the</strong> European target<br />

<strong>of</strong> almost 100% <strong>electricity</strong> from renewable sources <strong>in</strong> 2050 is met. This scenario is called <strong>the</strong> 95% RS<br />

scenario. <strong>The</strong> EU <strong>energy</strong> trends to 2030 provided by <strong>the</strong> European Commission are used for <strong>the</strong> <strong>electricity</strong><br />

mix till 2030 (European Commission, 2010). <strong>The</strong> period 2030-2050 is designed by estimated<br />

assumptions to meet <strong>the</strong> European target.<br />

Figure 11 - Installed power capacity <strong>of</strong> power plants <strong>in</strong> <strong>the</strong> 95% RS scenario till 2050.<br />

<strong>The</strong> results <strong>of</strong> <strong>the</strong> <strong>electricity</strong> mix <strong>in</strong> 2050 <strong>in</strong> <strong>the</strong> 95% RS scenario are given <strong>in</strong> Table 7.<br />

Table 7 - Electricity mix 95% RS scenario <strong>in</strong> 2050.<br />

Power plant Generated Electricity Installed Power Capacity Installed Power Capacity<br />

(TWh)<br />

(MW)<br />

(%)<br />

Import 4.6 700 2%<br />

W<strong>in</strong>d onshore 9.8 4720 13%<br />

W<strong>in</strong>d <strong>of</strong>fshore 59.2 14,350 40%<br />

Sun PV 10.2 4090 12%<br />

Nuclear 0.0 0 0%<br />

CHP 5.4 979 3%<br />

Distr. heat<strong>in</strong>g 6.9 1188 3%<br />

Pub. waste 3.2 510 1%<br />

Coal 0.0 0 0%<br />

Biomass 22.0 3825 11%<br />

Comb. cycle 5.0 1400 4%<br />

Biogas 9.9 3705 10%<br />

Oil/Gas 0.0 0 0%<br />

Gas turb<strong>in</strong>e 0.0 0 0%<br />

Total 136.2 35,467 100%<br />

21


<strong>The</strong> black l<strong>in</strong>e <strong>in</strong> Figure 11 is <strong>the</strong> demand curve and <strong>the</strong> red l<strong>in</strong>e is <strong>the</strong> required capacity to meet <strong>the</strong><br />

demand. <strong>The</strong> capacity demand <strong>in</strong> 2050 is 20,189 MW and <strong>the</strong> required capacity is 52,400 MW. <strong>The</strong><br />

required capacity <strong>in</strong>creases faster <strong>in</strong> time than <strong>the</strong> demand, because <strong>the</strong> share <strong>of</strong> variable and limited<br />

predictable solar and w<strong>in</strong>d <strong>energy</strong> <strong>in</strong>creases <strong>in</strong> <strong>the</strong> <strong>electricity</strong> mix. Electricity production from solar<br />

and w<strong>in</strong>d <strong>energy</strong> does not meet <strong>the</strong> <strong>electricity</strong> demand, because w<strong>in</strong>d <strong>energy</strong> is dependent on wea<strong>the</strong>r<br />

conditions and have lower capacity factors. In PowerPlan <strong>the</strong> patterns with time <strong>in</strong>tervals <strong>of</strong> one hour<br />

for w<strong>in</strong>d <strong>energy</strong> production and <strong>electricity</strong> demand are used. <strong>The</strong>se patterns are described <strong>in</strong> chapter 3.<br />

Beside <strong>the</strong> 95% RS scenario, <strong>the</strong>re are seven o<strong>the</strong>r scenarios simulated <strong>in</strong> PowerPlan:<br />

• Bus<strong>in</strong>ess as Usual scenario (BaU);<br />

• 95% RS + gas scenario: This is <strong>the</strong> same scenario as <strong>the</strong> 95% RS -scenario. <strong>The</strong> only difference<br />

is <strong>the</strong> addition <strong>of</strong> comb<strong>in</strong>ed cycle gas turb<strong>in</strong>es (CCGT) to meet <strong>the</strong> required capacity.<br />

• 35% W<strong>in</strong>d Offshore (35% WO): Compared to <strong>the</strong> 95% RS scenario 5% less W<strong>in</strong>d Offshore<br />

and 5 % more CCGT <strong>in</strong> 2050.<br />

• 30% W<strong>in</strong>d Offshore (30% WO): Compared to <strong>the</strong> 95% RS scenario 10% less W<strong>in</strong>d Offshore<br />

and 10 % more CCGT <strong>in</strong> 2050.<br />

• 25% W<strong>in</strong>d Offshore (25% WO): Compared to <strong>the</strong> 95% RS scenario 15% less W<strong>in</strong>d Offshore<br />

and 15 % more CCGT <strong>in</strong> 2050.<br />

• 20% W<strong>in</strong>d Offshore (20% WO): Compared to <strong>the</strong> 95% RS scenario 20% less W<strong>in</strong>d Offshore<br />

and 20 % more CCGT <strong>in</strong> 2050.<br />

• 15% W<strong>in</strong>d Offshore (20% WO): Compared to <strong>the</strong> 95% RS scenario 25% less W<strong>in</strong>d Offshore,<br />

21 % more CCGT and 4% more coal <strong>in</strong> 2050.<br />

Figure 12 shows <strong>the</strong> <strong>electricity</strong> mix <strong>in</strong> first year <strong>of</strong> <strong>the</strong> simulation, which is <strong>the</strong> same <strong>in</strong> every scenario,<br />

and <strong>in</strong> 2050. <strong>The</strong> complete simulation figures and tables <strong>of</strong> <strong>the</strong> scenarios can be found <strong>in</strong> Appendix 1.<br />

Figure 12 - Eight scenarios <strong>of</strong> <strong>the</strong> Dutch <strong>electricity</strong> mix <strong>in</strong> 2050. <strong>The</strong> start<strong>in</strong>g year is 2008 and is <strong>the</strong> same<br />

for every scenario.<br />

PowerPlan generated <strong>the</strong> total <strong>electricity</strong> production and demand for every hour <strong>of</strong> <strong>the</strong> year (8760<br />

hours <strong>in</strong> total). <strong>The</strong>se sets <strong>of</strong> data are used <strong>in</strong> <strong>the</strong> GoldSim model, which will be presented <strong>in</strong> chapter<br />

6. <strong>The</strong> gap between <strong>the</strong> <strong>in</strong>stalled capacity and required capacity <strong>in</strong> <strong>the</strong> 95% RS scenario can be dissolved<br />

with <strong>the</strong> use <strong>of</strong> <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>.<br />

22


5 LARGE SCALE ENERGY STORAGE<br />

A literature study is done <strong>of</strong> different types <strong>of</strong> <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>. Table 8 gives an<br />

overview <strong>of</strong> <strong>the</strong> results <strong>of</strong> <strong>the</strong> literature study.<br />

Table 8 - Comparison <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong><br />

Energy <strong>storage</strong><br />

system<br />

Storage<br />

capacity<br />

(MWh)<br />

Discharge<br />

time<br />

(hours)<br />

Efficiency<br />

(%)<br />

Technical<br />

lifetime<br />

(years)<br />

Energy density<br />

(kWh/m 3 )<br />

Capital cost<br />

(€-2010/kW) 1<br />

PHS/Energy<br />

Island<br />

30,000+ 24+ 70-87 30-80 0.5 - 1.5 416 - 1387<br />

CAES 10,000+ 24+ 70-89 20-40 3 - 6 277 – 555<br />

Lead acid 40 8 65-90 5-15 50 - 80 208 – 416<br />

NiCd 6.75 8 60-83 10-20 60 - 150 347 – 1040<br />

NaS 245 8 75-92 5-15 150 - 250 693 – 2080<br />

Litium-ion - 2+ 85-100 5-15 200 - 500 832 – 2773<br />

VRB 30 10 75-85 10 16 - 33 416 – 1040<br />

PSB 150 10 75 15 - 485 – 1733<br />

ZnBr 20 10 75 10 30 - 60 485 – 1733<br />

Hydrogen - 24+ 35 5-20 500 - 3000 6933+<br />

Metal-Air


Table 9 - Ways to store 100 GWh, assum<strong>in</strong>g <strong>the</strong> generators have an efficiency <strong>of</strong> 90% (MacKay, 2009).<br />

Drop from upper Work<strong>in</strong>g volume re-<br />

reservoir quired (million m 3 Example size <strong>of</strong> reservoir<br />

) (area x depth)<br />

500 m 80 2 km 2 x 40 m<br />

500 m 80 4 km 2 x 20 m<br />

200 m 200 5 km 2 x 40 m<br />

200 m 200 10 km 2 x 20 m<br />

100 m 400 10 km 2 x 40 m<br />

100 m 400 20 km 2 x 20 m<br />

Normally, PHS <strong>systems</strong> are built <strong>in</strong> mounta<strong>in</strong>ous<br />

areas, but <strong>the</strong> Ne<strong>the</strong>rlands is a flat country without<br />

mounta<strong>in</strong>ous areas. KEMA, Lievense and<br />

Rudolf Das have developed a new “Energy Island”<br />

concept with an <strong>energy</strong> <strong>storage</strong> system<br />

located <strong>in</strong> <strong>the</strong> North Sea <strong>of</strong>f <strong>the</strong> Dutch coast. It<br />

consists <strong>of</strong> a r<strong>in</strong>g <strong>of</strong> dikes enclos<strong>in</strong>g a 50 meters<br />

deep dredged reservoir and <strong>the</strong> size <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal<br />

reservoir will be 60 km 2 (Figure 13). <strong>The</strong> water<br />

level <strong>of</strong> <strong>the</strong> reservoir will vary between -30 and -<br />

40 m. Dependent on <strong>the</strong> water level <strong>the</strong> <strong>energy</strong><br />

<strong>storage</strong> system will have a maximum generation<br />

capacity between 2 and 2.5 GW (16 modules with<br />

Figure 13 - Impression <strong>of</strong> <strong>the</strong> Energy Island (Boer et al., 2007)<br />

a maximum <strong>of</strong> around 160 MW) and <strong>the</strong> <strong>storage</strong><br />

capacity will be 30 GWh. To prevent seawater<br />

leakage <strong>in</strong>to <strong>the</strong> reservoir, thick layers <strong>of</strong> clay (around 40 m) are needed to resist <strong>the</strong> ground water<br />

pressure and bentonite walls till a depth <strong>of</strong> 60 m should prevent seawater from aside. (Boer et al.,<br />

2007).<br />

Discharge time<br />

PHS <strong>systems</strong> can produce <strong>electricity</strong> for 1 hour to more than 24 hours (Beaud<strong>in</strong> et al., 2010; Chen et<br />

al., 2009). <strong>The</strong> Energy Island can produce <strong>electricity</strong> for 12 hours at maximum capacity.<br />

Efficiency<br />

<strong>The</strong> cycle efficiency <strong>of</strong> a PHS is 70% to 87%, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> conversion and evaporation losses<br />

(Beaud<strong>in</strong> et al., 2010; Chen et al., 2009; Hadjipaschalis et al., 2009). <strong>The</strong> cycle efficiency <strong>of</strong> an <strong>energy</strong><br />

island is 81%.<br />

Lifetime<br />

<strong>The</strong> lifetime <strong>of</strong> a PHS lies between 30 to 60 years (Beaud<strong>in</strong> et al., 2010; Chen et al., 2009; Denholm<br />

& Kulc<strong>in</strong>ski, 2004). <strong>The</strong> lead time <strong>of</strong> a PHS is around 10 years (Chen et al., 2009). <strong>The</strong> lifetime <strong>of</strong> an<br />

Energy Island is around 80 years.<br />

Space<br />

For a PHS a specific site is needed for two <strong>large</strong> reservoirs at different heights (see<br />

Table 9). <strong>The</strong> drawbacks <strong>of</strong> this requirement are <strong>the</strong> scarce availability <strong>of</strong> sufficient sites and <strong>of</strong>ten a<br />

<strong>large</strong> amount <strong>of</strong> trees and vegetation has to be removed (Chen et al., 2009). This is different for <strong>the</strong><br />

case <strong>of</strong> <strong>the</strong> Energy Island which is located <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> North Sea.<br />

24


5.2 Compressed Air Energy Storage<br />

A conventional natural gas power plant uses nearly two-thirds <strong>of</strong> <strong>the</strong> available power to compress <strong>the</strong><br />

combustion air. In a natural gas power plant with a Compressed Air Energy Storage (CAES), air is<br />

compressed by <strong>the</strong> use <strong>of</strong> electrical power dur<strong>in</strong>g <strong>of</strong>f-peak hours and expanded <strong>in</strong> a combustion<br />

chamber before it goes <strong>in</strong>to <strong>the</strong> turb<strong>in</strong>es (Chen et al., 2009). In a more advanced CAES <strong>the</strong> heat <strong>energy</strong><br />

is extracted and stored separately before <strong>the</strong> compressed air enters <strong>the</strong> cavern. <strong>The</strong> stored heat <strong>energy</strong><br />

and <strong>the</strong> compressed air are comb<strong>in</strong>ed toge<strong>the</strong>r and expanded through an air turb<strong>in</strong>e when <strong>electricity</strong><br />

is needed (Figure 14).<br />

Figure 14 - Schematic overview <strong>of</strong> a compressed air <strong>energy</strong> <strong>storage</strong> (Bullough et al., 2004).<br />

Storage capacity<br />

Currently <strong>the</strong>re are two CAES plants <strong>in</strong> <strong>the</strong> world. <strong>The</strong> first CAES plant is <strong>in</strong> Huntorf, Germany, operat<strong>in</strong>g<br />

s<strong>in</strong>ce 1978 with a capacity <strong>of</strong> 290 MW for 2 hours (580 MWh). <strong>The</strong> second CAES plant is <strong>in</strong><br />

McIntosch, Alabama, USA operat<strong>in</strong>g s<strong>in</strong>ce 1991 with a capacity <strong>of</strong> 110 MW for 26 hours (2.86<br />

GWh). <strong>The</strong>re are several CAES plants under construction or be<strong>in</strong>g planned over <strong>the</strong> world with power<br />

capacities from 200 MW to 9 x 300 MW (Beaud<strong>in</strong> et al., 2010; Chen et al., 2009; Schoenung et al.,<br />

1996). In Iowa, USA, a CAES will be built with a capacity <strong>of</strong> 269 MW for 50 hours (13.4 GWh)<br />

(Beaud<strong>in</strong> et al., 2010).<br />

Discharge time<br />

Like <strong>the</strong> PHS, also a CAES can produce <strong>electricity</strong> for 1 hour to more than 24 hours (Beaud<strong>in</strong> et al.,<br />

2010; Chen et al., 2009).<br />

Efficiency<br />

<strong>The</strong> cycle efficiency <strong>of</strong> a CAES is <strong>in</strong> <strong>the</strong> range <strong>of</strong> 70% to 89% (Beaud<strong>in</strong> et al., 2010; Chen et al.,<br />

2009).<br />

Lifetime<br />

A CAES is able to operate for 20 to 40 years (Chen et al., 2009; Kaldellis et al., 2009).<br />

Space<br />

Similar to <strong>the</strong> PHS, a CAES is reliable to geographical conditions. <strong>The</strong>re are different types <strong>of</strong> CAES<br />

reservoirs. <strong>The</strong> best options are <strong>large</strong> caverns made <strong>of</strong> high-quality rock deep <strong>in</strong> <strong>the</strong> ground, underground<br />

natural gas <strong>storage</strong> caves or ancient salt m<strong>in</strong>es (Ibrahim et al., 2008).<br />

<strong>The</strong> CAES <strong>in</strong> Germany has a cavern <strong>of</strong> approximately 310,000 m 3 , located around 600 m underground.<br />

<strong>The</strong> CAES <strong>in</strong> <strong>the</strong> USA has a cavern <strong>of</strong> approximately 500,000 m 3 , located around 450 m<br />

underground. (Beaud<strong>in</strong> et al., 2010; Chen et al., 2009)<br />

25


<strong>The</strong>re are three areas <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands with salt caverns today (Figure 15). In <strong>the</strong> future<br />

<strong>the</strong>se caverns can be used for CAES. Some <strong>of</strong> <strong>the</strong>se caverns are already used for natural gas <strong>storage</strong>. It<br />

is not known how many salt caverns <strong>the</strong>re will be available for CAES <strong>in</strong> <strong>the</strong> future.<br />

Figure 15 – Salt cavern locations <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands on January 1 st , 2011 (TNO, 2011)<br />

5.3 Flow Battery Energy Storage (FBES)<br />

<strong>The</strong> <strong>energy</strong> <strong>in</strong> a flow battery is stored and released by means <strong>of</strong> a reversible electrochemical reaction<br />

between two liquid electrolyte solutions. <strong>The</strong> <strong>energy</strong> is externally stored <strong>in</strong> <strong>the</strong> electrolyte solutions <strong>in</strong><br />

reservoirs (Figure 16). In one cell <strong>of</strong> a flow battery, <strong>the</strong>re are two compartments, one for each electrolyte,<br />

separated by an ion-exchange membrane. <strong>The</strong> electrolyte is pumped through <strong>the</strong> power cell<br />

where <strong>the</strong> electrochemical reaction takes place. One electrolyte is oxidized and <strong>the</strong> o<strong>the</strong>r is reduced to<br />

produce current to an external circuit. Flow batteries are also known as redox (reduction-oxidation)<br />

flow batteries. <strong>The</strong> ma<strong>in</strong> difference <strong>of</strong> flow batteries compared to <strong>the</strong> o<strong>the</strong>r batteries is that power and<br />

<strong>energy</strong> rat<strong>in</strong>gs are <strong>in</strong>dependent from each o<strong>the</strong>r. <strong>The</strong> power rat<strong>in</strong>g is determ<strong>in</strong>ed by <strong>the</strong> active area <strong>of</strong><br />

<strong>the</strong> cell stack and <strong>energy</strong> <strong>storage</strong> capacity is determ<strong>in</strong>ed by <strong>the</strong> quantity <strong>of</strong> <strong>the</strong> electrolyte. Currently<br />

<strong>the</strong>re are three different electrolytes which are most applicable for <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong>: Vanadium<br />

redox (VRB), Polysulphide bromide (PSB) and Z<strong>in</strong>c brom<strong>in</strong>e (ZnBr). (Baker, 2008; Chen et al.,<br />

2009; Denholm & Kulc<strong>in</strong>ski, 2004; Divya & Østergaard, 2009; Kaldellis et al., 2009; Nourai, 2002)<br />

5.3.1 Vanadium redox (VRB)<br />

Vanadium redox couples are employed to store <strong>energy</strong> <strong>in</strong> this k<strong>in</strong>d <strong>of</strong> battery. V 2+ /V 3+ <strong>in</strong> <strong>the</strong> anode<br />

reservoir and V 4+ /V 5+ <strong>in</strong> <strong>the</strong> cathode reservoir, both dissolved <strong>in</strong> mild sulphuric acid solution which is<br />

26


<strong>the</strong> electrolyte. H + ions are exchanged between <strong>the</strong> two electrolyte reservoirs through <strong>the</strong> hydrogenion<br />

permeable polymer membrane dur<strong>in</strong>g <strong>the</strong> cycles <strong>of</strong> charg<strong>in</strong>g and discharg<strong>in</strong>g. (Beaud<strong>in</strong> et al.,<br />

2010; Chen et al., 2009; Divya & Østergaard, 2009; Nourai, 2002)<br />

Figure 16 - Schematic overview <strong>of</strong> a flow battery (Baker, 2008).<br />

5.3.2 Polysulphide bromide (PSB)<br />

This k<strong>in</strong>d <strong>of</strong> battery is also known as Regeneyses. PSB provides its reversible electrochemical reaction<br />

between two salt solution electrolytes <strong>of</strong> sodium bromide and sodium polysulphide. <strong>The</strong> polymer<br />

membrane that separates <strong>the</strong> two electrolytes only allows <strong>the</strong> exchange <strong>of</strong> sodium ions between <strong>the</strong><br />

two electrolytes. (Chen et al., 2009; Divya & Østergaard, 2009; Nourai, 2002)<br />

5.3.3 Z<strong>in</strong>c brom<strong>in</strong>e (ZnBr)<br />

In two compartments separated by a micro porous polyolef<strong>in</strong> membrane, two different electrolytes<br />

flow past electrodes <strong>of</strong> carbon-plastic composite. Dur<strong>in</strong>g discharge, Zn and Br comb<strong>in</strong>e <strong>in</strong>to z<strong>in</strong>c<br />

bromide what will <strong>in</strong>crease <strong>the</strong> Zn 2+ and Br - ion density <strong>in</strong> both electrolyte reservoirs. Dur<strong>in</strong>g charge,<br />

on one side <strong>of</strong> <strong>the</strong> carbon-plastic composite electrode metallic z<strong>in</strong>c will be deposited as a th<strong>in</strong> film and<br />

on <strong>the</strong> o<strong>the</strong>r side <strong>of</strong> <strong>the</strong> membrane brom<strong>in</strong>e evolves as a dilute solution react<strong>in</strong>g with o<strong>the</strong>r agents to<br />

make brom<strong>in</strong>e oil. This oil s<strong>in</strong>ks down to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> reservoir to a separate part <strong>of</strong> it. It is allowed<br />

to mix it with <strong>the</strong> rest <strong>of</strong> <strong>the</strong> electrolyte dur<strong>in</strong>g discharge only. (Chen et al., 2009; Divya &<br />

Østergaard, 2009; Nourai, 2002)<br />

Storage capacity<br />

<strong>The</strong> <strong>large</strong>st FBES is a PSB battery <strong>in</strong> <strong>the</strong> UK, which has a <strong>storage</strong> capacity <strong>of</strong> 120 MWh (Divya &<br />

Østergaard, 2009). <strong>The</strong> <strong>large</strong>st ZnBr battery and <strong>the</strong> <strong>large</strong>st VRB battery have a <strong>storage</strong> capacity <strong>of</strong> 4<br />

MWh and 1.5 MWh respectively (Divya & Østergaard, 2009). <strong>The</strong> ma<strong>in</strong> advantage <strong>of</strong> a FBES is that<br />

<strong>the</strong> <strong>storage</strong> capacity is only dependent on <strong>the</strong> amount <strong>of</strong> electrolytes (Divya & Østergaard, 2009). To<br />

<strong>in</strong>crease <strong>the</strong> <strong>storage</strong> capacity <strong>of</strong> a FBES, only <strong>large</strong>r reservoirs will be required.<br />

Discharge time<br />

<strong>The</strong> maximum discharge time <strong>of</strong> <strong>the</strong> three FBES <strong>systems</strong> is around 10-12 hours (Beaud<strong>in</strong> et al., 2010;<br />

Chen et al., 2009).<br />

Efficiency<br />

<strong>The</strong> VRB has <strong>the</strong> best cycle efficiency <strong>of</strong> 75-85% and PSB and ZnBr batteries have both a cycle efficiency<br />

<strong>of</strong> around 75% (Beaud<strong>in</strong> et al., 2010; Divya & Østergaard, 2009).<br />

Lifetime<br />

VRB and ZRB are able to operate for 10 years and PSB for 15 years (Chen et al., 2009).<br />

Space<br />

27


ZnBr has an <strong>energy</strong> density <strong>of</strong> 30-60 kWh/m 3 (Chen et al., 2009). <strong>The</strong> <strong>energy</strong> density <strong>of</strong> VRB is 16-33<br />

kWh/m3 and will require 9-18.7 million m 3 <strong>of</strong> space (Chen et al., 2009). <strong>The</strong>re is no literature found<br />

about <strong>the</strong> <strong>energy</strong> density <strong>of</strong> PSB.<br />

28


6 GOLDSIM MODEL<br />

This chapter describes <strong>the</strong> design <strong>of</strong> <strong>the</strong> model, how it works and which data is used for <strong>the</strong> <strong>in</strong>put.<br />

At <strong>the</strong> start <strong>of</strong> <strong>the</strong> model (Figure 17) <strong>the</strong> hourly <strong>electricity</strong> production and <strong>electricity</strong> demand from<br />

PowerPlan are used to calculate <strong>the</strong> power difference for every hour <strong>of</strong> <strong>the</strong> year 2050. As mentioned<br />

<strong>in</strong> chapter 0, <strong>the</strong> <strong>electricity</strong> demand is <strong>the</strong> same <strong>in</strong> every scenario. Only <strong>the</strong> <strong>electricity</strong> production is<br />

different <strong>in</strong> every PowerPlan scenario. From <strong>the</strong> power difference, <strong>the</strong> <strong>electricity</strong> surplus (overproduction)<br />

and <strong>the</strong> <strong>electricity</strong> shortage for every hour is taken. Dependent on <strong>the</strong> available <strong>storage</strong> room, <strong>the</strong><br />

<strong>electricity</strong> surplus will be fully or partial stored <strong>in</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> (ESS). When <strong>the</strong> <strong>electricity</strong><br />

surplus is higher than <strong>the</strong> available <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong> ESS, <strong>the</strong>re will be a net <strong>electricity</strong><br />

surplus. This works <strong>the</strong> same for <strong>the</strong> <strong>electricity</strong> shortage. When <strong>the</strong> <strong>electricity</strong> shortage is higher than<br />

<strong>the</strong> amount <strong>of</strong> <strong>electricity</strong> stored <strong>in</strong> <strong>the</strong> ESS, <strong>the</strong>re will be a net <strong>electricity</strong> shortage. To have a reliable<br />

<strong>electricity</strong> <strong>grid</strong>, <strong>the</strong> net <strong>electricity</strong> shortage has to be zero. Both net <strong>electricity</strong> surplus and shortage are<br />

put toge<strong>the</strong>r <strong>in</strong> <strong>the</strong> net power difference.<br />

Hourly_Demand_Power<br />

Hourly_Electricity_Production<br />

Figure 17 - Basis <strong>of</strong> <strong>the</strong> model <strong>in</strong> GoldSim<br />

<strong>The</strong>re are five different k<strong>in</strong>ds <strong>of</strong> ESS <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> model (Figure 18, see also chapter 5): Pumped<br />

Hydro Storage (PHS), Compressed Air Energy Storage (CAES), PolySulphide Bromide battery<br />

(PSB), Vanadium Redox Battery (VRB) and Z<strong>in</strong>c Brom<strong>in</strong>e battery (ZnBr). <strong>The</strong> ESS are checked one<br />

by one if <strong>the</strong>y can store <strong>the</strong> <strong>electricity</strong> surplus or can supply <strong>the</strong> <strong>electricity</strong> shortage. PHS is checked<br />

first for stor<strong>in</strong>g or supply<strong>in</strong>g <strong>electricity</strong>. If <strong>the</strong>re is still a surplus or a shortage <strong>the</strong>n CAES is checked.<br />

ZnBr is <strong>the</strong> last <strong>storage</strong> system to be checked.<br />

X<br />

ESS_Input<br />

X<br />

ESS_Output<br />

PHS<br />

PHS<br />

Power_Difference<br />

X<br />

PHS_Surplus<br />

X<br />

PHS_Shortage<br />

CAES<br />

CAES<br />

Figure 18 - Zoom <strong>in</strong> <strong>the</strong> model <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong><br />

X<br />

Electricity_Surplus<br />

X<br />

Electricity_Shortage<br />

X<br />

CAES_Surplus<br />

X<br />

CAES_Shortage<br />

PSB<br />

PSB<br />

ESS<br />

ESS<br />

X<br />

PSB_Surplus<br />

X<br />

PSB_Shortage<br />

VRB<br />

VRB<br />

X<br />

Net_Electricity_Surplus<br />

X<br />

Net_Electricity_Shortage<br />

X<br />

VRB_Surplus<br />

X<br />

VRB_Shortage<br />

ZnBr<br />

ZBR<br />

Net_Power_Difference<br />

X<br />

ZBR_Surplus<br />

X<br />

ZBR_Shortage<br />

29


<strong>The</strong> model<strong>in</strong>g <strong>of</strong> every ESS is set up as <strong>in</strong> Figure 19. <strong>The</strong> <strong>in</strong>put elements for <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong><br />

<strong>storage</strong> system can be found <strong>in</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> model, <strong>in</strong>clud<strong>in</strong>g:<br />

30<br />

• Power Capacity (MW);<br />

• Energy Capacity (MWh);<br />

• Efficiency (%);<br />

• CO2e emissions dur<strong>in</strong>g operation per<br />

MWh-output;<br />

• CO2e emissions dur<strong>in</strong>g construction<br />

per MWh <strong>in</strong>stalled;<br />

<strong>The</strong> used data <strong>of</strong> <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> ESS can be found <strong>in</strong> Table 10.<br />

• Energy density (m3/kWh);<br />

• Storage height (to calculate <strong>the</strong> <strong>storage</strong><br />

area);<br />

• Economic Lifetime (years);<br />

• Costs per kW <strong>in</strong>stalled;<br />

• Interest rate (%).<br />

<strong>The</strong> reservoir <strong>of</strong> <strong>the</strong> <strong>storage</strong> system is <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> model (PHS_Storage). <strong>The</strong> <strong>in</strong>put calculations<br />

are on <strong>the</strong> left <strong>of</strong> <strong>the</strong> reservoir and <strong>the</strong> output on <strong>the</strong> right. If <strong>the</strong>re is an <strong>electricity</strong> surplus, <strong>the</strong>n<br />

<strong>the</strong> <strong>in</strong>put function (PHS_Input, Equation 1) checks if <strong>the</strong>re is enough <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong> reservoir.<br />

<strong>The</strong> possible rema<strong>in</strong><strong>in</strong>g surplus is <strong>the</strong> net surplus <strong>of</strong> <strong>the</strong> <strong>storage</strong> system (PHS_Net_Surplus) and goes<br />

to <strong>the</strong> next <strong>storage</strong> system as illustrated <strong>in</strong> Figure 18.<br />

PHS_Input:<br />

if PHS_Storage < PHS_Energy_Capacity,<br />

<strong>the</strong>n if ESS_Input < PHS_Energy_Capacity - PHS_Storage<br />

else 0MW<br />

<strong>the</strong>n if ESS_Input < PHS_Power_Capacity<br />

<strong>the</strong>n ESS_Input<br />

else PHS_Power_Capacity<br />

else if PHS_Energy_Capacity - PHS_Storage < PHS_Power_Capacity<br />

<strong>the</strong>n PHS_Energy_Capacity - PHS_Storage<br />

else PHS_Power_Capacity<br />

Equation 1 - If-<strong>the</strong>n-else formula <strong>of</strong> <strong>the</strong> PHS_Input function<br />

When <strong>the</strong>re is an <strong>electricity</strong> shortage, <strong>the</strong> withdrawal function (PHS_Withdrawal, Equation 2)<br />

checks if <strong>the</strong>re is enough <strong>energy</strong> stored <strong>in</strong> <strong>the</strong> reservoir. In this function <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> <strong>storage</strong><br />

system is <strong>in</strong>cluded.<br />

<strong>The</strong> output function (PHS_Output) is <strong>the</strong> actual delivered <strong>electricity</strong>. More <strong>energy</strong> is extracted<br />

from <strong>the</strong> reservoir than it actually delivers, because <strong>of</strong> <strong>the</strong> efficiency. <strong>The</strong> possible rema<strong>in</strong><strong>in</strong>g <strong>electricity</strong><br />

shortage is <strong>the</strong> net shortage <strong>of</strong> <strong>the</strong> <strong>storage</strong> system (PHS_Net_Shortage) and goes to <strong>the</strong> next <strong>storage</strong><br />

system as illustrated <strong>in</strong> Figure 18. <strong>The</strong> volume <strong>of</strong> <strong>the</strong> <strong>storage</strong> system is calculated by <strong>the</strong> <strong>energy</strong> density<br />

(PHS_m3_kWh) multiplied by <strong>the</strong> size <strong>of</strong> <strong>the</strong> reservoir. When <strong>the</strong>re is a determ<strong>in</strong>ed height, <strong>the</strong><br />

used area (PHS_Area) <strong>of</strong> <strong>the</strong> <strong>storage</strong> system can be determ<strong>in</strong>ed. <strong>The</strong> emissions dur<strong>in</strong>g operation<br />

(PHS_CO2e_variable) are <strong>the</strong> multiplication <strong>of</strong> <strong>the</strong> emissions per MWh and output. <strong>The</strong> emissions<br />

dur<strong>in</strong>g construction (PHS_CO2e_construction) are <strong>the</strong> multiplication <strong>of</strong> <strong>the</strong> emissions per MWh <strong>in</strong>stalled<br />

and <strong>energy</strong> capacity.


PHS_Withdrawal:<br />

if ESS_Output > 0MW<br />

<strong>the</strong>n if ESS_Output > PHS_Storage<br />

else 0MW<br />

<strong>the</strong>n if PHS_Storage > PHS_Power_Capacity / PHS_Efficiency<br />

<strong>the</strong>n PHS_Power_Capacity / PHS_Efficiency<br />

else PHS_Storage<br />

else if ESS_Output / PHS_Efficiency > PHS_Storage<br />

<strong>the</strong>n if PHS_Storage > PHS_Power_Capacity / PHS_Efficiency<br />

<strong>the</strong>n PHS_Power_Capacity / PHS_Efficiency<br />

else PHS_Storage<br />

else if ESS_Output > PHS_Power_Capacity<br />

<strong>the</strong>n PHS_Power_Capacity / PHS_Efficiency<br />

else ESS_Output / PHS_Efficiency<br />

Equation 2 - If-<strong>the</strong>n-else formula <strong>of</strong> <strong>the</strong> PHS_Withdrawal function<br />

PHS Data Input<br />

3.14<br />

16<br />

PHS_height<br />

X<br />

PHS_Area<br />

3.14<br />

16<br />

PHS_m3_kWh PHS_const_CO2e_MWh<br />

X<br />

PHS_Volume<br />

3.14<br />

16<br />

X<br />

PHS_CO2e_construction<br />

X<br />

PHS_Net_Surplus<br />

3.14<br />

16<br />

PHS_Energy_Capacity<br />

X<br />

PHS_Input<br />

3.14<br />

16<br />

PHS_Power_Capacity<br />

PHS_Storage<br />

Figure 19 - Zoom <strong>in</strong> <strong>the</strong> model <strong>of</strong> <strong>the</strong> Pumped Hydro Storage (Energy Island). A <strong>large</strong>r image <strong>of</strong> this figure<br />

can be found <strong>in</strong> Appendix 3.<br />

3.14<br />

16<br />

PHS_Efficiency<br />

X<br />

PHS_Withdrawal<br />

3.14<br />

16<br />

PHS_var_CO2e_MWh<br />

X<br />

PHS_CO2e_variable<br />

3.14<br />

16<br />

PHS_Cost_kW PHS_Economic_LifeTime PHS_<strong>in</strong>terest_rate<br />

X<br />

PHS_Output<br />

3.14<br />

16<br />

X<br />

PHS_Capital_Cost_PowCap<br />

PHS_Tot_En_Prod_accumulator<br />

X<br />

3.14<br />

16<br />

PHS_Net_Shortage<br />

X<br />

PHS_annuity_factor<br />

X<br />

PHS_Capital_Cost<br />

X<br />

PHS_Cost_kWh<br />

PHS_Total_Energy_Production<br />

31


<strong>The</strong> annual costs <strong>of</strong> <strong>the</strong> ESS are based on <strong>the</strong> fixed capital costs. In Equation 3, <strong>the</strong> annual capital<br />

costs are calculated:<br />

32<br />

Equation 3<br />

Where: ACi = Annual costs for ESS i (€) (PHS_Capital_Cost)<br />

a = <strong>the</strong> annuity factor: r/[1 - (1 + r) -L ] (PHS_annuity_factor)<br />

ICi = Investment Costs for ESS i (€/kW) (PHS_Cost_kW)<br />

PC = Plant Capacity (kW) (PHS_Power_Capacity)<br />

r = <strong>in</strong>terest rate (PHS_<strong>in</strong>terest_rate)<br />

L = economic Life-time for ESS i (PHS_Economic_LifeTime)<br />

In Equation 4, <strong>the</strong> costs per generated kWh are calculated for all <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> and power<br />

plants toge<strong>the</strong>r:<br />

<br />

<br />

Where: ECT = Total Electricity Costs <strong>of</strong> all ESS and power plants (€/kWh)<br />

ACT = Total Annual costs for all ESS and power plants (€)<br />

EGT = Total Electricity Generated per year for all ESS and power plants (kWh)<br />

Equation 4<br />

Table 10 - Characteristics <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> used <strong>in</strong> <strong>the</strong> GoldSim model. <strong>The</strong> values are for<br />

one ESS unit.<br />

PHS<br />

CAES<br />

PSB VRB ZnBr<br />

(Energy Island) In salt caverns<br />

Power capacity (MW) 2500 3<br />

300 2<br />

15 2<br />

3 2<br />

2 2<br />

Energy capacity 30,000<br />

(MWh)<br />

3<br />

7,200 2<br />

150<br />

(300 MW x 24 hr)<br />

2<br />

30 2<br />

20 2<br />

Efficiency (%) 81 3<br />

89 2<br />

75 2<br />

85 2<br />

75 2<br />

m3/kWh 20 3<br />

1/6 2<br />

0.024 5<br />

0.030 2<br />

0.017 2<br />

m2/kWh 2 3<br />

- - - -<br />

Height (m) 10 3<br />

- - - -<br />

CO2e/MWh <strong>storage</strong><br />

capacity (construction)<br />

35.7 tonnes 4<br />

19.4 tonnes 4<br />

125.3 4<br />

161.4 4<br />

143 6<br />

CO2e/GWh (dur<strong>in</strong>g<br />

operation)<br />

1.8 tonnes 4<br />

3 tonnes 4<br />

4 4<br />

3.3 4<br />

3.7 6<br />

€/kW <strong>in</strong>stalled 1511 3 416 1,2 1109 1,2 728 1,2 1109 1,2<br />

Interest rate 7% 7% 7% 7% 7%<br />

Economic Lifetime 30 20 10 5 5<br />

1<br />

= Converted from US dollars to Euro (www.ecb.<strong>in</strong>t): (2008: €1 = $1.47) and from Euro(2008) to<br />

Euro(2010): +1.909% (epp.eurostat.ec.europa.eu)<br />

2<br />

= (Chen et al., 2009). For €/kW <strong>in</strong>stalled: <strong>the</strong> middle <strong>of</strong> <strong>the</strong> range token.<br />

3<br />

= (Boer et al., 2007)<br />

4<br />

= (Denholm & Kulc<strong>in</strong>ski, 2004)<br />

5<br />

= No data found. <strong>The</strong> assumption is <strong>the</strong> middle between <strong>the</strong> values <strong>of</strong> VRB and ZnBr.<br />

6<br />

= No data found. <strong>The</strong> assumption is <strong>the</strong> middle between <strong>the</strong> values <strong>of</strong> PSB and VRB.


7 GOLDSIM RESULTS<br />

<strong>The</strong> results <strong>of</strong> <strong>the</strong> calculations from <strong>the</strong> model are presented <strong>in</strong> this chapter. First, <strong>the</strong> results <strong>of</strong> <strong>the</strong><br />

<strong>storage</strong> demand are described. Secondly, <strong>the</strong> results <strong>of</strong> <strong>the</strong> technical reliable, practical and economical<br />

scenarios are presented.<br />

7.1 Storage demand<br />

<strong>The</strong> graph <strong>in</strong> Figure 20 shows how much cumulative hourly <strong>electricity</strong> surplus and <strong>electricity</strong> shortage<br />

occurs at different amounts <strong>of</strong> <strong>energy</strong> <strong>storage</strong> capacity on <strong>the</strong> <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> <strong>the</strong> 95% RS scenario<br />

for <strong>the</strong> year 2050. <strong>The</strong> model ran 22 times with <strong>in</strong>creas<strong>in</strong>g steps <strong>of</strong> 50 GWh <strong>energy</strong> <strong>storage</strong> capacities<br />

from 0 GWh to 1,200 GWh. <strong>The</strong> average efficiency <strong>of</strong> <strong>the</strong> <strong>storage</strong> <strong>systems</strong> for this graph is set to<br />

81%. <strong>The</strong> power capacity (<strong>in</strong> GW) <strong>of</strong> <strong>the</strong> <strong>storage</strong> <strong>systems</strong> was set to unlimited, to know <strong>the</strong> maximum<br />

demand <strong>of</strong> <strong>the</strong> power capacity.<br />

Total <strong>electricity</strong> shortage and surplus (TWh)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

95% RS Scenario 2050<br />

50<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

400<br />

450<br />

500<br />

550<br />

600<br />

650<br />

700<br />

750<br />

800<br />

850<br />

900<br />

950<br />

1.000<br />

1.050<br />

1.100<br />

1.150<br />

1.200<br />

Energy <strong>storage</strong> capacity (GWh)<br />

Total surplus Total shortage Input power capacity Output power capacity<br />

Figure 20 - Total <strong>electricity</strong> shortage and surplus over 2050 at different amounts <strong>of</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong><br />

95% RS scenario and <strong>the</strong> <strong>in</strong>put and output power capacity demand.<br />

When <strong>the</strong>re is no <strong>storage</strong> system <strong>in</strong>stalled, <strong>the</strong> total <strong>electricity</strong> shortage over 2050 is 6.4 TWh and <strong>the</strong><br />

total <strong>electricity</strong> surplus is 10 TWh. To dissolve all <strong>the</strong> <strong>electricity</strong> shortage 1.2 TWh <strong>of</strong> <strong>storage</strong> capacity<br />

is needed. It would get more and more difficult to dissolve <strong>the</strong> whole <strong>electricity</strong> shortage. To dissolve<br />

50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage, an <strong>energy</strong> <strong>storage</strong> capacity <strong>of</strong> 150 GWh is needed. <strong>The</strong>re is 1,050<br />

GWh more <strong>energy</strong> capacity needed to dissolve <strong>the</strong> last 50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage.<br />

In <strong>the</strong> 35% w<strong>in</strong>d <strong>of</strong>fshore scenario, 950 GWh <strong>of</strong> <strong>storage</strong> capacity would be needed. In <strong>the</strong> 30% w<strong>in</strong>d<br />

<strong>of</strong>fshore scenario, 700 GWh. In <strong>the</strong> 25% w<strong>in</strong>d <strong>of</strong>fshore scenario, 650 GWh. In <strong>the</strong> 20% w<strong>in</strong>d <strong>of</strong>fshore<br />

scenario, 400 GWh and <strong>in</strong> <strong>the</strong> 15% w<strong>in</strong>d <strong>of</strong>fshore scenario, 100 GWh. <strong>The</strong> graph <strong>of</strong> <strong>the</strong> <strong>storage</strong> demand<br />

<strong>of</strong> <strong>the</strong>se scenarios are presented <strong>in</strong> Appendix 4.<br />

<strong>The</strong> <strong>in</strong>put and output power capacity that is needed is also shown <strong>in</strong> Figure 20. <strong>The</strong> needed <strong>in</strong>put<br />

power capacity is 10.3 GW. <strong>The</strong> needed output power capacity is 8.5 GW. <strong>The</strong> reason for <strong>the</strong> lower<br />

power capacities at lower <strong>energy</strong> <strong>storage</strong> capacities is that <strong>the</strong> <strong>storage</strong> <strong>systems</strong> with this <strong>energy</strong><br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Input and output power capacity (GW)<br />

33


capacities will not be charg<strong>in</strong>g or discharg<strong>in</strong> at <strong>the</strong> hours when <strong>the</strong>re is a higher electricty production<br />

or demand, because <strong>the</strong> <strong>storage</strong> <strong>systems</strong> are already full or empty by <strong>the</strong>n.<br />

7.2 Scenarios<br />

<strong>The</strong> technical reliable scenarios are scenarios with enough <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> to have no <strong>electricity</strong><br />

shortage over <strong>the</strong> whole year 2050. <strong>The</strong> practical scenario is a scenario with more practical<br />

amounts <strong>of</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>. <strong>The</strong> costs <strong>of</strong> different scenarios are presented <strong>in</strong> <strong>the</strong> economical<br />

scenarios. In Appendix 5, a list <strong>of</strong> more simulated scenarios are listed with <strong>the</strong>ir results.<br />

7.2.1 Technical reliable scenarios<br />

To have a technical reliable <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, <strong>the</strong> total <strong>electricity</strong> shortage over <strong>the</strong><br />

whole year has to be zero. To achieve this 40 <strong>energy</strong> islands, 140 CAES’s or 10,000 PSB’s are needed<br />

(Table 11).<br />

Table 11 - Technical reliable scenarios for <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> 2050<br />

ESS Scenar- Power Capaci- Energy capacity Total sur- Total Size<br />

ioty<br />

(MW) (GWh)<br />

plus shortage<br />

No Storage 0 0 9,954,152 6,357,505 -<br />

40 Energy<br />

100,000 1,200 1,983,109 - 2,400 km<br />

Islands<br />

2 <strong>in</strong> <strong>the</strong><br />

North Sea<br />

140 CAES's 42,000 1,008 2,687,477 - 140 Salt Caverns<br />

10,000<br />

150,000 1,500 1,291,662 - 7.2 km<br />

PSB's<br />

2 with 5m<br />

height<br />

For 40 <strong>energy</strong> islands a total area <strong>of</strong> 2,400 km 2 is needed <strong>in</strong> <strong>the</strong> North Sea. In comparison: <strong>the</strong> IJselmeer<br />

and Markermeer cover an area <strong>of</strong> 1,800 km 2 toge<strong>the</strong>r. For 140 CAES units, 140 salt caverns,<br />

with a volume <strong>of</strong> 1.2 million m 3 each, will be needed. At this moment <strong>the</strong>re are only 2 CAES units<br />

operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> world. A total land area <strong>of</strong> 7.2 km 2 with 5 meters <strong>of</strong> height is needed for 10,000 PSB<br />

units. 10,000 PSB’s requires 250 times smaller area than 40 Energy Islands to have no <strong>electricity</strong><br />

shortage <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong>.<br />

7.2.2 Practical scenario<br />

<strong>The</strong> technical reliable scenarios can be considered as not practical, due to <strong>the</strong> available locations <strong>of</strong><br />

<strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>. A more practical scenario would be two <strong>energy</strong> islands (5000 MW, 60<br />

GWh), 20 CAES (6000 MW, 144 GWh) and 100 <strong>of</strong> each FBES (2000 MW/ 20 GWh). <strong>The</strong> total capacity<br />

<strong>of</strong> this scenario is 13,000 MW and 224 GWh. Figure 21 shows <strong>the</strong> hourly pattern <strong>of</strong> <strong>the</strong> <strong>electricity</strong><br />

production, <strong>electricity</strong> demand (which is <strong>in</strong>verted <strong>in</strong> <strong>the</strong> graph), power difference (without<br />

<strong>storage</strong>) and net power difference (with <strong>storage</strong>) over <strong>the</strong> year 2050 <strong>in</strong> <strong>the</strong> 95% RS scenario with 2<br />

Energy Islands, 20 CAES, 100 PSB, 100 VRB and 100 ZnBr. Beneath <strong>the</strong> purple l<strong>in</strong>e <strong>of</strong> <strong>the</strong> net power<br />

difference is also <strong>the</strong> green l<strong>in</strong>e <strong>of</strong> <strong>the</strong> power difference. For a technical reliable <strong>electricity</strong> <strong>grid</strong> <strong>the</strong>re<br />

should be no purple l<strong>in</strong>e under <strong>the</strong> horizontal axis <strong>in</strong> <strong>the</strong> figure, because this represents <strong>the</strong> <strong>electricity</strong><br />

shortage. <strong>The</strong>re are some periods <strong>in</strong> <strong>the</strong> practical scenario with electrcity shortage.<br />

34


Figure 21 - Hourly pattern <strong>of</strong> <strong>the</strong> <strong>electricity</strong> production, <strong>electricity</strong> demand (<strong>in</strong>verted), power difference<br />

and net power difference over <strong>the</strong> year 2050 <strong>in</strong> <strong>the</strong> 95% RS scenario with 2 Energy Islands, 20 CAES, 100<br />

PSB, 100 VRB and 100 ZnBr.<br />

Weeks 6 to 8 <strong>of</strong> <strong>the</strong> practical scenario is one <strong>of</strong> <strong>the</strong> periods with an <strong>electricity</strong> shortage, caused by <strong>the</strong><br />

lag <strong>of</strong> w<strong>in</strong>d <strong>energy</strong> (Figure 22). In this period <strong>the</strong>re is an <strong>electricity</strong> shortage <strong>of</strong> seven days. <strong>The</strong>re is an<br />

<strong>electricity</strong> net surplus <strong>in</strong> <strong>the</strong> first four days. This means that <strong>the</strong>re is an <strong>electricity</strong> surplus and that <strong>the</strong><br />

<strong>energy</strong> <strong>storage</strong> <strong>systems</strong> are full. <strong>The</strong>n <strong>the</strong>re is a period <strong>of</strong> three days (day 39 to 42) with <strong>electricity</strong><br />

shortage. Dur<strong>in</strong>g <strong>the</strong>se days, <strong>the</strong> <strong>storage</strong> <strong>systems</strong> are able to supply enough <strong>electricity</strong>. After <strong>the</strong>se<br />

three days, <strong>the</strong> <strong>storage</strong> <strong>systems</strong> are empty and cannot supply <strong>electricity</strong> to <strong>the</strong> <strong>electricity</strong> <strong>grid</strong>. From<br />

day 51 <strong>the</strong>re is a period <strong>of</strong> <strong>electricity</strong> surplus and <strong>the</strong> <strong>storage</strong> <strong>systems</strong> are able to charge aga<strong>in</strong>.<br />

Electricity (GW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

35<br />

Weeks 6-8<br />

95% RS scenario with 2 Energy Islands + 20 CAES's + 100 PSB's + 100 VRB's + 100 ZnBr's<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Figure 22 - Weeks 6 to 8 <strong>of</strong> <strong>the</strong> practical scenario.<br />

44<br />

45<br />

46<br />

Day<br />

Production Demand Power Difference Net Power Difference<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

35


Weeks 10 to 13 is a period <strong>of</strong> four weeks <strong>in</strong> <strong>the</strong> practical scenario when <strong>the</strong>re is no <strong>electricity</strong><br />

shortage. <strong>The</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> have enough capacity to supply <strong>electricity</strong> to <strong>the</strong> <strong>electricity</strong> <strong>grid</strong>.<br />

Figure 23 - Weeks 10 to 13 <strong>in</strong> <strong>the</strong> practical scenario<br />

Weeks 37 to 40 is also a period with eleven days <strong>of</strong> <strong>electricity</strong> shortage <strong>in</strong> <strong>the</strong> practical scenario.<br />

Figure 24 - Weeks 37 to 40 <strong>in</strong> <strong>the</strong> practical scenario<br />

36<br />

Electricity (GW)<br />

Electricity (GW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Weeks 10-13<br />

95% RS scenario with 2 Energy Islands + 20 CAES's + 100 PSB's + 100 VRB's + 100 ZnBr's<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

Day<br />

Production Demand Power Difference Net Power Difference<br />

Weeks 37-40<br />

95% RS scenario with 2 Energy Islands + 20 CAES's + 100 PSB's + 100 VRB's + 100 ZnBr's<br />

252<br />

253<br />

254<br />

255<br />

256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

276<br />

277<br />

278<br />

279<br />

280<br />

Day<br />

Production Demand Power Difference Net Power Difference


7.2.3 Economic scenario<br />

Table 12 shows <strong>the</strong> total annual costs <strong>of</strong> every scenario made <strong>in</strong> PowerPlan. <strong>The</strong>se costs <strong>in</strong>clude <strong>the</strong><br />

annual depreciation, <strong>the</strong> fuel costs and <strong>the</strong> operation and ma<strong>in</strong>tenance costs. <strong>The</strong> <strong>storage</strong> costs are not<br />

<strong>in</strong>cluded.<br />

Table 12 – Total annual costs and <strong>the</strong> costs per generated kWh <strong>of</strong> <strong>the</strong> PowerPlan scenarios<br />

Scenario Total Annual Costs (€-<br />

2010)<br />

Costs (€-2010/kWh)<br />

BaU € 13,852,917,400 € 0.1043<br />

95% RS +gas € 19,041,912,000 € 0.1329<br />

95% RS € 19,656,113,100 € 0.1443<br />

35WO € 20,881,098,000 € 0.1554<br />

30WO € 20,968,561,900 € 0.1573<br />

25WO € 21,121,161,400 € 0.1591<br />

20WO € 21,243,376,000 € 0.1604<br />

15WO € 20,858,451,900 € 0.1573<br />

<strong>The</strong> BaU scenario is <strong>the</strong> cheapest scenario. This is because <strong>of</strong> <strong>the</strong> higher capital cost <strong>of</strong> <strong>the</strong> renewable<br />

sources <strong>in</strong> <strong>the</strong> o<strong>the</strong>r scenarios than <strong>the</strong> capital costs <strong>of</strong> <strong>the</strong> conventional power plants <strong>in</strong> <strong>the</strong> BaU scenario.<br />

An overview <strong>of</strong> <strong>the</strong> total annual costs <strong>in</strong> <strong>the</strong> 95% RS scenario + <strong>the</strong> annual costs for different <strong>in</strong>stalled<br />

<strong>energy</strong> <strong>storage</strong> <strong>systems</strong> is shown <strong>in</strong> Table 13.<br />

Table 13 - Overview <strong>of</strong> <strong>the</strong> total annual costs <strong>of</strong> <strong>the</strong> power plants + <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong> <strong>the</strong> 95%<br />

RS scenario<br />

Storage Systems Storage Power Storage Energy Total Annual Total Costs<br />

Capacity (GW) Capacity (GWh) Cost (€-2010) (€-2010/kWh)<br />

No Storage 0 0 € 19,656,113,100 € 0.1443<br />

2 Energy Islands 5 60 € 20,264,943,379 € 0.1471<br />

20 CAES 6 144 € 19,891,717,843 € 0.1428<br />

100 PSB +100 VRB +100 ZnBr 2 20 € 20,000,318,760 € 0.1464<br />

2 Energy Islands + 20 CAES +<br />

13 224 € 20,893,911,487 € 0.1495<br />

100 PSB +100 VRB +100 ZnBr<br />

2 Energy Islands + 20 CAES 11 204 € 20,500,548,121 € 0.1468<br />

1 Energy Island + 20 CAES 8.5 174 € 20,196,132,982 € 0.1449<br />

40 Energy Islands 100 1,200 € 31,832,718,670 € 0.2233<br />

140 CAES 42 1,008 € 21,305,346,299 € 0.1494<br />

10,000 PSB 150 1,500 € 43,340,610,680 € 0.3040<br />

In Chapter 6, <strong>the</strong> calculations for <strong>the</strong> total annual costs <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> are described. In<br />

<strong>the</strong> fourth column <strong>of</strong> Table 13, <strong>the</strong> total annual cost are given. This is <strong>the</strong> annual costs <strong>of</strong> <strong>the</strong> power<br />

plants <strong>in</strong> <strong>the</strong> 95% RS scenario plus <strong>the</strong> annual costs <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>. In <strong>the</strong> fifth column<br />

<strong>the</strong> results for <strong>the</strong> total costs per kWh are given. This is calculated by formula given <strong>in</strong> Equation 4.<br />

<strong>The</strong> total <strong>in</strong>stalled capacity costs <strong>of</strong> <strong>the</strong> power plants and <strong>storage</strong> <strong>systems</strong> toge<strong>the</strong>r are divided by <strong>the</strong><br />

total <strong>electricity</strong> production <strong>of</strong> <strong>the</strong> power plants an <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> toge<strong>the</strong>r.<br />

37


8 CONCLUSION, DISCUSSION AND FURTHER RESEARCH<br />

In this chapter, an answer will be given on <strong>the</strong> ma<strong>in</strong> research question. After <strong>the</strong> conclusion, <strong>the</strong> constra<strong>in</strong>ts<br />

<strong>of</strong> <strong>the</strong> research will be discussed and some recommendations for fur<strong>the</strong>r research are given.<br />

8.1 Conclusion<br />

<strong>The</strong> ma<strong>in</strong> research question <strong>in</strong> this research is:<br />

To which extend can be <strong>the</strong> <strong>role</strong> <strong>of</strong> <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> to<br />

<strong>in</strong>tercept <strong>the</strong> mismatch between <strong>the</strong> <strong>electricity</strong> demand and <strong>the</strong> <strong>electricity</strong> production from renewable<br />

sources to meet <strong>the</strong> European targets <strong>in</strong> 2050?<br />

Some steps are made to give an answer to this question. First a literature research is done to<br />

<strong>the</strong> potential renewable sources <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> 2050. <strong>The</strong> renewable sources with <strong>the</strong><br />

highest potential <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands are w<strong>in</strong>d onshore, w<strong>in</strong>d <strong>of</strong>fshore, solar photovoltaic and biomass.<br />

<strong>The</strong>n, a literature research is done to <strong>the</strong> variability <strong>of</strong> <strong>the</strong>se renewable sources. W<strong>in</strong>d and solar <strong>energy</strong><br />

is directly dependent on <strong>the</strong> wea<strong>the</strong>r conditions and by this very variable and changes every hour.<br />

Electricity from biomass is not directly dependent on <strong>the</strong> wea<strong>the</strong>r conditions, because it is first converted<br />

<strong>in</strong>to a useful form and works about <strong>the</strong> same as a coal or a gas power plant. Data patterns <strong>of</strong> <strong>the</strong><br />

w<strong>in</strong>d <strong>electricity</strong> production and <strong>electricity</strong> demand with time <strong>in</strong>tervals <strong>of</strong> 1 hour over a whole year are<br />

used <strong>in</strong> <strong>the</strong> simulation program PowerPlan.<br />

PowerPlan is used to simulate a scenario <strong>of</strong> <strong>the</strong> Dutch <strong>electricity</strong> mix till 2050, where <strong>the</strong> European<br />

target <strong>of</strong> almost 100% <strong>electricity</strong> from renewable sources is met. This scenario shows that <strong>the</strong><br />

<strong>in</strong>stalled capacity does not meet <strong>the</strong> required capacity, because <strong>of</strong> <strong>the</strong> low capacity factors <strong>of</strong> w<strong>in</strong>d and<br />

solar <strong>energy</strong>. With PowerPlan, hourly patterns <strong>of</strong> <strong>the</strong> total <strong>electricity</strong> production and <strong>electricity</strong> demand<br />

are generated for <strong>the</strong> year 2050. <strong>The</strong>se patterns are used <strong>in</strong> <strong>the</strong> model made with GoldSim. In<br />

this model, five <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> are <strong>in</strong>cluded which are considered as <strong>the</strong> best suitable <strong>storage</strong><br />

system for <strong>large</strong> <strong>scale</strong> use from a literature study. <strong>The</strong>se are: an <strong>energy</strong> island (<strong>in</strong>verted pumped hydro<br />

<strong>storage</strong> on <strong>the</strong> North Sea), Compressed Air Energy Storage (CAES) and three k<strong>in</strong>ds <strong>of</strong> Flow Battery<br />

Energy Storage (FBES).<br />

With <strong>the</strong> model <strong>in</strong> GoldSim, <strong>the</strong> total <strong>electricity</strong> shortage, <strong>the</strong> total <strong>electricity</strong> surplus, <strong>the</strong><br />

<strong>energy</strong> <strong>storage</strong> capacity and <strong>storage</strong> power capacity over 2050 is determ<strong>in</strong>ed. <strong>The</strong> total <strong>electricity</strong><br />

shortage over 2050 is 6.4 TWh and <strong>the</strong> total <strong>electricity</strong> surplus is 10 TWh. To dissolve 6.4 TWh <strong>electricity</strong><br />

shortage, an <strong>energy</strong> capacity <strong>of</strong> 1.2 TWh from <strong>the</strong> <strong>storage</strong> <strong>systems</strong> is needed. <strong>The</strong> needed power<br />

capacity <strong>of</strong> <strong>the</strong> <strong>storage</strong> <strong>systems</strong> is 10.3GW for charg<strong>in</strong>g and 8.5 GW for discharg<strong>in</strong>g.<br />

To dissolve 50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage, <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> need an <strong>energy</strong> capacity<br />

<strong>of</strong> 150 GWh. To dissolve all <strong>the</strong> <strong>electricity</strong> shortage, <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> would need an<br />

<strong>energy</strong> capacity <strong>of</strong> 1,200 GWh. <strong>The</strong>re is 1,050 GWh more <strong>energy</strong> capacity needed to dissolve <strong>the</strong> last<br />

50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage.<br />

To have a technical reliable Dutch <strong>electricity</strong> <strong>grid</strong> <strong>in</strong> 2050, 40 Energy Islands, 140 CAES <strong>systems</strong><br />

or 10,000 PSB <strong>systems</strong> are needed. <strong>The</strong>se scenarios are not very practical, because <strong>in</strong> <strong>the</strong> case <strong>of</strong><br />

40 Energy Islands, a total area <strong>of</strong> 2,400 km 2 would be needed <strong>in</strong> <strong>the</strong> North Sea. For 140 CAES <strong>systems</strong>,<br />

140 depleted salt caverns are needed.<br />

<strong>The</strong> Bus<strong>in</strong>ess as Usual scenario is <strong>the</strong> most economical attractive scenario <strong>of</strong> <strong>the</strong> different<br />

<strong>electricity</strong> mixes, but <strong>the</strong> European target is not met <strong>in</strong> this scenario. This is <strong>the</strong> same for <strong>the</strong> 95% RS<br />

+ gas scenario, which is second cheapest scenario.<br />

CAES is <strong>the</strong> cheapest <strong>energy</strong> <strong>storage</strong> system to use. This is because <strong>of</strong> <strong>the</strong> use <strong>of</strong> salt caverns<br />

which already exist. FBES <strong>systems</strong> are <strong>the</strong> most expensive <strong>storage</strong> <strong>systems</strong> to use. <strong>The</strong> ma<strong>in</strong> reason<br />

for this is <strong>the</strong> shorter life time <strong>of</strong> <strong>the</strong>se FBES, which is 5 to 15 years. In <strong>the</strong> 95% RS scenario, <strong>the</strong><br />

technical reliable and practical scenarios are not economical attractive. Except for 140 CAES <strong>systems</strong><br />

and <strong>the</strong> practical scenario without FBES <strong>systems</strong>. 140 CAES <strong>systems</strong> could be economical attractive,<br />

but not practical. Probably, <strong>the</strong>re will not be 140 salt caverns available for CAES. <strong>The</strong> scenarios without<br />

FBES could be economical attractive, but is not technical reliable.<br />

39


8.2 Discussion<br />

<strong>The</strong>se are po<strong>in</strong>ts <strong>of</strong> discussion to <strong>the</strong> research.<br />

8.2.1 Biomass<br />

<strong>The</strong> ma<strong>in</strong> idea from <strong>the</strong> use <strong>of</strong> biomass is that <strong>the</strong> carbon cycle is much shorter compared to <strong>the</strong> use <strong>of</strong><br />

fossil fuels. But <strong>in</strong> reality forests are <strong>of</strong>ten harvested <strong>in</strong> an unsusta<strong>in</strong>able way. When replacements are<br />

not planted for all <strong>the</strong> burned biomass, <strong>the</strong> burn<strong>in</strong>g <strong>of</strong> biomass will still contribute to <strong>the</strong> <strong>in</strong>crease <strong>of</strong><br />

global warm<strong>in</strong>g.<br />

<strong>The</strong> use <strong>of</strong> <strong>energy</strong> crops has some o<strong>the</strong>r issues. One issue is <strong>the</strong> need <strong>of</strong> <strong>large</strong> areas <strong>of</strong> land<br />

which could result <strong>in</strong> a decrease <strong>in</strong> food production. Also, <strong>energy</strong> crops are probably better for fuel<br />

purposes for <strong>the</strong> transport sector <strong>in</strong>stead for <strong>electricity</strong> generation.<br />

Ano<strong>the</strong>r problem with biomass is that <strong>the</strong>re is not enough <strong>of</strong> it <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands. Biomass<br />

has to be imported from countries with an overshoot <strong>of</strong> biomass. This results <strong>in</strong> <strong>the</strong> need for more<br />

transport and land use <strong>in</strong> ano<strong>the</strong>r country.<br />

All <strong>the</strong>se biomass issues are important for <strong>the</strong> results from this research, because it could<br />

change <strong>the</strong> Dutch <strong>electricity</strong> mix as projected <strong>in</strong> chapter 4. This will result <strong>in</strong> different production<br />

patterns. When <strong>the</strong> share <strong>of</strong> biomass is smaller, than <strong>the</strong> share <strong>of</strong> w<strong>in</strong>d and solar should be <strong>large</strong>r.<br />

8.2.2 Demand pattern<br />

<strong>The</strong> demand pattern used <strong>in</strong> this research is based on <strong>the</strong> <strong>electricity</strong> demand patterns <strong>of</strong> today. Probably<br />

this pattern will not be <strong>the</strong> same <strong>in</strong> <strong>the</strong> future. It could happen that people will use <strong>the</strong> <strong>electricity</strong><br />

more efficient. Also <strong>the</strong> <strong>in</strong>crease <strong>of</strong> battery electric vehicles will have an <strong>in</strong>fluence on <strong>the</strong> <strong>electricity</strong><br />

demand, but it is uncerta<strong>in</strong> how this will <strong>in</strong>fluence <strong>the</strong> demand pattern.<br />

8.2.3 W<strong>in</strong>d pattern<br />

<strong>The</strong> <strong>of</strong>fshore and onshore w<strong>in</strong>d patterns used <strong>in</strong> this research are base on a onshore w<strong>in</strong>d pattern. <strong>The</strong><br />

wea<strong>the</strong>r conditions are different at sea and w<strong>in</strong>d calms occurs lesser. <strong>The</strong> lulls <strong>in</strong> <strong>the</strong> <strong>of</strong>fshore w<strong>in</strong>d<br />

pattern are probably not as low and long as <strong>in</strong> <strong>the</strong> onshore w<strong>in</strong>d pattern<br />

8.2.4 GoldSim model<br />

In <strong>the</strong> GoldSim model, an arbitrary chosen order <strong>of</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> is used. <strong>The</strong> <strong>energy</strong> <strong>storage</strong><br />

<strong>systems</strong> are charged and discharged one by one. <strong>The</strong> Energy Islands are charg<strong>in</strong>g first. When <strong>the</strong><br />

Energy Islands are full, <strong>the</strong>n <strong>the</strong> CAES <strong>systems</strong> are charg<strong>in</strong>g, <strong>the</strong>n <strong>the</strong> PSB <strong>systems</strong> followed by <strong>the</strong><br />

VRB and ZnBr <strong>systems</strong>. This works <strong>in</strong> <strong>the</strong> same way for discharg<strong>in</strong>g. <strong>The</strong>re could be different results<br />

from <strong>the</strong> model when <strong>the</strong>re is no order <strong>in</strong> <strong>the</strong> <strong>storage</strong> <strong>systems</strong> and charged and discharged at <strong>the</strong> same<br />

time. Also a different order can result <strong>in</strong> o<strong>the</strong>r results. <strong>The</strong>se two alternatives are both not modeled<br />

and tested, because <strong>of</strong> <strong>the</strong> time <strong>of</strong> <strong>the</strong> research. It is expected that this will have no <strong>in</strong>fluence on <strong>the</strong><br />

reliability <strong>of</strong> <strong>the</strong> <strong>systems</strong> to <strong>the</strong> <strong>electricity</strong> <strong>grid</strong>, but <strong>the</strong> costs per kWh could be higher or lower.<br />

8.2.5 Practical scenario<br />

<strong>The</strong> amount <strong>of</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong> <strong>the</strong> practical scenario are arbitrary chosen. <strong>The</strong> practical<br />

amount <strong>of</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> is dependent on <strong>the</strong> available locations. A study to available locations<br />

for <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> is also recommended for fur<strong>the</strong>r research <strong>in</strong> paragraph 8.3.<br />

8.2.6 Costs<br />

In <strong>the</strong> literature (Beaud<strong>in</strong> et al., 2010; Chen et al., 2009), <strong>the</strong> capital cost (€/kW) <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong><br />

<strong>systems</strong> are given <strong>in</strong> a very wide range. <strong>The</strong> capital costs for CAES is <strong>in</strong> <strong>the</strong> range <strong>of</strong> €277 to €555,<br />

for VRB €416 to €1040 and PSB and ZnBr €485 to €1733. This range is wide, because <strong>the</strong>se <strong>systems</strong><br />

are new technologies. In this study <strong>the</strong> average cost is used, but <strong>the</strong> total costs <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong><br />

<strong>systems</strong> can be much higher or lower.<br />

<strong>The</strong> operation and ma<strong>in</strong>tenance costs (O&M), transmission and distribution costs (T&D), replacement<br />

costs and disposal costs are not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> capital costs. This will result <strong>in</strong> higher total<br />

costs <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>.<br />

40


Ano<strong>the</strong>r aspect which can have an <strong>in</strong>fluence <strong>in</strong> <strong>the</strong> costs, is <strong>the</strong> price <strong>of</strong> oil, gas and renewable<br />

sources. In this research, <strong>the</strong> prices provided <strong>in</strong> PowerPlan are used. When <strong>the</strong> fossil fuel reserves get<br />

more depleted and scarce, than <strong>the</strong> price <strong>of</strong> fossil fuels will <strong>in</strong>crease. <strong>The</strong> renewable <strong>energy</strong> sources<br />

can get more economical attractive by this event. <strong>The</strong> total costs <strong>in</strong> <strong>the</strong> Bus<strong>in</strong>ess as Usual scenario <strong>in</strong><br />

this research can be much higher and even get higher than <strong>the</strong> 95% RS scenario and o<strong>the</strong>r w<strong>in</strong>d <strong>of</strong>fshore<br />

scenarios.<br />

8.3 F<strong>in</strong>al conclusion<br />

Large <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> <strong>in</strong> <strong>the</strong> Dutch <strong>electricity</strong> <strong>grid</strong> can technically <strong>in</strong>tercept <strong>the</strong> mismatch<br />

between <strong>the</strong> <strong>electricity</strong> demand and <strong>the</strong> <strong>electricity</strong> production from renewable sources for 100%<br />

to meet <strong>the</strong> European targets <strong>in</strong> 2050, but this is not practical and not economical attractive.<br />

With 150 GWh <strong>energy</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong> 95% RS scenario, 50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage<br />

can be dissolved. An extra 1,050 GWh <strong>energy</strong> <strong>storage</strong> capacity would be needed to dissolve all<br />

<strong>the</strong> <strong>electricity</strong> shortage.<br />

Ano<strong>the</strong>r economical and practical alternative is <strong>the</strong> 95% RS scenario + gas scenario. This is<br />

<strong>the</strong> 95% RS scenario with <strong>the</strong> addition <strong>of</strong> comb<strong>in</strong>ed cycle gas turb<strong>in</strong>es to meet <strong>the</strong> required capacity.<br />

But <strong>in</strong> this scenario <strong>the</strong> European target <strong>of</strong> almost 100% <strong>electricity</strong> from renewable source <strong>in</strong> 2050 is<br />

not met.<br />

It is recommended to <strong>the</strong> Ne<strong>the</strong>rlands that if <strong>the</strong>y want to meet <strong>the</strong> European target, a scenario<br />

as <strong>the</strong> 95% RS scenario as described <strong>in</strong> this study is needed. To <strong>in</strong>tercept <strong>the</strong> mismatch between <strong>the</strong><br />

<strong>electricity</strong> supply and demand <strong>in</strong> <strong>the</strong> 95% RS scenario, it is recommended to <strong>in</strong>stall 150 GWh <strong>of</strong> <strong>energy</strong><br />

<strong>storage</strong> <strong>systems</strong> with a power capacity <strong>of</strong> 9 GW. In this case, 50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong> shortage is<br />

dissolved. This can be done by 1 Energy Island and 20 CAES <strong>systems</strong>. For <strong>the</strong> o<strong>the</strong>r 50% <strong>of</strong> <strong>the</strong> <strong>electricity</strong><br />

shortage (1,050 GWh), o<strong>the</strong>r alternatives are needed. For example with use <strong>of</strong> a European <strong>electricity</strong><br />

<strong>grid</strong>, where <strong>electricity</strong> from renewable sources or <strong>energy</strong> <strong>storage</strong> <strong>systems</strong> can be traded with<br />

neighbor<strong>in</strong>g countries.<br />

8.4 Fur<strong>the</strong>r research<br />

To have a better answer to <strong>the</strong> research question, <strong>the</strong> follow<strong>in</strong>g recommendations are done for fur<strong>the</strong>r<br />

research.<br />

8.4.1 PV pattern<br />

<strong>The</strong> pattern for solar photovoltaic is not used <strong>in</strong> <strong>the</strong> PowerPlan model<strong>in</strong>g. In PowerPlan, Solar PV has<br />

a share <strong>of</strong> 12% <strong>in</strong> <strong>the</strong> 95% RS scenario. This could change <strong>the</strong> hourly production pattern and power<br />

difference, because <strong>of</strong> <strong>the</strong> hourly, daily and seasonal fluctuations <strong>of</strong> solar PV.<br />

8.4.2 Offshore W<strong>in</strong>d pattern<br />

<strong>The</strong> <strong>of</strong>fshore w<strong>in</strong>d pattern used <strong>in</strong> this study is based on <strong>the</strong> onshore w<strong>in</strong>d pattern. Fur<strong>the</strong>r research is<br />

needed <strong>in</strong> collect<strong>in</strong>g <strong>of</strong>fshore w<strong>in</strong>d speed data.<br />

8.4.3 North Sea<br />

One Energy Island requires an area <strong>of</strong> 60 km 2 <strong>of</strong> <strong>the</strong> North Sea with a 50 m deep dredged reservoir on<br />

a 40 m thick layer <strong>of</strong> clay. A research would be needed to suitable locations for an Energy Island <strong>in</strong><br />

<strong>the</strong> North Sea.<br />

8.4.4 Salt caverns<br />

Fur<strong>the</strong>r research would be needed to <strong>the</strong> amount <strong>of</strong> available salt caverns for CAES <strong>systems</strong> <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands <strong>in</strong> <strong>the</strong> future.<br />

8.4.5 Alternatives<br />

A study to alternative options to cope with <strong>the</strong> <strong>electricity</strong> shortage <strong>in</strong> <strong>the</strong> 95% RS scenario is also recommended.<br />

One <strong>of</strong> <strong>the</strong> alternatives is to work toge<strong>the</strong>r with neighbor<strong>in</strong>g counties and o<strong>the</strong>r countries<br />

<strong>in</strong> <strong>the</strong> EU. Connections with w<strong>in</strong>d parks <strong>in</strong> countries like Scotland, Germany and Scotland. Solar PV<br />

<strong>in</strong> countries like France, Spa<strong>in</strong> and Italy.<br />

41


LITERATURE<br />

Baker, J. (2008). New technology and possible advances <strong>in</strong> <strong>energy</strong> <strong>storage</strong>. Energy Policy, 36(12),<br />

4368-4373. doi:DOI: 10.1016/j.enpol.2008.09.040<br />

Beaud<strong>in</strong>, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy <strong>storage</strong> for mitigat<strong>in</strong>g<br />

<strong>the</strong> variability <strong>of</strong> renewable <strong>electricity</strong> sources: An updated review. Energy for Susta<strong>in</strong>able<br />

Development, 14(4), 302-314. doi:DOI: 10.1016/j.esd.2010.09.007<br />

Benders, R. J. M. (1996). Interactive simulation <strong>of</strong> <strong>electricity</strong> demand and production. (Doctoral dissertation,<br />

University <strong>of</strong> Gron<strong>in</strong>gen).<br />

Bilgili, M., Yasar, A., & Simsek, E. (2011). Offshore w<strong>in</strong>d power development <strong>in</strong> europe and its<br />

comparison with onshore counterpart. Renewable and Susta<strong>in</strong>able Energy Reviews, 15(2),<br />

905-915. doi:DOI: 10.1016/j.rser.2010.11.006<br />

Boer, W. W. d., Verheij, F. J., Zwemmer, D., & Das, R. (2007). <strong>The</strong> <strong>energy</strong> island - an <strong>in</strong>verse pump<br />

accumulation station. Unpublished manuscript.<br />

BP. (2010). Statistical review <strong>of</strong> world <strong>energy</strong> 2010. Retrieved May 25, 2011, from<br />

http://www.bp.com/liveassets/bp_<strong>in</strong>ternet/globalbp/globalbp_uk_english/reports_and_publicat<br />

ions/statistical_<strong>energy</strong>_review_2008/STAGING/local_assets/2010_downloads/Statistical_Rev<br />

iew_<strong>of</strong>_World_Energy_2010.xls<br />

BP. (2011). BP <strong>energy</strong> outlook 2030. Retrieved May 25, 2011, from<br />

http://www.bp.com/liveassets/bp_<strong>in</strong>ternet/globalbp/globalbp_uk_english/reports_and_publicat<br />

ions/statistical_<strong>energy</strong>_review_2008/STAGING/local_assets/2010_downloads/BP-Energy-<br />

Outlook-2030-summary-tables.xls<br />

Bullough, C., Gatzen, C., Jakiel, C., Koller, M., Nowi, A., & Zunft, S. (2004). Advanced adiabatic<br />

compressed air <strong>energy</strong> <strong>storage</strong> for <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> w<strong>in</strong>d <strong>energy</strong>. London.<br />

Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & D<strong>in</strong>g, Y. (2009). Progress <strong>in</strong> electrical <strong>energy</strong><br />

<strong>storage</strong> system: A critical review. Progress <strong>in</strong> Natural Science, 19(3), 291-312. doi:DOI:<br />

10.1016/j.pnsc.2008.07.014<br />

Commission <strong>of</strong> <strong>the</strong> European Communities. (2004). <strong>The</strong> share <strong>of</strong> renewable <strong>energy</strong> <strong>in</strong> <strong>the</strong> EU - country<br />

pr<strong>of</strong>iles - overview <strong>of</strong> renewable <strong>energy</strong> sources <strong>in</strong> <strong>the</strong> en<strong>large</strong>d European Union.<br />

Denholm, P., & Kulc<strong>in</strong>ski, G. L. (2004). Life cycle <strong>energy</strong> requirements and greenhouse gas emissions<br />

from <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong> <strong>systems</strong>. Energy Conversion and Management, 45(13-<br />

14), 2153-2172. doi:DOI: 10.1016/j.enconman.2003.10.014<br />

Divya, K. C., & Østergaard, J. (2009). Battery <strong>energy</strong> <strong>storage</strong> technology for power <strong>systems</strong>—An<br />

overview. Electric Power Systems Research, 79(4), 511-520. doi:DOI:<br />

10.1016/j.epsr.2008.09.017<br />

Donkers, J. A. J., Brand, A. J., & Eecen, P. J. (2011). Offshore w<strong>in</strong>d atlas <strong>of</strong> <strong>the</strong> Dutch part <strong>of</strong> <strong>the</strong><br />

north sea. ECN.<br />

Esteban, M. D., Diez, J. J., López, J. S., & Negro, V. (2011). Why <strong>of</strong>fshore w<strong>in</strong>d <strong>energy</strong>? Renewable<br />

Energy, 36(2), 444-450. doi:DOI: 10.1016/j.renene.2010.07.009<br />

43


European Commission. (2010). EU <strong>energy</strong> trends to 2030 — update 2009. Luxembourg: Publications<br />

Office <strong>of</strong> <strong>the</strong> European Union. doi:10.2833/21664<br />

European Commission. (2011). A roadmap for mov<strong>in</strong>g to a competitive low carbon economy <strong>in</strong> 2050.<br />

Retrieved June 20, 2011, from<br />

http://ec.europa.eu/clima/documentation/roadmap/docs/com_2011_112_en.pdf<br />

EWEA. (2011). EU <strong>energy</strong> policy to 2050.<br />

Hadjipaschalis, I., Poullikkas, A., & Efthimiou, V. (2009). Overview <strong>of</strong> current and future <strong>energy</strong><br />

<strong>storage</strong> technologies for electric power applications. Renewable and Susta<strong>in</strong>able Energy Reviews,<br />

13(6-7), 1513-1522. doi:DOI: 10.1016/j.rser.2008.09.028<br />

Hekkenberg, M., Benders, R. M. J., Moll, H. C., & Schoot Uiterkamp, A. J. M. (2009). Indications for<br />

a chang<strong>in</strong>g <strong>electricity</strong> demand pattern: <strong>The</strong> temperature dependence <strong>of</strong> <strong>electricity</strong> demand <strong>in</strong><br />

<strong>the</strong> ne<strong>the</strong>rlands. Energy Policy, 37(4), 1542-1551. doi:10.1016/j.enpol.2008.12.030<br />

Ibrahim, H., Il<strong>in</strong>ca, A., & Perron, J. (2008). Energy <strong>storage</strong> <strong>systems</strong>—Characteristics and comparisons.<br />

Renewable and Susta<strong>in</strong>able Energy Reviews, 12(5), 1221-1250. doi:DOI:<br />

10.1016/j.rser.2007.01.023<br />

Jung<strong>in</strong>ger, M., Agterbosch, S., Faaij, A., & Turkenburg, W. (2004). Renewable <strong>electricity</strong> <strong>in</strong> <strong>the</strong> ne<strong>the</strong>rlands.<br />

Energy Policy, 32(9), 1053-1073. doi:DOI: 10.1016/S0301-4215(03)00063-6<br />

Kaldellis, J. K., Zafirakis, D., & Kavadias, K. (2009). Techno-economic comparison <strong>of</strong> <strong>energy</strong> <strong>storage</strong><br />

<strong>systems</strong> for island autonomous electrical networks. Renewable and Susta<strong>in</strong>able Energy Reviews,<br />

13(2), 378-392. doi:DOI: 10.1016/j.rser.2007.11.002<br />

KNMI. (2002). In Heijboer D., Nellestijn J. (Eds.), Klimaatatlas van nederland - de normaalperiode<br />

1971-2000. Rijswijk: Uitgeverij Elmar B.V.<br />

KNMI. (2011). Klimaatatlas - langjarige gemiddelden 1981-2010. Retrieved September 19, 2011,<br />

from http://www.klimaatatlas.nl<br />

MacKay, D. J. C. (2009). Fluctuations and <strong>storage</strong>. In Susta<strong>in</strong>able <strong>energy</strong> - without <strong>the</strong> hot air Cambridge:<br />

UIT Cambridge Ltd.<br />

McK<strong>in</strong>ney, M. L., Schoch, R. M., & Yonavjak, L. (2007). Environmental science: System and solutions.<br />

(4th ed.). Sudbury: Jones and Bartlett Publishers.<br />

M<strong>in</strong>isterie van Economische Zaken, Landbouw & Innovatie. (2011). Energierapport 2011. Rijksoverheid,<br />

NL Agency. (2010). Renewable <strong>energy</strong> monitor<strong>in</strong>g protocol update 2010. ( No. 2DENB1014). M<strong>in</strong>istry<br />

<strong>of</strong> Economic Affairs.<br />

Noord, M. de, Beurkens, L.W.M., Vries, H.J. de,. (2004). Potentials and costs for renewable <strong>electricity</strong><br />

generation. ECN.<br />

Nourai, A. (2002). Large-<strong>scale</strong> <strong>electricity</strong> <strong>storage</strong> technologies for <strong>energy</strong> management. Power Eng<strong>in</strong>eer<strong>in</strong>g<br />

Society Summer Meet<strong>in</strong>g, 2002 IEEE, , 1 310-315 vol.1.<br />

44


Odenberger, M., & Johnsson, F. (2010). Pathways for <strong>the</strong> european <strong>electricity</strong> supply system to<br />

2050—<strong>The</strong> <strong>role</strong> <strong>of</strong> CCS to meet str<strong>in</strong>gent CO2 reduction targets. International Journal <strong>of</strong><br />

Greenhouse Gas Control, 4(2), 327-340. doi:DOI: 10.1016/j.ijggc.2009.09.005<br />

OECD/IEA. (2011a). Electricity/Heat <strong>in</strong> ne<strong>the</strong>rlands <strong>in</strong> 2008. Retrieved May 30, 2011, from<br />

http://www.iea.org/stats/<strong>electricity</strong>data.asp?COUNTRY_CODE=NL<br />

OECD/IEA. (2011b). Key world <strong>energy</strong> statistics. Paris: International Energy Agency (IEA).<br />

Ribeiro, P. F., Johnson, B. K., Crow, M. L., Arsoy, A., & Liu, Y. (2001). Energy <strong>storage</strong> <strong>systems</strong> for<br />

advanced power applications. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> IEEE, 89(12), 1744-1756.<br />

Scha<strong>in</strong>ker, R. B. (2004). Executive overview: Energy <strong>storage</strong> options for a susta<strong>in</strong>able <strong>energy</strong> future.<br />

Power Eng<strong>in</strong>eer<strong>in</strong>g Society General Meet<strong>in</strong>g, 2004. IEEE, 2309-2314 Vol.2.<br />

Schoenung, S. M., Eyer, J. M., Iannucci, J. J., & Horgan, S. A. (1996). Energy Storage For A Competitive<br />

Power Market. Annual Review <strong>of</strong> Energy and <strong>the</strong> Environment, 21(1), 347-370.<br />

doi:10.1146/annurev.<strong>energy</strong>.21.1.347<br />

TNO. (2011). Delftst<strong>of</strong>fen en aardwarmte <strong>in</strong> nederland - jaarverslag 2010. (Year report 2010). Den<br />

Haag.<br />

Ummels, B. C., Pelgrum, E., & Kl<strong>in</strong>g, W. L. (2008). Integration <strong>of</strong> <strong>large</strong>-<strong>scale</strong> w<strong>in</strong>d power and use <strong>of</strong><br />

<strong>energy</strong> <strong>storage</strong> <strong>in</strong> <strong>the</strong> ne<strong>the</strong>rlands' <strong>electricity</strong> supply. Renewable Power Generation, IET, 2(1),<br />

34-46.<br />

Wijk, A. J. M. van, Coel<strong>in</strong>gh, J. P., & Turkenburg, W. C. (1990). Modell<strong>in</strong>g w<strong>in</strong>d power production<br />

<strong>in</strong> <strong>the</strong> ne<strong>the</strong>rlands. W<strong>in</strong>d Eng<strong>in</strong>eer<strong>in</strong>g, 14(2 , 1990), 122-140.<br />

45


APPENDIX 1 – POWERPLAN SCENARIOS<br />

Figure 25 - Bus<strong>in</strong>ess as Usual <strong>in</strong>stalled capacity till 2050<br />

Table 14 - Electricity mix BaU scenario <strong>in</strong> 2050.<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 14%<br />

W<strong>in</strong>d <strong>of</strong>fshore 15.664 3800 11%<br />

Sun PV 7.422 2973 9%<br />

Nuclear 3.176 449 1%<br />

CHP 5.403 979 3%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 36.642 5200 15%<br />

Biomass 11.550 1725 5%<br />

Comb. cycle 28.245 10,525 30%<br />

Biogas 0.211 1870 5%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.000 0 0%<br />

Total 132.818 34,639 100%<br />

47


Figure 26 - 95% RS + gas scenario <strong>in</strong>stalled capacity till 2050<br />

Table 15 - Electricity mix 95% RS +gas scenario <strong>in</strong> 2050<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 10%<br />

W<strong>in</strong>d <strong>of</strong>fshore 59.153 14,350 32%<br />

Sun PV 10.211 4090 9%<br />

Nuclear 0.000 0 0%<br />

CHP 5.403 979 2%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 0.000 0 0%<br />

Biomass 22.043 3825 8%<br />

Comb. cycle 21.330 10,850 24%<br />

Biogas 0.633 3705 8%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.003 210 0%<br />

Total 143.280 45,127 100%<br />

48


Figure 27 - 35% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong>stalled capacity till 2050<br />

Table 16 - Electricity mix 35% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong> 2050<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 13%<br />

W<strong>in</strong>d <strong>of</strong>fshore 50.496 12,250 35%<br />

Sun PV 10.211 4090 12%<br />

Nuclear 0.000 0 0%<br />

CHP 5.403 979 3%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 0.000 0 0%<br />

Biomass 23.328 3825 11%<br />

Comb. cycle 12.245 3300 9%<br />

Biogas 8.183 3705 11%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.000 0 0%<br />

Total 134.370 35,267 100%<br />

49


Figure 28 - 30% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong>stalled capacity till 2050<br />

Table 17 - Electricity mix 30% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong> 2050<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 13%<br />

W<strong>in</strong>d <strong>of</strong>fshore 43.076 10,450 30%<br />

Sun PV 10.211 4090 12%<br />

Nuclear 0.000 0 0%<br />

CHP 5.403 979 3%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 0.000 0 0%<br />

Biomass 24.465 3825 11%<br />

Comb. cycle 19.161 5000 14%<br />

Biogas 6.483 3705 11%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.000 0 0%<br />

Total 133.303 35,167 100%<br />

50


Figure 29 - 25% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong>stalled capacity till 2050<br />

Table 18 - Electricity mix 25% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong> 2050<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 13%<br />

W<strong>in</strong>d <strong>of</strong>fshore 36.069 8750 25%<br />

Sun PV 10.211 4090 12%<br />

Nuclear 0.000 0 0%<br />

CHP 5.403 979 3%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 0.000 0 0%<br />

Biomass 25.449 3825 11%<br />

Comb. cycle 26.263 6700 19%<br />

Biogas 4.855 3705 11%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.000 0 0%<br />

Total 132.754 35,167 100%<br />

51


Figure 30 - 20% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong>stalled capacity till 2050<br />

Table 19 - Electricity mix 20% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong> 2050<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 13%<br />

W<strong>in</strong>d <strong>of</strong>fshore 28.855 7000 20%<br />

Sun PV 10.211 4090 12%<br />

Nuclear 0.000 0 0%<br />

CHP 5.403 979 3%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 0.000 0 0%<br />

Biomass 26.332 3825 11%<br />

Comb. cycle 33.890 8450 24%<br />

Biogas 3.246 3705 11%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.000 0 0%<br />

Total 132.440 35,167 100%<br />

52


Figure 31 - 15% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong>stalled capacity till 2050<br />

Table 20 - Electricity mix 15% w<strong>in</strong>d <strong>of</strong>fshore scenario <strong>in</strong> 2050<br />

Power plant<br />

Generated Electricity<br />

(TWh)<br />

Installed Power Capacity<br />

(MW)<br />

Installed Power Capacity<br />

(%)<br />

Import 4.599 700 2%<br />

W<strong>in</strong>d onshore 9.768 4720 13%<br />

W<strong>in</strong>d <strong>of</strong>fshore 21.641 5250 15%<br />

Sun PV 10.211 4090 12%<br />

Nuclear 0.000 0 0%<br />

CHP 5.403 979 3%<br />

Distr. heat<strong>in</strong>g 6.921 1188 3%<br />

Pub. waste 3.217 510 1%<br />

Coal 9.921 1400 4%<br />

Biomass 26.460 3825 11%<br />

Comb. cycle 32.715 8850 25%<br />

Biogas 1.748 3705 11%<br />

Oil/Gas 0.000 0 0%<br />

Gasturb<strong>in</strong>e 0.000 0 0%<br />

Total 132.603 35,217 100%<br />

53


APPENDIX 2 – OTHER ENERGY STORAGE TECHNOLOGIES<br />

After <strong>the</strong> literature study, <strong>the</strong> follow<strong>in</strong>g <strong>energy</strong> <strong>storage</strong> technologies are considered not to be suitable<br />

for <strong>large</strong> <strong>scale</strong> use, but will be described shortly:<br />

8.4.6 Hydrogen <strong>storage</strong><br />

In a hydrogen <strong>storage</strong> system, hydrogen and oxygen is produced from water by electrolyses. A hydrogen<br />

fuel cell uses hydrogen and oxygen to produce water and <strong>electricity</strong>. Between <strong>the</strong>se two processes<br />

<strong>the</strong> hydrogen is stored (Beaud<strong>in</strong> et al., 2010). For <strong>large</strong> <strong>scale</strong> applications, <strong>the</strong> two most developed<br />

<strong>storage</strong> technologies are <strong>the</strong> hydrogen pressurization and <strong>the</strong> hydrogen absorption <strong>in</strong> metal hydrides<br />

(Hadjipaschalis et al., 2009). Simplest way to store <strong>the</strong> hydrogen is <strong>in</strong> pressurized tanks with a volume<br />

anywhere between 0.01 and 10,000m 3 . It is possible to store <strong>the</strong> hydrogen at pressures up to 350 bars<br />

(Ibrahim et al., 2008) and currently research is done to materials that are adequate for use at pressures<br />

to 700 bars (Hadjipaschalis et al., 2009). <strong>The</strong> discharge time <strong>of</strong> hydrogen <strong>storage</strong> with pressurization<br />

is dependent on <strong>the</strong> capacity <strong>of</strong> <strong>the</strong> fuel cell and can go up to more than 24 hours (Beaud<strong>in</strong> et al.,<br />

2010). <strong>The</strong> electrolyzer has a cycle efficiency <strong>of</strong> 70% and <strong>the</strong> fuel cell 50%. So <strong>the</strong> hydrogen <strong>energy</strong><br />

<strong>storage</strong> has a cycle efficiency <strong>of</strong> around 35% (Ibrahim et al., 2008). This is <strong>the</strong> ma<strong>in</strong> disadvantage for<br />

<strong>large</strong> <strong>scale</strong> use. <strong>The</strong> lifetime <strong>of</strong> a hydrogen <strong>energy</strong> <strong>storage</strong> lies between 5 and 20 years (Beaud<strong>in</strong> et al.,<br />

2010; Kaldellis et al., 2009). <strong>The</strong> <strong>energy</strong> density <strong>of</strong> hydrogen <strong>storage</strong> is between 500 and 3,000<br />

kWh/m 3 (Chen et al., 2009).<br />

8.4.7 Lead acid Battery<br />

In <strong>the</strong> charged state a lead acid battery consists <strong>of</strong> lead metal as anode electrode, lead oxide as cathode<br />

electrode and sulphuric acid as <strong>the</strong> electrolyte. Both electrodes turn <strong>in</strong>to lead sulphate and <strong>the</strong> electrolyte<br />

loses its dissolved sulphuric acid and becomes primarily water <strong>in</strong> <strong>the</strong> discharged state. <strong>The</strong> reason<br />

why <strong>the</strong> lead acid battery is not suitable for <strong>large</strong> <strong>scale</strong> applications is its short cycle life, low <strong>energy</strong><br />

density and poor low temperature performance. (Chen et al., 2009; Hadjipaschalis et al., 2009)<br />

8.4.8 Nickel-cadmium (NiCd) Battery<br />

A NiCd battery cell consists <strong>of</strong> cadmium hydroxide as anode electrode, nickel hydroxide as cathode<br />

electrode and alkal<strong>in</strong>e as electrolyte. <strong>The</strong> electrode plates are isolated from each o<strong>the</strong>r by a separator<br />

and are rolled <strong>in</strong> a spiral shape <strong>in</strong>side a metal case. <strong>The</strong> disadvantages <strong>of</strong> NiCd batteries for <strong>large</strong> <strong>scale</strong><br />

use are: Cadmium is a toxic heavy metal, high cost and <strong>the</strong> memory effect (it will only take full<br />

charge after a series <strong>of</strong> full discharges. (Chen et al., 2009)<br />

8.4.9 Sodium-sulphur (NaS) Battery and ZEBRA (Na-NiCl2) Battery<br />

A NaS battery cell consists <strong>of</strong> liquid sodium as anode electrode and liquid sulphur as cathode, separated<br />

by a solid beta alum<strong>in</strong>a ceramic electrolyte. A NaS battery operates at a temperature <strong>of</strong> 300-350<br />

°C. Once <strong>the</strong> battery is runn<strong>in</strong>g no external heat source is required, because <strong>the</strong> heat produced by<br />

charg<strong>in</strong>g and discharg<strong>in</strong>g cycles is enough to ma<strong>in</strong>ta<strong>in</strong> this temperature. <strong>The</strong> ma<strong>in</strong> disadvantage is that<br />

<strong>the</strong> system uses its own stored <strong>energy</strong> as a heat source, what partially reduces <strong>the</strong> battery performance.<br />

<strong>The</strong> difference between a ZEBRA battery and a NaS battery is that a ZEBRA battery uses nickel chloride<br />

as cathode, but has a lower <strong>energy</strong> and power density. (Chen et al., 2009; Hadjipaschalis et al.,<br />

2009).<br />

8.4.10 Lithium-ion Battery<br />

<strong>The</strong> anode <strong>of</strong> a lithium ion is made <strong>of</strong> graphite carbon with a layer structure, <strong>the</strong> cathode is a lithiated<br />

metal oxide and <strong>the</strong> electrolyte is made up <strong>of</strong> lithium salts dissolved <strong>in</strong> organic carbonates. Lithiumion<br />

are considered not suitable for <strong>large</strong> <strong>scale</strong> use, because <strong>of</strong> high cost short discharge time. (Chen et<br />

al., 2009; Divya & Østergaard, 2009)<br />

55


8.4.11 Metal-Air battery<br />

A Metal-Air battery uses metal (like alum<strong>in</strong>um or z<strong>in</strong>c) as <strong>the</strong> fuel and air as <strong>the</strong> oxidant and can be<br />

regarded as a special type <strong>of</strong> fuel cell. This type <strong>of</strong> <strong>storage</strong> is not sufficient for <strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong>,<br />

because <strong>of</strong> <strong>the</strong> low efficiency and is difficult to be recharged. (Chen et al., 2009; Divya &<br />

Østergaard, 2009)<br />

8.4.12 Capacitor and supercapacitor<br />

A capacitor consists <strong>of</strong> two metal plates separated by a molecule-th<strong>in</strong> layer <strong>of</strong> electrolyte as <strong>the</strong> dielectric.<br />

Instead <strong>of</strong> a solid dielectric between <strong>the</strong> electrodes, a supercapacitor stores <strong>the</strong> <strong>energy</strong> by<br />

means <strong>of</strong> an electrolyte solution between two solid conductors. <strong>The</strong> ma<strong>in</strong> disadvantage <strong>of</strong> this type <strong>of</strong><br />

<strong>storage</strong> is <strong>the</strong> low <strong>energy</strong> density. (Beaud<strong>in</strong> et al., 2010; Chen et al., 2009; Hadjipaschalis et al., 2009;<br />

Ribeiro, Johnson, Crow, Arsoy, & Liu, 2001)<br />

8.4.13 Flywheel <strong>energy</strong> <strong>storage</strong><br />

Flywheels store k<strong>in</strong>etic <strong>energy</strong> <strong>in</strong> <strong>the</strong> angular momentum <strong>of</strong> a sp<strong>in</strong>n<strong>in</strong>g mass. <strong>The</strong> flywheel is operat<strong>in</strong>g<br />

<strong>in</strong> a vacuum and <strong>the</strong> bear<strong>in</strong>gs are magnetic to reduce friction and heat losses. <strong>The</strong> low <strong>energy</strong> density,<br />

high frictional loss, high self-discharge and short discharge time makes flywheel <strong>energy</strong> <strong>storage</strong><br />

not suitable for <strong>large</strong> <strong>scale</strong> application. (Chen et al., 2009; Ibrahim et al., 2008; Scha<strong>in</strong>ker, 2004)<br />

8.4.14 Super conduct<strong>in</strong>g magnetic <strong>energy</strong> <strong>storage</strong> (SMES)<br />

Superconduct<strong>in</strong>g magnetic <strong>energy</strong> <strong>storage</strong> (SMES) stores electrical <strong>energy</strong> <strong>in</strong> a magnetic field generated<br />

by direct current flow<strong>in</strong>g through a superconduct<strong>in</strong>g coil, which is <strong>of</strong>ten made <strong>of</strong> niobiumtitanium.<br />

<strong>The</strong> <strong>in</strong>ductor is immersed <strong>in</strong> liquid helium at 4.2 K or super fluid helium at 1.8 K conta<strong>in</strong>ed<br />

<strong>in</strong> a vacuum-<strong>in</strong>sulated cryostat to ma<strong>in</strong>ta<strong>in</strong> it <strong>in</strong> its superconduct<strong>in</strong>g state. SMES is not suitable for<br />

<strong>large</strong> <strong>scale</strong> <strong>energy</strong> <strong>storage</strong>, because <strong>the</strong> discharge time <strong>of</strong> SMES is very short (<strong>in</strong> <strong>the</strong> range <strong>of</strong> seconds),<br />

very high costs and environmental issues associated with strong magnetic fields. (Beaud<strong>in</strong> et<br />

al., 2010; Chen et al., 2009)<br />

56


57<br />

APPENDIX 3 – ESS MODEL<br />

PHS Data Input<br />

3.14<br />

16<br />

PHS_height<br />

X<br />

PHS_Area<br />

3.14<br />

16<br />

PHS_m3_kWh<br />

X<br />

PHS_Volume<br />

3.14<br />

16<br />

PHS_const_CO2e_MWh<br />

3.14<br />

16<br />

PHS_Energy_Capacity<br />

Figure 32 - A <strong>large</strong>r image <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>storage</strong> system <strong>in</strong> Figure 19<br />

X<br />

PHS_CO2e_construction<br />

X<br />

PHS_Net_Surplus<br />

X<br />

PHS_Input<br />

3.14<br />

16<br />

PHS_Power_Capacity<br />

PHS_Storage<br />

3.14<br />

16<br />

PHS_Efficiency<br />

X<br />

PHS_Withdrawal<br />

3.14<br />

16<br />

PHS_var_CO2e_MWh<br />

X<br />

PHS_CO2e_variable<br />

X<br />

PHS_Output<br />

3.14<br />

16<br />

PHS_Cost_kW<br />

X<br />

PHS_Capital_Cost_PowCap<br />

PHS_Tot_En_Prod_accumulator<br />

X<br />

3.14<br />

16<br />

PHS_Economic_LifeTime<br />

PHS_Net_Shortage<br />

3.14<br />

16<br />

PHS_<strong>in</strong>terest_rate<br />

X<br />

PHS_annuity_factor<br />

X<br />

PHS_Capital_Cost<br />

X<br />

PHS_Cost_kWh<br />

PHS_Total_Energy_Production


APPENDIX 4 – STORAGE DEMAND<br />

Figure 33 - Total <strong>electricity</strong> shortage and surplus over 2050 at different amounts <strong>of</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong><br />

35% w<strong>in</strong>d <strong>of</strong>fshore scenario and <strong>the</strong> <strong>in</strong>put and output power capacity demand.<br />

Figure 34 - Total <strong>electricity</strong> shortage and surplus over 2050 at different amounts <strong>of</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong><br />

30% w<strong>in</strong>d <strong>of</strong>fshore scenario and <strong>the</strong> <strong>in</strong>put and output power capacity demand.<br />

59


Figure 35 - Total <strong>electricity</strong> shortage and surplus over 2050 at different amounts <strong>of</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong><br />

25% w<strong>in</strong>d <strong>of</strong>fshore scenario and <strong>the</strong> <strong>in</strong>put and output power capacity demand.<br />

Figure 36 - Total <strong>electricity</strong> shortage and surplus over 2050 at different amounts <strong>of</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong><br />

20% w<strong>in</strong>d <strong>of</strong>fshore scenario and <strong>the</strong> <strong>in</strong>put and output power capacity demand.<br />

60


Figure 37 - Total <strong>electricity</strong> shortage and surplus over 2050 at different amounts <strong>of</strong> <strong>storage</strong> capacity <strong>in</strong> <strong>the</strong><br />

15% w<strong>in</strong>d <strong>of</strong>fshore scenario and <strong>the</strong> <strong>in</strong>put and output power capacity demand.<br />

61


63<br />

APPENDIX 5 – ESS SCENARIOS<br />

ESS Scenario Power<br />

Capacity<br />

(MW)<br />

Energy<br />

capacity<br />

(GWh)<br />

Total surplus<br />

(MWh)<br />

Total<br />

shortage<br />

(MWh)<br />

Annual capital<br />

cost (€-2010)<br />

Total<br />

€ / kWh<br />

(€-2010)<br />

GHG emissions<br />

dur<strong>in</strong>g operation<br />

(tonnes<br />

CO2e)<br />

GHG emissions<br />

dur<strong>in</strong>g construction<br />

(tonnes CO2e)<br />

Volume (m3)* Area<br />

(km2)**<br />

No Storage 0 0 9.954.152 6.357.505 0 0 0 0 0 0<br />

1 Energy Island 2.500 30 8.553.073 5.210.481 € 304.415.139 1.340 1.071.000 600.000.000 60<br />

2 Energy Islands 5.000 60 7.653.128 4.469.375 € 608.830.279 € 0.1471 2.823 2.142.000 1.200.000.000 120<br />

3 Energy Islands 7.500 90 6.981.868 3.913.504 € 913.245.418 4.372 3.213.000 1.800.000.000 180<br />

10 Energy Islands 25.000 300 4.684.165 1.967.315 € 3.044.151.393 7.902 10.710.000 6.000.000.000 600<br />

40 Energy Islands 100.000 1.200 1.983.109 0 € 12.176.605.570 € 0.2233 11.444 42.840.000 24.000.000.000 2400<br />

1 CAES 300 7,2 9.650.822 6.084.337 € 11.780.237 168 139.680 1.200.024<br />

5 CAES's 1.500 36 8.608.262 5.143.642 € 58.901.186 1.351 698.400 6.000.120<br />

10 CAES's 3.000 72 7.619.256 4.247.407 € 117.802.371 3.594 1.396.800 12.000.240<br />

20 CAES's 6.000 144 6.278.573 3.022.159 € 235.604.743 € 0.1428 9.250 2.793.600 24.000.480<br />

30 CAES's 9.000 216 5.458.367 2.260.136 € 353.407.114 12.292 4.190.400 36.000.720<br />

140 CAES's 42.000 1.008 2.687.477 0 € 1.649.233.199 € 0.1494 19.073 19.555.200 168.003.360<br />

1 PSB 15 0,15 9.944.243 6.350.017 € 2.368.450 7,9 18.795 3.600 0,00072<br />

100 PSB's 1.500 15 9.111.544 5.719.923 € 236.844.976 1.338,3 1.879.500 360.000 0,072<br />

1000 PSB's 15.000 150 5.970.661 3.313.636 € 2.368.449.758 12.175,5 18.795.000 3.600.000 0,72<br />

10,000 PSB's 150.000 1.500 1.291.662 0 € 23.684.497.580 € 0.3040 25.430,0 187.950.000 36.000.000 7,20<br />

1 VRB 3 0,03 9.952.212 6.355.842 € 532.657 1,3 4.842 900 0,00018<br />

100 VRB's 300 3 9.767.283 6.197.390 € 53.265.728 160,1 484.200 90.000 0,018<br />

1 ZnBr 2 0,02 9.952.826 6.356.502 € 540.950 1,0 2.860 340 0,000068<br />

100 ZnBr's 200 2 9.825.269 6.260.092 € 54.094.956 107 286.000 34.000 0,0068<br />

100 PSB's + 100 VRB's + 2.000 20 8.893.831 5.541.349 € 344.205.660 € 0.1464 1.527 2.649.700 484.000 0,0968<br />

100 ZnBr's<br />

1 E.I. + 5 CAES's 4.000 66 7.659.098 4.398.822 € 363.316.325 2.128 1.769.400 606.000.128 60<br />

1 E.I. + 10 CAES's 5.500 102 6.911.850 3.717.751 € 422.217.511 3.577 2.467.800 612.000.240 60<br />

1 E.I. + 20 CAES's 8.500 174 5.825.543 2.718.898 € 540.019.882 € 0.1449 8.473 3.864.600 624.000.480 60<br />

2 E.I.'s + 5 CAES's 6.500 96 6.993.181 3.866.002 € 667.731.464 3.395 2.840.400 1.206.000.120 60<br />

2 E.I.'s + 10 CAES's 8.000 132 6.395.413 3.317.968 € 726.632.650 4.423 3.538.800 1.212.000.240 120<br />

2 E.I.'s + 20 CAES's 11.000 204 5.475.242 2.466.976 € 844.435.021 € 0.1468 8.488 4.935.600 1.224.000.480 120<br />

2 E.I.'s + 20 CAES's +<br />

100 PSB's + 100 VRB's +<br />

100 ZnBr's<br />

13.000 224 5.299.459 2.325.120 € 1.188.640.681 € 0.1495 8.708 7.585.300 1.224.484.480 120<br />

2 E.I.'s + 20 CAES's +<br />

1000 PSB's<br />

26.000 354 4.409.404 1.611.348 € 3.212.884.779 11.910 23.730.600 1.227.600.480 120<br />

3 E.I.'s + 30 CAES's 16.500 306 4.695.085 1.782.147 € 1.266.652.532 10.766 7.403.400 1.836.000.720 180


64<br />

35% WO + 2 E.I.'s + 20<br />

CAES's<br />

30% WO + 2 E.I.'s + 20<br />

CAES's<br />

25% WO + 2 E.I.'s + 20<br />

CAES's<br />

20% WO + 2 E.I.'s + 20<br />

CAES's<br />

15% WO + 2 E.I.'s + 20<br />

CAES's<br />

35% WO + 2 E.I.'s + 20<br />

CAES's + 1000 PSB's<br />

30% WO + 2 E.I.'s + 20<br />

CAES's + 1000 PSB's<br />

25% WO + 2 E.I.'s + 20<br />

CAES's + 1000 PSB's<br />

20% WO + 2 E.I.'s + 20<br />

CAES's + 1000 PSB's<br />

11.000 204 2.433.289 1.106.102 € 844.435.021 6.089 4.935.600 1.224.000.480 120<br />

11.000 204 872.823 380.222 € 801.989.016 3.986 4.935.600 1.224.000.480 120<br />

11.000 204 213.051 148.135 € 590.283.323 1.659 4.935.600 1.224.000.480 120<br />

11.000 204 0 55.214 € 457.382.436 460 4.935.600 1.215.935.335 120<br />

11.000 204 0 0 € 200.765.946 76 4.935.600 1.214.179.951 120<br />

26.000 354 1.842.681 606.896 - - 8.086 23.730.600 1.227.600.480 120<br />

26.000 354 604.169 227.876 - - 4.595 23.730.600 1.227.600.480 120<br />

26.000 354 63.051 91.885 - - 1.884 23.730.600 1.227.600.480 120<br />

26.000 354 0 0 - - 680 23.730.600 1.217.735.335 120<br />

* = In case <strong>of</strong> <strong>the</strong> <strong>energy</strong> island, this is <strong>the</strong> volume between <strong>the</strong> maximum and <strong>the</strong> m<strong>in</strong>imum water level and not <strong>the</strong> volume <strong>of</strong> <strong>the</strong> whole reservoir.<br />

** = In case <strong>of</strong> <strong>the</strong> CAES, <strong>the</strong>re is no def<strong>in</strong>ition <strong>of</strong> a height. In case <strong>of</strong> <strong>the</strong> <strong>energy</strong> island <strong>the</strong> height difference between <strong>the</strong> maximum and m<strong>in</strong>imum waterlevel<br />

(10 meters). In case <strong>of</strong> <strong>the</strong> flow battery <strong>systems</strong> <strong>the</strong> assumption for height is 5 meters.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!