14.07.2013 Views

Potential of energy efficiency measures in the world steel industry

Potential of energy efficiency measures in the world steel industry

Potential of energy efficiency measures in the world steel industry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

University <strong>of</strong> Gron<strong>in</strong>gen<br />

CIO, Center for Isotope Research<br />

IVEM, Center for Energy and Environmental Studies<br />

Master Programme Energy and Environmental Sciences<br />

<strong>Potential</strong> <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong><br />

<strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry<br />

Tjebbe Galama<br />

EES 2012-160 M


Master report <strong>of</strong> Tjebbe Galama<br />

Supervised by: Tengfang Xu (Lawrence Berkeley National Laboratory)<br />

Pr<strong>of</strong>.dr. H.C. Moll (IVEM)<br />

Dr. C. Visser (IVEM)<br />

University <strong>of</strong> Gron<strong>in</strong>gen<br />

CIO, Center for Isotope Research<br />

IVEM, Center for Energy and Environmental Studies<br />

Nijenborgh 4<br />

9747 AG Gron<strong>in</strong>gen<br />

The Ne<strong>the</strong>rlands<br />

http://www.rug.nl/fmns-research/cio<br />

http://www.rug.nl/fmns-research/ivem


CONTENTS<br />

1 Summary ................................................................................................................................. 3<br />

2 Samenvatt<strong>in</strong>g ........................................................................................................................... 5<br />

3 General Acronyms ....................................................................................................................7<br />

4 Introduction ............................................................................................................................ 9<br />

5 Research scope ....................................................................................................................... 11<br />

5.1 Background ..................................................................................................................... 11<br />

5.2 Research Aim .................................................................................................................. 11<br />

5.3 Research questions.......................................................................................................... 12<br />

5.4 System def<strong>in</strong>ition and borders ........................................................................................ 13<br />

5.5 Methodology and data sources ....................................................................................... 16<br />

6 Steel production ..................................................................................................................... 21<br />

7 Steel <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> ........................................................................................... 25<br />

8 World <strong>steel</strong> production and different regions ....................................................................... 29<br />

8.1 Steel production ............................................................................................................. 29<br />

8.2 Economics ...................................................................................................................... 32<br />

9 Results ................................................................................................................................... 35<br />

9.1 <strong>Potential</strong> <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006 .................... 35<br />

9.1.1 Energy sav<strong>in</strong>gs ............................................................................................................ 38<br />

9.1.2 Carbon mitigation ................................................................................................... 40<br />

9.2 Fur<strong>the</strong>r results on cost curves for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry ................................................. 41<br />

9.2.1 Industry structure change ....................................................................................... 42<br />

9.2.2 Cost curve for carbon mitigation ............................................................................ 42<br />

9.2.3 Modified cost <strong>of</strong> conserved <strong>energy</strong> ......................................................................... 44<br />

9.2.4 Includ<strong>in</strong>g or exclud<strong>in</strong>g o<strong>the</strong>r non-<strong>energy</strong> benefits ................................................. 47<br />

9.2.5 Changes <strong>in</strong> discount rate ......................................................................................... 47<br />

9.2.6 Summary <strong>of</strong> fur<strong>the</strong>r conclusions <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. ..................................... 48<br />

9.3 Results <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions ....................................... 49<br />

9.3.1 Production <strong>of</strong> <strong>steel</strong> <strong>in</strong> different <strong>world</strong> regions ........................................................ 49<br />

9.3.2 Economics <strong>of</strong> different <strong>world</strong> regions ...................................................................... 51<br />

9.3.3 Fur<strong>the</strong>r results ........................................................................................................ 55<br />

9.4 World <strong>steel</strong> <strong>energy</strong> sav<strong>in</strong>gs potential .............................................................................. 57


9.4.1 Energy sav<strong>in</strong>gs potential .......................................................................................... 57<br />

9.4.2 Comparison to o<strong>the</strong>r analysis ................................................................................. 59<br />

9.5 Key assumptions and gaps <strong>in</strong> knowledge ....................................................................... 60<br />

10 Conclusions ........................................................................................................................ 63<br />

11 Discussion .............................................................................................................................. 65<br />

12 References ............................................................................................................................. 67<br />

Appendix A. Overall Measures ...................................................................................................... 71<br />

Appendix B. Iron Ore Preparation ................................................................................................ 72<br />

Appendix C. Iron Mak<strong>in</strong>g - Blast Furnace .................................................................................... 76<br />

Appendix D. Iron Mak<strong>in</strong>g – Basic Oxygen Furnace ..................................................................... 79<br />

Appendix E. Secondary Steelmak<strong>in</strong>g - Electric Arc Furnace (EAF) ............................................. 80<br />

Appendix F. Cast<strong>in</strong>g ...................................................................................................................... 86<br />

Appendix G. Hot Roll<strong>in</strong>g ............................................................................................................... 87<br />

Appendix H. Cold Roll<strong>in</strong>g and F<strong>in</strong>ish<strong>in</strong>g ....................................................................................... 91<br />

Appendix I. References ................................................................................................................. 92<br />

Appendix J. Calculation example ................................................................................................ 101<br />

Appendix K. Results <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> calculation for <strong>the</strong> US 2006 ...................................... 102


1 SUMMARY<br />

The <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry plays a major role <strong>in</strong> <strong>energy</strong> use and Greenhouse Gas (GHG) emissions<br />

now and <strong>in</strong> <strong>the</strong> future. Implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is among one <strong>of</strong> <strong>the</strong> most costeffective<br />

<strong>in</strong>vestments that <strong>the</strong> <strong>in</strong>dustry could make <strong>in</strong> improv<strong>in</strong>g <strong>efficiency</strong> and reduc<strong>in</strong>g GHG<br />

emissions. The goal <strong>of</strong> this <strong>the</strong>sis was to analyse <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong><br />

<strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. Through characteriz<strong>in</strong>g <strong>energy</strong>-<strong>efficiency</strong> technology costs and<br />

improvement potentials, <strong>energy</strong> sav<strong>in</strong>gs and carbon mitigation have been developed and<br />

presented for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006.<br />

In order to properly analyse <strong>the</strong> total <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry, specific regions have been identified;<br />

<strong>the</strong> United States (US), Western Europe (WEU), Former Sovjet Union (FSU), India (IND),<br />

Ch<strong>in</strong>a (CHI), Japan (JAP) and Central- and South America (CSA). These regions toge<strong>the</strong>r are<br />

responsible for over 80% <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> production.<br />

First, an <strong>in</strong> depth study <strong>of</strong> 72 identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong><br />

2006 was conducted. Data for <strong>energy</strong> <strong>efficiency</strong> measure was collected from case studies,<br />

scientific reports, <strong>energy</strong> audits, etc. Measures were evaluated on cost-effectiveness by<br />

calculat<strong>in</strong>g Cost <strong>of</strong> Conserved Energy (CCE) and total <strong>energy</strong> sav<strong>in</strong>gs.<br />

Once each measure was characterized <strong>in</strong>dividually, its applicability to <strong>the</strong> US iron and <strong>steel</strong><br />

<strong>in</strong>dustry as a whole was assessed. The total <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs calculated for each measure<br />

represents <strong>the</strong> total potential for <strong>the</strong> US. Next, <strong>the</strong> potential <strong>of</strong> only cost-effective <strong>measures</strong> was<br />

calculated by add<strong>in</strong>g only <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential <strong>of</strong> <strong>measures</strong> which were identified as<br />

cost-effective by CCE calculation. From <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs, <strong>the</strong> carbon mitigation was<br />

calculated. In summary, implement<strong>in</strong>g all <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry<br />

showed major reduction potentials for both <strong>the</strong> <strong>energy</strong> use (385 PJ) and carbon emissions (7.2<br />

MtC). Even if only cost-effective <strong>measures</strong> are taken <strong>in</strong>to account, <strong>the</strong> <strong>energy</strong> and carbon<br />

reductions add up to 300 PJ and 6.2 MtC, respectively (equals 26% and 22% <strong>of</strong> total US <strong>steel</strong><br />

<strong>in</strong>dustry <strong>energy</strong> use and carbon emissions).<br />

The assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US lead to a number <strong>of</strong> assumptions on key<br />

factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> different <strong>world</strong><br />

regions. From <strong>the</strong> assessment <strong>in</strong> <strong>the</strong> US, it was clear that <strong>the</strong> <strong>energy</strong> use, production, <strong>in</strong>dustry<br />

structure and average weighted <strong>energy</strong> price were <strong>the</strong> most important factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong><br />

potential <strong>of</strong> (cost-effective) <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. With <strong>the</strong>se key factors, <strong>the</strong> analysis was<br />

expanded to <strong>the</strong> o<strong>the</strong>r identified <strong>world</strong> regions. For <strong>the</strong>se <strong>world</strong> regions estimations were made<br />

<strong>of</strong> <strong>the</strong> effects <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>in</strong> <strong>the</strong>ir <strong>steel</strong> <strong>in</strong>dustry, us<strong>in</strong>g <strong>the</strong> identified key<br />

factors and an adaptation <strong>of</strong> costs data by <strong>the</strong> PPP-<strong>in</strong>dex. The results <strong>of</strong> <strong>the</strong>se estimations are<br />

provided <strong>in</strong> Table 1.<br />

3


Table 1 Summary <strong>of</strong> results <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs and carbon reductions <strong>in</strong> <strong>steel</strong> <strong>in</strong>dustry for different <strong>world</strong><br />

regions <strong>in</strong> 2006<br />

Region<br />

Total f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs<br />

(PJ/year)<br />

% <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong><br />

consumption<br />

Total cost-effective <strong>energy</strong><br />

sav<strong>in</strong>gs (PJ/year)<br />

% <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong><br />

consumption<br />

Total carbon reductions<br />

(MtC/year)<br />

4<br />

United<br />

States<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

Central<br />

and<br />

South<br />

America<br />

385 756 620 215 2170 548 200<br />

33% 27% 19% 14% 23% 28% 16%<br />

300 568 421 166 1513 402 148<br />

26% 20% 13% 11% 16% 21% 12%<br />

8 14 12 5 38 11 5<br />

% <strong>of</strong> total carbon emissions 27% 21% 16% 13% 18% 24% 15%<br />

Total cost-effective carbon<br />

reductions (MtC/year)<br />

6 11 9 4 28 8 4<br />

% <strong>of</strong> total carbon emissions 22% 17% 12% 10% 13% 18% 12%<br />

The results <strong>of</strong> <strong>the</strong> <strong>in</strong> depth analysis <strong>of</strong> <strong>the</strong> US, <strong>the</strong> estimations for <strong>the</strong> selected <strong>world</strong> regions and<br />

an assumption for <strong>the</strong> rema<strong>in</strong><strong>in</strong>g o<strong>the</strong>r <strong>world</strong> regions, provided an estimation <strong>of</strong> <strong>the</strong> potential<br />

for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. Apparently, <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> all over<br />

<strong>the</strong> <strong>world</strong> resulted <strong>in</strong> a total potential <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> about 5.7 EJ <strong>in</strong> 2006 (5.3-6.0 EJ when<br />

uncerta<strong>in</strong>ties are <strong>in</strong>cluded). The cost-effective <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are<br />

about 4.1 EJ <strong>in</strong> 2006 (3.5-5.4 EJ, uncerta<strong>in</strong>ties <strong>in</strong>cluded). The total potential for <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> is about 23% <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> f<strong>in</strong>al <strong>energy</strong> consumption. The cost-effective<br />

<strong>energy</strong> sav<strong>in</strong>gs add up to about 16% <strong>of</strong> <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> consumption.<br />

For carbon mitigation <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> all over <strong>the</strong> <strong>world</strong> resulted<br />

<strong>in</strong> a total potential carbon reduction <strong>of</strong> about 107 MtC <strong>in</strong> 2006 (101-113 MtC, uncerta<strong>in</strong>ties<br />

<strong>in</strong>cluded). The cost-effective carbon reductions for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are about 82 MtC <strong>in</strong><br />

2006 (76-101 MtC, uncerta<strong>in</strong>ties <strong>in</strong>cluded). The total potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is<br />

about 20% <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> carbon emission mitigation. The cost-effective carbon reductions<br />

add up to about 15% <strong>of</strong> <strong>the</strong> total carbon emissions.<br />

In short, <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>of</strong>fers a major<br />

potential for f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs and carbon emission reductions.


2 SAMENVATTING<br />

Voor staal<strong>in</strong>dustriën over de hele wereld staat het reduceren van broeikasgassen hoog <strong>in</strong> het<br />

vaandel. Een van de meest kostenefficiente manieren om de uitstoot van broeikasgassen te<br />

verm<strong>in</strong>deren, is het gebruik van energie-<strong>efficiency</strong>maatregelen. Het doel van deze scriptie is om<br />

een analyse te doen van de energie-<strong>efficiency</strong>maatregelen <strong>in</strong> de wereld staal<strong>in</strong>dustrie. Door de<br />

energie <strong>efficiency</strong> te karakteriseren op zowel kosten als energiebespar<strong>in</strong>gen, konden de totale<br />

energiebespar<strong>in</strong>g en reductie <strong>in</strong> koolst<strong>of</strong>uitstoot berekend worden voor de wereld staal<strong>in</strong>dustrie<br />

<strong>in</strong> het jaar 2006.<br />

Om een degelijke benader<strong>in</strong>g van de totale wereld staal<strong>in</strong>dustrie te kunnen geven, zijn een<br />

aantal specefieke werelddelen gekozen die <strong>in</strong> totaal meer dan 80% van de staalproductie<br />

vertegenwoordigen. De geselecteerde werelddelen zijn: Verenigde Staten, West Europa,<br />

Voormalige Sovjet Unie, India, Ch<strong>in</strong>a, Japan en Centraal- en Zuid-Amerika.<br />

Voor dit onderzoek is eerst een analyse gemaakt op 72 geïndentificeerde energie<strong>efficiency</strong>maatregelen<br />

voor de staal<strong>in</strong>dustrie <strong>in</strong> de Verenigde Staten (VS). Data voor deze<br />

maatregelen werd verzameld uit wetenschappelijke tijdschriften, case studies, verslagen van<br />

energie controles, etc. De maatregelen werden beoordeeld op hun kosteneffectiviteit door<br />

middel van Kosten per Bespaarde Energie (KBE) en hun potentiële energiebespar<strong>in</strong>g.<br />

Nadat de data voor alle maatregelen <strong>in</strong>dividueel was vastgesteld, is gekeken naar het effect van<br />

deze maatregelen, als zij toegepast worden <strong>in</strong> de staal<strong>in</strong>dustrie van de VS. De totale<br />

energiebespar<strong>in</strong>g van alle maatregelen voor de Amerikaanse staal<strong>in</strong>dustrie werd op die manier<br />

berekend. Daarnaast werd met behulp van de KBE bepaald welke maatregelen kostenefficienct<br />

zijn en werd ook de totale bespar<strong>in</strong>g van deze maatregelen bepaald. De resultaten voor de VS<br />

samengevat: door toepass<strong>in</strong>g van alle gevonden maatregelen is er 385 PJ aan energiebespar<strong>in</strong>g<br />

mogelijk en zal 7.2 Mt aan koolst<strong>of</strong>emissies worden gereduceerd. Als alleen wordt gekeken naar<br />

maatregelen die kostenefficient zijn, is er 300 PJ aan energiebespar<strong>in</strong>g mogelijk en zal er 6.2 Mt<br />

aan koolst<strong>of</strong>emissies worden gereduceerd (dit is respectievelijk 26% en 22% van het totale<br />

energieverbruik en koolst<strong>of</strong>emissie <strong>in</strong> de staal<strong>in</strong>dustrie <strong>in</strong> de VS).<br />

Daarnaast zijn er bij de analyse voor de staal<strong>in</strong>dustrie <strong>in</strong> de VS een aantal essentiële factoren<br />

voor energie-<strong>efficiency</strong>maatregelen bepaald. Deze essentiële facotren werden gebruikt om de<br />

effecten van de maatregelen <strong>in</strong> andere werelddelen te bepalen. De essentiële factoren voor de<br />

analyse van energie-<strong>efficiency</strong>maatregelen voor de verschillende werelddelen zijn: het<br />

energieverbruik, productie, structuur van de <strong>in</strong>dustrie en een gemiddelde gewogen energieprijs.<br />

Samen met een aanpass<strong>in</strong>g voor de kosten van elke methode, met de zogenaamde PPP-<strong>in</strong>dex, is<br />

met deze essentiële factoren een schatt<strong>in</strong>g gemaakt van de effecten van energie<strong>efficiency</strong>maatregelen<br />

<strong>in</strong> de ander werelddelen. De resultaten hiervan zijn getoond <strong>in</strong> tabel 1.<br />

5


Tabel 1. Resultaten voor energie-<strong>efficiency</strong>maatregelen <strong>in</strong> de staal<strong>in</strong>dustrie van verschillende werelddelen<br />

<strong>in</strong> 2006.<br />

Werelddeel<br />

Totale uite<strong>in</strong>delijke<br />

energiebespar<strong>in</strong>g (PJ/jaar)<br />

% van het totale uite<strong>in</strong>delijke<br />

energieverbruik<br />

Totale kosteneffectieve<br />

energiebespar<strong>in</strong>g (PJ/jaar)<br />

% van het totale uite<strong>in</strong>delijke<br />

energieverbruik<br />

Totale koolst<strong>of</strong>uitstoot<br />

verm<strong>in</strong>der<strong>in</strong>g (Mt/jaar)<br />

6<br />

Verenigde<br />

Staten<br />

West<br />

Europa<br />

Voormalige<br />

Sovjet Unie<br />

India Ch<strong>in</strong>a Japan<br />

Centraal-<br />

en Zuid-<br />

Amerika<br />

385 756 620 215 2170 548 200<br />

33% 27% 19% 14% 23% 28% 16%<br />

300 568 421 166 1513 402 148<br />

26% 20% 13% 11% 16% 21% 12%<br />

8 14 12 5 38 11 5<br />

% van totale koolst<strong>of</strong>uitstoot 27% 21% 16% 13% 18% 24% 15%<br />

Total kosteneffectieve<br />

koolst<strong>of</strong>uitstoot<br />

verm<strong>in</strong>der<strong>in</strong>g (Mt/jaar)<br />

6 11 9 4 28 8 4<br />

% van totale koolst<strong>of</strong>uitstoot 22% 17% 12% 10% 13% 18% 12%<br />

Met de bev<strong>in</strong>d<strong>in</strong>gen voor de staal<strong>in</strong>dustrie <strong>in</strong> de VS, de schatt<strong>in</strong>gen voor de andere werelddelen<br />

en aanname voor de overgebleven werelddelen, kon een totaal potentieel voor energie<strong>efficiency</strong>maatregelen<br />

voor de wereld staal<strong>in</strong>dustrie bepaald worden. De totale energiebespar<strong>in</strong>g<br />

van alle gevonden maatregelen over de hele wereld geven een bespar<strong>in</strong>g van ongeveer 5,7 EJ <strong>in</strong><br />

2006 (met een onzekerheid van 5,3 tot 6,0 EJ). Als alleen kosteneffectieve maatregelen geteld<br />

worden is de totale bespar<strong>in</strong>g 4,1 EJ (met een onzekerheid van 3,5 tot 5,4 EJ). De totale<br />

uite<strong>in</strong>delijke energiebespar<strong>in</strong>g voor de wereld staal<strong>in</strong>dustrie komt neer op 23% bespar<strong>in</strong>g<br />

wanneer alle maatregelen beoordeeld worden en 16% bespar<strong>in</strong>g wanneer alleen kosteneffectieve<br />

maatregelen beoordeeld worden.<br />

De totale reductie van koolst<strong>of</strong>emissie, met alle gevonden maatregelen <strong>in</strong> de wereld<br />

staal<strong>in</strong>dustrie <strong>in</strong> 2006, is 107 Mt koolst<strong>of</strong> (met een onzekerheid van 101 tot 113 Mt). Als alleen<br />

kosteneffectieve maatregelen gerekend worden is de totale koolst<strong>of</strong>reductie 82 Mt (met een<br />

onzekerhied 76 tot 101 Mt). De totale koolst<strong>of</strong>emissiereductie voor de wereldstaal <strong>in</strong>dustrie<br />

komt neer op 20% bespar<strong>in</strong>g wanneer alle maatregelen beoordeeld worden en 15% bespar<strong>in</strong>g<br />

wanneer alleen kosteneffectieve maatregelen beoordeeld worden.<br />

Kort samengevat zijn er zeer grote bespar<strong>in</strong>gen, voor zowel energieverbruik als koolst<strong>of</strong>emissies,<br />

mogelijk door de toepass<strong>in</strong>g van energie-<strong>efficiency</strong>maatregelen.


3 GENERAL ACRONYMS<br />

American Iron and Steel Institute (AISI)<br />

Basic Oxygen Furnace (BOF)<br />

Blast furnace (BF)<br />

Bureau <strong>of</strong> Economic Analysis (BEA).<br />

Carbon dioxide (CO2)<br />

Cost <strong>of</strong> carbon reduction (CCR)<br />

Cost <strong>of</strong> conserved <strong>energy</strong> (CCE)<br />

Crude Steel (CS)<br />

Department <strong>of</strong> Energy (DOE)<br />

Electric arc furnace (EAF)<br />

Energy Information Adm<strong>in</strong>istration (EIA)<br />

Energy-climate (EC) models<br />

Environmental Protection Agency (EPA)<br />

Greenhouse gas (GHG)<br />

Gross Domestic Product (GDP)<br />

Integrated assessment models (IAM)<br />

Intergovernmental Panel on Climate Change (IPCC)<br />

International Energy Agency (IEA)<br />

International Iron and Steel Institute (IISI)<br />

Lawrence Berkeley National Laboratory (LBNL)<br />

Manufactur<strong>in</strong>g Energy Consumption Survey (MECS)<br />

Market Exchange Rate (MER)<br />

Modified cost <strong>of</strong> carbon reduction (MCCR)<br />

Modified cost <strong>of</strong> conserved <strong>energy</strong> (MCCE)<br />

Operation and ma<strong>in</strong>tenance (O&M)<br />

Purchas<strong>in</strong>g Power Parity (PPP)<br />

Units<br />

Annual carbon sav<strong>in</strong>gs (tC/yr)<br />

Annual change <strong>in</strong> O&M costs ($/yr)<br />

Annual <strong>energy</strong> sav<strong>in</strong>gs (GJ/yr)<br />

Capital cost ($)<br />

Capital recovery factor (yr -1 )<br />

7


Cost <strong>of</strong> carbon reduction (CCR, $/MtC)<br />

Cost <strong>of</strong> conserved <strong>energy</strong> (CCE, $/GJ)<br />

Energy (<strong>in</strong> petajoules -PJ, or <strong>in</strong> gigajoules - GJ)<br />

Energy sav<strong>in</strong>gs per production (GJ/Tonne)<br />

Lifetime <strong>of</strong> <strong>the</strong> mitigation option (years)<br />

Million metric ton, or million tonne (Mt)<br />

Million tonne <strong>of</strong> carbon (MtC)<br />

Modified cost <strong>of</strong> carbon reduction (MCCR, $/MtC)<br />

Modified cost <strong>of</strong> conserved <strong>energy</strong> (MCCE, $/GJ)<br />

Tonne <strong>of</strong> hot metal (thm)<br />

8


4 INTRODUCTION<br />

This master <strong>the</strong>sis is <strong>the</strong> f<strong>in</strong>al assignment for a master degree <strong>in</strong> <strong>energy</strong> and environmental<br />

science. A major part <strong>of</strong> this research has been performed at <strong>the</strong> Lawrence Berkeley National<br />

Laboratory (LBNL) <strong>in</strong> Berkeley, California, as a challeng<strong>in</strong>g scholar research. Under <strong>the</strong><br />

supervision <strong>of</strong> Tengfang Xu, a database <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry<br />

was constructed. The application <strong>of</strong> this database has provided us with useful results on <strong>energy</strong><br />

<strong>efficiency</strong> and carbon mitigation <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry which <strong>in</strong> turn can be used to enhance<br />

<strong>in</strong>tegrated assessment models on climate change for example. Worrell et al. (2002) and Xu et al.<br />

(2010) have already <strong>in</strong>cluded extensive work on <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> US <strong>steel</strong><br />

<strong>in</strong>dustry <strong>in</strong> <strong>the</strong>ir reports. These results have been updated dur<strong>in</strong>g my research at LBNL. The<br />

results <strong>of</strong> this research have been reported <strong>in</strong> ‘Bottom-up Representations <strong>of</strong> Energy Efficiency<br />

Technologies as Mitigation Measures for <strong>the</strong> US Iron and Steel Sector from 1994 to 2010’ by Xu,<br />

Galama and Sathaye (2012).<br />

The master <strong>the</strong>sis itself will be aimed at estimat<strong>in</strong>g <strong>the</strong> effect <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong><br />

major <strong>steel</strong> <strong>in</strong>dustries around <strong>the</strong> <strong>world</strong>. In order to account for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry this<br />

<strong>the</strong>sis will have to extend <strong>the</strong> database available for <strong>the</strong> US, to o<strong>the</strong>r <strong>world</strong> regions. This is <strong>the</strong><br />

ma<strong>in</strong> second challenge <strong>of</strong> this research: how to <strong>in</strong>clude <strong>the</strong> rest <strong>of</strong> <strong>the</strong> <strong>world</strong> with <strong>the</strong> data<br />

available for <strong>the</strong> US. The <strong>the</strong>sis will be supervised at <strong>the</strong> University <strong>of</strong> Gron<strong>in</strong>gen by pr<strong>of</strong>. dr.<br />

H.C. Moll.<br />

Steel has become one <strong>of</strong> most commonly produced materials used <strong>in</strong> a wide variety <strong>of</strong><br />

application <strong>world</strong>wide, for example <strong>in</strong> build<strong>in</strong>gs, automobiles, mach<strong>in</strong>es or cans (sealed<br />

conta<strong>in</strong>ers). The <strong>world</strong> production <strong>of</strong> <strong>the</strong> iron and <strong>steel</strong> sector was about 1.5 billion metric tons<br />

<strong>of</strong> crude <strong>steel</strong> <strong>in</strong> 2011 (World<strong>steel</strong>, 2012). Steel is a commodity product produced and<br />

transported <strong>world</strong>wide.<br />

The production <strong>of</strong> materials require a vast amount <strong>of</strong> <strong>energy</strong>. One third <strong>of</strong> <strong>the</strong> <strong>world</strong>’s <strong>energy</strong><br />

consumption and 36% <strong>of</strong> <strong>the</strong> carbon dioxide (CO2) emissions are attributed to manufactur<strong>in</strong>g<br />

<strong>in</strong>dustries. Steel production requires a number <strong>of</strong> <strong>energy</strong> <strong>in</strong>tensive processes. (Xu, 2010) The<br />

iron and <strong>steel</strong> <strong>in</strong>dustry accounts for about 19% <strong>of</strong> f<strong>in</strong>al <strong>energy</strong> use (Figure 1; 21.4 EJ) and about<br />

one quarter <strong>of</strong> <strong>the</strong> direct CO2 emissions (1,057 Mt <strong>of</strong> CO2) from all <strong>in</strong>dustry sectors <strong>in</strong> <strong>the</strong> <strong>world</strong><br />

<strong>in</strong> 2004 (IEA, 2007). The impact <strong>of</strong> <strong>steel</strong> production on <strong>energy</strong> consumption and greenhouse gas<br />

(GHG) emissions is <strong>the</strong>refore large. At <strong>the</strong> same time, <strong>steel</strong> will be a critical material for <strong>the</strong><br />

quality <strong>of</strong> life <strong>in</strong> 2050 and beyond, and will <strong>the</strong>refore cont<strong>in</strong>ue to be a future contributor to<br />

<strong>energy</strong> consumption and GHG emissions (AISI, 2009).<br />

9


Figure 1: World <strong>in</strong>dustrial f<strong>in</strong>al <strong>energy</strong> 2004. (IEA, 2007)<br />

The <strong>energy</strong> use and emissions <strong>of</strong> a <strong>steel</strong> plant are significantly affected by several factors such as<br />

technology, plant size, and quality <strong>of</strong> raw materials (Xu, 2010). For technology, <strong>the</strong> adoption <strong>of</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>steel</strong> production is key <strong>in</strong> order to reduce <strong>energy</strong> consumption and<br />

GHG emissions. Analys<strong>in</strong>g and manag<strong>in</strong>g <strong>the</strong> costs <strong>of</strong> <strong>the</strong>se technological <strong>measures</strong> have <strong>the</strong>reby<br />

become very important for <strong>steel</strong> producers and policy makers to make accurately decide on<br />

<strong>in</strong>vestments <strong>in</strong> technology.<br />

The use <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g <strong>in</strong>dustries could provide great<br />

sav<strong>in</strong>gs <strong>in</strong> <strong>energy</strong> and <strong>energy</strong> related carbon emissions (Xu, 2010). The aim <strong>of</strong> this project is<br />

<strong>the</strong>refore, to assess <strong>the</strong> expectations and effects <strong>of</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> on<br />

<strong>energy</strong> use and carbon emissions <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

Also previous efforts on <strong>energy</strong> <strong>efficiency</strong> measure <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry showed a significant<br />

sav<strong>in</strong>gs potential at low or even negative cost per unit <strong>of</strong> <strong>energy</strong> saved. This potential deserves<br />

more attention than it has received so far (Xu, 2010). The US Department <strong>of</strong> Energy (DOE)<br />

believes <strong>the</strong> primary <strong>steel</strong> production <strong>efficiency</strong> can be improved on <strong>the</strong> order <strong>of</strong> 20 to 30%<br />

based on exist<strong>in</strong>g technology <strong>in</strong> <strong>the</strong> US. Steam supply systems and motor systems are common<br />

<strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry, and have improvements to <strong>of</strong>fer <strong>efficiency</strong> potentials on <strong>the</strong> order <strong>of</strong> 15 to<br />

30% (IEA, 2006). If tak<strong>in</strong>g o<strong>the</strong>r <strong>world</strong> regions <strong>in</strong>to account, which currently have lower <strong>energy</strong><br />

efficiencies compared to <strong>the</strong> US, <strong>the</strong>re could be even larger <strong>efficiency</strong> ga<strong>in</strong>s <strong>in</strong> <strong>the</strong>se regions.<br />

This research will fur<strong>the</strong>r look <strong>in</strong>to <strong>the</strong> effects <strong>of</strong> apply<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong><br />

<strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry on <strong>energy</strong> use and GHG emissions. The goal is to present updated results on<br />

<strong>the</strong> potential <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry and <strong>in</strong>clude o<strong>the</strong>r <strong>world</strong> regions to provide an estimation<br />

<strong>of</strong> <strong>energy</strong> and GHG mitigation <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

10


5 RESEARCH SCOPE<br />

5.1 Background<br />

The ma<strong>in</strong> arguments for conduct<strong>in</strong>g this research <strong>in</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>, is that <strong>the</strong><br />

<strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry plays a major role <strong>in</strong> <strong>energy</strong> use and GHG emissions now and <strong>in</strong> <strong>the</strong> future,<br />

as mentioned <strong>in</strong> <strong>the</strong> <strong>in</strong>troduction. In many cases, implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is<br />

among one <strong>of</strong> <strong>the</strong> most cost-effective <strong>in</strong>vestments that <strong>the</strong> <strong>in</strong>dustry could make <strong>in</strong> improv<strong>in</strong>g<br />

<strong>efficiency</strong> and productivity, and reduc<strong>in</strong>g CO2 emissions (Xu, 2010).<br />

In addition, Kim and Worrell (2002) suggest that an <strong>in</strong>ternational comparison can contribute to<br />

a better understand<strong>in</strong>g <strong>of</strong> opportunities for emissions reduction. Iron and <strong>steel</strong> have a complex<br />

<strong>in</strong>dustrial structure, but only a limited variety <strong>of</strong> processes are applied <strong>world</strong>wide and <strong>the</strong>y use<br />

similar <strong>energy</strong> resources and raw materials, mak<strong>in</strong>g comparisons worthwhile.<br />

Also, plenty <strong>of</strong> <strong>in</strong>formation is available on <strong>the</strong> application and effects <strong>of</strong> implement<strong>in</strong>g <strong>energy</strong><br />

<strong>efficiency</strong> technologies. Many <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> technologies have become cost-effective,<br />

and it is important and necessary to cont<strong>in</strong>ue to <strong>in</strong>corporate new <strong>in</strong>formation on technology<br />

characteristics. Also <strong>the</strong>ir evolution and response to <strong>energy</strong> and carbon price should be<br />

monitored <strong>in</strong> order to enhance empirical descriptions <strong>of</strong> <strong>the</strong> technologies (Xu, 2010). Moreover,<br />

<strong>the</strong> results <strong>of</strong> assess<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> could provide detailed <strong>in</strong>formation for<br />

different <strong>world</strong> regions for <strong>in</strong>tegrated assessment models. Related policy makers around <strong>the</strong><br />

<strong>world</strong> can use <strong>the</strong>se <strong>in</strong>tegrated assessment models, to make more accurate decisions on<br />

stimulat<strong>in</strong>g <strong>the</strong> implementation <strong>of</strong> technologies (Xu, 2010).<br />

5.2 Research Aim<br />

This research will <strong>the</strong>refore aim at fulfill<strong>in</strong>g <strong>the</strong> need for a better understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> effects <strong>of</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry, <strong>in</strong> order to make more effective decisions on<br />

<strong>energy</strong> sav<strong>in</strong>g and GHG reduction that come with those <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. Plenty <strong>of</strong><br />

data are available on <strong>the</strong> <strong>measures</strong> <strong>the</strong>mselves and <strong>the</strong> amount <strong>of</strong> <strong>energy</strong> that can be saved with<br />

a s<strong>in</strong>gle measure <strong>in</strong> a specific case. The effects <strong>of</strong> <strong>the</strong> comb<strong>in</strong>ed <strong>measures</strong> on <strong>the</strong> <strong>in</strong>dustry are<br />

not readily available or based on outdated data. Worrell et al. (2002) and Xu et al. (2010) have<br />

already conducted major research <strong>in</strong>to <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> US<br />

<strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 1994 and 2002. The aim for this current research at LBNL, will be to update<br />

<strong>the</strong>se data to 2006 and 2010, <strong>in</strong> order to provide relevant and recent technology data for<br />

<strong>in</strong>tegrated assessment models. These <strong>in</strong>tegrated assessment models can be used by policy<br />

makers to make accurate decisions, for example on stimulat<strong>in</strong>g <strong>the</strong> implementation <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong>.<br />

This updated research will only encompass <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong><br />

<strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> US. In order to <strong>in</strong>clude <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry, <strong>the</strong>se results should be<br />

extended to <strong>in</strong>clude o<strong>the</strong>r <strong>world</strong> regions. For <strong>the</strong> <strong>world</strong> <strong>steel</strong> production this will not be a<br />

realistic goal, if not every region will be researched <strong>in</strong> detail. Due to time constra<strong>in</strong>ts and data<br />

availability it is not possible to provide a detailed <strong>in</strong>sight <strong>in</strong> <strong>the</strong> potential <strong>of</strong> <strong>in</strong>dividual <strong>energy</strong><br />

11


<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> each region. A more realistic research goal would <strong>the</strong>refore be to f<strong>in</strong>d a<br />

more general conclusion on <strong>the</strong> use <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. A<br />

more general conclusion can be <strong>the</strong> total estimated <strong>energy</strong> sav<strong>in</strong>gs and carbon reduction <strong>of</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>energy</strong>. This will be <strong>the</strong> aim <strong>of</strong> this research, where<br />

<strong>the</strong> results acquired at LBNL will provide as <strong>in</strong>termediate results <strong>in</strong> this <strong>the</strong>sis.<br />

Summarised, <strong>the</strong> goal <strong>of</strong> this <strong>the</strong>sis is to analyse <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong><br />

<strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

5.3 Research questions<br />

The ma<strong>in</strong> question will be:<br />

12<br />

What is <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs and carbon mitigation potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong><br />

<strong>the</strong> World <strong>steel</strong> <strong>in</strong>dustry?<br />

The potential is <strong>the</strong> total amount <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs and carbon mitigation that can be achieved<br />

by implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> to <strong>the</strong> extend which is expected to be feasible. In<br />

order to determ<strong>in</strong>e <strong>the</strong> potential, first a major assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong><br />

<strong>steel</strong> <strong>in</strong>dustry will be conducted. This will be <strong>the</strong> key start<strong>in</strong>g po<strong>in</strong>t for <strong>the</strong> research, which will<br />

be performed at LBNL. In order to describe <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>, <strong>the</strong><br />

effect <strong>of</strong> each s<strong>in</strong>gle implemented measure should be <strong>in</strong>vestigated. Therefore, <strong>the</strong> first subquestion<br />

will be:<br />

Sub-question 1: What <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> are available for <strong>the</strong> mitigation <strong>of</strong> <strong>energy</strong> use<br />

and carbon emissions?<br />

Energy <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> US have been well described <strong>in</strong> several<br />

publications (Worrell, 2001; Worrell, 2007; Xu, 2010; Choudhury, 1998; DOE, 2011). These<br />

descriptions will be used for a basis <strong>of</strong> describ<strong>in</strong>g <strong>the</strong> technologies for <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong>. Next, a major effort will be put <strong>in</strong> updat<strong>in</strong>g <strong>the</strong>se <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry,<br />

s<strong>in</strong>ce <strong>the</strong> mentioned publications are <strong>of</strong>ten based on data <strong>of</strong> 1990-2000. The <strong>measures</strong> will be<br />

updated and any possible new <strong>measures</strong> will be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> assessment acquired from<br />

similar sources.<br />

This analysis <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will only encompass <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry, s<strong>in</strong>ce <strong>the</strong><br />

data on <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will be largely based on research <strong>in</strong> this <strong>in</strong>dustry. Therefore,<br />

<strong>the</strong> second sub-question should <strong>in</strong>clude <strong>the</strong> globalization <strong>of</strong> <strong>the</strong>se <strong>measures</strong>. Therefore, more<br />

detailed <strong>in</strong>formation on <strong>the</strong> differences <strong>of</strong> <strong>the</strong>se regions will have to be acquired:<br />

Sub-question 2: What are <strong>the</strong> typical <strong>energy</strong> use and economics <strong>in</strong> different <strong>world</strong> regions<br />

concern<strong>in</strong>g <strong>the</strong> production <strong>of</strong> <strong>steel</strong>?<br />

This question will provide <strong>in</strong>sight <strong>in</strong> <strong>the</strong> different <strong>steel</strong> produc<strong>in</strong>g regions to assess <strong>the</strong> effects <strong>of</strong><br />

implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. The important factors to assess <strong>the</strong> differences <strong>in</strong><br />

<strong>steel</strong> production or <strong>the</strong> basel<strong>in</strong>e production data are: total <strong>energy</strong> consumption, major <strong>in</strong>dustry


processes (Table 5) and <strong>steel</strong> production (described <strong>in</strong> chapter ‘World <strong>steel</strong> production and<br />

different regions’). These data are <strong>of</strong>ten provided <strong>in</strong> statistical reports <strong>of</strong> <strong>the</strong> IEA (International<br />

Energy Agency), reports on comparison <strong>of</strong> <strong>in</strong>dustries and statistical bureaus <strong>of</strong> <strong>the</strong> different<br />

regions.<br />

The most important factors for assess<strong>in</strong>g <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> different regions<br />

will be economic data like <strong>the</strong> Purchas<strong>in</strong>g Power Parity (PPP) <strong>in</strong>dex, expected penetration <strong>of</strong><br />

<strong>measures</strong> and average weighted <strong>energy</strong> prices. This data can be found <strong>in</strong> statistical and<br />

economics bureaus <strong>of</strong> <strong>the</strong> different regions as well as EIA (Energy Information Adm<strong>in</strong>istration),<br />

although <strong>the</strong> penetration <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will have to be estimated as no specific<br />

data were found.<br />

From <strong>the</strong> stated differences <strong>in</strong> <strong>steel</strong> production for each region, a significant estimation <strong>of</strong> <strong>the</strong><br />

potential <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> can be made. After <strong>the</strong> conversion <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> for different selected regions <strong>in</strong> <strong>the</strong> <strong>world</strong>, an assessment <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry can be made.<br />

Sub question 3: What will be <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs from <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry?<br />

The total <strong>world</strong> <strong>steel</strong> market will be assessed by def<strong>in</strong><strong>in</strong>g regions that toge<strong>the</strong>r produce over 80%<br />

<strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> production (Table 2). This should provide an overview <strong>of</strong> <strong>the</strong> total potential<br />

<strong>world</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

5.4 System def<strong>in</strong>ition and borders<br />

As already mentioned <strong>in</strong> <strong>the</strong> research questions, <strong>the</strong> database for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for<br />

<strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry will be thoroughly described. When completed, <strong>the</strong> set <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> analysed for <strong>the</strong> US, will be used to assess <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs and carbon reduction<br />

potential for o<strong>the</strong>r <strong>world</strong> regions. This is a comb<strong>in</strong>ation <strong>of</strong> assess<strong>in</strong>g different aggregate levels <strong>of</strong><br />

<strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry as well as look<strong>in</strong>g at different regions. At a technology level, <strong>the</strong> effects <strong>of</strong><br />

implement<strong>in</strong>g an <strong>energy</strong> <strong>efficiency</strong> measure will be described, which is on a low aggregate level<br />

(<strong>the</strong> lowest for this <strong>the</strong>sis). The results <strong>of</strong> all <strong>measures</strong> comb<strong>in</strong>ed will be at a country or region<br />

scale, a higher aggregate level. This method is referred to as a bottom-up approach (IEA, 2008).<br />

As <strong>the</strong> results for one region have been acquired, <strong>the</strong> effects <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions will be<br />

determ<strong>in</strong>ed based on <strong>the</strong> results for <strong>the</strong> US. Eventually <strong>the</strong>se results comb<strong>in</strong>ed should provide<br />

<strong>the</strong> desired <strong>in</strong>sight <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry, <strong>the</strong> highest aggregate level for this <strong>the</strong>sis.<br />

First, <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> <strong>steel</strong> <strong>in</strong>dustry should be fur<strong>the</strong>r expla<strong>in</strong>ed. In <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry are all<br />

production processes are <strong>in</strong>volved <strong>in</strong> mak<strong>in</strong>g rolled <strong>steel</strong> from ei<strong>the</strong>r scrap, DRI or iron ore. Any<br />

processes prior to <strong>the</strong> <strong>steel</strong> production, like m<strong>in</strong><strong>in</strong>g and crush<strong>in</strong>g <strong>of</strong> raw materials are not taken<br />

<strong>in</strong>to account. Also <strong>the</strong> processes after roll<strong>in</strong>g <strong>of</strong> <strong>steel</strong>, like form<strong>in</strong>g or application <strong>of</strong> <strong>steel</strong> <strong>in</strong> cars,<br />

cans or construction material, are excluded as well. An overview <strong>of</strong> <strong>the</strong> <strong>in</strong>cluded processes is<br />

given <strong>in</strong> chapter ‘Steel production’.<br />

13


The levels which can be identified between <strong>the</strong> lowest and <strong>the</strong> highest aggregate level will not all<br />

be <strong>in</strong>corporated as can be seen <strong>in</strong> Error! Reference source not found.. The effects <strong>of</strong> a<br />

certa<strong>in</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will not be analysed on a process scale or on a plant scale, but<br />

will immediately be translated from <strong>the</strong> data found on process technologies to a country level. In<br />

Error! Reference source not found. <strong>the</strong> green arrow represents sub-question 1, <strong>the</strong><br />

potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> (<strong>in</strong> process technologies) on <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>of</strong> <strong>the</strong><br />

United States. The second sub-question is presented by <strong>the</strong> blue arrows, where <strong>the</strong> results for<br />

<strong>the</strong> United states will be used to estimate <strong>the</strong> potential <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions.<br />

Figure 2 Representation <strong>of</strong> <strong>the</strong> aggregation levels and different regions assessed <strong>in</strong> this <strong>the</strong>sis <strong>in</strong> order to<br />

conclude on <strong>the</strong> potential for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

The selected regions <strong>in</strong> Figure 2 represent <strong>the</strong> ma<strong>in</strong> <strong>steel</strong> produc<strong>in</strong>g regions which are<br />

considered to have similar characteristics with<strong>in</strong> each region. These selected regions encompass<br />

a total production <strong>of</strong> about 82% <strong>of</strong> <strong>the</strong> <strong>world</strong> production <strong>of</strong> crude <strong>steel</strong> <strong>in</strong> 2006, as seen <strong>in</strong> Table<br />

2. The o<strong>the</strong>r rema<strong>in</strong><strong>in</strong>g regions are about 18% <strong>of</strong> <strong>the</strong> total <strong>world</strong> <strong>steel</strong> production.<br />

14


Table 2: Production, f<strong>in</strong>al <strong>energy</strong> use and calculated <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> major iron and <strong>steel</strong> produc<strong>in</strong>g<br />

countries, 2006<br />

Region<br />

Crude Steel<br />

Production<br />

(Metric Mt) 1<br />

% <strong>of</strong> total<br />

Ch<strong>in</strong>a 419.1 34%<br />

Western European Union 173.2 14%<br />

Former Soviet Union 119.9 10%<br />

Japan 116.2 9%<br />

United States 98.6 8%<br />

Central and South America 45.3 4%<br />

India 49.5 4%<br />

O<strong>the</strong>r 225.3 18%<br />

Total 1,247.1 100%<br />

Notes: All <strong>in</strong> metric tons. ‘O<strong>the</strong>r’ is calculated by <strong>the</strong> difference <strong>of</strong> total and <strong>the</strong> sum <strong>of</strong> all regions.<br />

Numbers are rounded <strong>of</strong>f.<br />

1 Source: World<strong>steel</strong>, 2011<br />

The application <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> process technologies or equipment is<br />

analysed, though <strong>the</strong> effects on <strong>the</strong> <strong>steel</strong> production processes will not be described. Also <strong>the</strong><br />

<strong>steel</strong> production facilities and <strong>the</strong> <strong>steel</strong> companies will not be described separately. Only <strong>the</strong><br />

total <strong>in</strong>dustry structure <strong>of</strong> <strong>the</strong> country and its characteristics and <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong><br />

technologies which can be implemented <strong>in</strong> process technology. The generalisation <strong>of</strong> <strong>the</strong> <strong>steel</strong><br />

<strong>in</strong>dustry <strong>in</strong> <strong>the</strong> US is considered legit, s<strong>in</strong>ce <strong>steel</strong> production processes <strong>in</strong> different companies<br />

usually have similar process characteristics. The <strong>steel</strong> production <strong>in</strong> different <strong>world</strong> regions may<br />

have different <strong>in</strong>dustry structures, but <strong>the</strong> processes used for <strong>steel</strong> production are similar (Xu,<br />

2010).<br />

For this research <strong>the</strong> use <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry will be used to<br />

determ<strong>in</strong>e <strong>energy</strong> sav<strong>in</strong>gs potential for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry. Ano<strong>the</strong>r large share <strong>of</strong> observed<br />

differences <strong>in</strong> <strong>energy</strong> <strong>in</strong>tensities and CO2 emissions on a plant and country level are expla<strong>in</strong>ed by<br />

variations <strong>in</strong> <strong>the</strong> quality <strong>of</strong> <strong>the</strong> resources that are used and <strong>the</strong> cost <strong>of</strong> <strong>energy</strong> (IEA, 2007). While<br />

<strong>the</strong> quality <strong>of</strong> resources may have an equally important <strong>in</strong>fluence, this is not <strong>in</strong>cluded <strong>in</strong> this<br />

research.<br />

Energy <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry only encompass <strong>the</strong> ma<strong>in</strong> production<br />

processes, present <strong>in</strong> typical <strong>steel</strong> production facilities. This is <strong>the</strong> preparation and process<strong>in</strong>g <strong>of</strong><br />

raw materials, <strong>the</strong> actual <strong>steel</strong> production processes and <strong>the</strong> f<strong>in</strong>ish<strong>in</strong>g processes like hot and cold<br />

roll<strong>in</strong>g (expla<strong>in</strong>ed <strong>in</strong> fur<strong>the</strong>r section). The reference year <strong>of</strong> all data found for this <strong>the</strong>sis will be<br />

2006, so production, <strong>energy</strong> and economic data for <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> and regional<br />

data will be from 2006. This is because for that year more data were available.<br />

15


The results for <strong>the</strong> US will be used to determ<strong>in</strong>e <strong>the</strong> potential for o<strong>the</strong>r regions, <strong>the</strong>refore only a<br />

number <strong>of</strong> mentioned key factors will be used to <strong>in</strong>clude <strong>in</strong> <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong>se regions.<br />

No detailed reports and data could be found on both <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry statistics, like production<br />

data and process-specific <strong>energy</strong> use, as for case studies or reports on <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> for each <strong>of</strong> all regions. For all regions, apart from <strong>the</strong> US, <strong>the</strong> data used for<br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> potential are limited, and only major factors like <strong>in</strong>dustry structure and total<br />

<strong>energy</strong> use are used to determ<strong>in</strong>e <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> each region.<br />

F<strong>in</strong>ally, <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is only expressed <strong>in</strong> <strong>energy</strong> sav<strong>in</strong>gs and<br />

<strong>energy</strong> related carbon sav<strong>in</strong>gs. O<strong>the</strong>r effects may be important, but will not be taken <strong>in</strong>to<br />

account for this research, such as environmental factors like waste reduction or economic<br />

factors like total cost reductions. While <strong>the</strong> cost-effectiveness <strong>of</strong> <strong>measures</strong> will be an important<br />

factor, <strong>the</strong> total economic effects <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will not be reported, like total<br />

reduced operational costs.<br />

5.5 Methodology and data sources<br />

The system def<strong>in</strong>ition provides <strong>in</strong>sight <strong>in</strong> <strong>the</strong> subjects and results that can be expected <strong>in</strong> this<br />

report. This chapter will elaborate on <strong>the</strong> methods used to acquire sufficient answers to <strong>the</strong><br />

research questions. The tools, methods and data sources which will be used to f<strong>in</strong>d <strong>the</strong>se<br />

answers will be described.<br />

The assessment <strong>of</strong> different <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> will be similar to <strong>the</strong><br />

exist<strong>in</strong>g methods used by Worrell (2002) and Xu (2010). The use <strong>of</strong> Cost <strong>of</strong> Conserved Energy<br />

(CCE) will be used to rank different <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> on cost-effectiveness and <strong>energy</strong><br />

sav<strong>in</strong>gs potential. With <strong>the</strong> weighted average <strong>energy</strong> price for every region, <strong>the</strong> cost-effective<br />

<strong>measures</strong> for every region will be identified. The maximum potential <strong>energy</strong> sav<strong>in</strong>gs from <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> can be calculated for <strong>the</strong> <strong>world</strong>, as well as <strong>the</strong> cost-effective potential <strong>energy</strong><br />

sav<strong>in</strong>gs. From <strong>the</strong>se <strong>energy</strong> sav<strong>in</strong>gs, <strong>the</strong> potential carbon mitigation can be calculated by us<strong>in</strong>g<br />

conversion rates <strong>of</strong> different <strong>energy</strong> types and <strong>the</strong>ir carbon emissions.<br />

For every identified <strong>efficiency</strong> measure, detailed <strong>in</strong>formation should be <strong>in</strong>cluded <strong>in</strong> order to be<br />

able to assess <strong>the</strong>ir effects. The assessment will be based on <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> GJ per tonne<br />

<strong>of</strong> <strong>steel</strong>, <strong>the</strong> (annualized) <strong>in</strong>vestment costs and operat<strong>in</strong>g cost-change. With <strong>the</strong>se data <strong>the</strong> CCE<br />

can be calculated (Meier, 1984). If <strong>the</strong> cost <strong>of</strong> conserved <strong>energy</strong> is lower than <strong>the</strong> average<br />

weighted <strong>energy</strong> price, <strong>the</strong> measure is considered cost effective. The calculation <strong>of</strong> <strong>the</strong> CCE is<br />

expla<strong>in</strong>ed <strong>in</strong> equations 1 and 2.<br />

16


Where:<br />

∙<br />

∆<br />

d<br />

q = (2)<br />

−n<br />

( 1−<br />

( 1+<br />

d)<br />

)<br />

CCE = Cost <strong>of</strong> conserved <strong>energy</strong> for an <strong>energy</strong> <strong>efficiency</strong> measure <strong>in</strong> $/GJ<br />

I = Capital cost ($)<br />

q = Capital recovery factor (yr -1 )<br />

∆E= Annual <strong>energy</strong> sav<strong>in</strong>gs (GJ/yr)<br />

M = Annual change <strong>in</strong> monetizable non-<strong>energy</strong> costs from O&M changes ($/yr)<br />

B = Annual additional non-<strong>energy</strong> cost benefits ($/yr)<br />

d = Discount rate<br />

n = Lifetime <strong>of</strong> <strong>the</strong> mitigation option (years)<br />

The <strong>energy</strong> sav<strong>in</strong>gs and costs data will be multiplied with a penetration rate <strong>of</strong> each measure.<br />

The penetration rate is a determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> share <strong>of</strong> <strong>the</strong> <strong>in</strong>dustry which is expected to be able<br />

to use <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> technology. Although previously <strong>in</strong>dicated, <strong>the</strong> processes <strong>in</strong> <strong>the</strong> <strong>steel</strong><br />

<strong>in</strong>dustry are much alike, differences <strong>in</strong> <strong>steel</strong> production facilities could <strong>in</strong>hibit <strong>the</strong> use <strong>of</strong> certa<strong>in</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> some cases. For example, some <strong>measures</strong> might only be viable for<br />

plants with smaller scale production. For <strong>the</strong> US, for every measure <strong>the</strong> penetration rate was<br />

determ<strong>in</strong>ed ei<strong>the</strong>r by expert <strong>in</strong>terviews, literature sources or estimations. However, penetration<br />

rates <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions will be very difficult to determ<strong>in</strong>e.<br />

From <strong>the</strong> CCE a rank<strong>in</strong>g can be made <strong>of</strong> <strong>the</strong> most cost-effective <strong>measures</strong>, to produce a cost<br />

curve (Xu, 2010). The cost curve is a graphic representation <strong>of</strong> <strong>the</strong> total and cost-effective<br />

potential <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. An example is shown <strong>in</strong> Figure 3.<br />

Basically, <strong>in</strong> a cost curve it can be observed what is <strong>the</strong> maximum amount <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs<br />

(GJ/tonne) at certa<strong>in</strong> costs ($/GJ). All <strong>the</strong> <strong>measures</strong> which have a CCE lower than <strong>the</strong> average<br />

weighted fuel price are considered cost effective. So <strong>in</strong> Figure 3 about 3.8 GJ/tonne <strong>of</strong> <strong>steel</strong> can<br />

be saved cost-effectively. This expla<strong>in</strong>s <strong>the</strong> exclusion <strong>of</strong> <strong>energy</strong> cost sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> calculation <strong>of</strong><br />

CCE. S<strong>in</strong>ce <strong>the</strong> value <strong>of</strong> CCE is compared to <strong>the</strong> <strong>energy</strong> price to determ<strong>in</strong>e cost-effective<br />

<strong>measures</strong>.<br />

In Figure 3 <strong>the</strong> effect <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g or exclud<strong>in</strong>g o<strong>the</strong>r benefits can be observed. In this case<br />

productivity benefits. If o<strong>the</strong>r benefits are <strong>in</strong>cluded, <strong>the</strong> cost curve is much lower, which means<br />

that <strong>the</strong> cost for <strong>the</strong> same amount <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs decrease. From both <strong>the</strong> cost curve and <strong>the</strong><br />

data tables <strong>of</strong> <strong>the</strong> cost curve, <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs can be determ<strong>in</strong>ed.<br />

(1)<br />

17


Cost <strong>of</strong> Conserved Energy ($/GJ)<br />

Discount Rate = 30%<br />

Figure 3 Example <strong>of</strong> a cost curve with and without <strong>in</strong>clud<strong>in</strong>g non-<strong>energy</strong> productivity benefits <strong>in</strong> <strong>the</strong> US<br />

iron and <strong>steel</strong> <strong>in</strong>dustry (Worrell et al. 2002)<br />

Then, from <strong>the</strong> calculated <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> fuel and electricity an estimation <strong>of</strong> <strong>the</strong> carbon<br />

mitigation can be calculated, to <strong>in</strong>clude <strong>the</strong> carbon mitigation results from <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> (World<strong>steel</strong>, 2007; Worrell (2001, 2002, 2007); Xu 2010, EPA 2010). To estimate <strong>the</strong><br />

carbon emissions reduction, <strong>the</strong> carbon emissions <strong>of</strong> each process and electricity have been<br />

determ<strong>in</strong>ed (Xu, 2012). The carbon emissions for each process have been determ<strong>in</strong>ed <strong>in</strong> kg <strong>of</strong><br />

carbon emissions per GJ <strong>of</strong> <strong>energy</strong> used. Carbon emission reductions from <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> one<br />

<strong>of</strong> <strong>the</strong> processes can be determ<strong>in</strong>ed <strong>in</strong> that way.<br />

In this report only <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> will be used to present <strong>the</strong> estimated sav<strong>in</strong>gs for <strong>the</strong> <strong>steel</strong><br />

<strong>in</strong>dustry. It can be discussed to <strong>in</strong>clude primary <strong>energy</strong> for a more accurate determ<strong>in</strong>ation,<br />

because <strong>energy</strong> requirements for electricity generation and distribution would <strong>the</strong>n be <strong>in</strong>cluded.<br />

However, <strong>steel</strong> production facilities produce electricity from by-products, like BF or coke oven<br />

gas this makes it difficult to estimate <strong>the</strong> conversion <strong>of</strong> f<strong>in</strong>al <strong>energy</strong> to primary <strong>energy</strong> for every<br />

region. Next, <strong>the</strong> cost-effectiveness <strong>of</strong> implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>steel</strong><br />

production will be researched. Steel production facilities will not take <strong>in</strong>to account <strong>the</strong> primary<br />

<strong>energy</strong> sav<strong>in</strong>gs. Only <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs are important for cost benefits. A discount rate <strong>of</strong><br />

30% is used to determ<strong>in</strong>e <strong>the</strong> annualized <strong>in</strong>vestment costs.<br />

In general, overall data availability limits <strong>the</strong> accuracies <strong>of</strong> estimat<strong>in</strong>g <strong>the</strong> potential degree <strong>of</strong><br />

implementation. For example, <strong>the</strong> Energy Information Adm<strong>in</strong>istration reports <strong>the</strong> uptake <strong>of</strong><br />

some <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> Manufactur<strong>in</strong>g Energy Consumption Survey (MECS),<br />

such as crosscutt<strong>in</strong>g technologies like process controls, build<strong>in</strong>g controls, waste heat recovery or<br />

adjustable speed drives (EIA, 2009). For o<strong>the</strong>r <strong>measures</strong> specific to <strong>the</strong> iron and <strong>steel</strong> <strong>in</strong>dustry,<br />

additional literature sources, sector specific statistics, or expert estimates were used. O<strong>the</strong>r key<br />

literature sources used for iron and <strong>steel</strong> <strong>in</strong>dustry specific <strong>measures</strong> were <strong>the</strong> “Round-Up’s”<br />

published by <strong>the</strong> journal Iron & Steelmaker on electric arc furnaces, blast furnaces and<br />

cont<strong>in</strong>uous casters (I&SM, 1997a; I&SM, 1997b). A number <strong>of</strong> additional <strong>measures</strong> were found<br />

18<br />

21<br />

18<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

Annual C ost-E ffective P rim ary E nergy S av<strong>in</strong>gs<br />

E xclud<strong>in</strong>g N on-E nergy<br />

B enefits: 1.9 G J/tonne<br />

difference: 1.9 J/tonne,<br />

approxim ately 168 P J/year<br />

Includ<strong>in</strong>g N on-E nergy<br />

B enefits: 3.8 G J/tonne<br />

1994 W eighted A verage P rim ary Fuel P rice ($2.14/G J)<br />

C ost C urve W ithout P roductivity B enefits<br />

C ost C urve Includ<strong>in</strong>g P roductivity B enefits<br />

0 1 2 3 4 5 6<br />

E nergy S av<strong>in</strong>g s (G J/tonne)


y assess<strong>in</strong>g DOE <strong>energy</strong> audits <strong>in</strong> US <strong>steel</strong> plants. For key technologies, reference lists <strong>of</strong><br />

manufacturers such as Voest-Alp<strong>in</strong>e Industrieanlagebau (VAI) (VAI, 1997) were also used.<br />

Once each measure was characterized <strong>in</strong>dividually, its applicability to <strong>the</strong> US iron and <strong>steel</strong><br />

<strong>in</strong>dustry as a whole was assessed. In pr<strong>in</strong>ciple, <strong>in</strong> order to estimate <strong>the</strong> potential for future<br />

uptake <strong>of</strong> each <strong>energy</strong> <strong>efficiency</strong> and GHG-emission reduction measure, each measure was<br />

characterized by <strong>the</strong> degree to which implementation <strong>of</strong> <strong>the</strong> measure can be applied <strong>in</strong> <strong>the</strong> US<br />

iron and <strong>steel</strong> <strong>in</strong>dustry. The total <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs calculated for each measure represents <strong>the</strong><br />

total potential for <strong>the</strong> US. Next, <strong>the</strong> potential <strong>of</strong> cost-effective <strong>measures</strong> is calculated, by add<strong>in</strong>g<br />

only <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential for cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

The key factors for <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential are <strong>the</strong> total <strong>energy</strong> consumption, <strong>in</strong>dustry<br />

structure and <strong>steel</strong> production statistics (fur<strong>the</strong>r expla<strong>in</strong>ed <strong>in</strong> chapter ‘World <strong>steel</strong> production<br />

and different regions’). These data are <strong>of</strong>ten provided <strong>in</strong> statistical reports <strong>of</strong> <strong>the</strong> IEA<br />

(International Energy Agency), reports on comparison <strong>of</strong> <strong>in</strong>dustries and statistical bureaus <strong>of</strong><br />

<strong>the</strong> selected regions. The most important factors for assess<strong>in</strong>g <strong>the</strong> economic side <strong>of</strong> <strong>the</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> different regions will be <strong>the</strong> PPP price <strong>in</strong>dex to compare <strong>in</strong>vestment<br />

and operat<strong>in</strong>g costs, expected penetration <strong>of</strong> <strong>measures</strong> and average weighted <strong>energy</strong> price for<br />

each region. These data will be needed to identify <strong>the</strong> cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong><br />

for each region. The latter mentioned factors will be more difficult to determ<strong>in</strong>e.<br />

Next, <strong>the</strong> Market Exhchange Rates (MER) is used to compare <strong>the</strong> PPP-<strong>in</strong>dex <strong>of</strong> different regions<br />

<strong>in</strong> <strong>the</strong> same currency (World Bank, 2006). Examples <strong>of</strong> PPP <strong>in</strong>dexes <strong>in</strong> different countries are<br />

<strong>the</strong> Big Mac <strong>in</strong>dex and OECD comparative price levels. On <strong>the</strong> o<strong>the</strong>r hand, technology and<br />

equipment for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> may not be available <strong>in</strong> each region, s<strong>in</strong>ce it is not a<br />

common good like gold or wheat (Levi, 2005). So, <strong>the</strong> PPP <strong>in</strong>dex might not be a precise cost<br />

difference for implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> one region, compared to ano<strong>the</strong>r.<br />

Moreover, it is likely that <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> technologies orig<strong>in</strong> from western economies, so<br />

<strong>the</strong> PPP <strong>in</strong>dex would not be true <strong>in</strong> that case. Therefore, <strong>in</strong> this report <strong>the</strong> PPP <strong>in</strong>dex will only be<br />

used partly. The <strong>in</strong>vestment costs for a certa<strong>in</strong> technology will be estimated at 70% <strong>of</strong> <strong>the</strong> cost<br />

identical to <strong>the</strong> US, while 30% <strong>of</strong> <strong>the</strong> cost dependent upon <strong>the</strong> PPP <strong>in</strong>dex.<br />

Penetration rates <strong>of</strong> technologies per region will be a more difficult factor. This can hardly be<br />

scientifically checked. Reports like <strong>the</strong> Manufactur<strong>in</strong>g Energy Consumption Survey (MECS),<br />

which is issued <strong>in</strong> <strong>the</strong> US every four years, provide an approximation <strong>of</strong> technology penetration<br />

<strong>in</strong> certa<strong>in</strong> <strong>in</strong>dustries. The availability <strong>of</strong> similar reports for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry for o<strong>the</strong>r regions is<br />

marg<strong>in</strong>al.<br />

When <strong>the</strong> data for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is converted from <strong>the</strong> US data to o<strong>the</strong>r regions,<br />

similar calculations will be made concern<strong>in</strong>g <strong>the</strong> CCE <strong>of</strong> each measure. For each region <strong>the</strong><br />

estimated potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will be determ<strong>in</strong>ed. The cumulative <strong>of</strong> <strong>the</strong>se<br />

potentials will eventually present a <strong>world</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>steel</strong><br />

<strong>in</strong>dustry. Then for <strong>the</strong> f<strong>in</strong>al result, <strong>the</strong> <strong>world</strong> potential can be compared to studies <strong>of</strong> <strong>the</strong>oretical<br />

m<strong>in</strong>imum <strong>energy</strong> consumption <strong>of</strong> <strong>steel</strong> production. The <strong>the</strong>oretical m<strong>in</strong>imum <strong>energy</strong> use for <strong>the</strong><br />

<strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> <strong>world</strong>, compared to <strong>the</strong> total <strong>energy</strong> use <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry now and <strong>the</strong><br />

potential <strong>energy</strong> use after implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

19


Because a number <strong>of</strong> assumptions have to be made to calculate <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong>, <strong>the</strong>se assumptions will be tested on <strong>the</strong>ir sensitivity. A number <strong>of</strong> scenarios will be<br />

<strong>in</strong>cluded <strong>in</strong> order to clarify <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong>se assumptions on <strong>the</strong> outcome. First, <strong>the</strong> PPP<br />

<strong>in</strong>dex is <strong>in</strong>troduced to be <strong>in</strong>cluded <strong>in</strong> 30% <strong>of</strong> <strong>the</strong> <strong>in</strong>vestment and operat<strong>in</strong>g costs. Influences <strong>of</strong><br />

<strong>the</strong> PPP <strong>in</strong>dex will be assessed by chang<strong>in</strong>g it to 0% or 60%, to determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> this<br />

factor. Next, <strong>the</strong> effect <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions may be different. For<br />

example, an <strong>energy</strong> <strong>efficiency</strong> measure <strong>in</strong> <strong>the</strong> more <strong>energy</strong> <strong>in</strong>tensive India, may have a larger<br />

effect on <strong>the</strong> <strong>energy</strong> consumption <strong>in</strong> that region than if this <strong>measures</strong> was applied <strong>in</strong> <strong>the</strong> US<br />

(Schumacher, 1998). For some <strong>of</strong> <strong>the</strong> <strong>measures</strong> we will try to f<strong>in</strong>d if we can l<strong>in</strong>k <strong>the</strong> <strong>energy</strong><br />

sav<strong>in</strong>gs potential to <strong>the</strong> <strong>energy</strong> consumption.<br />

20


6 STEEL PRODUCTION<br />

The <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry is one <strong>of</strong> <strong>the</strong> largest and <strong>energy</strong> <strong>in</strong>tensive <strong>in</strong>dustries <strong>in</strong> <strong>the</strong> <strong>world</strong>. The<br />

total production <strong>of</strong> crude <strong>steel</strong> was 1.4 billion metric tons <strong>in</strong> 2010 (Table 2). Crude <strong>steel</strong>, <strong>the</strong><br />

basic end product <strong>of</strong> <strong>steel</strong> production processes, is produced <strong>in</strong> many varieties from hard to s<strong>of</strong>t<br />

<strong>steel</strong>. The hardness <strong>of</strong> <strong>steel</strong> is dependent upon <strong>the</strong> chemical composition <strong>of</strong> <strong>steel</strong>. Crude <strong>steel</strong> will<br />

<strong>the</strong>n be shaped <strong>in</strong> different forms for different purposes. Also, surface treatments like pa<strong>in</strong>t<strong>in</strong>g<br />

or sell<strong>in</strong>g <strong>the</strong> <strong>of</strong> solid <strong>steel</strong> for forg<strong>in</strong>g <strong>in</strong>dustries is possible. The ma<strong>in</strong> end products <strong>in</strong> which<br />

<strong>steel</strong> is used are <strong>in</strong> <strong>the</strong> construction, automotive, packag<strong>in</strong>g and appliances <strong>in</strong>dustries.<br />

Steel is produced roughly by two types <strong>of</strong> process<strong>in</strong>g. First, <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong> mills produce pig iron<br />

from raw materials (iron ore and coke) us<strong>in</strong>g a blast furnace, followed by produc<strong>in</strong>g <strong>steel</strong> from pig iron<br />

us<strong>in</strong>g a basic oxygen furnace (BOF). Second, <strong>the</strong> secondary <strong>steel</strong> mills produce <strong>steel</strong> from scrap, pig iron<br />

or direct reduced iron (DRI) us<strong>in</strong>g an electric arc furnace (EAF).<br />

Figure 4 provides an scheme for <strong>the</strong> most typical <strong>steel</strong> production routes.<br />

Figure 4 Iron and Steel Production Routes<br />

21


For <strong>the</strong> primary route, pig iron is produced <strong>in</strong> a blast furnace, us<strong>in</strong>g coke <strong>in</strong> comb<strong>in</strong>ation with<br />

<strong>in</strong>jected coal or oil, to reduce s<strong>in</strong>tered or pelletized iron ore to pig iron. Limestone is added as a<br />

flux<strong>in</strong>g agent. Coke is produced <strong>in</strong> coke ovens from coal. Reduction <strong>of</strong> <strong>the</strong> iron ore is <strong>the</strong> most<br />

<strong>energy</strong>-consum<strong>in</strong>g process <strong>in</strong> <strong>the</strong> production <strong>of</strong> primary <strong>steel</strong>. Modern blast furnaces are<br />

operated at various scales, rang<strong>in</strong>g from m<strong>in</strong>i blast furnaces (capacity <strong>of</strong> 75 ktonnes/year) to <strong>the</strong><br />

largest with a capacity <strong>of</strong> 4 Mtonnes/year. Usually a production facility has more than one blast<br />

furnace, produc<strong>in</strong>g up to 10 Mtonnes <strong>of</strong> crude <strong>steel</strong> per facility. Besides iron, <strong>the</strong> blast furnace<br />

also produces some by-products like blast furnace gas (used for heat<strong>in</strong>g purposes), electricity (if<br />

top gas pressure recovery turb<strong>in</strong>es are <strong>in</strong>stalled) and slags (used as build<strong>in</strong>g materials; Xu,<br />

2010).<br />

Primary <strong>steel</strong> is produced from pig iron by two processes: open hearth furnace (OHF) or basic<br />

oxygen furnace (BOF). The OHF is still used <strong>in</strong> different configurations, ma<strong>in</strong>ly <strong>in</strong> Former Sovjet<br />

Union and India. OHF is considered an out-dated technology because <strong>of</strong> productivity and <strong>energy</strong><br />

and environmental issues (Gosh, 2008). While OHF uses more <strong>energy</strong>, this process can use<br />

more scrap (recycled <strong>steel</strong>) than <strong>the</strong> BOF process. Never<strong>the</strong>less, BOF process is rapidly replac<strong>in</strong>g<br />

OHF <strong>world</strong>wide, because <strong>of</strong> its greater productivity and lower capital costs. In addition, <strong>the</strong> BOF<br />

process needs no net <strong>in</strong>put <strong>of</strong> <strong>energy</strong> and can even be a net <strong>energy</strong> exporter <strong>in</strong> <strong>the</strong> form <strong>of</strong> BOFgas<br />

and steam. The process operates through <strong>the</strong> <strong>in</strong>jection <strong>of</strong> oxygen, oxidiz<strong>in</strong>g <strong>the</strong> carbon <strong>in</strong> <strong>the</strong><br />

hot metal. This is <strong>the</strong> ma<strong>in</strong> process to transform <strong>the</strong> hard and brittle pig iron <strong>in</strong>to s<strong>of</strong>ter and<br />

ductile <strong>steel</strong>. Several configurations exist depend<strong>in</strong>g on <strong>the</strong> way <strong>the</strong> oxygen is <strong>in</strong>jected. The <strong>steel</strong><br />

quality can be improved fur<strong>the</strong>r by various ladle ref<strong>in</strong><strong>in</strong>g processes used <strong>in</strong> <strong>the</strong> <strong>steel</strong> mill (Xu,<br />

2010).<br />

Secondary <strong>steel</strong> is produced <strong>in</strong> an electric arc furnace (EAF) us<strong>in</strong>g scrap. Scrap <strong>steel</strong> is melted<br />

and ref<strong>in</strong>ed, us<strong>in</strong>g a strong electric current. Several process variations exist, us<strong>in</strong>g ei<strong>the</strong>r AC or<br />

DC currents, and fuels can be <strong>in</strong>jected to reduce electricity use. Just like <strong>the</strong> blast furnace, <strong>the</strong><br />

EAF produces <strong>steel</strong>, slag and EAF gas, although by-products are produced <strong>in</strong> lower amounts.<br />

Direct reduced iron (DRI), or sponge iron, is produced by reduction <strong>of</strong> <strong>the</strong> ores below <strong>the</strong><br />

melt<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> small scale plants (< 1 Mtonnes/year) and it has different (but close) properties<br />

than pig iron. DRI production is grow<strong>in</strong>g and nearly 4% <strong>of</strong> <strong>the</strong> iron <strong>in</strong> <strong>the</strong> <strong>world</strong> is produced by<br />

direct reduction, <strong>of</strong> which over 90% uses natural gas as a fuel (Midrex, 1996). DRI serves as a<br />

high quality alternative for scrap <strong>in</strong> secondary <strong>steel</strong> mak<strong>in</strong>g.<br />

Cast<strong>in</strong>g and shap<strong>in</strong>g are <strong>the</strong> next steps <strong>in</strong> <strong>steel</strong> production. Cast<strong>in</strong>g can be a batch (<strong>in</strong>gots) or a<br />

cont<strong>in</strong>uous process (slabs, blooms, billets). Ingot cast<strong>in</strong>g is <strong>the</strong> classical process and is rapidly<br />

be<strong>in</strong>g replaced by cont<strong>in</strong>uous cast<strong>in</strong>g mach<strong>in</strong>es (CCM). In 1998, 83% <strong>of</strong> global crude <strong>steel</strong><br />

production was cast cont<strong>in</strong>uously (IISI, 1999). In 2010 this was already 95% (IISI, 2011).<br />

Cont<strong>in</strong>uous cast<strong>in</strong>g is a significantly more <strong>energy</strong>-efficient process for cast<strong>in</strong>g <strong>steel</strong> than <strong>the</strong><br />

older <strong>in</strong>got cast<strong>in</strong>g process. The casted material can be sold as <strong>in</strong>gots or slabs to <strong>steel</strong><br />

manufactur<strong>in</strong>g <strong>in</strong>dustries. Most <strong>of</strong> <strong>the</strong> <strong>steel</strong> is rolled by <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry to sheets, plates, tubes,<br />

pr<strong>of</strong>iles or wire. Generally, <strong>the</strong> <strong>steel</strong> is first treated <strong>in</strong> a hot roll<strong>in</strong>g mill. The <strong>steel</strong> is heated and<br />

passed through heavy roller sections reduc<strong>in</strong>g <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> <strong>steel</strong>. The hot roll<strong>in</strong>g process<br />

produces pr<strong>of</strong>iles, sheets, or wire. After <strong>the</strong> hot roll<strong>in</strong>g process, sheets can be reduced <strong>in</strong><br />

22


thickness by cold roll<strong>in</strong>g. F<strong>in</strong>ish<strong>in</strong>g is <strong>the</strong> f<strong>in</strong>al production step, and this may <strong>in</strong>clude different<br />

processes such as anneal<strong>in</strong>g, pickl<strong>in</strong>g, and surface treatment.<br />

These processes have a different demand for <strong>energy</strong> and <strong>the</strong>reby different carbon emissions. The<br />

average <strong>energy</strong> use <strong>of</strong> <strong>the</strong>se processes has been determ<strong>in</strong>ed for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. The most<br />

<strong>energy</strong> demand<strong>in</strong>g process is <strong>the</strong> blast furnace, while processes like <strong>steel</strong> f<strong>in</strong>ish<strong>in</strong>g are relatively<br />

low <strong>in</strong> <strong>energy</strong> demand. The total f<strong>in</strong>al <strong>energy</strong> demand for produc<strong>in</strong>g primary <strong>steel</strong> is about 20.1<br />

GJ/tonne <strong>of</strong> <strong>steel</strong>. For secondary <strong>steel</strong> production <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> demand is about 5.5<br />

GJ/tonne. These and o<strong>the</strong>r important f<strong>in</strong>d<strong>in</strong>gs for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry are summarised <strong>in</strong><br />

Table 3.<br />

Table 3 F<strong>in</strong>al <strong>energy</strong>, associated carbon emissions, and production <strong>in</strong> 2006 for <strong>the</strong> US Steel <strong>in</strong>dustry<br />

US Steel production Primary Steel<br />

Secondary<br />

Steel<br />

Total Steel<br />

Production (Mt/year) 42.5 56.1 98.6<br />

F<strong>in</strong>al Energy Consumption (PJ/year) 852 311 1,162<br />

Energy Related Carbon Emissions (MtC/year) 18.9 9.5 28.4<br />

F<strong>in</strong>al <strong>energy</strong> Intensity (GJ/tonne) 20.1 5.5 11.8<br />

Table 3 shows some characteristics <strong>of</strong> <strong>the</strong> primary and secondary <strong>steel</strong>. First, <strong>the</strong> <strong>energy</strong><br />

<strong>in</strong>tensity <strong>of</strong> primary <strong>steel</strong> is considerably more compared to secondary <strong>steel</strong>mak<strong>in</strong>g. The<br />

difference is due to <strong>the</strong> secondary <strong>steel</strong> mak<strong>in</strong>g does not require <strong>the</strong> <strong>energy</strong> consum<strong>in</strong>g reduction<br />

process. The secondary <strong>steel</strong>mak<strong>in</strong>g requires electricity for melt<strong>in</strong>g scrap <strong>steel</strong>.<br />

23


7 STEEL ENERGY EFFICIENCY MEASURES<br />

This section will expla<strong>in</strong> which <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>the</strong>re are and will <strong>in</strong>clude <strong>the</strong><br />

identified <strong>energy</strong> <strong>efficiency</strong> for this research. Cost curves for 51 <strong>measures</strong> for improv<strong>in</strong>g <strong>energy</strong><br />

<strong>efficiency</strong> <strong>in</strong> <strong>the</strong> iron and <strong>steel</strong> sector were evaluated for 1994 by Worrell et al. (2002). Then,<br />

updated cost curves <strong>of</strong> <strong>measures</strong> were developed for <strong>the</strong> year 2002 for <strong>the</strong> same set <strong>of</strong> <strong>measures</strong><br />

by Xu (2010). For 2006 additional <strong>measures</strong> were found, totall<strong>in</strong>g at 75 <strong>measures</strong> for that years.<br />

In addition, Appendix A to H <strong>in</strong>cludes descriptions <strong>of</strong> <strong>the</strong> mitigation <strong>measures</strong>. The follow<strong>in</strong>g<br />

describes <strong>the</strong> steps to assess <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> and formulat<strong>in</strong>g cost curves.<br />

First, for every measure <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential per production unit was identified. Next,<br />

<strong>the</strong> <strong>in</strong>vestment costs <strong>of</strong> <strong>the</strong> <strong>measures</strong> are identified and <strong>the</strong> expected lifetime <strong>of</strong> <strong>the</strong> measure.<br />

The lifetime and <strong>the</strong> <strong>in</strong>vestment costs <strong>of</strong> <strong>the</strong> measure were used to determ<strong>in</strong>e <strong>the</strong> annualized<br />

<strong>in</strong>vestment costs per production unit. To calculate <strong>the</strong> CCE, <strong>the</strong>se are <strong>the</strong> most important data.<br />

In addition to data on <strong>energy</strong> sav<strong>in</strong>gs and costs, some <strong>of</strong> <strong>the</strong> <strong>measures</strong> had identifiable and<br />

quantifiable additional benefits, such as reduced labour and ma<strong>in</strong>tenance or <strong>in</strong>creased yields.<br />

Table 4 enlists a selection <strong>of</strong> <strong>the</strong> mitigation technologies and <strong>the</strong>ir correspond<strong>in</strong>g benefits for <strong>the</strong><br />

iron and <strong>steel</strong> <strong>in</strong>dustry.<br />

25


Table 4 Examples <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> Iron and Steel Industry that have o<strong>the</strong>r non<strong>energy</strong><br />

benefits as well as <strong>energy</strong> benefits (Worrell et al. 2002).<br />

Improved process control<br />

Bottom Stirr<strong>in</strong>g / Stirr<strong>in</strong>g gas<br />

<strong>in</strong>jection<br />

26<br />

Secondary Steel mak<strong>in</strong>g<br />

Foamy slag Reduced tap to tap times<br />

Oxy-fuel burners<br />

DC-Arc furnace<br />

Scrap preheat<strong>in</strong>g - Tunnel<br />

furnace (CONSTEEL)<br />

FUCHS Shaft furnace<br />

Tw<strong>in</strong> Shell w/ scrap preheat<strong>in</strong>g Reduced tap-to-tap time<br />

Average <strong>in</strong>crease <strong>in</strong> productivity <strong>of</strong> 9-12% and reduced electrode<br />

consumption <strong>of</strong> 25%<br />

Net cost sav<strong>in</strong>gs <strong>of</strong> $0.9-2.3/tonne from <strong>in</strong>creased yield <strong>of</strong> 0.5%<br />

Reduced tap-to-tap time <strong>of</strong> 6% and improved product quality from O2<br />

<strong>in</strong>jection<br />

Reduced tap-to-tap time, reduced electrode use, <strong>in</strong>creased refractory<br />

life and improved stability<br />

Increased productivity by 33%, reduced electrode consumption by<br />

40% and reduced dust emissions<br />

Reduced electrode consumption, reduced flue gas dust emissions by<br />

25%, <strong>in</strong>creased yield <strong>of</strong> 0.25-2.0% and 20% <strong>in</strong>creased productivity<br />

Integrated Steel mak<strong>in</strong>g<br />

Coke dry quench<strong>in</strong>g Reduced dust emissions and improved work<strong>in</strong>g climate<br />

Pulverized coal <strong>in</strong>jection to 130<br />

kg/tonne hot metal (thm)<br />

Pulverized coal <strong>in</strong>jection to 225<br />

kg/thm<br />

Injection <strong>of</strong> natural gas to 140<br />

kg/thm<br />

Reduced coke-related emissions<br />

Reduced coke-related emissions<br />

Reduced coke-related emissions<br />

Adopt cont<strong>in</strong>uous cast<strong>in</strong>g Reduced material losses from about 8% to 2%<br />

Hot charg<strong>in</strong>g<br />

Improved material quality, reduced material losses, improved<br />

productivity by up to 6% and potential reduction <strong>of</strong> slab stock<strong>in</strong>g<br />

Both<br />

Th<strong>in</strong> slab cast<strong>in</strong>g Improved productivity and reduced material losses<br />

Energy <strong>efficiency</strong> <strong>measures</strong> have been identified <strong>in</strong> a wide variety <strong>of</strong> applications. For example<br />

foamy slag, which results <strong>in</strong> a natural isolation layer on top <strong>of</strong> molten <strong>steel</strong> <strong>in</strong> an EAF. Ano<strong>the</strong>r<br />

example is <strong>the</strong> use <strong>of</strong> an alternative <strong>energy</strong> source, for example oxy-fuel burners <strong>in</strong> EAF furnaces<br />

to reduce use <strong>of</strong> electricity, or <strong>the</strong> use <strong>of</strong> powder coal <strong>in</strong>stead <strong>of</strong> coke for <strong>the</strong> blast furnace. In<br />

both cases <strong>the</strong> primary fuel use is <strong>in</strong>creased, which reduces <strong>the</strong> need for generat<strong>in</strong>g electricity or<br />

produc<strong>in</strong>g coke. O<strong>the</strong>r <strong>measures</strong> <strong>in</strong>cluded <strong>the</strong> upgrad<strong>in</strong>g <strong>of</strong> process control or auxiliary<br />

equipment like steam or pressurised air systems. Plann<strong>in</strong>g is an issue for ‘hot charg<strong>in</strong>g’, which is<br />

aga<strong>in</strong> a different type <strong>of</strong> measure. Dur<strong>in</strong>g <strong>the</strong> cast<strong>in</strong>g process, liquid <strong>steel</strong> is solidified by cool<strong>in</strong>g,<br />

after which it will have to be reheated before roll<strong>in</strong>g. Hot charg<strong>in</strong>g is a way <strong>of</strong> reduc<strong>in</strong>g <strong>the</strong><br />

cool<strong>in</strong>g <strong>of</strong> <strong>steel</strong> after cast<strong>in</strong>g, and charg<strong>in</strong>g <strong>in</strong> reheat furnaces ‘as hot as possible’, reduc<strong>in</strong>g <strong>the</strong><br />

<strong>energy</strong> consumption <strong>of</strong> a heat<strong>in</strong>g furnace.


A s<strong>in</strong>gle <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> can reduce <strong>the</strong> <strong>energy</strong> use for <strong>steel</strong>mak<strong>in</strong>g up to 3.5 GJ per<br />

tonne <strong>of</strong> <strong>steel</strong>. That particular measure is <strong>the</strong> application <strong>of</strong> th<strong>in</strong> slab cast<strong>in</strong>g where cast<strong>in</strong>g and<br />

hot roll<strong>in</strong>g are comb<strong>in</strong>ed <strong>in</strong> one process. The application <strong>of</strong> this measure will have a large impact<br />

on <strong>the</strong> <strong>energy</strong> use for hot roll<strong>in</strong>g <strong>of</strong> <strong>steel</strong>. The <strong>in</strong>vestment costs for such a measure are about<br />

$150 per tonne. The CCE calculated for this measure, when <strong>the</strong> capital recovery factor is<br />

<strong>in</strong>cluded, is about 12 $/GJ. With weighted average <strong>energy</strong> prices around 7 $/GJ such a measure<br />

is not cost effective. If o<strong>the</strong>r non-<strong>energy</strong> benefits will be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> this<br />

measure, <strong>the</strong> CCE will be 3 $/GJ. So, this measure is only cost-effective if <strong>the</strong> o<strong>the</strong>r non-<strong>energy</strong><br />

benefits are <strong>in</strong>cluded.<br />

Ano<strong>the</strong>r important factor for <strong>the</strong> comb<strong>in</strong>ed effects <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is <strong>the</strong><br />

production rate. Prelim<strong>in</strong>ary results <strong>of</strong> <strong>the</strong> research at LBNL <strong>in</strong>dicated that <strong>the</strong> production <strong>in</strong> a<br />

certa<strong>in</strong> period has a large effect on <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential <strong>of</strong> <strong>the</strong> <strong>measures</strong> (Xu, 2012). The<br />

relation is logic, s<strong>in</strong>ce <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs for every measure is def<strong>in</strong>ed <strong>in</strong> GJ/tonne <strong>of</strong> <strong>steel</strong>. A<br />

reduction <strong>in</strong> production will result <strong>in</strong> a reduction <strong>in</strong> potential <strong>energy</strong> sav<strong>in</strong>gs. Dependent upon<br />

<strong>the</strong> region <strong>in</strong> which <strong>the</strong> production change occurs, <strong>the</strong> potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong><br />

may change to great extent.<br />

The cost-effectiveness <strong>of</strong> an <strong>energy</strong> <strong>efficiency</strong> measure is highly dependent upon <strong>the</strong> <strong>energy</strong><br />

price. If <strong>energy</strong> prices <strong>in</strong>crease, <strong>the</strong> cost-effectiveness <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will <strong>in</strong>crease<br />

accord<strong>in</strong>gly. One example is <strong>the</strong> <strong>in</strong>creased natural gas price <strong>in</strong> 2006 <strong>in</strong> <strong>the</strong> US. The results found<br />

from <strong>the</strong> research at LBNL <strong>in</strong>dicated that <strong>the</strong> <strong>in</strong>crease <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> potential <strong>in</strong> 2006 was<br />

partially devoted to <strong>the</strong> <strong>in</strong>creased natural gas price <strong>in</strong> that year (Xu, 2012).<br />

27


8 WORLD STEEL PRODUCTION AND DIFFERENT REGIONS<br />

In order to analyse <strong>the</strong> different <strong>world</strong> regions, <strong>the</strong> characteristics <strong>of</strong> each region are<br />

determ<strong>in</strong>ed. First, <strong>the</strong> differences <strong>in</strong> <strong>steel</strong> production for each region are determ<strong>in</strong>ed for <strong>the</strong><br />

estimation <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> potential. Next, <strong>the</strong> economic differences will be elaborated on to<br />

<strong>in</strong>clude <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> cost-effective <strong>measures</strong>.<br />

8.1 Steel production<br />

While <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry around <strong>the</strong> <strong>world</strong> use similar production processes, <strong>the</strong> structure <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>dustry is different for every region. Table 5 summarises <strong>the</strong> different ma<strong>in</strong> <strong>steel</strong> production<br />

processes. First, <strong>the</strong> <strong>in</strong>tegrated or primary <strong>steel</strong> <strong>in</strong>dustry, which uses blast furnaces and basic<br />

oxygen furnaces, can be as low as 42% <strong>in</strong> <strong>the</strong> US <strong>in</strong> 2004 or as high as 90% <strong>in</strong> Ch<strong>in</strong>a. As<br />

<strong>in</strong>dicated <strong>in</strong> <strong>the</strong> chapter ‘Steel Production’ <strong>the</strong> production <strong>of</strong> primary <strong>steel</strong> requires a lot more<br />

<strong>energy</strong> compared to secondary <strong>steel</strong>. It can be expected <strong>the</strong> average <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> Ch<strong>in</strong>a<br />

<strong>steel</strong> <strong>in</strong>dustry is thus larger than <strong>the</strong> <strong>in</strong>tensity <strong>in</strong> <strong>the</strong> US. The <strong>energy</strong> <strong>in</strong>tensive production <strong>of</strong> <strong>steel</strong><br />

<strong>in</strong> Ch<strong>in</strong>a is expected to <strong>in</strong>crease <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential with <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

Table 5: Use <strong>of</strong> <strong>steel</strong> produc<strong>in</strong>g processes <strong>in</strong> <strong>the</strong> different regions <strong>of</strong> <strong>the</strong> <strong>world</strong>, 2006<br />

Region<br />

Integrated<br />

Production<br />

(BOF)<br />

Secondary<br />

Production<br />

(EAF)<br />

Integrated<br />

Production<br />

(OHF)<br />

Total<br />

%<br />

Ch<strong>in</strong>a 90% 10% 0% 100%<br />

Western European Union 57% 43% 0% 100%<br />

Former Soviet Union 59% 17% 24% 100%<br />

Japan 74% 26% 0% 100%<br />

United States 42% 58% 0% 100%<br />

Central and South America 60% 38% 0% 99%<br />

India 42% 56% 2% 100%<br />

O<strong>the</strong>r - - - -<br />

Note: Numbers have been rounded <strong>of</strong>f. Central and South America is <strong>the</strong> only region where numbers<br />

do not add up to 100%, for unknown reason.<br />

Source: World<strong>steel</strong>, 2011<br />

What is seen <strong>in</strong> Table 5 is <strong>the</strong> use <strong>of</strong> OHF <strong>in</strong> India, but especially <strong>in</strong> <strong>the</strong> Former Sovjet Union.<br />

The use <strong>of</strong> OHF <strong>steel</strong>mak<strong>in</strong>g is an out-dated technology for produc<strong>in</strong>g <strong>steel</strong> from pig iron (IEA,<br />

2007). The <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong>se regions is <strong>the</strong>refore expected to be higher compared to<br />

o<strong>the</strong>r regions. In order to determ<strong>in</strong>e <strong>the</strong> <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> every region, <strong>the</strong> total <strong>steel</strong><br />

production and <strong>energy</strong> use are required, described later <strong>in</strong> this chapter.<br />

29


The production <strong>of</strong> <strong>steel</strong> <strong>in</strong> <strong>world</strong> has seen some obvious trends <strong>in</strong> <strong>the</strong> past decade, as can be seen<br />

<strong>in</strong> Figure 5. The <strong>steel</strong> production <strong>in</strong> Ch<strong>in</strong>a has grown largely from about 150 million tons <strong>in</strong> 2001<br />

to over 600 million <strong>in</strong> 2010 (World<strong>steel</strong>, 2011). Also, <strong>steel</strong> production <strong>in</strong> India has grown (250%<br />

growth from 2001 to 2010), while regions like US and Europe rema<strong>in</strong> relatively constant. The<br />

effects <strong>of</strong> <strong>the</strong> f<strong>in</strong>ancial crisis can be seen <strong>in</strong> a drop <strong>in</strong> <strong>steel</strong> production <strong>in</strong> several regions <strong>in</strong> 2009.<br />

Except for Ch<strong>in</strong>a and India, every o<strong>the</strong>r region encountered a drop <strong>in</strong> production <strong>in</strong> 2009,<br />

compared to 2008 (World<strong>steel</strong>, 2011). S<strong>in</strong>ce for this research a s<strong>in</strong>gle reference year is chosen<br />

(2006), <strong>the</strong> effect <strong>of</strong> <strong>steel</strong> production trends will not be emphasized fur<strong>the</strong>r <strong>in</strong> this report.<br />

Figure 5 World <strong>steel</strong> production trends <strong>in</strong> <strong>the</strong> years 2001-2010. (World<strong>steel</strong>, 2011)<br />

The strong growth <strong>in</strong> production <strong>in</strong> Ch<strong>in</strong>a and India, should benefit <strong>energy</strong> efficient production.<br />

With <strong>the</strong> expansion <strong>of</strong> production capacity, one could assume <strong>the</strong> state <strong>of</strong> <strong>the</strong> art technology will<br />

be acquired. However, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> production <strong>in</strong> Ch<strong>in</strong>a and India have likely reduced <strong>the</strong><br />

global average <strong>energy</strong> <strong>efficiency</strong> per tonne <strong>of</strong> <strong>steel</strong> produced. As can be seen <strong>in</strong> Table 6, <strong>in</strong> Ch<strong>in</strong>a<br />

and especially India, <strong>steel</strong> is produced with a high average <strong>energy</strong> <strong>in</strong>tensity (World<strong>steel</strong>, 2011;<br />

IEA, 2007; Hasanbeigi, 2011).<br />

30


Table 6: Production, f<strong>in</strong>al <strong>energy</strong> use and calculated <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> major iron and <strong>steel</strong> produc<strong>in</strong>g<br />

countries, 2006<br />

Region<br />

Crude Steel<br />

Production<br />

(Metric Mt) 1<br />

F<strong>in</strong>al Energy<br />

use (EJ) 2<br />

Energy<br />

<strong>in</strong>tensity<br />

(GJ/ton CS)<br />

Ch<strong>in</strong>a 419.1 9.5³ 22.7<br />

Western European Union 173.2 2.8 16.2<br />

Former Soviet Union 119.9 3.3 27.4<br />

Japan 116.2 1.9 16.8<br />

United States 98.6 1.5³ 14.8<br />

Central and South America 45.3 1.2 27.0<br />

India 49.5 1.6 31.8<br />

O<strong>the</strong>r 225.3 3.1 13.8<br />

Total 1,247.1 24.9 20.0<br />

Notes: All <strong>in</strong> metric tons. ‘O<strong>the</strong>r’ is calculated from <strong>the</strong> difference <strong>of</strong> total and <strong>the</strong> sum <strong>of</strong> all regions.<br />

1 Source: Data for 2006 (World<strong>steel</strong>, 2011)<br />

2 Source: Data for 2004 (IEA, 2007). Includes coke mak<strong>in</strong>g and blast furnaces, adjusted to 2006 by<br />

production difference.<br />

3 Source: Data for 2006 (Hasanbeigi, 2011)<br />

Discrepancy between sources may exist s<strong>in</strong>ce <strong>the</strong> <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> ‘O<strong>the</strong>r’ is relatively low.<br />

Ano<strong>the</strong>r explanation could be that <strong>the</strong> smaller countries use <strong>the</strong> lower <strong>in</strong>vestment and lower<br />

<strong>energy</strong> requir<strong>in</strong>g EAF furnaces. For EAF furnaces average <strong>energy</strong> <strong>in</strong>tensities lower than 14<br />

GJ/metric ton are usual, which expla<strong>in</strong>s a lower <strong>energy</strong> <strong>in</strong>tensity for ‘O<strong>the</strong>r’. Ano<strong>the</strong>r<br />

discrepancy is, <strong>the</strong> result found for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry is <strong>in</strong> contrast with <strong>the</strong> result calculated<br />

by Xu et al. (2012) (see Table 3). This is due to different calculation methods.<br />

In different regions <strong>the</strong> characteristics can differ largely. For example <strong>the</strong> <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong><br />

<strong>steel</strong> production <strong>in</strong> India requires almost 32 GJ per tonne <strong>of</strong> produced <strong>steel</strong>, whereas <strong>the</strong> US<br />

only requires 15 GJ per tonne <strong>of</strong> <strong>steel</strong> (Table 6). The use <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong>se<br />

regions could <strong>the</strong>refore have a different effect on <strong>the</strong> <strong>energy</strong> use. For example, <strong>the</strong><br />

implementation <strong>of</strong> an <strong>energy</strong> monitor<strong>in</strong>g and management system is expected to reduce <strong>the</strong><br />

<strong>energy</strong> consumption by a certa<strong>in</strong> percentage. The measure will have an <strong>in</strong>creased effect <strong>in</strong> a<br />

more <strong>energy</strong> <strong>in</strong>tensive region. O<strong>the</strong>r <strong>measures</strong> which replace a certa<strong>in</strong> technology, like <strong>the</strong> use <strong>of</strong><br />

oxy fuel burners for EAF furnaces, are not dependent upon <strong>the</strong> <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> <strong>steel</strong><br />

production. For <strong>the</strong>se <strong>measures</strong> <strong>the</strong> effects <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> are not expected to<br />

change <strong>in</strong> different <strong>world</strong> regions.<br />

31


The difference <strong>in</strong> <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> different regions is substantial. Some examples are <strong>the</strong> use<br />

<strong>of</strong> out-dated technologies such as open hearth furnaces, still used <strong>in</strong> Russia and Ukra<strong>in</strong>e (IEA,<br />

2007). The reason for <strong>the</strong> low <strong>energy</strong> <strong>efficiency</strong> <strong>in</strong> Ch<strong>in</strong>a is ma<strong>in</strong>ly due to a high share <strong>of</strong> smallscale<br />

blast furnaces, a large supply <strong>of</strong> coal, a high share <strong>of</strong> <strong>in</strong>efficient cok<strong>in</strong>g plants and low<br />

quality ore (IEA, 2007).<br />

8.2 Economics<br />

The economics is <strong>the</strong> second important factor we should elaborate on for <strong>the</strong> assess<strong>in</strong>g <strong>the</strong><br />

<strong>energy</strong> <strong>efficiency</strong> potential <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. As mentioned <strong>in</strong> <strong>the</strong> methodology and<br />

data resources, mostly a PPP <strong>in</strong>dex and <strong>the</strong> average <strong>energy</strong> prices will be needed for an<br />

estimation <strong>of</strong> <strong>the</strong> cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. The difference <strong>in</strong> prices and <strong>the</strong>reby<br />

<strong>the</strong> <strong>in</strong>vestment and operational cost will be determ<strong>in</strong>ed with <strong>the</strong> PPP <strong>in</strong>dex. Many types <strong>of</strong> PPP<br />

<strong>in</strong>dexes exist, and <strong>in</strong> this report <strong>the</strong> OECD statistics PPP <strong>in</strong>dex will be used (OECD, 2012).<br />

It can be expected that <strong>the</strong> PPP <strong>in</strong>dex will not be an accurate determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> costs <strong>in</strong> <strong>the</strong><br />

different regions for several reasons. A PPP <strong>in</strong>dex is based on numerous products, which also<br />

encompass food and o<strong>the</strong>r products not related to <strong>steel</strong> <strong>in</strong>dustry. Moreover, certa<strong>in</strong> <strong>energy</strong><br />

<strong>efficiency</strong> technologies might not be available <strong>in</strong> every region, where import <strong>of</strong> technology from<br />

ano<strong>the</strong>r region will be required. If import <strong>of</strong> technologies is <strong>the</strong> case for many regions and<br />

technologies, <strong>the</strong> use <strong>of</strong> <strong>the</strong> PPP <strong>in</strong>dex will not be a reasonable estimate <strong>of</strong> <strong>the</strong> <strong>in</strong>vestment costs.<br />

Therefore, a decision was made on <strong>the</strong> use <strong>of</strong> PPP <strong>in</strong>dex to a certa<strong>in</strong> extent. In <strong>the</strong>se cases we<br />

used <strong>the</strong> PPP <strong>in</strong>dex for 30%. In addition, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> PPP-<strong>in</strong>dex was tested at 0% and<br />

60% for each region.<br />

The PPP <strong>in</strong>dex for <strong>the</strong> different regions is shown <strong>in</strong> Table 7, where <strong>the</strong> <strong>in</strong>dex for <strong>the</strong> US is <strong>the</strong><br />

reference set at 1. Regions with a lower PPP <strong>in</strong>dex, require lower <strong>in</strong>vestments for <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong>, and are <strong>the</strong>refore expected to have a larger amount <strong>of</strong> cost-effective<br />

<strong>measures</strong>.<br />

Table 7 PPP <strong>in</strong>dex for different <strong>world</strong> regions, compared to <strong>the</strong> US<br />

Region PPP <strong>in</strong>dex<br />

Ch<strong>in</strong>a 0.435<br />

Western European Union 1.042<br />

Former Soviet Union 0.465<br />

Japan 1.07<br />

United States 1<br />

Central and South America 1 0.672<br />

India 2 0.435<br />

1 Central and South America is <strong>the</strong> average <strong>of</strong> Chile and Mexico.<br />

2 India PPP <strong>in</strong>dex was not retrieved, Ch<strong>in</strong>a PPP <strong>in</strong>dex is used here.<br />

Source: (OECD, 2012)<br />

32


Energy price is ano<strong>the</strong>r important factor for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> cost-effective <strong>measures</strong>.<br />

Higher <strong>energy</strong> prices <strong>in</strong> certa<strong>in</strong> regions are expected to yield a larger amount <strong>of</strong> cost-effective<br />

<strong>energy</strong> sav<strong>in</strong>gs from <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. The average weighted <strong>energy</strong> price for <strong>the</strong> US<br />

was calculated at $6.76/GJ (Table 8) for <strong>the</strong> iron and <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006.<br />

Table 8 Average weighted <strong>energy</strong> price determ<strong>in</strong>ed by share and price <strong>of</strong> <strong>energy</strong> types for <strong>the</strong> US Steel<br />

<strong>in</strong>dustry <strong>in</strong> 2006<br />

Energy type Share (%)<br />

F<strong>in</strong>al Energy<br />

Price ($/GJ) 1<br />

Electricity 14% $ 12,55<br />

Residual fuel oil 2% $ 5,66<br />

Distillate fuel oil 0% $ 13,34<br />

Gas 29% $ 8,08<br />

Coal+o<strong>the</strong>r 37% $ 3,36<br />

Coke 18% $ 7,19<br />

Average weighted <strong>energy</strong> price 100% $ 6,76<br />

1 Source: EIA, 2009<br />

The average weighted fuel price is based on <strong>the</strong> found share <strong>of</strong> each <strong>energy</strong> type <strong>in</strong> <strong>the</strong> US <strong>steel</strong><br />

<strong>in</strong>dustry, based on basel<strong>in</strong>e calculation. The <strong>energy</strong> prices have been acquired from <strong>the</strong><br />

Manufactur<strong>in</strong>g Energy Consumption Survey (MECS) for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. Energy prices for<br />

o<strong>the</strong>r <strong>world</strong> regions will differ because <strong>of</strong> <strong>the</strong>ir <strong>in</strong>dustry structure and <strong>the</strong> local prices <strong>of</strong> different<br />

fuel types.<br />

One specific example <strong>of</strong> different policies concern<strong>in</strong>g <strong>the</strong> price <strong>of</strong> <strong>energy</strong> is India. India uses<br />

APM (Adm<strong>in</strong>istered Price Mechanism) prices. These prices are determ<strong>in</strong>ed by <strong>the</strong> government,<br />

for public sector companies (Public Enterprise Survey, 2011). India’s <strong>steel</strong> <strong>in</strong>dustry also <strong>in</strong>cludes<br />

a number <strong>of</strong> state owned <strong>steel</strong> production facilities like SAIL (Steel Authority <strong>of</strong> India Limited).<br />

O<strong>the</strong>r <strong>steel</strong> companies, like Tata Steel, are private owned, and have to pay market prices for<br />

<strong>energy</strong>.<br />

33


9 RESULTS<br />

Next, <strong>the</strong> results <strong>of</strong> this <strong>the</strong>sis research will be presented. First, <strong>the</strong> results for <strong>the</strong> US <strong>steel</strong><br />

<strong>in</strong>dustry will be presented, generally based on <strong>the</strong> research performed at LBNL. Next, <strong>the</strong><br />

expansion <strong>of</strong> <strong>the</strong> results to o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>world</strong> are <strong>in</strong>cluded.<br />

9.1 <strong>Potential</strong> <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006<br />

The report <strong>of</strong> Xu et al. (2012) focused on <strong>energy</strong> <strong>efficiency</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> years<br />

1994, 2002, 2006 and 2010, largely because <strong>the</strong> data for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry was available for<br />

<strong>the</strong>se years were more complete than o<strong>the</strong>r years. The identified <strong>measures</strong> for that research are<br />

all described <strong>in</strong> 0 to Appendix I.<br />

This report will focus on <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006, s<strong>in</strong>ce most recent data is available <strong>in</strong><br />

all different regions for this year. All <strong>the</strong> cost data (US dollars) are obta<strong>in</strong>ed and presented as <strong>the</strong><br />

nom<strong>in</strong>al currency values for <strong>the</strong> respective year (i.e. 2006). In Appendix J an example <strong>of</strong> <strong>the</strong><br />

calculations made for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is given. Next <strong>in</strong> Appendix K <strong>the</strong> most<br />

important results <strong>of</strong> calculations for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry for<br />

2006 have been given.<br />

Data on <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> and <strong>the</strong> US iron and <strong>steel</strong> <strong>in</strong>dustry were used to identify <strong>the</strong><br />

potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. Accord<strong>in</strong>gly, for every measure<br />

<strong>the</strong> Cost <strong>of</strong> conserved <strong>energy</strong> (CCE) is calculated. Next to <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> each measure,<br />

<strong>the</strong> CCE value is <strong>the</strong> most important <strong>in</strong>formation. In order to illustrate <strong>the</strong> potential <strong>of</strong> all <strong>the</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> identified for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry, cost curves have been developed.<br />

For each <strong>energy</strong> <strong>efficiency</strong> measure <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry have been<br />

calculated. The <strong>measures</strong> are subsequently ranked on CCE value from low to high. The CCE <strong>of</strong><br />

each measure is <strong>the</strong>n plotted to <strong>the</strong> cumulative <strong>energy</strong> sav<strong>in</strong>gs. Based on <strong>the</strong> data f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> this<br />

research <strong>in</strong> Berkeley, Figure 6 shows <strong>the</strong> cost curves <strong>of</strong> 72 <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> US<br />

iron and <strong>steel</strong> for 2006 (Xu, 2012). As already mentioned <strong>in</strong> <strong>the</strong> methodology, each horizontal<br />

curve l<strong>in</strong>e is cumulative <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> each measure, while <strong>the</strong> height (Y-axis) <strong>of</strong> each<br />

vertical l<strong>in</strong>e section represents <strong>the</strong> cost per unit <strong>of</strong> <strong>energy</strong> saved correspond<strong>in</strong>g to <strong>the</strong> same<br />

<strong>efficiency</strong> measure.<br />

35


Figure 6 cost curve for specific f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry<br />

<strong>in</strong> 2006<br />

From <strong>the</strong> cost curves a number <strong>of</strong> conclusions can be drawn. First, from <strong>the</strong> shape <strong>of</strong> <strong>the</strong> cost<br />

curve, an overall impression on <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> can be atta<strong>in</strong>ed. As already<br />

mentioned, <strong>the</strong> <strong>measures</strong> for which <strong>the</strong> calculated cost <strong>of</strong> conserved <strong>energy</strong> (CCE) is lower than<br />

<strong>the</strong> average weighted <strong>energy</strong> price are cost effective. The most cost-effective <strong>measures</strong> (lowest<br />

CCE values) are displayed on <strong>the</strong> left, <strong>the</strong>se can even have a negative CCE.<br />

A negative CCE is possible if <strong>the</strong> o<strong>the</strong>r non-<strong>energy</strong> benefits <strong>of</strong> a certa<strong>in</strong> measure are larger than<br />

<strong>the</strong> annualized <strong>in</strong>vestment costs <strong>of</strong> <strong>the</strong> measure. In o<strong>the</strong>r words, without <strong>the</strong> <strong>energy</strong> cost sav<strong>in</strong>gs<br />

taken <strong>in</strong>to account, <strong>the</strong> measure is cost effective. Though, <strong>the</strong> potential amount <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs<br />

from <strong>measures</strong> which have a negative CCE is m<strong>in</strong>or. As can be seen <strong>in</strong> Figure 6, <strong>the</strong> cost curve<br />

<strong>in</strong>tersects with <strong>the</strong> X-axis at about 0.2-0.3 GJ/tonne.<br />

Accord<strong>in</strong>g to IPCC (2001), no-regrets opportunities for GHG emissions reduction are <strong>the</strong><br />

options whose benefits such as reduced <strong>energy</strong> costs and reduced emissions <strong>of</strong> local or regional<br />

pollutants equal or exceed <strong>the</strong>ir costs to society, exclud<strong>in</strong>g <strong>the</strong> benefits <strong>of</strong> avoided climate<br />

change. In this report, a no-regrets option is def<strong>in</strong>ed as a GHG reduction option (i.e., via <strong>energy</strong><br />

<strong>efficiency</strong> measure) that is cost effective over <strong>the</strong> lifetime <strong>of</strong> <strong>the</strong> technology compared with a<br />

given <strong>energy</strong> price, without consider<strong>in</strong>g benefits <strong>of</strong> avoided climate change. Although existence<br />

<strong>of</strong> no-regret options is not acknowledged by some economists, a number <strong>of</strong> cost-effective<br />

<strong>measures</strong> were identified <strong>in</strong> <strong>the</strong> US iron and <strong>steel</strong> sector. There are many factors, <strong>in</strong>clud<strong>in</strong>g<br />

market barriers and knowledge gap, which contribute to slower adoption <strong>of</strong> such <strong>measures</strong> <strong>in</strong><br />

<strong>the</strong> markets (Xu, 2010).<br />

36


The curve section right <strong>of</strong> <strong>the</strong> <strong>in</strong>tersection with <strong>the</strong> X-axis is <strong>in</strong>terest<strong>in</strong>g, here is <strong>the</strong> rest <strong>of</strong> <strong>the</strong><br />

cost-effective <strong>measures</strong>. As mentioned <strong>in</strong> <strong>the</strong> methodology, <strong>the</strong> cost-effective <strong>measures</strong> require a<br />

CCE lower than <strong>the</strong> average weighted <strong>energy</strong> price (6.76 $/GJ for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006,<br />

Table 8). In Figure 6 an <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> cost curve with <strong>the</strong> average weighted <strong>energy</strong> price can<br />

be seen at around 3 GJ/tonne (X-axis). So <strong>the</strong> ranked <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> up to a<br />

cumulative <strong>energy</strong> sav<strong>in</strong>g <strong>of</strong> 3 GJ/tonne <strong>in</strong> total, can be considered cost effective.<br />

On <strong>the</strong> far right <strong>of</strong> <strong>the</strong> cost curve, <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> can be seen which are not cost<br />

effective. These <strong>measures</strong> have a CCE value, greater than <strong>the</strong> average weighted fuel price.<br />

Install<strong>in</strong>g <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>g <strong>measures</strong> will <strong>in</strong>duce more costs compared to <strong>the</strong> exist<strong>in</strong>g use <strong>of</strong><br />

<strong>energy</strong>. Therefore it is not expected that <strong>the</strong>se <strong>measures</strong> will be implemented. Though, <strong>the</strong> cost<br />

curve ends at about 3.9 GJ/tonne, with a CCE for <strong>the</strong> lowest ranked <strong>efficiency</strong> measure at 93<br />

$/GJ, which <strong>in</strong>dicates <strong>the</strong> total potential <strong>of</strong> <strong>the</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

Cost curves can have large negative and positive values, due to <strong>the</strong> substitution <strong>of</strong> <strong>energy</strong><br />

sources. For example, <strong>the</strong> use <strong>of</strong> FUCHS Shaft preheater furnace for EAF <strong>steel</strong>mak<strong>in</strong>g furnaces<br />

will substitute <strong>the</strong> use <strong>of</strong> electricity with natural gas. The total <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> this measure is<br />

only a m<strong>in</strong>or amount (0.01 GJ/tonne), though <strong>the</strong> o<strong>the</strong>r benefits <strong>of</strong> this technology are<br />

significant, over 1 $/tonne. The value <strong>of</strong> <strong>the</strong> CCE is <strong>the</strong>reby very low, -88 $/GJ. From a CCE<br />

perspective, this is an very <strong>in</strong>terest<strong>in</strong>g measure, but <strong>the</strong> actual <strong>energy</strong> sav<strong>in</strong>gs are marg<strong>in</strong>al.<br />

Cost curves provide an overview <strong>of</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>, <strong>the</strong>ir total and costeffective<br />

potential. Though <strong>the</strong> <strong>in</strong>tersections <strong>in</strong> <strong>the</strong> graph are ra<strong>the</strong>r hard, <strong>the</strong> result is not<br />

expected to be true for every production facility. As mentioned <strong>in</strong> <strong>the</strong> system def<strong>in</strong>ition, <strong>the</strong><br />

production facilities will not be taken <strong>in</strong>to account <strong>in</strong> this report. A measure can be cost effective<br />

for one facility, and not cost effective for <strong>the</strong> o<strong>the</strong>r. The <strong>in</strong>tersections are <strong>the</strong>refore <strong>in</strong>dications <strong>of</strong><br />

cost-effective <strong>measures</strong>, which provide a reasonable estimation <strong>of</strong> <strong>the</strong> potential <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry. A measure considered not cost effective <strong>in</strong> this report,<br />

should <strong>the</strong>refore not be abolished for implementation <strong>in</strong> any <strong>steel</strong> production facility. S<strong>in</strong>ce <strong>the</strong><br />

total US <strong>steel</strong> <strong>in</strong>dustry is assessed, <strong>the</strong> conditions <strong>in</strong> some <strong>steel</strong> produc<strong>in</strong>g facilities might benefit<br />

certa<strong>in</strong> <strong>efficiency</strong> <strong>measures</strong>. In reality, <strong>the</strong>se <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> may be cost efficient <strong>in</strong><br />

particular circumstances. The opposite <strong>of</strong> cost-effective <strong>efficiency</strong> may also be <strong>the</strong> case.<br />

To get more <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> middle section, where most cost-effective measure can be found,<br />

ano<strong>the</strong>r cost curve is shown <strong>in</strong> Figure 7. This is <strong>the</strong> same cost curve as <strong>in</strong> Figure 6, though <strong>the</strong><br />

scale on <strong>the</strong> Y-axis has changed. Separately identify<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is easier <strong>in</strong><br />

this figure. Clearly, some <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> have a larger effect <strong>in</strong> f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs<br />

than o<strong>the</strong>rs.<br />

37


Figure 7 Cost curves <strong>of</strong> f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry for 2006 <strong>in</strong>clud<strong>in</strong>g o<strong>the</strong>r non-<strong>energy</strong><br />

benefits and <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>flation (narrowed scale on Y-axis)<br />

9.1.1 Energy sav<strong>in</strong>gs<br />

The result <strong>of</strong> <strong>the</strong> CCE and cost curves calculation have been summarised <strong>in</strong> Table 9. The<br />

potential <strong>of</strong> all <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> comb<strong>in</strong>ed is provided <strong>in</strong> that table. Included are<br />

<strong>the</strong> total production and <strong>energy</strong> use <strong>of</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. The total production is used to<br />

determ<strong>in</strong>e <strong>the</strong> total sav<strong>in</strong>gs potential <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> both <strong>the</strong> <strong>in</strong>tegrated<br />

and secondary <strong>steel</strong>mak<strong>in</strong>g. The current total <strong>energy</strong> consumption is <strong>in</strong>cluded to calculate <strong>the</strong><br />

<strong>energy</strong> sav<strong>in</strong>gs percentages. These are <strong>the</strong> ma<strong>in</strong> conclusion from <strong>the</strong> research on <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry (Xu et al. 2012).<br />

38


Table 9. Technical potential for <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> US iron and <strong>steel</strong> mak<strong>in</strong>g <strong>in</strong> 2006.<br />

Energy<br />

sav<strong>in</strong>gs<br />

(GJ/tonne)<br />

Total<br />

production<br />

(MTonnes)<br />

Total<br />

Energy<br />

sav<strong>in</strong>gs<br />

(PJ)<br />

Current<br />

<strong>energy</strong><br />

consumption<br />

(PJ)<br />

Energy<br />

sav<strong>in</strong>gs<br />

potential<br />

(%)<br />

Integrated <strong>steel</strong>mak<strong>in</strong>g 5.4 42.5 231 852 27%<br />

Secondary <strong>steel</strong>mak<strong>in</strong>g 2.7 56.1 154 311 49%<br />

Total annual f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs<br />

Note: Numbers <strong>in</strong> <strong>the</strong> table are rounded <strong>of</strong>f<br />

3.9 98.6 385 1162 33%<br />

Table 9 provides specific numbers on <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> improvement potential for <strong>energy</strong> us<br />

<strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry. It must be noted that <strong>the</strong> numbers are dependent upon calculations with a<br />

number <strong>of</strong> assumptions as mentioned <strong>in</strong> <strong>the</strong> system def<strong>in</strong>ition and methodology. These numbers<br />

provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> measure, if all<br />

<strong>measures</strong> can be implemented as expected to our f<strong>in</strong>d<strong>in</strong>gs.<br />

The reductions <strong>of</strong> <strong>energy</strong> are severe, as can be observed from Table 9. The total reduction <strong>of</strong><br />

<strong>energy</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry for 2006 was 33%, with a total <strong>energy</strong> sav<strong>in</strong>g <strong>of</strong> 385 PJ. What is<br />

<strong>in</strong>terest<strong>in</strong>g is <strong>the</strong> secondary <strong>steel</strong>mak<strong>in</strong>g sav<strong>in</strong>gs potential which is large <strong>in</strong> terms <strong>of</strong> % but<br />

smaller <strong>in</strong> terms <strong>of</strong> actual <strong>energy</strong> sav<strong>in</strong>gs. The secondary <strong>steel</strong> mak<strong>in</strong>g, which is younger<br />

compared to <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong>mak<strong>in</strong>g, has shown an <strong>in</strong>creased attention <strong>in</strong> <strong>the</strong> past few<br />

decades, concern<strong>in</strong>g <strong>energy</strong> reduction and productivity <strong>in</strong>crease. At <strong>the</strong> same time <strong>the</strong><br />

optimization <strong>of</strong> <strong>in</strong>tegrated <strong>steel</strong> production has shown a decrease <strong>in</strong> <strong>efficiency</strong> improvements.<br />

A note for Table 9 is that <strong>the</strong> total f<strong>in</strong>al <strong>energy</strong> consumption <strong>of</strong> 1,162 PJ <strong>in</strong> 2006, differs from <strong>the</strong><br />

1.5 EJ found <strong>in</strong> Table 6. The discrepancy can be partly devoted to <strong>the</strong> method <strong>of</strong> assess<strong>in</strong>g <strong>the</strong><br />

<strong>energy</strong> use. The calculation <strong>of</strong> Xu et al. (2012) is based on <strong>the</strong> <strong>energy</strong> use per process.<br />

Discrepancies <strong>in</strong> <strong>energy</strong> consumption exist <strong>in</strong> more cases, <strong>the</strong> MECS result for f<strong>in</strong>al <strong>energy</strong> use<br />

<strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006 was 1,318 PJ, while <strong>the</strong> result for <strong>the</strong> AISI was 1,098 PJ (MECS,<br />

2010, AISI, 2010). These discrepancies are severe, but <strong>the</strong> reason for <strong>the</strong>se difference is not<br />

easily traced. Sometimes <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry is def<strong>in</strong>ed differently. The discrepancies <strong>in</strong> <strong>energy</strong><br />

use will <strong>the</strong> Energy sav<strong>in</strong>gs potential (%).<br />

If only <strong>the</strong> cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> are taken <strong>in</strong>to account, results will be<br />

different. As already seen <strong>in</strong> Table 10, <strong>the</strong> cost-effective <strong>measures</strong> represent roughly 75% <strong>of</strong> <strong>the</strong><br />

total potential <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. Measures with a CCE value lower than <strong>the</strong><br />

average weighted <strong>energy</strong> price <strong>of</strong> 6.76 $/GJ are considered cost effective. The potential <strong>of</strong> <strong>the</strong><br />

cost-effective <strong>measures</strong> is summarised <strong>in</strong> Table 10.<br />

39


Table 10. Cost-effective potential for <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> US iron and <strong>steel</strong> mak<strong>in</strong>g <strong>in</strong> 2006.<br />

40<br />

Energy<br />

sav<strong>in</strong>gs<br />

(GJ/tonne)<br />

Total<br />

production<br />

(MTonnes)<br />

Total<br />

Energy<br />

sav<strong>in</strong>gs<br />

(PJ)<br />

Current<br />

<strong>energy</strong><br />

consumption<br />

(PJ)<br />

Energy<br />

sav<strong>in</strong>gs<br />

potential<br />

(%)<br />

Integrated <strong>steel</strong>mak<strong>in</strong>g 3.7 42.5 158 852 19%<br />

Secondary <strong>steel</strong>mak<strong>in</strong>g 2.5 56.1 142 311 46%<br />

Total cost-effective f<strong>in</strong>al<br />

<strong>energy</strong> sav<strong>in</strong>gs<br />

Note: Numbers <strong>in</strong> <strong>the</strong> table are rounded <strong>of</strong>f<br />

9.1.2 Carbon mitigation<br />

3.0 98.6 300 1162 26%<br />

With <strong>the</strong> reduction <strong>in</strong> <strong>energy</strong> consumption calculated for every measure, <strong>the</strong> reduction <strong>in</strong> carbon<br />

emissions can be estimated. The carbon emissions have been calculated related to every process.<br />

For example, an <strong>energy</strong> <strong>efficiency</strong> measure which reduces <strong>the</strong> <strong>energy</strong> consumption <strong>of</strong> <strong>the</strong> hot<br />

roll<strong>in</strong>g for secondary <strong>steel</strong>, will reduce <strong>the</strong> carbon emission by a certa<strong>in</strong> amount, related to <strong>the</strong><br />

characteristics <strong>of</strong> <strong>the</strong> process (as already mentioned <strong>in</strong> <strong>the</strong> methodology). The hot roll<strong>in</strong>g<br />

process requires natural gas, and <strong>the</strong>refore every GJ saved will result <strong>in</strong> carbon sav<strong>in</strong>gs, related<br />

to <strong>the</strong> GJ <strong>of</strong> natural gas reduced. This way, for every <strong>energy</strong> <strong>efficiency</strong> measure <strong>the</strong> reduction <strong>of</strong><br />

carbon emissions could be calculated for both <strong>the</strong> total potential as well as <strong>the</strong> cost-effective<br />

<strong>measures</strong>. Table 11 provides <strong>the</strong> results <strong>of</strong> <strong>the</strong> calculation <strong>of</strong> carbon sav<strong>in</strong>gs from <strong>the</strong><br />

implementation <strong>of</strong> all identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006.<br />

Table 11 Technical potential for carbon reductions <strong>in</strong> <strong>the</strong> US iron and <strong>steel</strong> mak<strong>in</strong>g <strong>in</strong> 2006.<br />

Total carbon<br />

reduction<br />

Total carbon<br />

emissions<br />

Carbon<br />

reduction<br />

potential (%)<br />

Integrated <strong>steel</strong>mak<strong>in</strong>g (MtC/year) 4.0 18.9 21%<br />

Secondary <strong>steel</strong>mak<strong>in</strong>g (MtC/year) 3.8 9.5 40%<br />

Total technical potential for carbon<br />

reductions (MtC/year)<br />

Note: Numbers <strong>in</strong> <strong>the</strong> table are rounded <strong>of</strong>f<br />

7.7 28.4 27%<br />

The carbon reduction potential (%) comes near <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential, but <strong>the</strong>y are not <strong>the</strong><br />

same. A 30% reduction <strong>in</strong> <strong>energy</strong> use does not necessarily mean a 30% reduction <strong>in</strong> carbon<br />

emissions. Apparently, a large number <strong>of</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> are <strong>of</strong> <strong>the</strong> k<strong>in</strong>d<br />

with lower carbon emissions reductions. For example, natural gas has lower carbon emissions<br />

per unit <strong>of</strong> <strong>energy</strong> (0.014 MtC/PJ) compared to electricity (0.044 MtC/PJ), so <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong><br />

natural gas reduce carbon to a lower extent (EIA, 1995). As observed <strong>in</strong> Table 11, all <strong>the</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> comb<strong>in</strong>ed have a total potential <strong>of</strong> 7.7 MtC reduction for <strong>the</strong> total US <strong>steel</strong><br />

<strong>in</strong>dustry <strong>in</strong> 2006.


S<strong>in</strong>ce <strong>the</strong> cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry for 2006 have also<br />

been identified, <strong>the</strong> carbon reductions <strong>of</strong> <strong>the</strong>se <strong>measures</strong> can be calculated. The carbon<br />

reduction potential <strong>of</strong> all cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is shown <strong>in</strong> Table 12.<br />

Table 12 Cost-effective potential for carbon reductions <strong>in</strong> <strong>the</strong> US iron and <strong>steel</strong> mak<strong>in</strong>g <strong>in</strong> 2006.<br />

Cost-effective<br />

carbon<br />

reduction<br />

Total carbon<br />

emissions<br />

Carbon<br />

reduction<br />

potential (%)<br />

Integrated <strong>steel</strong>mak<strong>in</strong>g (MtC/year) 2.9 18.9 15%<br />

Secondary <strong>steel</strong>mak<strong>in</strong>g (MtC/year) 3.3 9.5 35%<br />

Total cost-effective carbon<br />

reductions (MtC/year)<br />

Note: Numbers <strong>in</strong> <strong>the</strong> table are rounded.<br />

6.2 28.4 22%<br />

Aga<strong>in</strong> <strong>the</strong> cost-effective carbon reductions percentage is similar to <strong>the</strong> percentage for <strong>the</strong> costeffective<br />

<strong>energy</strong> sav<strong>in</strong>gs. The total cost-effective carbon sav<strong>in</strong>gs for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006<br />

is about 6.2 MtC, which is 22% <strong>of</strong> <strong>the</strong> total carbon emissions <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry.<br />

Summarised, implement<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry showed major<br />

reduction potentials for both <strong>the</strong> <strong>energy</strong> use an carbon emissions. Even if only cost effective<br />

<strong>measures</strong> are taken <strong>in</strong>to account, <strong>the</strong> <strong>energy</strong> and carbon reductions add up to 26% and 22%,<br />

respectively.<br />

9.2 Fur<strong>the</strong>r results on cost curves for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry<br />

The research by Xu et al. (2012) had made some additional conclusions on <strong>the</strong> use <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. In this paragraph <strong>the</strong> additional conclusions will be<br />

elaborated on. The additional conclusions provide an <strong>in</strong>sight <strong>in</strong> <strong>the</strong> sensitivity and importance <strong>of</strong><br />

key factors which led to a better understand<strong>in</strong>g <strong>of</strong> analys<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong><br />

<strong>steel</strong> <strong>in</strong>dustry. Also some suggestions for an advanced calculation <strong>of</strong> <strong>the</strong> CCE were provided, <strong>in</strong><br />

<strong>the</strong> MCCE method. The results and <strong>the</strong>ir <strong>in</strong>fluence on <strong>the</strong> results is shown <strong>in</strong> <strong>the</strong> next paragraph.<br />

In Xu, et al. (2012), additional results for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry were <strong>in</strong>cluded for 1994, 2002<br />

and 2010. It was found that <strong>the</strong> technical potential sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong>mak<strong>in</strong>g<br />

decrease <strong>in</strong> time, which is expected as <strong>the</strong> share <strong>of</strong> <strong>in</strong>tegrated <strong>steel</strong>mak<strong>in</strong>g is shr<strong>in</strong>k<strong>in</strong>g. On <strong>the</strong><br />

o<strong>the</strong>r hand, <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> secondary <strong>steel</strong>mak<strong>in</strong>g are <strong>in</strong>creas<strong>in</strong>g. In 2006 and 2010 a<br />

large <strong>in</strong>crease was observed for <strong>the</strong> secondary <strong>steel</strong> <strong>in</strong>dustry, due to additional <strong>measures</strong> found<br />

mostly for this type <strong>of</strong> <strong>steel</strong>mak<strong>in</strong>g. The total f<strong>in</strong>al <strong>energy</strong> consumption <strong>of</strong> <strong>steel</strong>mak<strong>in</strong>g was about<br />

1564 PJ for 1994, 1224 PJ for 2002, 1162 PJ for 2006 and 997 PJ for 2010 (Xu, 2012). The total<br />

potential <strong>energy</strong> sav<strong>in</strong>gs fluctuate due to production differences <strong>in</strong> each year, <strong>the</strong> percentage <strong>of</strong><br />

f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs potential was <strong>in</strong>creased. The technical potential <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs was<br />

approximately 20% <strong>in</strong> 1994, 24% <strong>in</strong> 2002 and <strong>in</strong>creased to 33% <strong>in</strong> 2006 and 2010. The first<br />

conclusions from <strong>the</strong>se results were <strong>in</strong> fact that both <strong>the</strong> production difference, <strong>in</strong>dustry change<br />

41


and amount <strong>of</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> had a major <strong>in</strong>fluence on <strong>the</strong> results.<br />

Therefore <strong>the</strong>se are <strong>the</strong> ma<strong>in</strong> factors used for <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong><br />

<strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions.<br />

9.2.1 Industry structure change<br />

In order to check <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>in</strong>dustry change, a data set <strong>of</strong> <strong>the</strong> year 2002 was used while<br />

different <strong>in</strong>dustry structures were <strong>in</strong>troduced. The same set <strong>of</strong> <strong>measures</strong> was used to identify<br />

what <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> <strong>in</strong>dustry structure was on <strong>the</strong> identified potential for <strong>energy</strong> <strong>efficiency</strong><br />

measure. The <strong>in</strong>dustry change from 39% secondary <strong>steel</strong> production and 61% <strong>in</strong>tegrated <strong>steel</strong><br />

production, to 61% secondary <strong>steel</strong> production and 39% <strong>in</strong>tegrated <strong>steel</strong> production (as was <strong>the</strong><br />

case from 1994 to 2010) could change <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong><br />

from about 3.7 GJ/tonne <strong>of</strong> <strong>steel</strong> to 3.0 GJ/tonne <strong>steel</strong> if <strong>the</strong> same data set (set <strong>of</strong> <strong>measures</strong>) was<br />

used, which is a decrease <strong>of</strong> 19% (Xu, 2012). It was concluded, that with decreas<strong>in</strong>g share <strong>of</strong><br />

<strong>in</strong>tegrated <strong>steel</strong> compared to secondary <strong>steel</strong> over <strong>the</strong> years, and lower level <strong>of</strong> <strong>energy</strong> <strong>in</strong>tensity<br />

<strong>in</strong> secondary <strong>steel</strong> production, <strong>the</strong> total potential <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is (with <strong>the</strong> same<br />

set <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>) exhibited a decreas<strong>in</strong>g trend (Xu, 2012).<br />

It should be noted, that <strong>the</strong> use <strong>of</strong> secondary <strong>steel</strong> production (with EAF) is still preferred <strong>in</strong><br />

terms <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong>. But, <strong>the</strong> potential <strong>of</strong> <strong>the</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> this<br />

report, is lower <strong>in</strong> secondary <strong>steel</strong>mak<strong>in</strong>g because <strong>of</strong> its lower <strong>energy</strong> <strong>in</strong>tensity compared to<br />

<strong>in</strong>tegrated <strong>steel</strong>mak<strong>in</strong>g.<br />

Next, <strong>the</strong> difference <strong>in</strong> basel<strong>in</strong>e data was <strong>in</strong>vestigated. The basel<strong>in</strong>e data is for example <strong>the</strong><br />

amount <strong>of</strong> s<strong>in</strong>ter and coke production per ton <strong>of</strong> <strong>steel</strong>, or <strong>the</strong> need for hot roll<strong>in</strong>g <strong>of</strong> <strong>steel</strong>.<br />

Differences <strong>in</strong> basel<strong>in</strong>e data is likely due to a comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> vary<strong>in</strong>g factors, such as annual<br />

production that varied over <strong>the</strong> years, availability and utilization <strong>of</strong> technologies <strong>in</strong> operation,<br />

<strong>energy</strong> usage <strong>in</strong> productions, and/or material <strong>efficiency</strong> (lower material <strong>efficiency</strong> for hot roll<strong>in</strong>g,<br />

means an <strong>in</strong>creased crude <strong>steel</strong> production per tonne <strong>of</strong> end product; Xu, 2012). The basel<strong>in</strong>e<br />

data, where <strong>the</strong> use <strong>of</strong> for example coke or s<strong>in</strong>ter were changed showed different results. In <strong>the</strong><br />

calculation where <strong>the</strong> basel<strong>in</strong>e changes were highest (comparison between 1994 and 2006), <strong>the</strong><br />

difference <strong>in</strong> results was only about 0.2 GJ/tonne, about a 6% difference (Xu, 2012). It was<br />

concluded that <strong>the</strong> change <strong>in</strong> basel<strong>in</strong>e data was m<strong>in</strong>or, because <strong>the</strong> amount <strong>of</strong> s<strong>in</strong>ter needed for<br />

<strong>steel</strong> production can never change drastically. In o<strong>the</strong>r words, you can make about <strong>the</strong> same<br />

amount <strong>of</strong> iron from one tonne <strong>of</strong> s<strong>in</strong>ter. S<strong>in</strong>ce <strong>the</strong> amount <strong>of</strong> factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> basel<strong>in</strong>e<br />

data are large and <strong>the</strong> effects <strong>of</strong> changes <strong>in</strong> basel<strong>in</strong>e data do not have large <strong>in</strong>fluence on potential<br />

<strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>, <strong>the</strong>y will be excluded <strong>in</strong> <strong>the</strong> fur<strong>the</strong>r assessment <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

9.2.2 Cost curve for carbon mitigation<br />

Next to us<strong>in</strong>g cost curves for <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> reduction <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry, cost<br />

curves for carbon mitigation had been <strong>in</strong>troduced as well. The cost curve shows <strong>the</strong> carbon<br />

mitigation aga<strong>in</strong>st <strong>the</strong> Cost <strong>of</strong> Carbon Reduced (CCR) <strong>in</strong> a cost curve. In Figure 8 an example <strong>of</strong><br />

such a cost curve is shown, here <strong>the</strong> 2006 cost curve is shown for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. From<br />

this cost curve it is obvious that <strong>in</strong> many cases <strong>the</strong> reduction <strong>of</strong> carbon emissions is quite<br />

42


expensive per tonne <strong>of</strong> carbon. The scale on <strong>the</strong> Y-axis <strong>in</strong> Figure 8 is adjusted, but for some<br />

measure up to CCR can go up to $10,000 per tonne <strong>of</strong> carbon. This is for one extreme case for<br />

coal moisture control for coke mak<strong>in</strong>g. For that case only m<strong>in</strong>or carbon reductions (0.1<br />

kgC/tonne <strong>of</strong> <strong>steel</strong>) can be realised while <strong>the</strong> <strong>in</strong>vestment costs are high ($6.8/tonne <strong>of</strong> <strong>steel</strong>).<br />

On <strong>the</strong> o<strong>the</strong>r hand, no general price <strong>of</strong> carbon mitigation is known. So, <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong><br />

cost-effective <strong>measures</strong> based on a CCR cost curve is <strong>the</strong>refore impossible. The o<strong>the</strong>r way<br />

around, when <strong>the</strong> cost-effective carbon mitigation is known, based on <strong>the</strong> assessment <strong>of</strong> costeffective<br />

f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs, a price for carbon mitigation can be determ<strong>in</strong>ed. We found <strong>the</strong><br />

cost-effective carbon reductions for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006 was about 6.2 MtC. Associated<br />

with cost-effective carbon mitigation is a CCR <strong>of</strong> about 200 $/tonne <strong>of</strong> carbon reduced (Figure<br />

8). This was found to be an <strong>in</strong>dication for a carbon price tag, concern<strong>in</strong>g <strong>the</strong> implementation <strong>of</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> (Xu, 2012). Apparently, <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong><br />

<strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry is cost effective up to a cost <strong>of</strong> carbon reduction <strong>of</strong> 200 $/tonne <strong>of</strong><br />

carbon reduced.<br />

Figure 8 Cost curve <strong>of</strong> cost <strong>of</strong> carbon reduced for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006. (Xu, 2012)<br />

For fur<strong>the</strong>r research <strong>in</strong>to <strong>the</strong> rest <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry, <strong>the</strong> use <strong>of</strong> CCR is not expected to<br />

provide new <strong>in</strong>sights for o<strong>the</strong>r <strong>world</strong> regions (apart from <strong>the</strong> carbon price tag, which might be<br />

different <strong>in</strong> each region). However, at this moment <strong>the</strong>re is not an obvious conclusion <strong>in</strong> why <strong>the</strong><br />

apparent carbon price tag is around 200 $/tonne <strong>of</strong> carbon. Investigat<strong>in</strong>g carbon price tags<br />

based on cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is <strong>the</strong>refore not expected to be valuable result<br />

for o<strong>the</strong>r <strong>world</strong> regions.<br />

43


9.2.3 Modified cost <strong>of</strong> conserved <strong>energy</strong><br />

Next to <strong>the</strong> CCE calculation, a suggestion for an advanced method <strong>of</strong> calculation was <strong>in</strong>troduced<br />

for <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> assessment <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. The calculation for <strong>the</strong><br />

so-called modified cost <strong>of</strong> conserved <strong>energy</strong> (MCCE) differs from CCE calculation as <strong>the</strong> <strong>energy</strong><br />

cost sav<strong>in</strong>gs are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> calculation. A new method is proposed to <strong>in</strong>clude different<br />

<strong>energy</strong> types for each <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. The ma<strong>in</strong> reason for <strong>in</strong>clud<strong>in</strong>g <strong>energy</strong><br />

cost sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> calculation is <strong>the</strong> follow<strong>in</strong>g.<br />

The <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> are <strong>in</strong>fluenced by <strong>the</strong> wide variety <strong>of</strong> <strong>energy</strong> or fuel types used <strong>in</strong><br />

<strong>the</strong> production processes <strong>of</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry. For example, <strong>energy</strong> reduction <strong>in</strong> <strong>the</strong> blast<br />

furnace could reduce <strong>the</strong> need for coal, while an <strong>efficiency</strong> measure <strong>in</strong> an EAF could reduce only<br />

electricity. The sav<strong>in</strong>gs from reduced use <strong>of</strong> coal are <strong>in</strong> general less cost effective compared to<br />

electricity sav<strong>in</strong>gs, ma<strong>in</strong>ly due to much lower price for coal (e.g., coal price <strong>in</strong> 2006 was 3.36<br />

$/GJ, far lower than electricity price <strong>of</strong> 12.55 $/GJ)(EIA, 2009). Us<strong>in</strong>g <strong>the</strong> concept <strong>of</strong> CCE to<br />

identify cost-effective <strong>measures</strong> applicable to <strong>the</strong> <strong>steel</strong> sector, we would compare CCE value with<br />

<strong>the</strong> weighted average <strong>energy</strong> price for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry even if <strong>the</strong> fuel or <strong>energy</strong> type applicable<br />

to an <strong>in</strong>dividual measure is homogeneous (e.g., for 2010 a weighted average <strong>energy</strong> price was<br />

calculated at 6.76 $/GJ while prices per <strong>energy</strong> type are substantially lower or higher). The<br />

drawback <strong>of</strong> us<strong>in</strong>g traditional CCE and weighted average <strong>energy</strong> price to characterize costeffectiveness<br />

<strong>of</strong> an <strong>in</strong>dividual measure is that if <strong>the</strong> measure operates only with electricity, its<br />

cost-effectiveness would be biased (unfavourably) when us<strong>in</strong>g weighted fuel price to compare,<br />

because <strong>the</strong> weighted price is <strong>in</strong>herently lower than electricity price. In o<strong>the</strong>r words, <strong>the</strong><br />

measure that was <strong>in</strong> fact cost-effective (if <strong>the</strong> right <strong>energy</strong> price was used) could be o<strong>the</strong>rwise<br />

identified as not cost effective. On <strong>the</strong> o<strong>the</strong>r hand, for a measure that uses only coal to operate,<br />

its degree <strong>of</strong> cost-effectiveness could be <strong>in</strong>flated when its CCE is compared with <strong>the</strong> weighted<br />

average <strong>energy</strong> price that is higher than coal price itself.<br />

While conventional CCE is a very good <strong>in</strong>dex when <strong>energy</strong> supply (thus price) is homogeneous,<br />

it may lack read<strong>in</strong>ess for evaluat<strong>in</strong>g cost-effectiveness <strong>of</strong> <strong>in</strong>dividual <strong>measures</strong> <strong>in</strong> different years.<br />

Us<strong>in</strong>g <strong>the</strong> conventional CCE, one has to compare <strong>the</strong> CCE value with weighted average <strong>of</strong> <strong>energy</strong><br />

price <strong>in</strong> a particular year. Because fuel prices and <strong>energy</strong> supplies changed from year to year, <strong>the</strong><br />

weighted average <strong>of</strong> <strong>energy</strong> price would be a mov<strong>in</strong>g target across years, mak<strong>in</strong>g it more difficult<br />

to readily evaluate cost-effectiveness <strong>of</strong> <strong>measures</strong>.<br />

In <strong>the</strong> follow<strong>in</strong>g, we have developed and def<strong>in</strong>ed an MCCE concept, which <strong>in</strong>corporates <strong>the</strong><br />

annual <strong>energy</strong> cost sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> conventional CCE to address <strong>the</strong> impacts <strong>of</strong><br />

<strong>energy</strong> and fuel-type variations on actual cost-effectiveness <strong>of</strong> a measure. Equation 3 shows <strong>the</strong><br />

def<strong>in</strong>ition <strong>of</strong> MCCE:<br />

44


Where<br />

∙<br />

∆<br />

MCCE = Modified cost <strong>of</strong> conserved <strong>energy</strong> for an <strong>energy</strong>-<strong>efficiency</strong> measure (or<br />

mitigation option), <strong>in</strong> $/GJ<br />

I = Capital cost <strong>of</strong> mitigation option ($)<br />

q = Capital recovery factor (yr -1 ), see Equation (2)<br />

S = Annual <strong>energy</strong> cost sav<strong>in</strong>gs from <strong>energy</strong> <strong>efficiency</strong> measure ($/yr)<br />

M = Annual change <strong>in</strong> monetizable non-<strong>energy</strong> costs from O&M changes ($/yr)<br />

B = Annual additional non-<strong>energy</strong> cost benefits ($/yr)<br />

∆E = Annual <strong>energy</strong> sav<strong>in</strong>gs (GJ/yr)<br />

Equation 3 is similar to Equation 2 (methodology paragraph), with <strong>the</strong> difference be<strong>in</strong>g that an<br />

additional factor – annual <strong>energy</strong> cost sav<strong>in</strong>gs (S) is <strong>in</strong>corporated to account for <strong>energy</strong> cost<br />

benefits. The annual <strong>energy</strong> cost sav<strong>in</strong>gs are calculated by comb<strong>in</strong><strong>in</strong>g cost sav<strong>in</strong>gs from us<strong>in</strong>g<br />

actual fuels and electricity use for each production process with respective prices <strong>in</strong> a year.<br />

Because S is expected to be a positive value for each measure, <strong>the</strong> value <strong>of</strong> MCCE is expected to<br />

be reduced compared to <strong>the</strong> conventional CCE value for <strong>the</strong> same measure. In some cases, <strong>the</strong><br />

MCEE can become a negative value. In fact, if <strong>the</strong> MCCE value <strong>of</strong> a specific measure is no<br />

greater than zero (“0”), <strong>the</strong>n <strong>the</strong> measure is considered to be cost effective; <strong>in</strong> contrast, if <strong>the</strong><br />

MCCE value <strong>of</strong> a specific measure is greater than zero, <strong>the</strong>n <strong>the</strong> measure is not considered to be<br />

cost effective based upon <strong>the</strong> available data <strong>in</strong>put. Us<strong>in</strong>g MCCE values <strong>in</strong> comparison with zero<br />

will allow straightforward evaluation <strong>of</strong> cost-effectiveness <strong>of</strong> each specific <strong>efficiency</strong> measure<br />

regardless <strong>of</strong> whe<strong>the</strong>r or not fuel types and prices are homogeneous, because its calculation<br />

already accounts for variations <strong>in</strong> fuel types, amounts, and <strong>energy</strong> prices associated with each<br />

<strong>in</strong>dividual measure. In Figure 9, an example is given <strong>of</strong> multiple MCCE cost curves for <strong>the</strong> US<br />

<strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2010 with different prices per <strong>energy</strong> type, and <strong>the</strong>ir <strong>in</strong>fluence on <strong>the</strong> shape <strong>of</strong><br />

<strong>the</strong> cost curve. The calculation <strong>of</strong> different cost curves was made to show <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>energy</strong><br />

prices <strong>of</strong> s<strong>in</strong>gle <strong>energy</strong> types on <strong>the</strong> MCCE calculation. What is seen <strong>in</strong> <strong>the</strong> figure, is <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> natural gas seems to have <strong>the</strong> largest impact on <strong>the</strong> shape <strong>of</strong> <strong>the</strong> costs curve. This is ma<strong>in</strong>ly<br />

because a large number <strong>of</strong> identified measure are <strong>in</strong>cluded on processes us<strong>in</strong>g natural gas as a<br />

ma<strong>in</strong> fuel <strong>in</strong>put.<br />

(3)<br />

45


Figure 9 The sensitivity <strong>of</strong> MCEE cost curves due to <strong>energy</strong>-price changes <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2010<br />

(Xu, 2012)<br />

The MCCE method does produce different results, though <strong>the</strong> amount <strong>of</strong> cost-effective <strong>energy</strong><br />

sav<strong>in</strong>gs is similar, as can be seen <strong>in</strong> <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> each curve <strong>in</strong> Figure 9 with <strong>the</strong> X-axis. In<br />

Xu et al. (2012) <strong>the</strong> largest difference for <strong>the</strong> total cost-effective <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong> US <strong>steel</strong><br />

<strong>in</strong>dustry were <strong>in</strong> 2006. The results for <strong>the</strong> CCE method and MCCE method were 300 PJ and 322<br />

PJ, respectively. So, a difference <strong>of</strong> about 7% was observed for us<strong>in</strong>g ei<strong>the</strong>r <strong>of</strong> <strong>the</strong>se methods.<br />

Moreover, s<strong>in</strong>ce this new method was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> report <strong>of</strong> Xu et al. (2012) and has not<br />

been peer reviewed, this method will not be used for <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions. Also, <strong>the</strong> type <strong>of</strong> fuel used per process for o<strong>the</strong>r <strong>world</strong> regions<br />

is not known, while for <strong>the</strong> US, data could be found about fuel types <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry<br />

processes. The <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> MCCE <strong>in</strong> <strong>the</strong> US showed a more accurate assessment <strong>of</strong><br />

<strong>energy</strong> <strong>efficiency</strong> measure, and a more easy comparison <strong>of</strong> data from different years.<br />

Summarised, <strong>the</strong> use <strong>of</strong> MCCE provides more accurate determ<strong>in</strong>ation <strong>of</strong> cost-effective <strong>measures</strong>,<br />

us<strong>in</strong>g <strong>energy</strong> prices <strong>of</strong> different fuel types <strong>in</strong> calculation. Apart from <strong>the</strong> lack <strong>of</strong> reviews on this<br />

method, <strong>the</strong> results <strong>of</strong> MCCE calculation compared to CCE calculation <strong>in</strong>fluence results <strong>of</strong> costeffective<br />

sav<strong>in</strong>gs up to 7%. The method will <strong>the</strong>refore not be used <strong>in</strong> fur<strong>the</strong>r calculations for <strong>the</strong><br />

<strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

46


9.2.4 Includ<strong>in</strong>g or exclud<strong>in</strong>g o<strong>the</strong>r non-<strong>energy</strong> benefits<br />

Ano<strong>the</strong>r result for <strong>the</strong> research <strong>of</strong> Xu et al. (2012) was to look at <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> o<strong>the</strong>r non<strong>energy</strong><br />

benefits, like productivity ga<strong>in</strong>s or reduced labour. In 2006, 25 <strong>measures</strong> had identified<br />

o<strong>the</strong>r non-<strong>energy</strong> benefits. Overall for 2006, <strong>in</strong>clud<strong>in</strong>g o<strong>the</strong>r non-<strong>energy</strong> benefits <strong>in</strong> <strong>the</strong> cost<br />

curves for <strong>the</strong> iron and <strong>steel</strong> <strong>in</strong>dustry can significantly decrease <strong>the</strong> total cost <strong>of</strong> conserved<br />

<strong>energy</strong> for <strong>the</strong> measure with <strong>the</strong> highest CCE value, from 193 $/GJ to 86 $/GJ to achieve <strong>the</strong><br />

same total <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> 3.9 GJ/tonne <strong>steel</strong> <strong>in</strong> 2006 (Figure 10).<br />

Figure 10 Cost curves for <strong>in</strong>clusion and exclusion <strong>of</strong> o<strong>the</strong>r non-<strong>energy</strong> benefits <strong>in</strong> <strong>the</strong> US iron<br />

and <strong>steel</strong> <strong>in</strong>dustry (2006)<br />

In summary, <strong>in</strong>clusion <strong>of</strong> o<strong>the</strong>r non-<strong>energy</strong> benefits <strong>of</strong> implement<strong>in</strong>g <strong>efficiency</strong> <strong>measures</strong> can<br />

significantly reduce <strong>the</strong> CCE values and change rank<strong>in</strong>g orders <strong>of</strong> <strong>the</strong> CCE value <strong>of</strong> <strong>in</strong>dividual<br />

<strong>measures</strong>, while achiev<strong>in</strong>g <strong>the</strong> same level <strong>of</strong> conserved <strong>energy</strong>. In any fur<strong>the</strong>r calculations for<br />

<strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions, non-<strong>energy</strong> benefits will always be <strong>in</strong>cluded <strong>in</strong> calculation.<br />

9.2.5 Changes <strong>in</strong> discount rate<br />

The discount rate used for <strong>the</strong> calculation <strong>of</strong> CCE (and MCCE) values was determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

methodology, a discount rate <strong>of</strong> 30% would be used for all calculations. However, one could use<br />

a different discount rate. For example, a discount rate <strong>of</strong> 10% or 20% will reduce <strong>the</strong> CCE value<br />

<strong>of</strong> each measure, thus <strong>measures</strong> will be considered more cost effective.<br />

Logically, a higher discount rate would result <strong>in</strong> a higher CCE, mak<strong>in</strong>g <strong>the</strong> <strong>efficiency</strong> measure<br />

less cost effective. Therefore, a higher discount would correspond to a smaller set <strong>of</strong> costeffective<br />

<strong>measures</strong> than a lower discount rate does. Table 13 presents <strong>the</strong> total f<strong>in</strong>al <strong>energy</strong><br />

47


sav<strong>in</strong>gs from apply<strong>in</strong>g all <strong>efficiency</strong> <strong>measures</strong> identified for <strong>the</strong> US, and those from apply<strong>in</strong>g<br />

cost-effective <strong>efficiency</strong> <strong>measures</strong> for different discount rates..<br />

Table 13 F<strong>in</strong>al <strong>energy</strong> reductions from cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for multiple discount<br />

rates <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006.<br />

F<strong>in</strong>al <strong>energy</strong> reduction by cost-effective <strong>measures</strong> for different discount <strong>measures</strong><br />

Total F<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs all identified <strong>measures</strong> (PJ/year) 385<br />

Total F<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs cost-effective <strong>measures</strong> (discount rate 10%) (PJ/year) 371<br />

Total F<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs cost-effective <strong>measures</strong> (discount rate 20%) (PJ/year) 310<br />

Total F<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs cost-effective <strong>measures</strong> (discount rate 30%) (PJ/year) 300<br />

As can be seen <strong>in</strong> Table 13 <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> discount rates is significant on <strong>the</strong> amount <strong>of</strong> <strong>energy</strong><br />

sav<strong>in</strong>gs from cost-effective <strong>measures</strong>. Over 95% <strong>of</strong> <strong>the</strong> total potential <strong>energy</strong> sav<strong>in</strong>gs become<br />

cost-effective when a discount rate <strong>of</strong> 10% is used. Choos<strong>in</strong>g a discount rate is <strong>the</strong>refore very<br />

important because it significantly affects <strong>the</strong> outcomes from quantify<strong>in</strong>g cost-effectiveness <strong>of</strong><br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. The total cost-effective <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong>crease with about 21%.<br />

In summary, while variations <strong>in</strong> discount rates do not affect <strong>the</strong> magnitudes <strong>of</strong> total potential<br />

sav<strong>in</strong>gs from <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> any given year, costs <strong>of</strong> conserved <strong>energy</strong> <strong>in</strong>crease greatly<br />

with <strong>the</strong> <strong>in</strong>crease <strong>in</strong> discount rates. A higher discount rate results <strong>in</strong> an overall <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

total cost <strong>of</strong> conserved <strong>energy</strong>. Still, for any fur<strong>the</strong>r calculations for <strong>steel</strong> <strong>in</strong>dustries <strong>in</strong> o<strong>the</strong>r<br />

<strong>world</strong> regions, a discount rate <strong>of</strong> 30% will be assumed.<br />

9.2.6 Summary <strong>of</strong> o<strong>the</strong>r conclusions <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry.<br />

From <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> US a number <strong>of</strong> conclusion have been<br />

drawn on <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> total potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> and <strong>the</strong><br />

sensitivity <strong>of</strong> assess<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. First <strong>of</strong> all, <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> o<strong>the</strong>r non-<strong>energy</strong><br />

benefits has a large <strong>in</strong>fluence on <strong>the</strong> cost-effective <strong>energy</strong> sav<strong>in</strong>gs. For 25 <strong>measures</strong> o<strong>the</strong>r non<strong>energy</strong><br />

benefits were <strong>in</strong>cluded, while for a lot <strong>of</strong> <strong>measures</strong> o<strong>the</strong>r benefits had not been identified.<br />

If o<strong>the</strong>r non-<strong>energy</strong> benefits were identified, <strong>the</strong> <strong>in</strong>fluence on <strong>the</strong> results <strong>of</strong> cost-effective <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> can be severe, as was demonstrated <strong>in</strong> Figure 10. Also <strong>the</strong> use <strong>of</strong> CCE<br />

method for calculat<strong>in</strong>g <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> measure can be discussed, where <strong>the</strong><br />

MCCE provides more accurate results on <strong>the</strong> cost-effectiveness, if sufficient data is available.<br />

The cost-effectiveness <strong>of</strong> an <strong>in</strong>dividual measure is highly dependent on <strong>the</strong> selected discount<br />

rate used <strong>in</strong> <strong>the</strong> calculation. Quantitatively, <strong>the</strong> effects <strong>of</strong> <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clude about a 6%<br />

uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> identification <strong>of</strong> total potential <strong>of</strong> <strong>efficiency</strong> <strong>measures</strong>, and 8% for costeffective<br />

<strong>measures</strong>, or up to 95% cost-effective <strong>measures</strong> with lower discount rates. Presumably<br />

more uncerta<strong>in</strong>ties can be <strong>in</strong>cluded, like assumption on penetrations rates <strong>of</strong> technology, but<br />

<strong>the</strong>se could not be easily quantified.<br />

Also <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US lead to <strong>the</strong> assumptions on <strong>the</strong><br />

major <strong>in</strong>fluenc<strong>in</strong>g factors for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> different <strong>world</strong> regions and on <strong>the</strong> potential <strong>of</strong><br />

48


<strong>the</strong>se <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> those regions. From <strong>the</strong> assessment <strong>in</strong> <strong>the</strong> US it was clear<br />

that <strong>the</strong> production, <strong>in</strong>dustry structure and average weighted <strong>energy</strong> price were <strong>the</strong> most<br />

important factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> potential <strong>of</strong> (cost-effective) <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

9.3 Results <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions<br />

Now we have expla<strong>in</strong>ed <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry,<br />

<strong>the</strong> application <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions will be assessed. This paragraph will demonstrate <strong>the</strong><br />

potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions, based on a number <strong>of</strong> key factors<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> potential <strong>of</strong> (cost-effective) <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>.<br />

As mentioned earlier, <strong>the</strong> selected <strong>world</strong> regions o<strong>the</strong>r than <strong>the</strong> US are Western Europe (WEU),<br />

Former Sovjet Union (FSU), India (IND), Ch<strong>in</strong>a (CHI), Japan (JAP) and Central- and South<br />

America (CSA). For each <strong>of</strong> <strong>the</strong>se regions an assessment is made <strong>of</strong> <strong>the</strong> set <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> which generated <strong>the</strong> previous results for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. In order to provide an<br />

estimation <strong>of</strong> us<strong>in</strong>g <strong>the</strong> same set <strong>of</strong> measure for <strong>the</strong> o<strong>the</strong>r <strong>world</strong> regions a number <strong>of</strong> adaptation<br />

to <strong>the</strong> <strong>in</strong>put data have to be made.<br />

9.3.1 Production <strong>of</strong> <strong>steel</strong> <strong>in</strong> different <strong>world</strong> regions<br />

First <strong>the</strong> required production data for assess<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> measure <strong>in</strong> different <strong>world</strong><br />

regions had to be collected. Basic production data were already <strong>in</strong>troduced <strong>in</strong> chapter ‘World<br />

<strong>steel</strong> production <strong>in</strong> different <strong>world</strong> regions’. The production data needed, consist <strong>of</strong> <strong>the</strong> total<br />

production <strong>of</strong> <strong>steel</strong>, <strong>the</strong> <strong>in</strong>dustry structure and <strong>the</strong> total <strong>energy</strong> use <strong>of</strong> <strong>the</strong> <strong>steel</strong> production. Data<br />

are provided for each <strong>of</strong> <strong>the</strong> <strong>world</strong> regions considered for this research. The results <strong>of</strong> <strong>the</strong><br />

production data have been summarised <strong>in</strong> Table 14.<br />

Table 14 Steel <strong>in</strong>dustry structure and <strong>steel</strong> production <strong>in</strong> different <strong>world</strong> regions <strong>in</strong> 2006<br />

Region<br />

Steel Industry structure<br />

United<br />

States<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

49<br />

Central<br />

and<br />

South<br />

America<br />

Integrated Production (BOF) 42% 57% 59% 42% 90% 74% 60%<br />

Secondary Production (EAF) 58% 43% 17% 56% 10% 26% 38%<br />

Integrated Production (OHF) 0% 0% 24% 2% 0% 0% 0%<br />

Total % 100% 100% 100% 100% 100% 100% 99%<br />

Steel production<br />

Total production (Mt/year) 99 173 120 50 419 116 45<br />

Source: World<strong>steel</strong>, 2011


Quantities <strong>of</strong> production <strong>in</strong> <strong>the</strong> secondary and <strong>in</strong>tegrated <strong>in</strong>dustries for every region have been<br />

calculated based on <strong>the</strong> total production and <strong>the</strong> <strong>in</strong>dustry structure. For example, <strong>the</strong> Ch<strong>in</strong>ese<br />

<strong>steel</strong> <strong>in</strong>dustry had about 90% <strong>of</strong> <strong>the</strong>ir <strong>steel</strong> produced <strong>in</strong> <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006,<br />

which is 377 million tonnes <strong>of</strong> <strong>the</strong>ir total <strong>steel</strong> production <strong>of</strong> 419 million tonnes. The large share<br />

<strong>of</strong> <strong>in</strong>tegrated <strong>steel</strong> <strong>in</strong> Ch<strong>in</strong>a is probably related to <strong>the</strong>ir large amount <strong>of</strong> coal resources. In India<br />

<strong>the</strong> use <strong>of</strong> secondary <strong>steel</strong> production is large s<strong>in</strong>ce <strong>the</strong> growth <strong>of</strong> DRI based <strong>steel</strong>mak<strong>in</strong>g has had<br />

major growth <strong>in</strong> <strong>the</strong> last decade.<br />

As seen <strong>in</strong> Table 14 <strong>the</strong> share <strong>of</strong> <strong>steel</strong> production <strong>in</strong> Ch<strong>in</strong>a is <strong>the</strong> largest <strong>of</strong> <strong>the</strong> selected regions.<br />

The US <strong>steel</strong> <strong>in</strong>dustry is one <strong>of</strong> <strong>the</strong> smaller regions <strong>in</strong> terms <strong>of</strong> <strong>steel</strong> production, s<strong>in</strong>ce four o<strong>the</strong>r<br />

regions produce more <strong>steel</strong>. Based on production difference <strong>the</strong> o<strong>the</strong>r <strong>world</strong> regions will have an<br />

<strong>in</strong>creased potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>, merely based on <strong>the</strong> larger production.<br />

Dissimilar from <strong>the</strong> production, <strong>the</strong> <strong>energy</strong> consumption for each <strong>world</strong> region cannot be<br />

divided easily <strong>in</strong> <strong>in</strong>tegrated or secondary <strong>steel</strong>mak<strong>in</strong>g. So for <strong>the</strong> <strong>energy</strong> use, an assumption will<br />

have to be made. The <strong>energy</strong> use for <strong>in</strong>tegrated and secondary <strong>steel</strong> will <strong>the</strong>refore be estimated,<br />

based on <strong>the</strong> basel<strong>in</strong>e <strong>of</strong> <strong>energy</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. In <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry, <strong>the</strong> <strong>in</strong>tegrated<br />

<strong>steel</strong> production is 3.6 times as <strong>energy</strong> <strong>in</strong>tensive compared to <strong>the</strong> secondary <strong>steel</strong>mak<strong>in</strong>g. A<br />

similar deviation <strong>of</strong> <strong>energy</strong> use is to estimate <strong>the</strong> total <strong>energy</strong> use <strong>of</strong> each <strong>in</strong>dustry type <strong>in</strong> o<strong>the</strong>r<br />

<strong>world</strong> regions. In o<strong>the</strong>r words, based on <strong>the</strong> basel<strong>in</strong>e <strong>of</strong> US, an estimate was made for <strong>the</strong> <strong>energy</strong><br />

use per <strong>in</strong>dustry structure. In Table 6, <strong>in</strong> chapter ‘<strong>world</strong> <strong>steel</strong> production and different <strong>world</strong><br />

regions’, <strong>the</strong> total f<strong>in</strong>al <strong>energy</strong> consumption per region has already been mentioned. In Table 15<br />

<strong>the</strong> total <strong>energy</strong> use is <strong>in</strong>cluded, and an estimated <strong>energy</strong> use for each <strong>in</strong>dustry type <strong>in</strong> every<br />

regions.<br />

Table 15 F<strong>in</strong>al <strong>energy</strong> use <strong>in</strong> <strong>steel</strong> <strong>in</strong>dustries per <strong>world</strong> region <strong>in</strong> 2006.<br />

Region<br />

Estimated <strong>in</strong>tegrated f<strong>in</strong>al<br />

<strong>energy</strong> use<br />

Estimated secondary f<strong>in</strong>al<br />

<strong>energy</strong> use<br />

50<br />

United<br />

States 1<br />

Western<br />

European<br />

Union 3<br />

Former<br />

Soviet<br />

Union 3<br />

India 3 Ch<strong>in</strong>a 2 Japan 3<br />

Central<br />

and<br />

South<br />

America 3<br />

852 2,325 3,108 1,168 9,234 1,778 1,069<br />

311 484 176 410 283 172 189<br />

Total <strong>energy</strong> use 1,162 2,809 3,284 1,578 9,518 1,950 1,258<br />

Note: numbers are rounded <strong>of</strong>f<br />

Sources: 1 Xu, 2012, 2 IEA, 2007, 3 Hasanbeigi, 2006<br />

The calculation <strong>of</strong> Xu, et al. (2012) is based on <strong>the</strong> <strong>energy</strong> use per process. In order to determ<strong>in</strong>e<br />

<strong>the</strong> <strong>energy</strong> use per process for <strong>the</strong> o<strong>the</strong>r <strong>world</strong> regions, <strong>the</strong> data <strong>of</strong> IEA, Hasanbeigi and<br />

World<strong>steel</strong> is used as a start<strong>in</strong>g po<strong>in</strong>t. With <strong>the</strong> <strong>in</strong>dustry structure <strong>the</strong> production <strong>of</strong> each type <strong>of</strong><br />

<strong>steel</strong>mak<strong>in</strong>g is analysed. The <strong>energy</strong> distribution <strong>of</strong> both <strong>the</strong> <strong>in</strong>tegrated and secondary<br />

<strong>steel</strong>mak<strong>in</strong>g <strong>in</strong> <strong>the</strong> US is <strong>the</strong>n used for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>energy</strong> use <strong>of</strong> each <strong>steel</strong> <strong>in</strong>dustry<br />

type <strong>in</strong> <strong>the</strong> o<strong>the</strong>r <strong>world</strong> regions. The change <strong>in</strong> production already has a major effect on <strong>the</strong><br />

<strong>energy</strong> consumption <strong>of</strong> <strong>the</strong> o<strong>the</strong>r <strong>world</strong> regions.


As seen <strong>in</strong> Table 15, Ch<strong>in</strong>a has <strong>the</strong> largest <strong>energy</strong> use compared to <strong>the</strong> o<strong>the</strong>r <strong>world</strong> regions. Ch<strong>in</strong>a<br />

alone is responsible for about 38% <strong>of</strong> <strong>the</strong> total f<strong>in</strong>al <strong>energy</strong> use <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. What<br />

is also noticeable is <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>in</strong> Japan. While three o<strong>the</strong>r regions produce less<br />

secondary <strong>steel</strong> compared to Japan, Japan is <strong>the</strong> region with <strong>the</strong> lowest secondary <strong>steel</strong>mak<strong>in</strong>g<br />

<strong>energy</strong> use.<br />

Related to <strong>the</strong> <strong>energy</strong> use, carbon emissions could be calculated for <strong>steel</strong> <strong>in</strong>dustries <strong>in</strong> <strong>the</strong><br />

selected regions. The result <strong>of</strong> <strong>the</strong> calculated carbon emissions for <strong>the</strong>se <strong>in</strong>dustries <strong>in</strong> 2006 is<br />

shown <strong>in</strong> Table 16.<br />

Table 16 Energy related carbon emissions <strong>in</strong> different <strong>steel</strong> <strong>in</strong>dustries per <strong>world</strong> region <strong>in</strong> 2006.<br />

Region<br />

Integrated carbon emissions<br />

(MtC/year)<br />

Secondary carbon emissions<br />

(MtC/year)<br />

Total carbon emissions<br />

(MtC/year)<br />

Note: numbers are rounded <strong>of</strong>f<br />

United<br />

States<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

Central<br />

and<br />

South<br />

America<br />

24 52 69 26 205 39 24<br />

12 15 5 13 9 5 6<br />

36 66 74 38 213 45 29<br />

As seen <strong>in</strong> Table 16 aga<strong>in</strong> Ch<strong>in</strong>a is largest producer <strong>of</strong> carbon emissions, which was expected<br />

compared with <strong>the</strong> <strong>energy</strong> use <strong>in</strong> Table 15. What is <strong>in</strong>terest<strong>in</strong>g is <strong>the</strong> carbon emission <strong>in</strong> <strong>the</strong> US<br />

compared to CSA. In terms <strong>of</strong> <strong>energy</strong> use, CSA has a larger <strong>energy</strong> use than <strong>the</strong> US. However, <strong>in</strong><br />

terms <strong>of</strong> carbon emissions, <strong>the</strong> US has a larger amount <strong>of</strong> emissions. This is related to <strong>the</strong> large<br />

amount <strong>of</strong> electricity used for EAF production. As mentioned <strong>in</strong> paragraph 8.1.2, <strong>the</strong> carbon<br />

emissions per GJ <strong>of</strong> electricity are large, <strong>the</strong>refore a lower <strong>energy</strong> use <strong>in</strong> <strong>the</strong> US still results <strong>in</strong><br />

higher carbon emissions.<br />

9.3.2 Economics <strong>of</strong> different <strong>world</strong> regions<br />

Now to estimate (cost-effective) <strong>energy</strong> sav<strong>in</strong>gs, some economic data are needed for each region<br />

as well. The weighted average <strong>energy</strong> price for <strong>steel</strong> production <strong>in</strong> each <strong>of</strong> <strong>the</strong> <strong>world</strong> regions is<br />

<strong>the</strong> first to be determ<strong>in</strong>ed. From our analysis <strong>of</strong> <strong>the</strong> <strong>energy</strong> deviation per <strong>in</strong>dustry type,<br />

estimated <strong>in</strong> Table 15, <strong>the</strong> electricity use <strong>of</strong> each <strong>of</strong> <strong>the</strong> <strong>world</strong> regions could be estimated. The<br />

distribution <strong>of</strong> fuel consumption <strong>in</strong> every <strong>world</strong> region was expected to be similar to <strong>the</strong> US,<br />

s<strong>in</strong>ce no fur<strong>the</strong>r <strong>in</strong>dication could be found. The <strong>energy</strong> prices for each <strong>energy</strong> type for every<br />

region were found. The average weighted <strong>energy</strong> price for <strong>steel</strong> production <strong>in</strong> different <strong>world</strong><br />

regions is shown <strong>in</strong> Table 17.<br />

51


Table 17 Average weighted <strong>energy</strong> price for <strong>steel</strong> <strong>in</strong>dustry, per <strong>world</strong> region <strong>in</strong> 2006<br />

Region<br />

52<br />

Average<br />

Weighted<br />

<strong>energy</strong> price<br />

($/GJ)<br />

Ch<strong>in</strong>a 6,13<br />

Western European Union 8,12<br />

Former Soviet Union 5,13<br />

Japan 7,97<br />

United States 6,76<br />

Central and South America 6,50<br />

India 4,94<br />

Sources: DECC (2012), BP (2012), Sidorenko (2010), Henderson (2011), IMF (2012), ANEEL (2007), IEA<br />

(2010).<br />

Apparently prices <strong>of</strong> <strong>energy</strong> <strong>in</strong> different regions can differ quite a bit. One <strong>in</strong>fluence <strong>in</strong> <strong>the</strong><br />

weighted <strong>energy</strong> price is <strong>the</strong> usage <strong>of</strong> different <strong>energy</strong> types. Some regions have larger shares <strong>of</strong><br />

electricity use compared to o<strong>the</strong>rs, s<strong>in</strong>ce <strong>the</strong>re is a larger share <strong>of</strong> secondary <strong>steel</strong>mak<strong>in</strong>g. Some<br />

cases for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> fuel prices for different fuel types have been difficult. In India <strong>the</strong><br />

use <strong>of</strong> APM (Adm<strong>in</strong>istered Price Mechanism) for <strong>the</strong> public sector is used. Part <strong>of</strong> <strong>the</strong> <strong>steel</strong><br />

<strong>in</strong>dustry <strong>in</strong> India is <strong>in</strong> <strong>the</strong> public sector, while <strong>the</strong> o<strong>the</strong>r part <strong>of</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry has to use <strong>the</strong><br />

market price (Public Enterprise Survey, 2011). In this case <strong>the</strong> average price <strong>of</strong> different sources<br />

was used as <strong>the</strong> price for a certa<strong>in</strong> <strong>energy</strong> type. Ano<strong>the</strong>r example is <strong>the</strong> natural gas price for<br />

Russia, for which multiple sources were found, with different prices. Here aga<strong>in</strong>, <strong>the</strong> average <strong>of</strong><br />

both sources were used to determ<strong>in</strong>e a weighted average <strong>energy</strong> price. (Sidorenko, 2010, DECC,<br />

2012)<br />

The weighted average <strong>energy</strong> price is one <strong>of</strong> <strong>the</strong> th<strong>in</strong>gs needed to determ<strong>in</strong>e cost-effective<br />

<strong>measures</strong> for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> different <strong>world</strong> regions. Next, <strong>the</strong> f<strong>in</strong>ancial data on <strong>the</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> might differ from <strong>the</strong> situation <strong>in</strong> <strong>the</strong> US. So both <strong>the</strong> <strong>in</strong>vestment and<br />

operation costs determ<strong>in</strong>ed for each <strong>energy</strong> <strong>efficiency</strong> measure for <strong>the</strong> US, will have to be<br />

changed to <strong>the</strong> o<strong>the</strong>r regions situation. In order to <strong>in</strong>clude a reasonable estimation here, <strong>the</strong> PPP<br />

<strong>in</strong>dex <strong>of</strong> each region is used to determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>vestment and operational costs for o<strong>the</strong>r <strong>world</strong><br />

regions. The PPP <strong>in</strong>dexes are shown <strong>in</strong> Table 7 (Paragraph 7.2).<br />

As mentioned <strong>in</strong> <strong>the</strong> methodology, <strong>the</strong> PPP <strong>in</strong>dex will only be used for 30% <strong>of</strong> <strong>the</strong> <strong>in</strong>vestment<br />

and operation costs. For every <strong>world</strong> region, now <strong>the</strong> f<strong>in</strong>ancial data is updated with PPP <strong>in</strong>dex to<br />

calculate <strong>the</strong> CCE value. Subsequently, <strong>the</strong> total and cost-effective <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong>se <strong>world</strong><br />

regions can be calculated, as shown <strong>in</strong> Table 18.


Table 18 Total potential and cost-effective <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> different <strong>world</strong> regions <strong>in</strong><br />

2006<br />

Region<br />

Total <strong>energy</strong> sav<strong>in</strong>gs potential<br />

(PJ/year)<br />

United<br />

States<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

Central<br />

and<br />

South<br />

America<br />

Integrated f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs 236 544 567 135 2087 468 162<br />

Secondary f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs 158 212 63 89 126 87 55<br />

Total f<strong>in</strong>al <strong>energy</strong> sav<strong>in</strong>gs 385 756 620 215 2170 548 200<br />

% <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong><br />

consumption<br />

Cost-effective <strong>energy</strong> sav<strong>in</strong>gs<br />

(PJ/year)<br />

Integrated cost-effective <strong>energy</strong><br />

sav<strong>in</strong>gs<br />

Secondary cost-effective <strong>energy</strong><br />

sav<strong>in</strong>gs<br />

Total cost-effective <strong>energy</strong><br />

sav<strong>in</strong>gs<br />

% <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong><br />

consumption<br />

Note: Numbers are rounded.<br />

33% 27% 19% 14% 23% 28% 16%<br />

158 374 363 87 1400 323 103<br />

142 193 57 79 113 79 46<br />

300 568 421 166 1513 402 148<br />

26% 20% 13% 11% 16% 21% 12%<br />

Some <strong>in</strong>terest<strong>in</strong>g results came from <strong>the</strong> calculation for different regions. As expected, Ch<strong>in</strong>a has<br />

<strong>the</strong> largest potential for <strong>energy</strong> sav<strong>in</strong>gs, s<strong>in</strong>ce it also has <strong>the</strong> highest production rates. India has<br />

<strong>the</strong> lowest <strong>energy</strong> sav<strong>in</strong>gs potential, accord<strong>in</strong>g to our calculations. This is not completely as one<br />

would expect, s<strong>in</strong>ce India is one <strong>of</strong> <strong>the</strong> most <strong>energy</strong> <strong>in</strong>tensive <strong>steel</strong> producers. Also <strong>the</strong> total<br />

potential <strong>of</strong> <strong>the</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is only 14% for India. S<strong>in</strong>ce <strong>the</strong> identified<br />

<strong>energy</strong> sav<strong>in</strong>gs for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> were determ<strong>in</strong>ed <strong>in</strong> GJ/tonne, it is logic that <strong>the</strong><br />

potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> will decrease <strong>in</strong> countries which have lower production rates.<br />

Also <strong>the</strong> result for <strong>the</strong> US show <strong>the</strong> highest % <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong> consumption <strong>in</strong> both <strong>the</strong> total<br />

potential as well as <strong>the</strong> cost-effective <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. This could be <strong>the</strong> result <strong>of</strong><br />

discrepancy between sources. For <strong>the</strong> rest <strong>of</strong> <strong>the</strong> regions, <strong>the</strong> <strong>energy</strong> consumption data is based<br />

on <strong>the</strong> IEA (2007) data, while <strong>the</strong> US data is based on <strong>the</strong> results by Xu et al. (2012). Accord<strong>in</strong>g<br />

to IEA data <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry has a total <strong>energy</strong> consumption <strong>of</strong> 1.5 EJ <strong>in</strong>stead <strong>of</strong> <strong>the</strong> 1,162 PJ<br />

now used <strong>in</strong> <strong>the</strong> calculations. If IEA data would be used, <strong>the</strong> % <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong> consumption<br />

for <strong>the</strong> US would be 26% and 21% for <strong>the</strong> total <strong>energy</strong> sav<strong>in</strong>gs potential and <strong>the</strong> cost-effective<br />

sav<strong>in</strong>gs, respectively.<br />

53


In order to visualize <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs, a bar diagram for both <strong>the</strong> total potential and costeffective<br />

<strong>energy</strong> sav<strong>in</strong>gs from <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is provided <strong>in</strong> Figure 11. In <strong>the</strong> bar<br />

diagram <strong>the</strong> results <strong>of</strong> Ch<strong>in</strong>a hav<strong>in</strong>g <strong>the</strong> largest potential becomes even more clear. The o<strong>the</strong>r<br />

regions with relatively high potentials are <strong>the</strong> Western European union and Former Sovjet<br />

Union because <strong>of</strong> <strong>the</strong>ir relatively high production.<br />

Figure 11 World <strong>steel</strong> <strong>energy</strong> sav<strong>in</strong>gs for different <strong>world</strong> regions <strong>in</strong> 2006<br />

From <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential we calculated <strong>the</strong> carbon mitigation <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> <strong>in</strong> different parts <strong>of</strong> <strong>the</strong> <strong>world</strong>. In Table 19 <strong>the</strong> potential <strong>of</strong> each region for <strong>the</strong><br />

mitigation <strong>of</strong> carbon emissions is shown. Not surpris<strong>in</strong>g is <strong>the</strong> fact that <strong>in</strong> Ch<strong>in</strong>a <strong>the</strong> potential is<br />

<strong>the</strong> largest, which would be expected, s<strong>in</strong>ce <strong>the</strong> result is based on <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs, for which<br />

<strong>the</strong> conclusion was similar.<br />

54


Table 19 Total potential and cost-effective carbon reductions <strong>in</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> different <strong>world</strong> regions<br />

<strong>in</strong> 2006<br />

Region<br />

United<br />

States<br />

Carbon emission reductions (MtC/year)<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

Central<br />

and<br />

South<br />

America<br />

<strong>in</strong>tegrated carbon reductions 4 9 10 2 36 8 3<br />

secondary carbon reductions 4 5 2 3 3 3 2<br />

total carbon reductions 8 14 12 5 38 11 5<br />

% <strong>of</strong> total carbon emissions 27% 21% 16% 13% 18% 24% 15%<br />

Cost-effective carbon emission reductions (MtC/year)<br />

<strong>in</strong>tegrated cost-effective carbon<br />

reductions<br />

secondary cost-effective carbon<br />

reductions<br />

total cost-effective carbon<br />

reductions<br />

3 7 7 2 25 6 2<br />

3 4 2 2 3 2 2<br />

6 11 9 4 28 8 4<br />

% <strong>of</strong> total carbon emissions 22% 17% 12% 10% 13% 18% 12%<br />

Note: Numbers are rounded <strong>of</strong>f<br />

The implementation <strong>of</strong> <strong>the</strong> identified <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> has a significant effect on <strong>the</strong><br />

<strong>energy</strong> consumption and carbon emissions <strong>in</strong> <strong>the</strong> different <strong>world</strong> regions. In <strong>the</strong> range <strong>of</strong> 11% to<br />

26% <strong>of</strong> <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> consumption can be saved <strong>in</strong> <strong>the</strong> different <strong>world</strong> regions, while 10% to<br />

22% <strong>of</strong> <strong>the</strong> carbon emissions can be reduced. Ano<strong>the</strong>r obvious conclusion is that <strong>the</strong> <strong>in</strong>tegrated<br />

<strong>steel</strong> production has a far larger potential <strong>in</strong> <strong>energy</strong> and carbon sav<strong>in</strong>gs compared to <strong>the</strong><br />

secondary <strong>steel</strong>mak<strong>in</strong>g. For <strong>the</strong> US <strong>the</strong> difference <strong>of</strong> secondary and <strong>in</strong>tegrated <strong>energy</strong> sav<strong>in</strong>gs<br />

was relatively small, but for Ch<strong>in</strong>a and <strong>the</strong> Formet Sovjet Union <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong>mak<strong>in</strong>g<br />

<strong>energy</strong> sav<strong>in</strong>gs potential is close to or over 90% <strong>of</strong> <strong>the</strong> total potential <strong>energy</strong> sav<strong>in</strong>gs.<br />

9.3.3 Fur<strong>the</strong>r results<br />

The results have been generated with a set <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong>itially set up for <strong>the</strong><br />

US <strong>steel</strong> <strong>in</strong>dustry. It was expected that <strong>the</strong> results for o<strong>the</strong>r <strong>world</strong> regions would <strong>the</strong>refore only<br />

be an estimate <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> potential, even though <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> have<br />

been altered with a number <strong>of</strong> assumptions, for example <strong>the</strong> PPP <strong>in</strong>dex.<br />

In case <strong>of</strong> <strong>the</strong> PPP <strong>in</strong>dex it was assumed that <strong>in</strong>dex would only be applicable for 30% <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>vestment and operational costs. This assumption was based on <strong>the</strong> fact that technologies for<br />

<strong>energy</strong> reduction are likely not to be produced and traded locally. So for <strong>the</strong> implementation <strong>of</strong><br />

55


<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> Ch<strong>in</strong>a, expertise from <strong>the</strong> US or EU might be required. In that<br />

case <strong>the</strong> PPP <strong>in</strong>dex would not suffice for calculat<strong>in</strong>g <strong>the</strong> costs <strong>of</strong> each measure.<br />

Then, additional results were produced with a PPP <strong>in</strong>dex <strong>of</strong> 0%, which assumes <strong>the</strong> prices for<br />

implement<strong>in</strong>g and operat<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> each <strong>world</strong> region is <strong>the</strong> same. Next,<br />

<strong>the</strong> use <strong>of</strong> a PPP <strong>in</strong>dex <strong>of</strong> 60% was assessed. So <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> PPP-<strong>in</strong>dex on <strong>the</strong> prices <strong>of</strong><br />

<strong>efficiency</strong> <strong>measures</strong> is <strong>in</strong>creased. The results <strong>of</strong> <strong>the</strong>se scenarios are shown <strong>in</strong> Table 20.<br />

Table 20 The <strong>in</strong>fluence <strong>of</strong> different PPP-<strong>in</strong>dex on <strong>the</strong> amount <strong>of</strong> cost-effective <strong>energy</strong> sav<strong>in</strong>gs from <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> for different <strong>world</strong> regions <strong>in</strong> 2006.<br />

Region<br />

Cost-effective f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs (0% PPP)<br />

Cost-effective f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs (30% PPP)<br />

Cost-effective f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs (60% PPP)<br />

Note: numbers are rounded<br />

56<br />

United<br />

States<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

Central<br />

and South<br />

America<br />

- 581 431 176 1466 409 163<br />

- 581 431 176 1513 409 166<br />

- 581 463 184 1597 408 169<br />

Apparently us<strong>in</strong>g <strong>the</strong> PPP <strong>in</strong>dex to a larger degree will have an effect on <strong>the</strong> cost-effective <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong>. Especially <strong>world</strong> regions for which <strong>the</strong> PPP-<strong>in</strong>dex deviates by great extend<br />

from <strong>the</strong> US, <strong>the</strong> effects <strong>of</strong> us<strong>in</strong>g 0% or 60% <strong>of</strong> <strong>the</strong> PPP-<strong>in</strong>dex <strong>in</strong>crease <strong>the</strong> cost-effective sav<strong>in</strong>gs<br />

by about 5-10%. Conversely, for o<strong>the</strong>r <strong>world</strong> regions with PPP-<strong>in</strong>dex close to 1, <strong>the</strong> effects <strong>of</strong> this<br />

<strong>in</strong>dex are m<strong>in</strong>or, if at all affected.<br />

Next, <strong>the</strong> assessment <strong>of</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry provided some additional f<strong>in</strong>d<strong>in</strong>gs on <strong>the</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong>. First, <strong>the</strong> basel<strong>in</strong>e data <strong>in</strong> <strong>the</strong> US could change <strong>the</strong> potential by about 6%.<br />

Second, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> MCCE on <strong>the</strong> results for cost-effective <strong>measures</strong> was found to be <strong>of</strong><br />

<strong>in</strong>fluence up to 8%. F<strong>in</strong>ally, <strong>the</strong> use <strong>of</strong> a decreased discount rate could <strong>in</strong>crease <strong>the</strong> amount <strong>of</strong><br />

cost-effective <strong>energy</strong> sav<strong>in</strong>gs up to 95% <strong>of</strong> <strong>the</strong> total potential <strong>energy</strong> sav<strong>in</strong>gs. Tak<strong>in</strong>g <strong>the</strong>se<br />

quantifiable uncerta<strong>in</strong>ties <strong>in</strong>to account a range could be made for <strong>the</strong> total potential and costeffective<br />

<strong>energy</strong> sav<strong>in</strong>gs for each region, as seen <strong>in</strong> Table 21.


Table 21 Range <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> different <strong>steel</strong> <strong>in</strong>dustries <strong>in</strong> 2006, tak<strong>in</strong>g def<strong>in</strong>ed uncerta<strong>in</strong>ties<br />

<strong>in</strong>to account.<br />

Region<br />

F<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs potential<br />

<strong>in</strong> PJ (range)<br />

Cost-effective<br />

f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs <strong>in</strong> PJ<br />

(range)<br />

United<br />

States<br />

385<br />

(362-407)<br />

300<br />

(277-365)<br />

Note: Numbers are rounded <strong>of</strong>f.<br />

Western<br />

Europea<br />

n Union<br />

756<br />

(713-802)<br />

581<br />

(538-719)<br />

Former<br />

Soviet<br />

Union<br />

620<br />

(584-657)<br />

431<br />

(399-589)<br />

India Ch<strong>in</strong>a Japan<br />

215<br />

(202-228)<br />

176<br />

(163-204)<br />

2170<br />

(2047-2300)<br />

1513<br />

(1401-2061)<br />

548<br />

(517-581)<br />

409<br />

(378-521)<br />

Central<br />

and<br />

South<br />

America<br />

200<br />

(188-212)<br />

166<br />

(154-190)<br />

Tak<strong>in</strong>g <strong>the</strong>se uncerta<strong>in</strong>ties <strong>in</strong>to account, <strong>the</strong> results for each region are provided with a ra<strong>the</strong>r<br />

large range. For Ch<strong>in</strong>a <strong>the</strong> difference between <strong>the</strong> lower and higher range for cost effective<br />

<strong>energy</strong> sav<strong>in</strong>gs is 660 PJ. The range <strong>of</strong> cost-effective <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> Ch<strong>in</strong>a <strong>the</strong>reby ranges<br />

from 15% to 22% <strong>of</strong> <strong>the</strong> total <strong>energy</strong> use <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> Ch<strong>in</strong>a.<br />

9.4 World <strong>steel</strong> <strong>energy</strong> sav<strong>in</strong>gs potential<br />

With <strong>the</strong> <strong>energy</strong> and carbon sav<strong>in</strong>gs for <strong>the</strong> different <strong>world</strong> regions, an end result can be made<br />

for <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. Results for <strong>the</strong><br />

different regions will be accumulated for a global estimation.<br />

9.4.1 Energy sav<strong>in</strong>gs potential<br />

In order to provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong><br />

it will first have to be assumed what <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs potential <strong>in</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>world</strong> will<br />

be. These are <strong>the</strong> <strong>world</strong> regions not selected for this research. For <strong>the</strong> o<strong>the</strong>r regions it is assumed<br />

that <strong>the</strong> average sav<strong>in</strong>gs <strong>in</strong> selected <strong>world</strong> regions will also be used <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions.<br />

Accord<strong>in</strong>g to <strong>the</strong> <strong>energy</strong> consumption <strong>in</strong> Table 6, <strong>the</strong> share <strong>of</strong> o<strong>the</strong>r <strong>world</strong> regions is calculated.<br />

The share <strong>of</strong> o<strong>the</strong>r <strong>world</strong> regions, multiplied by <strong>the</strong> total <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> <strong>the</strong> selected <strong>world</strong><br />

regions provided <strong>the</strong> result for this f<strong>in</strong>al region. The cost-effective <strong>energy</strong> sav<strong>in</strong>gs for o<strong>the</strong>r <strong>world</strong><br />

regions have been calculated similarly.<br />

57


From <strong>the</strong> total <strong>of</strong> all <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>g potential Figure 12 could be generated.<br />

Figure 12 World <strong>steel</strong> <strong>energy</strong> sav<strong>in</strong>gs potentials from <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> 2006<br />

Apparently, <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> all over <strong>the</strong> <strong>world</strong> resulted <strong>in</strong> a total<br />

potential <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> about 5.7 EJ <strong>in</strong> 2006 (5.3-6.0 EJ when uncerta<strong>in</strong>ties are <strong>in</strong>cluded).<br />

The cost-effective <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are about 4.1 EJ <strong>in</strong> 2006 (3.5-5.4<br />

EJ, uncerta<strong>in</strong>ties <strong>in</strong>cluded). The total potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is about 23% <strong>of</strong><br />

<strong>the</strong> <strong>world</strong> <strong>steel</strong> f<strong>in</strong>al <strong>energy</strong> consumption. The cost-effective <strong>energy</strong> sav<strong>in</strong>gs add up to about 16%<br />

<strong>of</strong> <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> consumption.<br />

To put <strong>the</strong>se numbers <strong>in</strong> perspective, <strong>the</strong> <strong>energy</strong> reductions possible by <strong>of</strong> all identified<br />

<strong>measures</strong> equal to <strong>the</strong> output <strong>of</strong> about 226 coal power plants <strong>of</strong> 1 GW. The <strong>energy</strong> sav<strong>in</strong>gs for<br />

only cost-effective <strong>measures</strong> equals <strong>the</strong> output <strong>of</strong> about 163 coal power plants <strong>of</strong> 1 GW. So <strong>the</strong><br />

potential <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong> <strong>world</strong> are def<strong>in</strong>itely substantial.<br />

Similarly <strong>the</strong> carbon mitigation can be calculated for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>world</strong><br />

<strong>steel</strong> <strong>in</strong>dustry. In Figure 13 <strong>the</strong> total carbon reductions for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are<br />

demonstrated.<br />

58<br />

Energy sav<strong>in</strong>gs (PJ/year)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Total f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs<br />

Total cost effective<br />

<strong>energy</strong> sav<strong>in</strong>gs<br />

O<strong>the</strong>r<br />

Central and South America<br />

Japan<br />

Ch<strong>in</strong>a<br />

India<br />

Former Soviet Union<br />

Western European Union<br />

United States


Carbon reductions (MtC/year)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

total carbon reductions total cost effective<br />

carbon reductions<br />

Figure 13 World <strong>steel</strong> carbon reduction potential from <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> 2006<br />

For carbon mitigation <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> all over <strong>the</strong> <strong>world</strong> resulted<br />

<strong>in</strong> a total potential carbon reduction <strong>of</strong> about 107 MtC <strong>in</strong> 2006 (101-113 MtC, uncerta<strong>in</strong>ties<br />

<strong>in</strong>cluded). The cost-effective carbon reduction for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are about 82 MtC <strong>in</strong><br />

2006 (76-101 MtC, uncerta<strong>in</strong>ties <strong>in</strong>cluded). The total potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is<br />

about 20% <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> carbon emission mitigation. The cost-effective carbon reductions<br />

add up to about 15% <strong>of</strong> <strong>the</strong> total carbon emissions.<br />

9.4.2 Comparison to o<strong>the</strong>r analysis<br />

O<strong>the</strong>r<br />

Central and South America<br />

Japan<br />

Ch<strong>in</strong>a<br />

The potential <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> exist<strong>in</strong>g iron and <strong>steel</strong> <strong>in</strong>dustry has been analysed by <strong>the</strong><br />

International Energy Agency. The results <strong>of</strong> this study have been summarised <strong>in</strong> Figure 14. The<br />

methodology for this analysis could not be retrieved. Apparently <strong>the</strong> analysis encompasses <strong>the</strong><br />

CO2 reduction potential <strong>of</strong> best available technologies (BAT). A few key technologies have been<br />

identified, as well as blast furnace and <strong>steel</strong> f<strong>in</strong>ish<strong>in</strong>g improvements. Accord<strong>in</strong>g to <strong>the</strong> analysis,<br />

<strong>the</strong> potential <strong>of</strong> <strong>the</strong>se technologies for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry is about 340 Mt <strong>of</strong> CO2 (about 93<br />

MtC; IPCC, 2007).<br />

India<br />

Former Soviet Union<br />

Western European Union<br />

United States<br />

59


Figure 14 CO2 reduction potential <strong>of</strong> best available technology by IEA analysis. (OECD, 2008)<br />

The total potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> technology for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry is thus<br />

comparative to <strong>the</strong> results produced <strong>in</strong> our analysis. A total potential <strong>of</strong> 107 MtC <strong>in</strong> our analysis,<br />

93 MtC <strong>in</strong> <strong>the</strong> analysis <strong>of</strong> IEA. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> results <strong>of</strong> <strong>the</strong> IEA use reference year 2004,<br />

while 2006 is reference <strong>in</strong> our calculations. Also, <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> IEA might differ <strong>in</strong><br />

methodology, compared to our calculations. Ano<strong>the</strong>r note is <strong>the</strong> IEA has selected a five specific<br />

number <strong>of</strong> technologies, and two assemblies <strong>of</strong> <strong>measures</strong> for blast furnace and <strong>steel</strong> f<strong>in</strong>ish<strong>in</strong>g. In<br />

our analysis we use a wide variety <strong>of</strong> <strong>measures</strong> and <strong>in</strong>cluded calculation <strong>of</strong> merely cost-effective<br />

<strong>measures</strong>. Apart from <strong>the</strong>se differences, both analyses provide results <strong>in</strong> a similar range.<br />

9.5 Key assumptions and gaps <strong>in</strong> knowledge<br />

As already mentioned <strong>the</strong> <strong>energy</strong> use and emissions <strong>of</strong> a <strong>steel</strong> plant are significantly affected by<br />

several factors such as technology, plant size, and quality <strong>of</strong> raw materials (Xu, 2010). This<br />

research only encompassed <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry. O<strong>the</strong>r factors, like<br />

plant size, are not <strong>in</strong>cluded, but may as well be effective. Moreover, <strong>the</strong> data on <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> only encompasses <strong>the</strong> <strong>measures</strong> which could be identified <strong>in</strong> literature sources and for<br />

which sufficient data could be found. In practice, additional <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> may be<br />

available.<br />

60


An identified deficit <strong>in</strong> data is <strong>in</strong> <strong>the</strong> penetration rate <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. Data on<br />

penetration rates <strong>of</strong> certa<strong>in</strong> technologies is not readily available, <strong>the</strong>refore only approximations<br />

<strong>of</strong> this factor can be made.<br />

We assumed <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will have about <strong>the</strong> same <strong>energy</strong> and carbon<br />

mitigation effects <strong>in</strong> <strong>the</strong> selected <strong>world</strong> regions as <strong>in</strong> <strong>the</strong> US. Only total production, <strong>energy</strong> use<br />

and <strong>in</strong>dustry structure is changed. No <strong>in</strong>fluence <strong>of</strong> raw material quality is <strong>in</strong>cluded. Also <strong>the</strong><br />

basel<strong>in</strong>e data for o<strong>the</strong>r regions is assumed to be similar to <strong>the</strong> US, so <strong>the</strong> amount <strong>of</strong> s<strong>in</strong>ter or<br />

coke produced per tonne <strong>of</strong> <strong>steel</strong> is expected to be about <strong>the</strong> same <strong>in</strong> any region. In reality, <strong>the</strong>se<br />

results might be different <strong>in</strong> every region and have a significant effect on <strong>the</strong> total <strong>energy</strong><br />

sav<strong>in</strong>gs, as <strong>in</strong>dicated <strong>in</strong> paragraph ‘fur<strong>the</strong>r results on cost curves for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry’.<br />

Ano<strong>the</strong>r difficulty is <strong>the</strong> assumption that effects <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will be similar<br />

<strong>in</strong> every <strong>world</strong> region. Some <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will have a similar effect <strong>in</strong> every<br />

<strong>world</strong> region, while o<strong>the</strong>rs will have a different effect <strong>in</strong> o<strong>the</strong>r <strong>world</strong> regions. However, to<br />

determ<strong>in</strong>e <strong>the</strong> effects <strong>of</strong> certa<strong>in</strong> <strong>measures</strong> <strong>in</strong> o<strong>the</strong>r regions, each measure should be assessed for<br />

<strong>the</strong> different region. Tak<strong>in</strong>g <strong>in</strong>to account, <strong>the</strong> limited amount <strong>of</strong> time for this research, it will not<br />

be viable to do an assessment <strong>of</strong> each measure <strong>in</strong> every <strong>world</strong> region.<br />

Fur<strong>the</strong>r factors for o<strong>the</strong>r regions which have not been taken <strong>in</strong>to account for this research are<br />

<strong>the</strong> technological advancements <strong>of</strong> each region. Japan might for example already have<br />

implemented most <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> or <strong>the</strong> Former Soviet Union which still<br />

operates a number <strong>of</strong> out-dated open hearth furnaces. Also <strong>the</strong> quality <strong>of</strong> raw materials is not<br />

taken <strong>in</strong>to account, which is difficult to determ<strong>in</strong>e, but taken <strong>in</strong>to account for this research.<br />

The identification <strong>of</strong> key factors was based partly <strong>in</strong> <strong>the</strong> research done <strong>in</strong> <strong>the</strong> US. This research<br />

was <strong>in</strong> itself not peer reviewed or reviewed by o<strong>the</strong>r scientist. Though, we used <strong>the</strong> conclusion <strong>of</strong><br />

<strong>in</strong>fluence <strong>of</strong> <strong>in</strong>dustry change as a key factor for assess<strong>in</strong>g <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. Although <strong>the</strong><br />

assumption seems legit, it is a large leap from one conclusion, and right away us<strong>in</strong>g it as a base<br />

for fur<strong>the</strong>r research.<br />

61


10 CONCLUSIONS<br />

Through characteriz<strong>in</strong>g <strong>energy</strong>-<strong>efficiency</strong> technology costs and improvement potentials, <strong>energy</strong><br />

sav<strong>in</strong>gs and carbon mitigation for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> were developed and presented for<br />

<strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006. The major sources <strong>of</strong> <strong>in</strong>fluence on <strong>the</strong> application <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> are: <strong>the</strong> basel<strong>in</strong>e year, discount rate, <strong>energy</strong> price, production, <strong>in</strong>dustry<br />

structure (e.g., <strong>in</strong>tegrated versus secondary <strong>steel</strong> mak<strong>in</strong>g and <strong>the</strong> number <strong>of</strong> operat<strong>in</strong>g plants),<br />

<strong>efficiency</strong> <strong>measures</strong>, share <strong>of</strong> iron and <strong>steel</strong> production to which <strong>the</strong> <strong>in</strong>dividual <strong>measures</strong> can be<br />

applied, and <strong>in</strong>clusion <strong>of</strong> o<strong>the</strong>r non-<strong>energy</strong> benefits.<br />

First, studies for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry concluded <strong>in</strong> two cases: By application <strong>of</strong> all identified<br />

<strong>measures</strong> or application <strong>of</strong> only cost-effective <strong>measures</strong>. If only <strong>the</strong> cost-effective <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> are taken <strong>in</strong>to account, usually <strong>the</strong> cost-effective <strong>measures</strong> represent<br />

roughly 75% <strong>of</strong> <strong>the</strong> total potential <strong>of</strong> <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. Measures with a CCE value<br />

lower than <strong>the</strong> average weighted <strong>energy</strong> price <strong>of</strong> $6.76/GJ for <strong>the</strong> US, are considered cost<br />

effective.<br />

The total <strong>energy</strong> sav<strong>in</strong>gs potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>in</strong> 2006 was 385 PJ<br />

per year. For cost-effective <strong>measures</strong> <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs would total at 300 PJ. From <strong>the</strong> <strong>energy</strong><br />

sav<strong>in</strong>gs <strong>the</strong> carbon reductions could be calculated. The total potential carbon reductions from all<br />

<strong>the</strong> identified <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>in</strong> 2006 was 7.7 MtC. The cost-effective carbon reductions for<br />

<strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> 2006 is about 6.2 MtC.<br />

Dur<strong>in</strong>g <strong>the</strong> analysis <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry also some additional<br />

results were discovered. First, <strong>the</strong> concept <strong>of</strong> MCCE was developed <strong>in</strong> this report, which help to<br />

accurately characterize <strong>the</strong> cost-effectiveness <strong>of</strong> <strong>in</strong>dividual <strong>measures</strong> and facilitate <strong>the</strong><br />

identification and comparison <strong>of</strong> <strong>efficiency</strong> <strong>measures</strong>. Second, <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> o<strong>the</strong>r non<strong>energy</strong><br />

benefits has a large <strong>in</strong>fluence on <strong>the</strong> cost-effective <strong>energy</strong> sav<strong>in</strong>gs. For 25 <strong>measures</strong> o<strong>the</strong>r<br />

non-<strong>energy</strong> benefits were <strong>in</strong>cluded, while for a lot <strong>of</strong> <strong>measures</strong> additional benefits had not been<br />

identified. Third, <strong>the</strong> cost-effectiveness <strong>of</strong> an <strong>in</strong>dividual measure is highly dependent on <strong>the</strong><br />

selected discount rate used <strong>in</strong> <strong>the</strong> calculation.<br />

Also <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> US led to <strong>the</strong> assumptions on key<br />

factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> different <strong>world</strong><br />

regions. From <strong>the</strong> assessment <strong>in</strong> <strong>the</strong> US, it was clear that <strong>the</strong> production, <strong>in</strong>dustry structure and<br />

average weighted <strong>energy</strong> price were <strong>the</strong> most important factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> potential <strong>of</strong><br />

(cost-effective) <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>. With <strong>the</strong>se key factors, <strong>the</strong> analysis was expanded to<br />

assess<strong>in</strong>g <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. For <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>the</strong> effects <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong><br />

<strong>measures</strong> <strong>in</strong> different <strong>world</strong> regions were estimated us<strong>in</strong>g <strong>the</strong> key factors and adaptation <strong>of</strong> data<br />

with <strong>the</strong> PPP-<strong>in</strong>dex. The results <strong>of</strong> <strong>the</strong>se estimations are provided <strong>in</strong> Table 22.<br />

63


Table 22 Summary <strong>of</strong> results <strong>of</strong> <strong>energy</strong> sav<strong>in</strong>gs and carbon reductions <strong>in</strong> <strong>steel</strong> <strong>in</strong>dustry for different <strong>world</strong><br />

regions <strong>in</strong> 2006<br />

Region<br />

Total f<strong>in</strong>al <strong>energy</strong><br />

sav<strong>in</strong>gs<br />

% <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong><br />

consumption<br />

Total cost-effective<br />

<strong>energy</strong> sav<strong>in</strong>gs<br />

% <strong>of</strong> total f<strong>in</strong>al <strong>energy</strong><br />

consumption<br />

total carbon<br />

reductions<br />

% <strong>of</strong> total carbon<br />

emissions<br />

total cost-effective<br />

carbon reductions<br />

% <strong>of</strong> total carbon<br />

emissions<br />

64<br />

United<br />

States<br />

Western<br />

European<br />

Union<br />

Former<br />

Soviet<br />

Union<br />

India Ch<strong>in</strong>a Japan<br />

Central<br />

and<br />

South<br />

America<br />

385 756 620 215 2170 548 200<br />

33% 27% 19% 14% 23% 28% 16%<br />

300 568 421 166 1513 402 148<br />

26% 20% 13% 11% 16% 21% 12%<br />

8 14 12 5 38 11 5<br />

27% 21% 16% 13% 18% 24% 15%<br />

6 11 9 4 28 8 4<br />

22% 17% 12% 10% 13% 18% 12%<br />

The use <strong>of</strong> <strong>the</strong> PPP-<strong>in</strong>dex was only applied to a certa<strong>in</strong> extent, <strong>in</strong> all calculations 30%. World<br />

regions for which <strong>the</strong> PPP-<strong>in</strong>dex deviates by great extent from <strong>the</strong> US, <strong>the</strong> effects <strong>of</strong> us<strong>in</strong>g 0% or<br />

60% <strong>of</strong> <strong>the</strong> PPP-<strong>in</strong>dex <strong>in</strong>crease <strong>the</strong> cost-effective sav<strong>in</strong>gs by about 5-10%. However, for o<strong>the</strong>r<br />

<strong>world</strong> regions with a PPP-<strong>in</strong>dex close to 1, <strong>the</strong> effects <strong>of</strong> this <strong>in</strong>dex are m<strong>in</strong>or, if at all affected.<br />

From <strong>the</strong> comb<strong>in</strong>ed effects for <strong>the</strong> different <strong>world</strong> regions, and an assumption for o<strong>the</strong>r <strong>world</strong><br />

regions which had not been selected for analysis, <strong>the</strong> results for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry could be<br />

obta<strong>in</strong>ed. Apparently, <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> all over <strong>the</strong> <strong>world</strong> resulted <strong>in</strong><br />

a total potential <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> about 5.7 EJ <strong>in</strong> 2006 (5.3-6.0 EJ when uncerta<strong>in</strong>ties are<br />

<strong>in</strong>cluded). The cost-effective <strong>energy</strong> sav<strong>in</strong>gs for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are about 4.1 EJ <strong>in</strong> 2006<br />

(3.5-5.4 EJ, uncerta<strong>in</strong>ties <strong>in</strong>cluded). The total potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is about<br />

23% <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> f<strong>in</strong>al <strong>energy</strong> consumption. The cost-effective <strong>energy</strong> sav<strong>in</strong>gs add up to<br />

about 16% <strong>of</strong> <strong>the</strong> f<strong>in</strong>al <strong>energy</strong> consumption.<br />

For carbon mitigation <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> all over <strong>the</strong> <strong>world</strong> resulted<br />

<strong>in</strong> a total potential carbon reduction <strong>of</strong> about 107 MtC <strong>in</strong> 2006 (101-113 MtC, uncerta<strong>in</strong>ties<br />

<strong>in</strong>cluded). The cost-effective carbon reduction for <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry are about 82 MtC <strong>in</strong><br />

2006 (76-101 MtC, uncerta<strong>in</strong>ties <strong>in</strong>cluded). The total potential for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> is<br />

about 20% <strong>of</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> carbon emission mitigation. The cost-effective carbon reductions<br />

add up to about 15% <strong>of</strong> <strong>the</strong> total carbon emissions.


11 DISCUSSION<br />

A short discussion is <strong>in</strong>cluded on <strong>the</strong> value <strong>of</strong> this research, based on <strong>the</strong> work and <strong>in</strong>itially set<br />

goals <strong>of</strong> this research. For example, it is likely <strong>the</strong> results <strong>of</strong> this research will not be an accurate<br />

representation <strong>of</strong> <strong>the</strong> actual <strong>energy</strong> sav<strong>in</strong>g potential <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> <strong>in</strong>dustry. This would<br />

<strong>in</strong>dicate <strong>the</strong> report is not useful basis for decisions mak<strong>in</strong>g for policy makers. This section<br />

should provide <strong>in</strong>sight <strong>in</strong> possible flaws <strong>in</strong> <strong>the</strong> results <strong>of</strong> our calculations and suggestions for<br />

fur<strong>the</strong>r research.<br />

First, because <strong>of</strong> <strong>the</strong> short time span and <strong>the</strong> availability <strong>of</strong> data, this research can only provide<br />

an estimation <strong>of</strong> <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>in</strong> <strong>the</strong> <strong>world</strong> <strong>steel</strong> production. To ga<strong>in</strong> a more accurate<br />

assessment, more detailed <strong>in</strong>formation for <strong>the</strong> application <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>in</strong> each <strong>of</strong> <strong>the</strong><br />

<strong>world</strong> regions should be <strong>in</strong>cluded <strong>in</strong> any fur<strong>the</strong>r research. Whereas now, only for <strong>the</strong> US a<br />

thorough <strong>in</strong>vestigation to <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> was made. Based on <strong>the</strong> comparison with<br />

IEA data <strong>in</strong> paragraph 8.4.2, apparently <strong>the</strong>se estimations are similar to f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> o<strong>the</strong>r<br />

researches on <strong>the</strong> same topic.<br />

As mentioned <strong>in</strong> <strong>the</strong> background, one <strong>of</strong> <strong>the</strong> goals <strong>of</strong> this research was to provide new data for<br />

<strong>in</strong>tegrated assessment models (IAM), for example on climate change. These models are used by<br />

policy makers to make more accurate decisions on future policies regard<strong>in</strong>g climate change. If<br />

one would assume <strong>the</strong> IAM are now lack<strong>in</strong>g <strong>in</strong> data on <strong>energy</strong> efficient technology, this research<br />

would provide reasoned estimations on <strong>the</strong> potential <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> for <strong>the</strong> <strong>steel</strong><br />

<strong>in</strong>dustry. Even though <strong>the</strong>se are estimations, if one would assess global climate change, data<br />

from this report can be used.<br />

If one would for example analyse or make decsions for a specific <strong>world</strong> region, this report only<br />

provides estimations. As mentioned <strong>in</strong> our gaps <strong>in</strong> knowledge, <strong>the</strong> assessment <strong>of</strong> <strong>energy</strong><br />

<strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> selected <strong>world</strong> regions is done by chang<strong>in</strong>g a few key factors, but<br />

us<strong>in</strong>g <strong>the</strong> same set <strong>of</strong> <strong>measures</strong> as for <strong>the</strong> US. Because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> available data on some<br />

regions, <strong>the</strong>se estimation might already provide a useful estimation. But for regions like <strong>the</strong><br />

India or Ch<strong>in</strong>a more detailed reports on <strong>energy</strong> use and carbon emissions can be found <strong>in</strong><br />

different sources (Schumacher, 1998; Hasanbeigi, 2011)<br />

All <strong>of</strong> <strong>the</strong>se discussion po<strong>in</strong>ts need to be taken <strong>in</strong>to account for fur<strong>the</strong>r research <strong>in</strong> <strong>the</strong> subject.<br />

What was ma<strong>in</strong>ly found is, <strong>the</strong> lack <strong>of</strong> data required to enhance <strong>the</strong> results for <strong>the</strong> <strong>world</strong> <strong>steel</strong><br />

<strong>in</strong>dustry, was <strong>the</strong> major problem for a proper assessment. By <strong>in</strong>clud<strong>in</strong>g more regions and<br />

f<strong>in</strong>d<strong>in</strong>g out which factors, next to <strong>the</strong> factors we have described are most important, <strong>in</strong> <strong>the</strong><br />

future more accurate analysis should be possible. And as Xu, 2010 already mentioned, <strong>the</strong> data<br />

on <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> should be cont<strong>in</strong>uously updated.<br />

65


12 REFERENCES<br />

AISI - American Iron and Steel Institute, 2010. 2010 Annual Statistical Report, Wash<strong>in</strong>gton, DC:<br />

AISI.<br />

ANEEL - Agência Nacional de energia eléctrica, Brasil, 2007, Tarifas Médias por Classe de<br />

Consumo, http://www.aneel.gov.br/aplicacoes/tarifamedia/Default.cfm Accessed Sep 2012.<br />

BP, 2012, Coal Prices,<br />

http://www.bp.com/sectiongenericarticle800.do?categoryId=9037186&contentId=7068650,<br />

Accessed Sep 2012.<br />

Choudhury, R., A.K. Bhaktavatsalam, Energy <strong>in</strong><strong>efficiency</strong> <strong>of</strong> Indian <strong>steel</strong> <strong>in</strong>dustry—Scope for<br />

<strong>energy</strong> conservation, Centre for Energy Studies, Indian Institute <strong>of</strong> Technology, May 1998.<br />

Cooney, S., 2007, Steel: Prices and policy issues, CRS Report <strong>of</strong> Congress, Oct 2007, Cornell<br />

University ILR School<br />

DECC, 2012, Department <strong>of</strong> Energy and Climate Change, Energy Price statistics,<br />

http://www.decc.gov.uk/en/content/cms/statistics/<strong>energy</strong>_stats/prices/prices.aspx Accessed<br />

Sep 2012<br />

DOE - Department <strong>of</strong> Energy, Advanced Energy Manufactur<strong>in</strong>g <strong>of</strong>fice, technology deployment,<br />

Steel,<br />

http://www1.eere.<strong>energy</strong>.gov/manufactur<strong>in</strong>g/tech_deployment/partners/by_<strong>in</strong>dustry_list.cfm<br />

?<strong>in</strong>dustry=Steel, Accessed Mar 2012<br />

DOE - Department <strong>of</strong> Energy,2011, Industrial Technologies Program, Energy-Intensive<br />

Processes Portfolio: adress<strong>in</strong>g Key Energy Challanges Across US Industry, DOE/EE-0389<br />

Energy Information Adm<strong>in</strong>istration (EIA), 1995, Emissions <strong>of</strong> Greenhouse Gases <strong>in</strong> <strong>the</strong> United<br />

States 1987-1994, ftp://www.eia.doe.gov/environment/057394.pdf<br />

Energy Information Adm<strong>in</strong>istration (EIA), 2009, 2006 Manufactur<strong>in</strong>g Energy Consumption<br />

Survey on manufactur<strong>in</strong>g and <strong>in</strong>dustrial <strong>energy</strong> uses and costs. The United States Department <strong>of</strong><br />

Energy, Wash<strong>in</strong>gton, DC. http://www.eia.doe.gov/emeu/mecs/contents.html, Accessed July<br />

2012.<br />

EPA, Environmental protection agency (2010), Available and emerg<strong>in</strong>g technologies for reduc<strong>in</strong>g<br />

greenhouse gas emissions from <strong>the</strong> iron and <strong>steel</strong> <strong>in</strong>dustry, Policies and programs division.<br />

Gosh, A., Chatterjee, A., 2008, Ironmak<strong>in</strong>g and Steelmak<strong>in</strong>g, <strong>the</strong>ory and practice, Prentice-Hall<br />

<strong>of</strong> India, New-Delhi, ISBN: 978-81-203-3289-8<br />

Hasanbeigi, A., Price, L., Aden, N., A comparison <strong>of</strong> iron and <strong>steel</strong> production <strong>energy</strong> use and<br />

<strong>energy</strong> <strong>in</strong>tensity <strong>in</strong> Ch<strong>in</strong>a and <strong>the</strong> US, Lawrence Berkeley National Laboratory, 2011<br />

IEA - International Energy Agency, 2010, Natural gas <strong>in</strong> India, work<strong>in</strong>g paper.<br />

IEA - International Energy Agency, 2007, Track<strong>in</strong>g Industrial Energy Efficiency and CO2<br />

emissions, OECD/IEA, Paris, ISBN 978-92-64-03016-9<br />

IEA - International Energy Agency, 2006, Fact Sheet: Energy Technology Perspectives:<br />

Scenarios & Strategies to 2050, http://www.iea.org/papers/2006/<strong>in</strong>dustry.pdf Accessed Feb<br />

2012<br />

67


IMF, International Monetary Fund, 2012, Natural gas monthly price,<br />

http://www.<strong>in</strong>dexmundi.com/commodities/?commodity=natural-gas&months=120, Accessed<br />

Sep 2012<br />

IPCC – Intergovernmental Panel on Climate Change, 2007, Contribution <strong>of</strong> Work<strong>in</strong>g Group III<br />

to <strong>the</strong> Fourth Assessment Report <strong>of</strong> <strong>the</strong> Intergovernmental Panel on Climate Change, 2007,<br />

Cambridge University Press, Cambridge, United K<strong>in</strong>gdom and New York, NY, USA<br />

Iron and Steelmaker (I&SM), 1997a. Iron & Steelmaker’s 1997 Blast Furnace Roundup, Iron and<br />

Steelmaker 24(8): 24-2<br />

Iron and Steelmaker (I&SM), 1997b. Electric Arc Furnace Roundup – United States, Iron and<br />

Steelmaker 24(5): 20-39.<br />

Kim, J., Worrell, E., 2002, International comparison <strong>of</strong> CO2 emission trends <strong>in</strong> <strong>the</strong> iron and <strong>steel</strong><br />

<strong>in</strong>dustry, Energy Policy 30, 827–838<br />

Levi, M.D., 2005, International F<strong>in</strong>ance, 4 th edition, Routledge, New York, USA, ISBN 0-415-<br />

30899-2<br />

Meier, A.K., 1984, The cost <strong>of</strong> conserved <strong>energy</strong> as an <strong>in</strong>vestment statistic, Sixth Annual<br />

Industrial Energy Technology Conference, Volume 2, Houston, TX, USA, April 1984.<br />

OECD, 2012, Organization for Economic Co-operation and Development, OECD.StatExtract,<br />

PPPs and Exchange rates, http://stats.oecd.org/Index.aspx?datasetcode=SNA_TABLE4,<br />

accessed Sep 2012.<br />

Henderson, 2011, Natural gas prices <strong>in</strong> Russia – towards export netback?, Oxford <strong>in</strong>stitute for<br />

<strong>energy</strong> studies.<br />

Schumacher, K., J. Sathaye, India’s Iron and Steel Industry: Productivity, Energy Efficiency and<br />

Carbon Emissions, Lawrence Berkeley National Laboratory, October 1998.<br />

Sidorenko, A., 2010, Electricity <strong>in</strong> Russia, Chapter 16, p. 345-368, Apec Publications.<br />

Voest Alp<strong>in</strong>e Industrieanlagenbau (VAI), 1997. FUCHS Shaft Furnaces, The Power, The<br />

Performance, The Pr<strong>of</strong>it, L<strong>in</strong>z, Austria: Voest Alp<strong>in</strong>e Industrieanlagenbau Gmbh.<br />

World Bank, 2006, Official exchange rate,<br />

http://data.<strong>world</strong>bank.org/<strong>in</strong>dicator/PA.NUS.FCRF?page=1, Accessed Oct 2012<br />

Word<strong>steel</strong> Association, 2007, CO2 emission data collection, user guide, version 5.1, Brussels<br />

World<strong>steel</strong> Association, 2010, Steel Statistical Yearbook 2010, World<strong>steel</strong> Committee on<br />

Economic Studies, Brussels<br />

World<strong>steel</strong> Association, 2012, Crude <strong>steel</strong> production 2011,<br />

http://www.<strong>world</strong><strong>steel</strong>.org/dms/<strong>in</strong>ternetDocumentList/<strong>steel</strong>-stats/2011/Crude-<strong>steel</strong>production-2011/document/2011%20<strong>steel</strong>%20updated%20Feb2012.pdf,<br />

Accessed Mar 2012.<br />

Worrell, E., Neelis, M., 2007, World best practice <strong>energy</strong> <strong>in</strong>tensity values for selected <strong>in</strong>dustrial<br />

sectors, Lawrence Berkeley National Laboratory, LBNL-62806<br />

Worrell, E., Price, L., Mart<strong>in</strong>, N., 2001, Energy <strong>efficiency</strong> and carbon dioxide emissions<br />

reduction opportunities <strong>in</strong> <strong>the</strong> US iron and <strong>steel</strong> sector, Energy 26, p. 513-536<br />

68


Xu, T., J. Sathaye, C. Galitsky, Development <strong>of</strong> Bottom-up Representation <strong>of</strong> Industrial Energy<br />

Efficiency Technologies <strong>in</strong> Integrated Assessment Models for <strong>the</strong> Iron and Steel Sector,<br />

Lawrence Berkeley National Laboratory, August 2010.<br />

Xu, T., T. Galama, J. Sathaye. 2012. Bottom-up Representation <strong>of</strong> Energy Efficiency<br />

Technologies as Climate Mitigation Measures for <strong>the</strong> US Iron and Steel Sector from 1994 to<br />

2010, US EPA Report, Lawrence Berkeley national Laboratory: Berkeley, CA.<br />

69


Appendix A. Overall Measures 1<br />

The <strong>in</strong>vestment cost and operational benefits for <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong>, have been based<br />

on <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Worrell, 1999, where <strong>the</strong> costs are expressed <strong>in</strong> 1994$. The costs have been<br />

adjusted for <strong>the</strong> years 2006 <strong>in</strong> <strong>the</strong> database with <strong>the</strong> GDP price <strong>in</strong>dex (BEA, 2011). The appendix<br />

however only shows <strong>the</strong> 1994$ costs. In case it is explicitly mentioned <strong>the</strong> measure is only for<br />

2006 and 2010, <strong>the</strong> costs are <strong>in</strong> 2006$. If mentioned <strong>the</strong> measure is only for 2010 <strong>the</strong> costs are<br />

<strong>in</strong> 2010$.<br />

Preventative ma<strong>in</strong>tenance <strong>in</strong>volves tra<strong>in</strong><strong>in</strong>g personnel to be attentive to <strong>energy</strong> consumption<br />

and <strong>efficiency</strong>. Successful programs have been launched <strong>in</strong> many <strong>in</strong>dustries (Caffal, 1995;<br />

Nelson, 1994). Examples <strong>of</strong> good housekeep<strong>in</strong>g <strong>in</strong> <strong>steel</strong> mak<strong>in</strong>g <strong>in</strong>clude timely clos<strong>in</strong>g <strong>of</strong> furnace<br />

doors to reduce heat leakage and reduction <strong>of</strong> material wastes <strong>in</strong> <strong>the</strong> shap<strong>in</strong>g steps. We estimate<br />

<strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> 2% <strong>of</strong> total <strong>energy</strong> use, or fuel sav<strong>in</strong>gs <strong>of</strong> 0.45 GJ/t <strong>of</strong> product and electricity<br />

sav<strong>in</strong>gs <strong>of</strong> 0.04 GJe/t <strong>of</strong> product, based on sav<strong>in</strong>gs experienced at an <strong>in</strong>tegrated <strong>steel</strong> plant <strong>in</strong> The<br />

Ne<strong>the</strong>rlands (Worrell et al., 1993). We assume m<strong>in</strong>imal <strong>in</strong>vestment costs for good housekeep<strong>in</strong>g<br />

options ($0.01/t), although tra<strong>in</strong><strong>in</strong>g and <strong>in</strong>-house <strong>in</strong>formation are needed, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased<br />

annual operat<strong>in</strong>g costs. Based on good housekeep<strong>in</strong>g projects at Rover (a large car manufactur<strong>in</strong>g<br />

plant <strong>in</strong> <strong>the</strong> UK), we estimate annual operat<strong>in</strong>g costs <strong>of</strong> about $11,000 per plant, or approximately<br />

$0.02/t crude <strong>steel</strong> (Caffal, 1995). We apply this measure to all <strong>in</strong>tegrated and secondary<br />

<strong>steel</strong>mak<strong>in</strong>g <strong>in</strong> <strong>the</strong> US <strong>in</strong> 1994.<br />

Energy monitor<strong>in</strong>g and management systems. This measure <strong>in</strong>cludes site <strong>energy</strong><br />

management systems for optimal <strong>energy</strong> recovery and distribution between various processes and<br />

plants. A wide variety <strong>of</strong> such <strong>energy</strong> management systems exist (Worrell et al., 1997; Caffal,<br />

1995). Based on experience at <strong>the</strong> Hoogovens <strong>steel</strong> mill (The Ne<strong>the</strong>rlands) and British Steel (Port<br />

Talbot, UK), we estimate <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> 0.5%, or fuel sav<strong>in</strong>gs <strong>of</strong> 0.12 GJ/t <strong>of</strong> product and<br />

electricity sav<strong>in</strong>gs <strong>of</strong> 0.01 GJe/t <strong>of</strong> product, for US <strong>in</strong>tegrated sites (Farla et al., 1998; ETSU, 1992).<br />

We estimate <strong>the</strong> costs <strong>of</strong> such a system to be approximately $0.15/t crude <strong>steel</strong> based on <strong>the</strong> costs<br />

for <strong>the</strong> system <strong>in</strong>stalled at Hoogovens ($0.8M) (Farla et al., 1998). This measure is applied to<br />

100% <strong>of</strong> US <strong>steel</strong> production facilities.<br />

Variable speed drive: flue gas control, pumps, fans. From <strong>the</strong> assessment <strong>of</strong> <strong>the</strong> DOE<br />

<strong>the</strong> amount <strong>of</strong> <strong>energy</strong> saved by <strong>the</strong> application <strong>of</strong> multiple VFD’s on fans and pumps <strong>in</strong> three<br />

<strong>in</strong>tegrated <strong>steel</strong> plants, <strong>the</strong> total <strong>energy</strong> sav<strong>in</strong>gs from this measure are about 0.01 GJ/tonne <strong>of</strong><br />

<strong>steel</strong>. Based on two estimated <strong>in</strong>vestment costs from <strong>the</strong> <strong>energy</strong> audits, <strong>the</strong> <strong>in</strong>vestment costs are<br />

estimated at 0.7$/tonne <strong>of</strong> <strong>steel</strong>. S<strong>in</strong>ce VFD’s cannot be implemented cost efficient <strong>in</strong> all <strong>steel</strong><br />

plants, <strong>the</strong> application <strong>in</strong> 50% <strong>of</strong> <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong> plants is expected.<br />

Steam system optimization. From <strong>the</strong> assessment <strong>of</strong> <strong>the</strong> DOE <strong>energy</strong> audits <strong>the</strong><br />

implementation <strong>of</strong> a number <strong>of</strong> <strong>measures</strong> to reduce <strong>the</strong> <strong>energy</strong> consumption for <strong>the</strong> steam<br />

system could provide a significant <strong>energy</strong> sav<strong>in</strong>g. At a <strong>steel</strong> f<strong>in</strong>ish<strong>in</strong>g plant <strong>in</strong> <strong>the</strong> US, a<br />

suggestion was made to improve <strong>the</strong> follow<strong>in</strong>g; <strong>in</strong>crease condensate recovery, repair steam<br />

1 Excerpted from Ernst Worrell, Nathan Mart<strong>in</strong>, Lynn Price (1999) Energy Efficiency and Carbon Dioxide Emissions<br />

Reduction Opportunities <strong>in</strong> <strong>the</strong> US Iron and Steel Sector. LBNL Report #41724<br />

71


traps, reduce vented steam, reduce steam leaks and reduce steam demand for space heat<strong>in</strong>g. The<br />

comb<strong>in</strong>ed <strong>energy</strong> sav<strong>in</strong>gs from <strong>the</strong> improvements <strong>of</strong> <strong>the</strong> steam system were 0.28 GJ/tonne <strong>of</strong><br />

<strong>steel</strong>. In o<strong>the</strong>r cases <strong>the</strong> comb<strong>in</strong>ed <strong>energy</strong> sav<strong>in</strong>gs from improv<strong>in</strong>g <strong>the</strong> steam system would lead<br />

to sav<strong>in</strong>gs <strong>of</strong> 0.08 and 0.15 GJ/tonne for respectively an <strong>in</strong>tegrated <strong>steel</strong> plant and a cok<strong>in</strong>g<br />

plant. The latter is estimated from cost sav<strong>in</strong>gs divided by a fuel price <strong>of</strong> $8 per GJ. Where<br />

repair<strong>in</strong>g steam traps would provide <strong>the</strong> largest sav<strong>in</strong>g and repair<strong>in</strong>g steam leaks would provide<br />

<strong>the</strong> least sav<strong>in</strong>g. The assumed <strong>energy</strong> sav<strong>in</strong>g based on <strong>the</strong> DOE assessment is 0.18 GJ/tonne <strong>of</strong><br />

<strong>steel</strong>. The <strong>in</strong>vestement costs needed to improve <strong>the</strong> steam system are estimated at $2/tonne <strong>of</strong><br />

<strong>steel</strong>. The optimization is expected to be implemented <strong>in</strong> 100% <strong>of</strong> <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong> mills,<br />

while for secondary <strong>steel</strong> mills <strong>the</strong> implementation is estimated at 50%.<br />

Air system optimization. Air systems are used throughout <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry. Accord<strong>in</strong>g to<br />

<strong>the</strong> assessment <strong>of</strong> DOE <strong>energy</strong> audits, <strong>the</strong> use <strong>of</strong> some optimizations to this system will lead to<br />

an <strong>energy</strong> sav<strong>in</strong>g <strong>of</strong> 0.01 GJ/ton from analysis <strong>of</strong> a <strong>steel</strong> f<strong>in</strong>ish<strong>in</strong>g and hot roll<strong>in</strong>g plant. The<br />

<strong>measures</strong> <strong>in</strong>clude reduction <strong>of</strong> leaks, reduction <strong>of</strong> plant pressure, replacement <strong>of</strong> open blown<br />

nozzles and shutdown <strong>of</strong> compressors when possible. The <strong>in</strong>vestment cost are estimated at<br />

Increase boiler <strong>efficiency</strong>. From <strong>the</strong> assessment <strong>of</strong> <strong>the</strong> DOE <strong>energy</strong> audits <strong>the</strong> optimization<br />

<strong>of</strong> boilers could potentially <strong>in</strong>crease <strong>the</strong> boiler <strong>efficiency</strong>. By optimiz<strong>in</strong>g <strong>the</strong> oxygen content <strong>in</strong><br />

<strong>the</strong> flue gas, reduc<strong>in</strong>g <strong>the</strong> heat loss and preheat <strong>the</strong> feed water with waste heat, fuel sav<strong>in</strong>gs <strong>of</strong><br />

about 0.02 GJ/tonne can be achieved, estimated from assessments at two different <strong>steel</strong> plants.<br />

The <strong>in</strong>vestment costs are estimated at about $0.3/tonne <strong>of</strong> <strong>steel</strong> from <strong>the</strong> DOE assessment.<br />

Appendix B. Iron Ore Preparation 2<br />

Iron ore is prepared <strong>in</strong> s<strong>in</strong>ter plants where iron ore f<strong>in</strong>es, coke breeze, water treatment plant<br />

sludges, dusts, and limestone (flux) are s<strong>in</strong>tered <strong>in</strong>to an agglomerated material (US DOE, OIT,<br />

1996). In 1994, 12.1 Mt <strong>of</strong> s<strong>in</strong>ter were produced <strong>in</strong> <strong>the</strong> US (AISI, 1996). Fuel consumption for this<br />

process 26 PJ and electricity consumption was 2 PJ result<strong>in</strong>g <strong>in</strong> a primary <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> 2.6<br />

GJ/t s<strong>in</strong>ter.<br />

S<strong>in</strong>ter plant heat recovery. Heat recovery at <strong>the</strong> s<strong>in</strong>ter plant is a means for improv<strong>in</strong>g <strong>the</strong><br />

<strong>efficiency</strong> <strong>of</strong> s<strong>in</strong>ter mak<strong>in</strong>g. The recovered heat can be used to preheat <strong>the</strong> combustion air for <strong>the</strong><br />

burners and to generate high pressure steam which can be run through electricity turb<strong>in</strong>es.<br />

Various systems exist for new s<strong>in</strong>ter plants (e.g. Lurgi EOS process) and exist<strong>in</strong>g plants can be<br />

retr<strong>of</strong>it (Stelco, 1993; Farla et al., 1998). In 1994, only 15% <strong>of</strong> <strong>the</strong> blast furnace feed consisted <strong>of</strong><br />

s<strong>in</strong>ter; <strong>the</strong> rema<strong>in</strong>der <strong>of</strong> <strong>the</strong> feed was composed <strong>of</strong> pellets, pelletized at <strong>the</strong> m<strong>in</strong><strong>in</strong>g site (AISI,<br />

1996). We apply this measure to all exist<strong>in</strong>g s<strong>in</strong>ter plants and estimate <strong>the</strong> fuel sav<strong>in</strong>gs (steam and<br />

coke) associated with production <strong>of</strong> this 12.2 Mt <strong>of</strong> s<strong>in</strong>ter to be 0.55 GJ/t s<strong>in</strong>ter, based on a<br />

retr<strong>of</strong>itted system at Hoogovens <strong>in</strong> The Ne<strong>the</strong>rlands, with <strong>in</strong>creased electricity use <strong>of</strong> 1.5<br />

kWh/tonne s<strong>in</strong>ter (Rengersen et al., 1995). NOx, SOx and particulate emissions are also reduced<br />

2 Two <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> that we do not <strong>in</strong>clude are <strong>the</strong> use <strong>of</strong> higher quality iron ores <strong>in</strong> iron ore preparation<br />

and reduction <strong>of</strong> <strong>the</strong> basicity <strong>of</strong> <strong>the</strong> s<strong>in</strong>ter (Aich<strong>in</strong>ger, 1993). These <strong>measures</strong> are not considered due to lack <strong>of</strong> data on<br />

current implementation and future potential <strong>in</strong> <strong>the</strong> US<br />

72


with this system. The measure has capital costs <strong>of</strong> approximately $3/t s<strong>in</strong>ter (Farla et al. 1998).<br />

We do not estimate costs for new s<strong>in</strong>ter plants s<strong>in</strong>ce it is unlikely that such plants will be built <strong>in</strong><br />

<strong>the</strong> US, due to <strong>the</strong> large <strong>in</strong>vestment required. New iron mak<strong>in</strong>g technologies (discussed below)<br />

aim at <strong>the</strong> use or lump ore or ore f<strong>in</strong>es, <strong>in</strong>stead <strong>of</strong> us<strong>in</strong>g agglomerated ores.<br />

For s<strong>in</strong>ter plants <strong>the</strong> use <strong>of</strong> grade recovery and cascade utilization (GRUC) should provide an<br />

<strong>energy</strong> sav<strong>in</strong>g (Dong, 2010). In this sett<strong>in</strong>g <strong>the</strong> high temperature heat recovered is used for<br />

steam and electricity generation, while lower temperatures are used for dry<strong>in</strong>g and preheat<strong>in</strong>g<br />

operations. Accord<strong>in</strong>g to an application <strong>in</strong> a 3.8 Mtonne per year s<strong>in</strong>ter plant, <strong>the</strong> application <strong>of</strong><br />

<strong>the</strong> GRUC could <strong>in</strong>crease electricity recovery with 15 MW (about 0.12 GJ/tonne s<strong>in</strong>ter) and heat<br />

for direct heat recovery was about 50GJ/hour (about 0.12 GJ/tonne s<strong>in</strong>ter). Compared to <strong>the</strong><br />

previously found results on s<strong>in</strong>ter plant heat recovery this option is not more beneficial <strong>in</strong> terms<br />

<strong>of</strong> f<strong>in</strong>al and primary <strong>energy</strong>. Therefore older date is used still used <strong>in</strong> <strong>the</strong> database.<br />

Reduction <strong>of</strong> air leakage. Reduction <strong>of</strong> air leakages will reduce power losses for <strong>the</strong> fans by<br />

approximately 3-4 kWh/t s<strong>in</strong>ter (Dawson, 1993), and could have a positive effect on <strong>the</strong> heat<br />

recovery equipment. These sav<strong>in</strong>gs may need small <strong>in</strong>vestments for repair <strong>of</strong> <strong>the</strong> exist<strong>in</strong>g<br />

equipment. We estimate <strong>the</strong>se costs at $0.1/t s<strong>in</strong>ter capacity. The reduction <strong>of</strong> air leakage <strong>in</strong> <strong>the</strong><br />

s<strong>in</strong>ter plant should <strong>in</strong>crease <strong>the</strong> productivity as well. At <strong>the</strong> Nagoya works at Nippon Steel <strong>the</strong><br />

productivity was <strong>in</strong>creased by 5%, after a reduction <strong>of</strong> 83% <strong>of</strong> <strong>the</strong> air leakage (Sakaue, 2009). It<br />

is estimated this will decrease <strong>the</strong> operational cost per ton by $0.1/tonne s<strong>in</strong>ter.<br />

Increas<strong>in</strong>g bed depth. Increas<strong>in</strong>g bed depth <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter plant results <strong>in</strong> lower fuel<br />

consumption, improved product quality, and a slight <strong>in</strong>crease <strong>in</strong> productivity. The sav<strong>in</strong>gs amount<br />

to 0.3 kg coke/t s<strong>in</strong>ter per 10 mm bed thickness <strong>in</strong>crease, and an electricity sav<strong>in</strong>gs <strong>of</strong> 0.06 kWh/t<br />

s<strong>in</strong>ter (Dawson, 1993). We assume a bed thickness <strong>of</strong> 550 mm <strong>in</strong> 1994, which can be <strong>in</strong>creased to<br />

650 mm. This will result <strong>in</strong> a fuel sav<strong>in</strong>gs <strong>of</strong> 0.09 GJ/t s<strong>in</strong>ter and an electricity sav<strong>in</strong>gs <strong>of</strong> 0.002<br />

GJ/t s<strong>in</strong>ter. No <strong>in</strong>vestment costs are assumed for this measure.<br />

Improved process control. Improved process controls <strong>in</strong> various systems have resulted <strong>in</strong><br />

<strong>energy</strong> sav<strong>in</strong>gs, and many different control systems have been developed. Based on general<br />

experience with <strong>in</strong>dustrial control and management systems, <strong>the</strong> sav<strong>in</strong>gs may be estimated at 2-<br />

5% <strong>of</strong> <strong>energy</strong> use (Worrell et al., 1997). We conservatively use a figure <strong>of</strong> 2% sav<strong>in</strong>gs or a primary<br />

<strong>energy</strong> sav<strong>in</strong>gs 0.05 GJ/t s<strong>in</strong>ter. Capital costs are assumed to be $0.15/t s<strong>in</strong>ter (See also <strong>the</strong><br />

measure on Energy management and monitor<strong>in</strong>g systems). Improved process control does not<br />

only benefit <strong>the</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> s<strong>in</strong>ter plant, but can also <strong>in</strong>crease <strong>the</strong> productivity <strong>of</strong> <strong>the</strong><br />

s<strong>in</strong>ter plant. Accord<strong>in</strong>g to Siemens-VAI <strong>the</strong> productivity <strong>of</strong> s<strong>in</strong>ter plants can be improved by 12%<br />

by us<strong>in</strong>g improved process control (Siemens-VAI, 2011a). The operational benefits are estimated<br />

at $0.23/tonne s<strong>in</strong>ter. The <strong>in</strong>vestment costs for <strong>the</strong> improved process control are estimated at<br />

$0.25/tonne s<strong>in</strong>ter.<br />

Use <strong>of</strong> waste fuels <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter plant can reduce <strong>the</strong> <strong>energy</strong> demand <strong>in</strong> s<strong>in</strong>ter mak<strong>in</strong>g. The<br />

<strong>energy</strong> demand <strong>in</strong> s<strong>in</strong>ter mak<strong>in</strong>g is met by mix<strong>in</strong>g iron ore with breeze from coke mak<strong>in</strong>g and gas<br />

<strong>in</strong> burners. S<strong>in</strong>ter mak<strong>in</strong>g is also used to "scavenge" byproducts such as millscale and ironconta<strong>in</strong><strong>in</strong>g<br />

dusts and sludges. It is possible to use waste oils (especially from cold roll<strong>in</strong>g mills)<br />

which are currently landfilled (US DOE, OIT, 1996), however <strong>the</strong> use will be limited by emission<br />

73


limits due to <strong>in</strong>complete combustion. A well-monitored combustion process could reduce <strong>the</strong> use<br />

<strong>of</strong> gas <strong>in</strong> <strong>the</strong> burners (Cores et al., 1996). It is difficult to estimate <strong>the</strong> sav<strong>in</strong>gs for this measure,<br />

s<strong>in</strong>ce it depends on <strong>the</strong> composition and quantity <strong>of</strong> lubricants and <strong>the</strong> <strong>in</strong>stalled gas clean-up<br />

system at <strong>the</strong> s<strong>in</strong>ter plant. However, based on a survey <strong>of</strong> European mills, <strong>the</strong> average sludge<br />

production from cold roll<strong>in</strong>g mills is 1 kg/t rolled material. The variation can be large, though,<br />

rang<strong>in</strong>g from 0.01 to 10 kg/t <strong>steel</strong>. The oil content is less than 10% and <strong>the</strong> sludge conta<strong>in</strong>s around<br />

45-55% iron. While this does not represent much <strong>energy</strong>, it is beneficial to process this sludge <strong>in</strong><br />

<strong>the</strong> s<strong>in</strong>ter plant to recover <strong>the</strong> iron losses. About 50% <strong>of</strong> <strong>the</strong> sludge is recycled <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter plant<br />

<strong>in</strong> Europe. Along with <strong>the</strong> oil recovery sludges, <strong>the</strong>re are also oil, creases, and emulsions produced<br />

at a rate <strong>of</strong> 1.3 kg/t rolled <strong>steel</strong> (Roederer and Gourtsoyannis, 1996). Assum<strong>in</strong>g that <strong>the</strong> high<br />

heat<strong>in</strong>g value <strong>of</strong> <strong>the</strong>se oils is <strong>the</strong> same as that <strong>of</strong> heavy fuel oil, total oil production is estimated to<br />

be around 1.2 kg oil/t rolled <strong>steel</strong> (assum<strong>in</strong>g 7.5% <strong>in</strong> oil recovery sludges and 90% <strong>in</strong> oils, creases,<br />

and emulsions). We assume a calorific value <strong>of</strong> 34 MJ/kg, or an <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> 41 MJ/t rolled<br />

<strong>steel</strong>, or 0.18 GJ/t s<strong>in</strong>ter. (Cores et al., 1996). This is measure is applied to <strong>in</strong>tegrated plants with<br />

s<strong>in</strong>ter plants on site (allow<strong>in</strong>g for waste recovery), or 74% <strong>of</strong> <strong>the</strong> roll<strong>in</strong>g sludges and oils (1.68 PJ).<br />

Bethlehem <strong>steel</strong> has developed a waste recovery and waste <strong>in</strong>jection system, at a cost <strong>of</strong> about $25<br />

M to recycle 200 ktons <strong>of</strong> various materials (Schriefer, 1997). We estimate <strong>the</strong> tonnage <strong>of</strong> waste<br />

fuels recycled to be 4,800 tons at an estimated production <strong>of</strong> 4 Mt rolled <strong>steel</strong>. With an estimated<br />

s<strong>in</strong>ter production <strong>of</strong> 3 Mt, this results <strong>in</strong> a cost <strong>of</strong> $0.20/t s<strong>in</strong>ter. Also <strong>the</strong> use <strong>of</strong> oil <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter<br />

plant is m<strong>in</strong>imized <strong>in</strong> order for <strong>the</strong> s<strong>in</strong>ter plant to produce consistently accord<strong>in</strong>g to <strong>the</strong><br />

‘Guidel<strong>in</strong>es on Best Available Techniques (BAT) for S<strong>in</strong>ter Plants <strong>in</strong> <strong>the</strong> Iron Industry’ (F<strong>in</strong>lay,<br />

2004).<br />

Replacement <strong>of</strong> coke by sunflower seed husks has already been <strong>in</strong>vestigated, it was concluded<br />

<strong>the</strong> substitution <strong>of</strong> 10% coke by husks is feasible. The use <strong>of</strong> sunflower seed husks would mean<br />

part <strong>of</strong> <strong>the</strong> <strong>energy</strong> use <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter plant is from renewables. Moreover, <strong>the</strong> productivity is<br />

expected to <strong>in</strong>crease by 6.4% by us<strong>in</strong>g sunflower seed husks (Ooi, 2008). There is however no<br />

<strong>in</strong>dication this would improve <strong>the</strong> <strong>energy</strong> balance.<br />

Improve charg<strong>in</strong>g method<br />

Limonite (brown iron ore) used as a raw material for s<strong>in</strong>ter<strong>in</strong>g is <strong>in</strong>expensive, but it decreases<br />

<strong>the</strong> productivity <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g process because it comb<strong>in</strong>es strongly with water and has a<br />

coarse particle size. These problems can be overcome by us<strong>in</strong>g an improved charg<strong>in</strong>g method.<br />

The system adopts a drum chute and a segregation slit wire. The purpose <strong>of</strong> <strong>the</strong> drum chute is to<br />

reduce <strong>the</strong> height difference (dropp<strong>in</strong>g difference) <strong>in</strong> material charg<strong>in</strong>g, while <strong>the</strong> segregation<br />

slit wire controls <strong>the</strong> particle size distribution. Specifically, because a constant particle size is<br />

ma<strong>in</strong>ta<strong>in</strong>ed, <strong>the</strong> permeability <strong>of</strong> <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g mixture is <strong>in</strong>creased, result<strong>in</strong>g <strong>in</strong> improved<br />

s<strong>in</strong>ter<strong>in</strong>g <strong>efficiency</strong>, and <strong>the</strong> material return ratio due to poor s<strong>in</strong>ter<strong>in</strong>g is reduced. This system<br />

was developed by a Japanese <strong>steel</strong>maker and has been <strong>in</strong>troduced at all its plants <strong>in</strong> Japan.<br />

Productivity improvement amounts to 5 percent and <strong>energy</strong> consumption due to coke use<br />

decreases by 0.07 MMBtu/ton s<strong>in</strong>ter (0.08 GJ/tonne s<strong>in</strong>ter) compared to a conventional<br />

charg<strong>in</strong>g system (EPA, 2010). The <strong>in</strong>vestment cost <strong>of</strong> this system are estimated to be $2.5 per<br />

tonne, and <strong>the</strong> operational benefits <strong>of</strong> <strong>the</strong> are estimated at $0.1/tonne.<br />

74


Coke Mak<strong>in</strong>g<br />

Currently <strong>the</strong>re are 50 active coke batteries <strong>in</strong> <strong>the</strong> US with a total production <strong>in</strong> 1994 <strong>of</strong> 16.6 Mt<br />

coke (Hogan and Koelble, 1996b). Coke mak<strong>in</strong>g consumed 74 PJ <strong>of</strong> fuel and 2 PJ <strong>of</strong> electricity,<br />

result<strong>in</strong>g <strong>in</strong> a primary specific <strong>energy</strong> consumption <strong>of</strong> 4.9 GJ/t (US DOE, OIT, 1996).<br />

Coal moisture control uses <strong>the</strong> waste heat from <strong>the</strong> coke oven gas to dry <strong>the</strong> coal used for coke<br />

mak<strong>in</strong>g. The moisture content <strong>of</strong> coal varies, but it is generally around 8-9% for good cok<strong>in</strong>g coal<br />

(IISI, 1982). Dry<strong>in</strong>g reduces <strong>the</strong> coal moisture content to a constant 3-5% (Stelco, 1993) which <strong>in</strong><br />

turn reduces fuel consumption <strong>in</strong> <strong>the</strong> coke oven by approximately 0.3 GJ/t. Accord<strong>in</strong>g to Erem<strong>in</strong><br />

(2011) a reduction <strong>in</strong> moisture content <strong>of</strong> 1.1 to 3.5% is possible with pre dry<strong>in</strong>g coal. This is less<br />

than <strong>the</strong> 3-5% assumed by Stelco (1993), <strong>the</strong>refore <strong>the</strong> <strong>energy</strong> benefits are reduced from 0.3<br />

GJ/tonne to 0.22 GJ/tonne. The coal can be dried us<strong>in</strong>g <strong>the</strong> heat content <strong>of</strong> <strong>the</strong> coke oven gas or<br />

o<strong>the</strong>r waste heat sources. Coal moisture control costs for a plant <strong>in</strong> Japan were $21.9/t <strong>of</strong> <strong>steel</strong><br />

(Inuoe, 1995). Based on Japanese coke use data <strong>in</strong> 1990, we assume approximately 450 kg coke/t<br />

<strong>of</strong> crude <strong>steel</strong>, result<strong>in</strong>g <strong>in</strong> coal moisture control costs <strong>of</strong> $49/t coke or $14.7/t crude <strong>steel</strong>. We<br />

apply this measure to 100% <strong>of</strong> US coke production <strong>in</strong> 1994.<br />

Programmed heat<strong>in</strong>g <strong>in</strong>stead <strong>of</strong> conventional constant heat<strong>in</strong>g <strong>of</strong> <strong>the</strong> coke ovens ensures<br />

optimization <strong>of</strong> <strong>the</strong> fuel gas supply to <strong>the</strong> oven at <strong>the</strong> various stages <strong>of</strong> <strong>the</strong> cok<strong>in</strong>g process and<br />

reduces <strong>the</strong> heat content <strong>of</strong> <strong>the</strong> coke before charg<strong>in</strong>g (IISI, 1982). Use <strong>of</strong> programmed heat can<br />

lead to fuel sav<strong>in</strong>gs <strong>of</strong> about 10% (IISI, 1982). Accord<strong>in</strong>g to Gongfa (2010) <strong>the</strong> use <strong>of</strong> <strong>in</strong>telligent<br />

process control <strong>in</strong> cokemak<strong>in</strong>g can reduce <strong>the</strong> <strong>energy</strong> requirement by 2-3%. In case <strong>of</strong><br />

cokemak<strong>in</strong>g this would be about 0.15-0.22 GJ/tonne coke. Small capital costs regard<strong>in</strong>g <strong>the</strong><br />

computer control system for <strong>the</strong> coke oven are <strong>in</strong>curred. We estimate <strong>the</strong>se costs to be $75K per<br />

coke battery for a large <strong>energy</strong> management system (derived from Caffal, 1995), which is<br />

equivalent to approximately $0.23/t coke for <strong>the</strong> cok<strong>in</strong>g capacity <strong>of</strong> <strong>the</strong> <strong>in</strong>tegrated <strong>steel</strong> mills<br />

(exclud<strong>in</strong>g merchant coke producers). This measure is also applied to 100% <strong>of</strong> US coke production<br />

<strong>in</strong> 1994.<br />

Variable speed drive coke oven gas compressors can be <strong>in</strong>stalled to reduce compression<br />

<strong>energy</strong>. Coke oven gas is generated at low pressures and is pressurized for transport <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal<br />

gas grid. However, <strong>the</strong> coke oven gas flows vary over time due to <strong>the</strong> cok<strong>in</strong>g reactions. We assume<br />

that <strong>the</strong> compressors are driven with steam turb<strong>in</strong>es, s<strong>in</strong>ce we lack <strong>in</strong>formation on <strong>the</strong> coke oven<br />

gas compressors <strong>in</strong> <strong>the</strong> US, and that this measure can <strong>the</strong>refore be applied to all US coke mak<strong>in</strong>g<br />

facilities. Install<strong>in</strong>g a variable speed drive system on a compressor at a coke plant <strong>in</strong> The<br />

Ne<strong>the</strong>rlands saved 6-8 MJ/t coke, at an <strong>in</strong>vestment <strong>of</strong> $0.3/t coke (Farla et al., 1998).<br />

Coke dry quench<strong>in</strong>g is an alternative to <strong>the</strong> traditional wet quench<strong>in</strong>g <strong>of</strong> <strong>the</strong> coke, and this<br />

process reduces dust emissions, improves <strong>the</strong> work<strong>in</strong>g climate, and recovers <strong>the</strong> sensible heat <strong>of</strong><br />

<strong>the</strong> coke. Dry coke quench<strong>in</strong>g is typically implemented as an environmental control technology.<br />

Various systems are used <strong>in</strong> Brazil, F<strong>in</strong>land, Germany, Japan, and Taiwan (IISI, 1993), but all<br />

essentially recover <strong>the</strong> heat <strong>in</strong> a vessel where <strong>the</strong> coke is quenched with an <strong>in</strong>ert gas (nitrogen).<br />

The heat is used to produce steam (approximately 400-500 kg steam/t), equivalent to 800-1200<br />

MJ/t coke (Stelco, 1993; Dungs and Tschirner, 1994). Accord<strong>in</strong>g to <strong>the</strong> exergy analysis <strong>of</strong> Errera<br />

(2000) <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs, <strong>in</strong> steam, are 1,632 MJ/tonne <strong>of</strong> coke. The steam can be used on site<br />

75


or to generate electricity. For new coke plants <strong>the</strong> costs are estimated to be $50/t coke, based on<br />

<strong>the</strong> construction costs <strong>of</strong> a recently built plant <strong>in</strong> Germany (Nashan, 1992). However, it is very<br />

unlikely that new coke plants will be constructed <strong>in</strong> <strong>the</strong> US, so we use retr<strong>of</strong>it capital costs <strong>in</strong> <strong>the</strong><br />

calculation. Retr<strong>of</strong>it capital costs depend strongly on <strong>the</strong> lay-out <strong>of</strong> <strong>the</strong> coke plant and can be very<br />

high, up to $70 to $90/GJ saved (Worrell et al., 1993). We assume $70/t coke. Operat<strong>in</strong>g and<br />

ma<strong>in</strong>tenance costs are estimated to <strong>in</strong>crease by $0.5/t coke. The actual operational sav<strong>in</strong>gs from<br />

us<strong>in</strong>g CDQ are about $7.6/tonne, used for <strong>the</strong> 2006 and 2010 <strong>measures</strong> (Hsun L<strong>in</strong>, 2009). We<br />

apply this measure to all US coke mak<strong>in</strong>g facilities.<br />

Appendix C. Iron Mak<strong>in</strong>g - Blast Furnace<br />

Iron mak<strong>in</strong>g is <strong>the</strong> most <strong>energy</strong>-<strong>in</strong>tensive step <strong>in</strong> <strong>in</strong>tegrated <strong>steel</strong> mak<strong>in</strong>g. In 1994 <strong>the</strong>re were 40<br />

blast furnaces <strong>in</strong> <strong>the</strong> US, produc<strong>in</strong>g 49.3 Mt <strong>of</strong> iron (AISI, 1995). Iron mak<strong>in</strong>g consumed 676 PJ<br />

fuel and 4 PJ electricity, result<strong>in</strong>g <strong>in</strong> a primary specific <strong>energy</strong> consumption <strong>of</strong> 13.9 GJ/t.<br />

One <strong>of</strong> <strong>the</strong> ma<strong>in</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> iron mak<strong>in</strong>g stage is <strong>the</strong> <strong>in</strong>jection <strong>of</strong> fuels <strong>in</strong>to<br />

<strong>the</strong> blast furnace, especially <strong>the</strong> <strong>in</strong>jection <strong>of</strong> pulverized coal (PCI). Pulverized coal <strong>in</strong>jection<br />

replaces <strong>the</strong> use <strong>of</strong> coke, reduc<strong>in</strong>g coke production and hence sav<strong>in</strong>g <strong>energy</strong> consumed <strong>in</strong> coke<br />

mak<strong>in</strong>g (above) and reduc<strong>in</strong>g emissions <strong>of</strong> coke ovens and associated ma<strong>in</strong>tenance costs. Coal<br />

<strong>in</strong>jection has <strong>in</strong>creased <strong>in</strong> recent years due to environmental legislation comb<strong>in</strong>ed with <strong>the</strong> high<br />

average age <strong>of</strong> US coke plants. Clos<strong>in</strong>g <strong>of</strong> old coke plants is lead<strong>in</strong>g to <strong>in</strong>creased coke imports. In<br />

1994 coke was ma<strong>in</strong>ly imported from Japan, Ch<strong>in</strong>a, and Australia (Hogan and Koelble, 1996b).<br />

Increased fuel <strong>in</strong>jection requires <strong>energy</strong> for oxygen <strong>in</strong>jection, coal, and electricity and equipment<br />

to gr<strong>in</strong>d <strong>the</strong> coal. The coal replaces part <strong>of</strong> <strong>the</strong> coke that is used to fuel <strong>the</strong> chemical reactions.<br />

Coke is still used as support material <strong>in</strong> <strong>the</strong> blast furnace. The maximum fuel <strong>in</strong>jection depends<br />

on <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> blast furnace and impact on <strong>the</strong> iron quality (e.g. sulfur). Coal <strong>in</strong>jection is<br />

common practice <strong>in</strong> many European blast furnaces and is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> <strong>the</strong> US to reduce <strong>the</strong><br />

amount <strong>of</strong> coke required. Maximum <strong>the</strong>oretical coal <strong>in</strong>jection rates are around 280-300 kg/t hot<br />

metal. In <strong>the</strong> US <strong>the</strong> coal <strong>in</strong>jection rate varies. A 1994 survey <strong>of</strong> seven blast furnaces <strong>in</strong> <strong>the</strong> US<br />

gave fuel <strong>in</strong>jection rates between 41 and 226 kg/t hot metal (Lanzer and Lungen, 1996). The<br />

highest <strong>in</strong>jection rates, <strong>of</strong> 225 kg/t, have been reached at USX Gary (Schuett et al., 1997). Coke<br />

replacement rates vary between 85% and 100% (Schuett et al., 1997). We assume that 1 kg <strong>of</strong><br />

coke will be replaced by 1.08 kg <strong>of</strong> <strong>in</strong>jection fuel, a replacement rate <strong>of</strong> 92%.<br />

The <strong>in</strong>vestments for coal gr<strong>in</strong>d<strong>in</strong>g equipment are estimated to be $50-55/t coal <strong>in</strong>jected (Farla et<br />

al., 1998). O&M costs show a net decrease due to reduced coke purchase costs and/or reduced<br />

ma<strong>in</strong>tenance costs <strong>of</strong> exist<strong>in</strong>g coke batteries, which is partly <strong>of</strong>fset by <strong>the</strong> <strong>in</strong>creased costs <strong>of</strong> oxygen<br />

<strong>in</strong>jection and <strong>in</strong>creased ma<strong>in</strong>tenance <strong>of</strong> <strong>the</strong> blast furnace and coal gr<strong>in</strong>d<strong>in</strong>g equipment. We<br />

estimate <strong>the</strong> reduced operation costs on <strong>the</strong> basis <strong>of</strong> 1994 prices <strong>of</strong> steam coal and cok<strong>in</strong>g coal to<br />

be $15/t (IEA, 1995). This is a low estimate, as cost sav<strong>in</strong>gs <strong>of</strong> up to $33/t are possible, result<strong>in</strong>g <strong>in</strong><br />

a net reduction <strong>of</strong> 4.6% <strong>of</strong> <strong>the</strong> costs <strong>of</strong> hot metal production (Oshnock, 1995a).<br />

Pulverized coal <strong>in</strong>jection to 130 kg/t hot metal. In this measure, <strong>the</strong> average coal <strong>in</strong>jection<br />

rate is <strong>in</strong>creased from <strong>the</strong> current average <strong>of</strong> 2 kg/t hot metal (US DOE, OIT, 1996) to 130 kg/t hot<br />

metal for all blast furnaces. This net <strong>in</strong>crease <strong>of</strong> 128 kg/t hot metal leads to fuel sav<strong>in</strong>gs <strong>of</strong> 0.77<br />

GJ/t hot metal with capital costs <strong>of</strong> $7/t hot metal (Farla et al., 1998). Operation costs will<br />

76


decrease by $2/t hot metal (IEA, 1995). 3 This measure is applied to 80% <strong>of</strong> all blast furnaces;<br />

<strong>in</strong>jection <strong>of</strong> natural gas (see below) is applied to <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 20%. Injection <strong>of</strong> pulverized coal<br />

may lead to reduced capacity utilization <strong>of</strong> <strong>the</strong> blast furnace (Hanes, 1999). Hence, <strong>the</strong> economic<br />

benefits may vary by plant.<br />

Pulverized coal <strong>in</strong>jection to 225 kg/t hot metal. In this measure, <strong>the</strong> <strong>in</strong>jection rate is<br />

<strong>in</strong>creased to 225 kg/t hot metal (as reached at USX Gary blast furnace 13) for <strong>the</strong> large volume<br />

blast furnaces only (def<strong>in</strong>ed as those with production rates <strong>of</strong> 2.3-3.6 Mt/year, which is<br />

approximately 30% <strong>of</strong> total production) (Schuett et al., 1997). This leads to fuel sav<strong>in</strong>gs <strong>of</strong> 0.57<br />

GJ/t hot metal, with an extra <strong>in</strong>vestment <strong>of</strong> $5.2/t hot metal and reduced operat<strong>in</strong>g costs <strong>of</strong> $1/t<br />

hot metal. Accord<strong>in</strong>g to a ma<strong>the</strong>matical model <strong>of</strong> de Castro, 2010, <strong>the</strong> amount <strong>of</strong> pulverized coal<br />

can be <strong>in</strong>creased to 280 kg/thm.<br />

Injection <strong>of</strong> natural gas. 4 This measure is only applied to a portion <strong>of</strong> medium sized furnaces,<br />

def<strong>in</strong>ed as those with production rates <strong>of</strong> 1.3-2.3 Mt/year, represent 20% <strong>of</strong> total furnaces.<br />

Currently, coal is seen as <strong>the</strong> favorable <strong>in</strong>jection fuel because <strong>of</strong> its low price. Injection <strong>of</strong> natural<br />

gas is an alternative. The blast furnace productivity is <strong>in</strong>creased by about 25-30% when us<strong>in</strong>g<br />

pulverized coal <strong>in</strong>jection (de Castro, 2010). Injection <strong>of</strong> natural gas toge<strong>the</strong>r with pulverized coal<br />

should provide even fur<strong>the</strong>r benefits as productivity <strong>in</strong>crease <strong>of</strong> about 30-35% is expected.<br />

Maximum <strong>in</strong>jection rates are lower than for coal (Oshnock, 1995b). Replacement rates for natural<br />

gas vary between 0.9 and 1.15 kg natural gas/kg coke (Oshnock, 1995b). Natural gas <strong>in</strong>jection tests<br />

by <strong>the</strong> Gas Research Institute show a maximum <strong>in</strong>jection rate <strong>of</strong> 130-150 kg/t hot metal, with<br />

estimated <strong>in</strong>vestment costs <strong>of</strong> $4-5/t hot metal (Anonymous, 1995). Assum<strong>in</strong>g a replacement rate<br />

<strong>of</strong> 1kg natural gas/kg coke, sav<strong>in</strong>gs from replac<strong>in</strong>g 140 kg <strong>of</strong> coke are estimated to be 0.9 GJ/t hot<br />

metal. We assume that operat<strong>in</strong>g costs will decrease similar to that seen <strong>in</strong> <strong>the</strong> lower PCI <strong>in</strong>jection<br />

measure ($2/t hot metal).<br />

Injection <strong>of</strong> oil up to 130 kg/thm<br />

The <strong>in</strong>jection <strong>of</strong> oil <strong>in</strong> <strong>the</strong> blast could reduce <strong>the</strong> use <strong>of</strong> coke by 1.2 tons for every 1 ton <strong>of</strong> oil that<br />

is <strong>in</strong>jected <strong>in</strong> <strong>the</strong> blast furnace (EPA, 2010). The amount <strong>of</strong> oil can be <strong>in</strong>creased up to 130<br />

kg/tonne <strong>of</strong> crude <strong>steel</strong>. The use <strong>of</strong> waste oil would be a preferred option for blast furnace<br />

<strong>in</strong>jection. The reduction <strong>in</strong> <strong>energy</strong> is based upon <strong>the</strong> reduction for pulverized coal and gas<br />

<strong>in</strong>jection and is estimated at about 0.85 GJ/tonne hot metal. The reduced operational cost due<br />

to <strong>the</strong> reduced use <strong>of</strong> coke ovens is estimated at $2/tonne <strong>of</strong> hot metal. The <strong>in</strong>vestment costs for<br />

oil <strong>in</strong>jection are estimated at $5/tonne <strong>of</strong> hot metal for <strong>the</strong> adaptations to <strong>the</strong> tuyere.<br />

3 Costs are calculated as follows: 128kg coal/t hot metal = 0.128t coal/t hot metal * $55 capital costs = $7/t hot metal.<br />

4 The implementation level <strong>of</strong> this measure will <strong>in</strong>teract with <strong>the</strong> level <strong>of</strong> pulverized coal <strong>in</strong>jection. Follow<strong>in</strong>g fur<strong>the</strong>r<br />

research, we may revise both this and <strong>the</strong> pulverized coal <strong>in</strong>jection measure to reflect an <strong>in</strong>creased emphasis on <strong>the</strong><br />

use <strong>of</strong> natural gas over coal due to CO2 concerns. At this time, we do not have adequate data on actual levels <strong>of</strong> natural<br />

gas <strong>in</strong>jection. O<strong>the</strong>r fuels can also be <strong>in</strong>jected, but we have not <strong>in</strong>cluded any due to lack <strong>of</strong> data. Injection <strong>of</strong> plastic wastes<br />

has been tested at Stahlwerke Bremen <strong>in</strong> Germany at rates <strong>of</strong> 30 kg/t hot metal (Janz and Weiss, 1996). Chlor<strong>in</strong>e content<br />

(due to PVC) may lead to diox<strong>in</strong> formation, mak<strong>in</strong>g efficient flue gas control equipment necessary.<br />

77


Top pressure recovery turb<strong>in</strong>es (wet type) are used to recover <strong>the</strong> pressure <strong>in</strong> <strong>the</strong> furnace. 5<br />

Although <strong>the</strong> pressure difference is low, <strong>the</strong> large gas volumes make <strong>the</strong> recovery economically<br />

feasible. The pressure difference is used to produce 15-40 kWh/t hot metal (Stelco, 1993).<br />

Turb<strong>in</strong>es are <strong>in</strong>stalled at blast furnaces <strong>world</strong>wide, especially <strong>in</strong> areas where electricity prices are<br />

relatively high (e.g. Western Europe, Japan). The standard turb<strong>in</strong>e has a wet gas cleanup system.<br />

The top gas pressure <strong>in</strong> <strong>the</strong> US is generally too low for economic power recovery (I&SM, 1997a&b).<br />

A few large blast furnaces (represent<strong>in</strong>g 20% <strong>of</strong> production) have sufficiently high pressure.<br />

Accord<strong>in</strong>g to Oda, 2007, <strong>the</strong> use <strong>of</strong> TRT can be implemented <strong>in</strong> a large amount <strong>of</strong> <strong>the</strong> <strong>in</strong>tegrated<br />

<strong>steel</strong> plants. In Japan and Korea <strong>the</strong> application is estimated at 100%, while for <strong>the</strong> US <strong>the</strong><br />

application is estimated at only 5% (Oda, 2007). The electricity generated by <strong>the</strong> TRT is<br />

expected to generate 48 kWh/tonne <strong>of</strong> hot metal. Future upgrades <strong>of</strong> blast furnaces might lead to<br />

<strong>in</strong>creas<strong>in</strong>g top pressures to improve productivity. We assume a power recovery <strong>of</strong> 30 kWh/t hot<br />

metal <strong>in</strong> <strong>the</strong> US for 1994 and 2002, with typical <strong>in</strong>vestments <strong>of</strong> about $20/t hot metal (Inoue,<br />

1995) for 20% <strong>of</strong> <strong>the</strong> 1994 US blast furnace capacity.<br />

Recovery <strong>of</strong> blast furnace gas dur<strong>in</strong>g charg<strong>in</strong>g <strong>of</strong> <strong>the</strong> blast furnace is designed to recover <strong>the</strong><br />

1.5% <strong>of</strong> gas that is lost dur<strong>in</strong>g charg<strong>in</strong>g. A recovery system has been developed and <strong>in</strong>stalled by<br />

Hoogovens <strong>in</strong> The Ne<strong>the</strong>rlands. The sav<strong>in</strong>gs are estimated to be 66 MJ/t hot metal at a cost <strong>of</strong><br />

$0.3/t hot metal (Farla et al., 1998). We assume that such systems can be <strong>in</strong>stalled <strong>in</strong> 60% <strong>of</strong> US<br />

blast furnace capacity based on an estimate <strong>of</strong> <strong>the</strong> number <strong>of</strong> bell-type charg<strong>in</strong>g mechanisms <strong>in</strong><br />

<strong>the</strong> US<br />

Hot blast stove automation can help to reduce <strong>the</strong> <strong>energy</strong> consumption <strong>of</strong> <strong>the</strong> stoves, <strong>in</strong>crease<br />

<strong>the</strong> reliability <strong>of</strong> <strong>the</strong> operation, <strong>in</strong>crease stove life-time, and optimize gas mix (Beentjes et al., 1989;<br />

Derycke et al., 1990; Kowalski et al., 1990). The <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> such systems are estimated to be<br />

between 5% (Beentjes et al., 1989) and 12 to 17% (Derycke et al., 1990). Based on <strong>the</strong> high fuel<br />

consumption <strong>of</strong> hot blast stoves <strong>in</strong> <strong>the</strong> US (US DOE, OIT, 1996) we assume sav<strong>in</strong>gs <strong>of</strong> 370 MJ/t<br />

hot metal (Derycke et al., 1990). The <strong>in</strong>stallation <strong>of</strong> a hot blast stove automation system at Sidmar,<br />

Gent (Belgium) had a payback <strong>of</strong> two months (Derycke et al., 1990). We assume an <strong>in</strong>vestment<br />

cost <strong>of</strong> $0.3/t hot metal, to be implemented <strong>in</strong> all small blast furnaces, or 60% <strong>of</strong> <strong>the</strong> total US blast<br />

furnace capacity (equivalent to 30.3 Mt <strong>in</strong> 1994). We assume that all blast furnaces with capacities<br />

over 4500t hot metal/day have already <strong>in</strong>stalled automatic control systems.<br />

Recuperator hot blast stove. Hot blast stoves are used to heat <strong>the</strong> combustion air <strong>of</strong> <strong>the</strong> blast<br />

furnace. The exit temperature <strong>of</strong> <strong>the</strong> hot blast stove flue gases is approximately 250°C. The heat<br />

can be recovered to preheat <strong>the</strong> combustion air <strong>of</strong> <strong>the</strong> stoves. Various recovery systems have been<br />

developed and implemented (Stelco, 1993). Fuel sav<strong>in</strong>gs vary between 80 and 85 MJ/t hot metal<br />

(Farla et al., 1998; Stelco, 1993). We assume sav<strong>in</strong>gs <strong>of</strong> 80 MJ/t hot metal. The costs <strong>of</strong><br />

recuperation systems are high and depend strongly on <strong>the</strong> size <strong>of</strong> <strong>the</strong> stoves (i.e. <strong>the</strong> blast furnace).<br />

We estimate <strong>the</strong> costs to be $18-20/GJ saved (Farla et al., 1998), equivalent to $1.4/t hot metal.<br />

5 Top pressure recovery turb<strong>in</strong>es (dry type) use a dry gas clean up system which raises <strong>the</strong> turb<strong>in</strong>e <strong>in</strong>let temperature,<br />

<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> power recovery by about 25-30% (Stelco, 1993). However, <strong>the</strong> system is more expensive, estimated at 28<br />

US$/t hot metal (Inoue, 1995). Due to <strong>the</strong> high costs, we assume that this system will not be implemented on exist<strong>in</strong>g<br />

blast furnaces <strong>in</strong> <strong>the</strong> US <strong>in</strong> <strong>the</strong> near term.<br />

78


An efficient hot blast stove can run without <strong>the</strong> need for natural gas. We apply this measure to<br />

100% <strong>of</strong> 1994 US blast furnaces.<br />

Improved blast furnace control systems have been developed <strong>in</strong> Japan and Europe that<br />

provide improved control over systems currently used <strong>in</strong> Canada (Stelco, 1993) and presumably <strong>in</strong><br />

<strong>the</strong> US A successful control system has been <strong>in</strong>stalled at Rautaruukki Steel Works <strong>in</strong> Raahe,<br />

F<strong>in</strong>land, reduc<strong>in</strong>g total fuel use to 440-450 kg/t hot metal (Stelco, 1993), and <strong>in</strong>creas<strong>in</strong>g<br />

productivity and flexibility (Pisila et al., 1995). British Steel has developed an expert system for<br />

blast furnace control (Fitzgerald, 1992). We estimate <strong>the</strong> sav<strong>in</strong>gs <strong>of</strong> improved blast furnace control<br />

strategies at half <strong>of</strong> <strong>the</strong> sav<strong>in</strong>gs reached at Rautaruukki, i.e. 0.4 GJ/t hot metal (Pisila et al., 1995),<br />

with <strong>the</strong> o<strong>the</strong>r half attributed to charge material upgrad<strong>in</strong>g. Capital costs are estimated to be<br />

$0.5M per blast furnace. With 40 blast furnaces and a comb<strong>in</strong>ed capacity <strong>of</strong> 55.5 Mt this is<br />

equivalent to $0.36/t hot metal (Hogan and Koelble, 1996a). No large changes <strong>in</strong> operat<strong>in</strong>g costs<br />

are expected. We apply this measure to 50% <strong>of</strong> 1994 US blast furnaces.<br />

Appendix D. Iron Mak<strong>in</strong>g – Basic Oxygen Furnace<br />

Direct reduced iron (DRI), hot briquetted iron (HBI,) and iron carbide are all alternative iron<br />

mak<strong>in</strong>g processes (McAloon, 1994). Because <strong>of</strong> <strong>the</strong> small production quantities (<strong>in</strong> <strong>the</strong> reference<br />

year 1994) we do not discuss <strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> alternative iron mak<strong>in</strong>g processes<br />

separately. In 1994 only one producer (Georgetown Steel) produced 480 kt DRI (Midrex, 1995),<br />

us<strong>in</strong>g a gas-based Midrex process built <strong>in</strong> 1971. The <strong>energy</strong> consumption <strong>of</strong> a state-<strong>of</strong>-<strong>the</strong>-art<br />

Midrex-unit is 10 to 11 GJ/t iron and 110 kWh/t (Midrex, 1993). DRI is produced through <strong>the</strong><br />

reduction <strong>of</strong> iron ore pellets below <strong>the</strong> melt<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> iron. DRI is ma<strong>in</strong>ly used as a high<br />

quality iron <strong>in</strong>put <strong>in</strong> electric arc furnace (EAF) plants. The US <strong>steel</strong> <strong>in</strong>dustry also imports DRI<br />

from countries <strong>in</strong> Lat<strong>in</strong> America. New DRI plants are be<strong>in</strong>g constructed <strong>in</strong> Alabama (a mothballed<br />

plant built orig<strong>in</strong>ally <strong>in</strong> 1975 <strong>in</strong> Scotland) and <strong>in</strong> Louisiana (a new Midrex Megamod module) and<br />

o<strong>the</strong>r plants have been announced. A new alternative iron production process, <strong>the</strong> iron carbide<br />

process, has been pioneered by Nucor which has one plant operat<strong>in</strong>g <strong>in</strong> Tr<strong>in</strong>idad and ano<strong>the</strong>r<br />

plant scheduled to be built <strong>in</strong> Texas. The grow<strong>in</strong>g production by EAF plants <strong>in</strong> <strong>the</strong> US, high scrap<br />

prices, and <strong>the</strong> need for high quality <strong>in</strong>puts due to <strong>the</strong> expansion <strong>of</strong> EAF producers <strong>in</strong> <strong>the</strong> flat <strong>steel</strong><br />

market will <strong>in</strong>crease <strong>the</strong> future demand for alternative iron <strong>in</strong>puts.<br />

Steelmak<strong>in</strong>g - Basic Oxygen Furnace (BOF)<br />

In basic oxygen furnace (BOF) <strong>steel</strong> mak<strong>in</strong>g a charge <strong>of</strong> molten iron and scrap <strong>steel</strong> along with<br />

some o<strong>the</strong>r additives (manganese and fluxes) is heated and ref<strong>in</strong>ed to produce crude <strong>steel</strong>. BOF<br />

crude <strong>steel</strong> production <strong>in</strong> 1994 was 55.3 Mt with fuel and electricity consumption <strong>of</strong> 19 PJ and 6<br />

PJ, respectively. Primary <strong>energy</strong> <strong>in</strong>tensity for this process step <strong>in</strong> our base year (1994) was 0.7<br />

GJ/t.<br />

BOF gas and sensible heat recovery (suppressed combustion) is <strong>the</strong> s<strong>in</strong>gle most <strong>energy</strong>sav<strong>in</strong>g<br />

process improvement <strong>in</strong> this process step, mak<strong>in</strong>g <strong>the</strong> BOF process a net <strong>energy</strong> producer.<br />

By reduc<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> air enter<strong>in</strong>g over <strong>the</strong> convertor, <strong>the</strong> CO is not converted to CO2. The<br />

sensible heat <strong>of</strong> <strong>the</strong> <strong>of</strong>f-gas is first recovered <strong>in</strong> a waste heat boiler, generat<strong>in</strong>g high pressure<br />

steam. The gas is cleaned and recovered. The total sav<strong>in</strong>gs vary between 535 and 916 MJ/t <strong>steel</strong>,<br />

depend<strong>in</strong>g on <strong>the</strong> way <strong>the</strong> steam is recovered (Stelco, 1993). Suppressed combustion reduces dust<br />

79


emissions and s<strong>in</strong>ce <strong>the</strong> metal content <strong>of</strong> <strong>the</strong> dust is high, about 50% <strong>of</strong> <strong>the</strong> dust can be recycled <strong>in</strong><br />

<strong>the</strong> s<strong>in</strong>ter plant (Stelco, 1993). Accord<strong>in</strong>g to Li (2010) <strong>the</strong> se <strong>of</strong> heat recovery on <strong>the</strong> BOF can<br />

recover up to 12 kWh/tonne electricity. The costs will depend on <strong>the</strong> need for extra gas holders.<br />

Suppressed combustion is very common <strong>in</strong> <strong>in</strong>tegrated <strong>steel</strong> plants <strong>in</strong> Europe and Japan. In <strong>the</strong> US<br />

no BOF gas seems to be recovered (US DOE, OIT, 1996; Hanes, 1999), so we apply this measure to<br />

100% <strong>of</strong> US BOF <strong>steel</strong> mak<strong>in</strong>g. We assume an <strong>energy</strong> recovery rate <strong>of</strong> 916 MJ/t crude <strong>steel</strong> (Stelco,<br />

1993), with estimated capital costs <strong>of</strong> 22$/t crude <strong>steel</strong>, based on plants <strong>in</strong> Japan (Inoue, 1995)<br />

and The Ne<strong>the</strong>rlands (Worrell et al., 1993).<br />

Variable speed drive on ventilation fans. The BOF process is basically a batch process. The<br />

volumes <strong>of</strong> flue gases vary widely over time, mak<strong>in</strong>g variable speed drives an option. Large fans<br />

are used <strong>in</strong> <strong>the</strong> BOF plant to control air quality. At Hoogovens <strong>the</strong> use <strong>of</strong> variable speed drives has<br />

been shown to save power (Worrell et al., 1993) <strong>in</strong> <strong>the</strong> BOF, reduc<strong>in</strong>g <strong>the</strong> power demand by<br />

approximately 20%, or 0.9 kWh/t crude <strong>steel</strong> (Farla et al., 1998). Accord<strong>in</strong>g to <strong>the</strong> assessment <strong>of</strong><br />

DOE <strong>energy</strong> audits <strong>the</strong> use <strong>of</strong> VFD’s on fans can save less than 0.01 GJ/tonne <strong>of</strong> <strong>steel</strong>. This<br />

confirms <strong>the</strong> estimated <strong>energy</strong> sav<strong>in</strong>g <strong>of</strong> about 0.9 kWh/tonne <strong>steel</strong>. With total costs <strong>of</strong> $1M<br />

(1988) <strong>the</strong> <strong>in</strong>vestment costs are $0.2/t crude <strong>steel</strong> (Farla et al., 1998). We assume that such<br />

variable speed drives could be used <strong>in</strong> all US BOF <strong>steel</strong> mak<strong>in</strong>g facilities.<br />

Appendix E. Secondary Steelmak<strong>in</strong>g - Electric Arc Furnace (EAF)<br />

Electric arc furnace or secondary <strong>steel</strong> mak<strong>in</strong>g <strong>in</strong>volves <strong>the</strong> production <strong>of</strong> <strong>steel</strong> from scrap metal<br />

which is melted and ref<strong>in</strong>ed us<strong>in</strong>g electricity <strong>in</strong> an electric arc furnace (US DOE, OIT, 1996).<br />

Electric arc furnaces are on average smaller capacity compared to blast furnace/BOF capacity and<br />

use less <strong>energy</strong>. In 1994 <strong>the</strong>re were 122 secondary <strong>steel</strong> mills with 226 electric arc furnaces. EAF<br />

<strong>steel</strong> production <strong>in</strong> 1994 was 35.9 Mt and <strong>energy</strong> consumption for <strong>the</strong> furnaces was 6 PJ fuel and<br />

62 PJ <strong>of</strong> electricity, reflect<strong>in</strong>g a primary <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> 5.5 GJ/t.<br />

Improved process control (neural networks) can help to reduce electricity consumption<br />

beyond that achieved through classical control systems. For example, neural networks or “fuzzy<br />

logic” systems analyze data and emulate <strong>the</strong> best controller. For EAFs, <strong>the</strong> first “fuzzy logic”<br />

control systems have been developed us<strong>in</strong>g current, power factor and power use to control <strong>the</strong><br />

electrodes <strong>in</strong> <strong>the</strong> bath (Staib and Bliss, 1995). The average power sav<strong>in</strong>gs are estimated to be up to<br />

8% (or 38 kWh/t), with an average <strong>in</strong>crease <strong>in</strong> productivity <strong>of</strong> 9-12% and reduced electrode<br />

consumption <strong>of</strong> 25% (Staib and Bliss, 1995). The actual sav<strong>in</strong>gs depend on <strong>the</strong> scrap used and <strong>the</strong><br />

furnace operation. Furnace ma<strong>in</strong>tenance costs are reduced as well. We assume an average<br />

<strong>efficiency</strong> improvement <strong>of</strong> 30 kWh/t (or 0.1 GJ/t). In 1994, advanced control systems were<br />

<strong>in</strong>stalled at 16 furnaces <strong>in</strong> <strong>the</strong> US (Kimmerl<strong>in</strong>g, 1997), with a total capacity <strong>of</strong> 5.8 Mt (equivalent to<br />

9% <strong>of</strong> <strong>the</strong> US EAF capacity <strong>in</strong> 1994). The capital and commission<strong>in</strong>g costs are estimated to be<br />

$250,000 per furnace, with annual costs sav<strong>in</strong>gs at roughly $1/t (Kimmerl<strong>in</strong>g, 1997). S<strong>in</strong>ce <strong>the</strong><br />

average capacity <strong>of</strong> EAF plants was 260 kt/year <strong>in</strong> 1994, we estimate <strong>the</strong> capital costs to be<br />

$0.95/t. The measure is assumed to be applicable for 90% <strong>of</strong> <strong>the</strong> US EAF capacity.<br />

In a more recent study <strong>of</strong> model<strong>in</strong>g an EAF, <strong>the</strong> optimal controls <strong>of</strong> an EAF will reduce <strong>the</strong><br />

electric <strong>energy</strong> use by more than 20%. The model had a mean error <strong>of</strong> 5.22% when compared to<br />

real data (Ferretti, 2006). The model is a <strong>the</strong>oretical model, so actual application is not<br />

80


guaranteed. Badische Stahl Eng<strong>in</strong>eer<strong>in</strong>g found sav<strong>in</strong>gs can be reached with <strong>the</strong> Virtual Lance<br />

Burner systems (VLB). VLB systems allow automatic operation <strong>in</strong>clud<strong>in</strong>g free programm<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> operation and totally free adjustment <strong>of</strong> oxygen and gas. They have been <strong>in</strong>stalled <strong>in</strong> a total<br />

<strong>of</strong> 40 EAF facilities; an average sav<strong>in</strong>g <strong>of</strong> 40 kWh/tonne (0.14 GJ/tonne) was measured. For<br />

2006 an 2010 <strong>the</strong>refore an updated sav<strong>in</strong>g <strong>of</strong> 0.14 GJ/tonne is used. Also <strong>the</strong> power-on-time <strong>of</strong><br />

<strong>the</strong> furnaces was reduced by 5.2 m<strong>in</strong>utes, where <strong>the</strong> average was about 48 m<strong>in</strong>utes (Opferman,<br />

2008). No updates on <strong>the</strong> operational or <strong>in</strong>vestment costs have been found. It is expected<br />

<strong>in</strong>stallation cost have changed apart from usual price <strong>in</strong>dex <strong>in</strong>crease.<br />

Flue gas monitor<strong>in</strong>g and control us<strong>in</strong>g variable speed drives can reduce <strong>the</strong> <strong>energy</strong> use for<br />

<strong>the</strong> flue gas fans, reduc<strong>in</strong>g <strong>the</strong> heat losses <strong>in</strong> <strong>the</strong> flue gas (Stockmeyer et al., 1990; Walli, 1991;<br />

Worrell et al., 1997). The flue gas flow varies over time, which makes <strong>the</strong> use <strong>of</strong> variable speed<br />

drives possible. Flue gas VSDs have been <strong>in</strong>stalled <strong>in</strong> various countries (e.g. Germany, UK). The<br />

electricity sav<strong>in</strong>gs are estimated to be 15 kWh/t (Stockmeyer et al., 1990), with a payback period <strong>of</strong><br />

2 to 3 years (Walli, 1991; Worrell et al., 1997). We estimate <strong>the</strong> capital <strong>in</strong>vestments to be $2/t, and<br />

apply this measure to all furnaces with a size <strong>of</strong> 100 t or larger, equivalent to 50% <strong>of</strong> <strong>the</strong> US EAF<br />

capacity.<br />

Tenova <strong>in</strong>stalled its Goodfellow EFSOP® system <strong>in</strong> a 120ton EAF at CMC <strong>steel</strong> <strong>in</strong> Sequ<strong>in</strong>, TX.<br />

The use <strong>of</strong> this <strong>of</strong>f gas based control system lead to a decrease <strong>in</strong> gas and electricity use <strong>of</strong><br />

respectively 9.23 kWh/ton (0.01 GJ/tonne) and 0.03 GJ/tonne and would <strong>in</strong>crease productivity<br />

by 0.03%. The control system resulted <strong>in</strong> a $3.02 per ton overall sav<strong>in</strong>gs on <strong>energy</strong> and<br />

<strong>in</strong>creased yield (Maiolo, 2006). These updated figures will be used for <strong>the</strong> 2006 and 2010<br />

database.<br />

Ultra high power transformers. Transformer losses can be as high as 7% <strong>of</strong> <strong>the</strong> electrical<br />

<strong>in</strong>puts (CMP, 1992). The losses will depend ma<strong>in</strong>ly on <strong>the</strong> siz<strong>in</strong>g and age <strong>of</strong> <strong>the</strong> transformer. When<br />

replac<strong>in</strong>g <strong>the</strong> transformer it is possible to convert furnace operation to ultra high power,<br />

<strong>in</strong>creas<strong>in</strong>g productivity, as well as reduc<strong>in</strong>g <strong>energy</strong> losses. Ultra high power furnaces are those<br />

with a transformer capacity <strong>of</strong> over 700 kVA/t heat size. The sav<strong>in</strong>gs are estimated at 1 kWh/t per<br />

MW power <strong>in</strong>crease. The weighted 1994 average transformer capacity is estimated to be 480<br />

kVA/t heat size for all non-ultra high power (UHP) furnaces. In 1994 38% <strong>of</strong> EAF capacity can be<br />

classified as UHP furnaces. Many EAF operators have <strong>in</strong>stalled new transformers and electric<br />

systems to <strong>in</strong>crease <strong>the</strong> power <strong>of</strong> <strong>the</strong> furnaces, e.g. Co-Steel (Raritan, NJ), SMI (Sequ<strong>in</strong>, TX),<br />

Bayou Steel (Laplace, LA) (N<strong>in</strong>neman, 1997). UHP operation might lead to heat fluxes, and<br />

<strong>in</strong>creased refractory wear, mak<strong>in</strong>g cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> furnace panels necessary. This results <strong>in</strong> heat<br />

losses partially <strong>of</strong>fsett<strong>in</strong>g <strong>the</strong> power sav<strong>in</strong>gs. The <strong>in</strong>creased power can be reached by <strong>in</strong>stall<strong>in</strong>g new<br />

transformers or parallel<strong>in</strong>g exist<strong>in</strong>g transformers. The replacement <strong>of</strong> a 93 MVA transformer at<br />

Co-Steel (Raritan, NJ) with one rated at 120-144 MVA <strong>in</strong> 1997 was <strong>in</strong>cluded <strong>in</strong> a project totally<br />

cost<strong>in</strong>g $6.2M (N<strong>in</strong>neman, 1997). This is equivalent to approximately 8.3$/t <strong>steel</strong> produced. This<br />

is a high cost estimate as <strong>the</strong> total project costs <strong>in</strong>cluded o<strong>the</strong>r equipment as well. We assume that<br />

all transformers for medium to large furnaces over 15 years old can be replaced by more efficient<br />

equipment. This is equivalent to approximately 115 furnaces with a capacity <strong>of</strong> 32.2 Mts (40% <strong>of</strong><br />

<strong>the</strong> total EAF capacity). We assume that <strong>the</strong> losses can be reduced to 4%, sav<strong>in</strong>g approximately 14<br />

kWh/t. Transformers are assumed to have a lifetime <strong>of</strong> 15 years. The total <strong>energy</strong> sav<strong>in</strong>gs are<br />

81


estimated to be 17 kWh/t, (14 kWh due to transformer replacement and 3 kWh for upgrad<strong>in</strong>g to<br />

UHP).<br />

Bottom stirr<strong>in</strong>g/stirr<strong>in</strong>g gas <strong>in</strong>jection is done by <strong>in</strong>ject<strong>in</strong>g an <strong>in</strong>ert gas (e.g. argon) <strong>in</strong> <strong>the</strong><br />

bottom <strong>of</strong> <strong>the</strong> EAF, which <strong>in</strong>creases <strong>the</strong> heat transfer <strong>in</strong> <strong>the</strong> melt and <strong>the</strong> <strong>in</strong>teraction between slag<br />

and metal (lead<strong>in</strong>g to an <strong>in</strong>creased liquid metal yield <strong>of</strong> 0.5%) (Schade, 1991). This <strong>in</strong>creased<br />

stirr<strong>in</strong>g <strong>in</strong> <strong>the</strong> bath can lead to electricity sav<strong>in</strong>gs <strong>of</strong> 11 to 22 kWh/t, with annual net production<br />

cost reduction <strong>of</strong> $0.5 to 1.0/t account<strong>in</strong>g for <strong>in</strong>creased labor and argon costs, based on tests at<br />

Lukens Steel Co. <strong>in</strong> 1990 (Schade, 1991). Increased liquid <strong>steel</strong> yield <strong>in</strong>creases <strong>the</strong> net cost sav<strong>in</strong>gs<br />

to $0.9-2.3/t (Jones, 1993). Furnaces with oxygen <strong>in</strong>jection are sufficiently turbulent, reduc<strong>in</strong>g <strong>the</strong><br />

need for <strong>in</strong>ert gas stirr<strong>in</strong>g (see below). We assume power sav<strong>in</strong>gs <strong>of</strong> 20 kWh/t and cost sav<strong>in</strong>gs <strong>of</strong><br />

$1.5/t. No data are available on <strong>the</strong> current application rate <strong>in</strong> US EAFs. We assume potential<br />

application <strong>in</strong> 11% <strong>of</strong> <strong>the</strong> 1994 EAF capacity (i.e. small AC furnaces without oxygen <strong>in</strong>jection). The<br />

capital costs for retr<strong>of</strong>itt<strong>in</strong>g exist<strong>in</strong>g furnaces are estimated to be $0.6/t (1987) (Riley and Sharma,<br />

1987) for <strong>in</strong>creased refractory costs and <strong>in</strong>stall<strong>in</strong>g tuyeres. The annual costs for <strong>in</strong>ert gas purchases<br />

are estimated to be $1.1/t (Riley and Sharma, 1987). The productivity <strong>in</strong>crease (exclud<strong>in</strong>g saved<br />

<strong>energy</strong> costs, <strong>in</strong>clud<strong>in</strong>g saved electrode costs, labor and alloys) is estimated to be $3.1/t (Riley and<br />

Sharma, 1987). The lifetime <strong>of</strong> <strong>the</strong> tuyeres is limited to 100-200 heats (Riley and Sharma, 1987),<br />

or approximately 6 months.<br />

Foamy slag practice helps to reduce <strong>the</strong> heat losses through radiation from <strong>the</strong> melt by<br />

cover<strong>in</strong>g <strong>the</strong> arc and melt surface with foamy slag. Foamy slag can be obta<strong>in</strong>ed by <strong>in</strong>ject<strong>in</strong>g carbon<br />

(granular coal) and oxygen, or lanc<strong>in</strong>g <strong>of</strong> oxygen only. Foamy slag practice seems to be common<br />

with a large number <strong>of</strong> operators <strong>in</strong> <strong>the</strong> US, so <strong>the</strong> potential sav<strong>in</strong>gs are limited. However, not all<br />

operators have implemented <strong>the</strong> practice well. We will assume that all medium to large furnaces<br />

without oxygen <strong>in</strong>jection can still implement this technology. Approximately 30-40% <strong>of</strong> <strong>the</strong> 1994<br />

capacity (Jones, 1998) could still implement foamy slag practice, or improve <strong>the</strong> application. The<br />

net <strong>energy</strong> sav<strong>in</strong>gs (account<strong>in</strong>g for <strong>energy</strong> use for oxygen production) are estimated at 5-7<br />

kWh/tonne <strong>steel</strong> (derived from Adolph et al., 1990). Based on <strong>the</strong> costs <strong>of</strong> <strong>in</strong>stall<strong>in</strong>g oxygen lances<br />

<strong>the</strong> <strong>in</strong>vestments are estimated at approximately 10$/tonne capacity (Jones, 1997b). Foamy slag<br />

practice may also <strong>in</strong>crease productivity through reduced tap-to-tap times, which is equivalent to<br />

an n estimated cost sav<strong>in</strong>g <strong>of</strong> 1.8$/tonne <strong>steel</strong> (derived from Adolph et al., 1990).<br />

Oxy-fuel burners/lanc<strong>in</strong>g can be <strong>in</strong>stalled <strong>in</strong> EAFs to reduce electricity consumption by<br />

substitut<strong>in</strong>g electricity with fuels, <strong>in</strong>crease heat transfer and reduce heat losses (foamy slag, see<br />

above). Typical sav<strong>in</strong>gs range from 2.5 to 4.4 kWh per Nm3 oxygen <strong>in</strong>jected (IISI, 1982; CMP,<br />

1987; Haissig, 1994; Stockmeyer et al., 1990), with common <strong>in</strong>jection rates <strong>of</strong> 18 Nm3/t (IISI,<br />

1982). The <strong>in</strong>jection rate can be <strong>in</strong>creased to 26 m3/t with <strong>in</strong>creased fuel <strong>in</strong>jection. Natural gas<br />

<strong>in</strong>jection is 10 scf/kWh, or 0.3 m3/kWh, (CMP, 1992), with typical sav<strong>in</strong>gs <strong>of</strong> 20-40 kWh/t (Jones,<br />

1996). Approximately 29% <strong>of</strong> <strong>the</strong> 1994 capacity (or 16 Mt <strong>in</strong> medium to large furnaces) has no oxyfuel<br />

burners <strong>in</strong>stalled (I&SM, 1997b). These furnaces have an average power consumption <strong>of</strong> 502<br />

kWh/t. We assume implementation <strong>of</strong> oxy-fuel burners <strong>in</strong> 25% <strong>of</strong> <strong>the</strong> exist<strong>in</strong>g EAF capacity, with<br />

net <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> approximately 40 kWh/t. Modification <strong>in</strong>vestment costs depend on <strong>the</strong><br />

furnace size. With an average EAF size <strong>of</strong> 110 tons, <strong>the</strong> <strong>in</strong>vestments are estimated to be<br />

approximately $4.8/t (Jones, 1997a). The improved heat distribution leads to reduced tap-to-tap<br />

times <strong>of</strong> about 6% (CMP, 1995), lead<strong>in</strong>g to estimated annual cost sav<strong>in</strong>gs <strong>of</strong> $4.0/t (CMP, 1987).<br />

82


Oxygen <strong>in</strong>jection also reduces <strong>the</strong> nitrogen content <strong>of</strong> <strong>the</strong> <strong>steel</strong>, lead<strong>in</strong>g to improved product<br />

quality (Douglas, 1993). We estimate a lifetime <strong>of</strong> 10 years for this measure.<br />

The use <strong>of</strong> gas burners <strong>in</strong> EAF will have significant electricity sav<strong>in</strong>gs, but will require <strong>the</strong> use <strong>of</strong><br />

extra natural gas. The total <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> <strong>the</strong> use <strong>of</strong> natural gas <strong>in</strong>stead <strong>of</strong> electricity are<br />

m<strong>in</strong>or, as <strong>the</strong> substitution is almost 1 kWh for 1 kWh. This was found from an extensive study <strong>in</strong><br />

70 EAF <strong>energy</strong> balances (Kirschen, 2009). Only <strong>in</strong> terms <strong>of</strong> CO2 emissions will <strong>the</strong> substitutions<br />

<strong>of</strong> electric power by natural gas significantly benefit. However determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> CO2<br />

emissions is complex for different EAF and countries (Kirschen, 2009).<br />

Eccentric bottom tapp<strong>in</strong>g (EBT). Eccentric bottom tapp<strong>in</strong>g is applied <strong>in</strong> most modern<br />

furnaces, lead<strong>in</strong>g to slag-free tapp<strong>in</strong>g, shorter tap-to-tap times (<strong>in</strong>creased productivity), reduced<br />

refractory consumption, reduced electrode consumption (0.1 to 0.3 kg/t) and improved ladle life.<br />

EBT helps to reduce <strong>energy</strong> losses and to improved emissions control. The <strong>energy</strong> sav<strong>in</strong>gs are<br />

estimated to be 15 kWh/t (0.05 GJ/t) (CMP, 1992). Reconstruct<strong>in</strong>g an exist<strong>in</strong>g EAF furnace at<br />

Ipsco, Reg<strong>in</strong>a (Saskatchewan, Canada) cost $2.2 M (N<strong>in</strong>neman, 1997). The furnace has an annual<br />

production capacity <strong>of</strong> 688 kt, estimat<strong>in</strong>g <strong>the</strong> retr<strong>of</strong>it costs at $3.2/t capacity. It is assumed that all<br />

new furnaces have EBT. We assume that EBT can be <strong>in</strong>stalled <strong>in</strong> all medium to large capacity EAF<br />

built before 1986 (29.5 Mts), as <strong>the</strong> technology was <strong>in</strong>troduced commercially around 1983 (Teoh,<br />

1989), or equivalent to 52% <strong>of</strong> <strong>the</strong> production.<br />

DC arc furnaces use direct current (DC) <strong>in</strong>stead <strong>of</strong> conventional alternat<strong>in</strong>g current (AC). In a<br />

DC furnace one s<strong>in</strong>gle electrode is used, and <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> vessel serves as <strong>the</strong> anode, result<strong>in</strong>g<br />

<strong>in</strong> improved heat distribution <strong>in</strong> <strong>the</strong> furnace. This reduces <strong>the</strong> power consumption. Ano<strong>the</strong>r major<br />

advantage <strong>of</strong> DC furnaces is <strong>the</strong> reduced tap-to-tap time and electrode consumption (down to 1.2-<br />

1.6 kg/t <strong>steel</strong>) (Macauley and Smailer, 1997; Mueller, 1997), <strong>in</strong>creased refractory life, and<br />

improved stability (Jones,1997b; Stelco,1993). DC technology is applicable to large furnaces (80 -<br />

130 t heat size), and small furnaces are expected to rema<strong>in</strong> AC systems. Larger DC-furnaces<br />

(us<strong>in</strong>g two electrodes) are be<strong>in</strong>g <strong>in</strong>vestigated. The disadvantage <strong>of</strong> DC-systems is <strong>the</strong> up to 10-35%<br />

higher capital costs (Jones, 1997b). Currently, <strong>the</strong> maximum current is restricted due to <strong>the</strong> use <strong>of</strong><br />

one electrode, but UHP DC systems are under development (Palasios and Arana, 1995). In <strong>the</strong> US,<br />

Charter Steel, Florida Steel, Gallat<strong>in</strong> Steel, North Star, and Nucor (Hickman, Berkeley, Norfolk)<br />

are us<strong>in</strong>g DC furnaces. The 1994 average power consumption <strong>of</strong> furnaces over 100 ton heat size is<br />

estimated at 473 kWh/t (430 kWh/ton). The Nucor-plant (Hickman) achieves a consumption <strong>of</strong><br />

368 kWh/t, 36 Nm3 oxygen and 0.5-1.8 kg electrode (Mueller, 1997). The net <strong>energy</strong> sav<strong>in</strong>gs are<br />

estimated at 90 kWh/t (account<strong>in</strong>g for oxygen production at 0.4 kWh/Nm3 (Hendriks, 1994)).<br />

Compared to new AC furnaces <strong>the</strong> sav<strong>in</strong>gs are limited to 10-20 kWh/tonne (Jones, 1998). Based<br />

on a cost-estimate for a 100 ton furnace <strong>the</strong> net extra <strong>in</strong>vestments compared to an AC furnace are<br />

estimated to be $2.7M, or $3.9/t capacity (1991) (CMP, 1991). High <strong>efficiency</strong> AC/DC converters<br />

with constant power control can decrease <strong>the</strong> <strong>energy</strong> use by 2.3% and produce a f<strong>in</strong>ancial ga<strong>in</strong> <strong>of</strong><br />

about 0.7 million euro per year for a 100MW furnace (Ladoux, 2005). Total cost sav<strong>in</strong>gs are<br />

estimated at $2 to $6/ton (CMP, 1991). This <strong>in</strong>cludes electrode cost sav<strong>in</strong>gs, that are<br />

approximately $2/ton <strong>steel</strong> (CMP, 1992). We assume annual cost sav<strong>in</strong>gs (exclud<strong>in</strong>g <strong>energy</strong> costs)<br />

<strong>of</strong> $2.5/t. Introduc<strong>in</strong>g DC furnaces competes with oxygen lanc<strong>in</strong>g, fuel <strong>in</strong>jection, post combustion,<br />

and eccentric bottom tapp<strong>in</strong>g,. We assume a market penetration <strong>of</strong> 15% <strong>of</strong> capacity <strong>in</strong> <strong>the</strong> US, <strong>of</strong><br />

which two-thirds is assumed to use as a tw<strong>in</strong> shell to preheat scrap (see below). AC arc furnaces<br />

83


still enjoy greater popularity than DC arc furnaces because <strong>of</strong> some practical advantages (Jones,<br />

2011).<br />

Scrap preheat<strong>in</strong>g is a technology that can reduce <strong>the</strong> power consumption <strong>of</strong> EAFs through<br />

us<strong>in</strong>g <strong>the</strong> waste heat <strong>of</strong> <strong>the</strong> furnace to preheat <strong>the</strong> scrap charge. Old (bucket) preheat<strong>in</strong>g systems<br />

had various problems, e.g. emissions, high handl<strong>in</strong>g costs, and a relatively low heat recovery rate.<br />

Modern systems have reduced <strong>the</strong>se problems, and are highly efficient. The <strong>energy</strong> sav<strong>in</strong>gs depend<br />

on <strong>the</strong> preheat temperature <strong>of</strong> <strong>the</strong> scrap. Various systems have been developed and are <strong>in</strong> use at<br />

various sites <strong>in</strong> <strong>the</strong> US and Europe, i.e. Con<strong>steel</strong> tunnel-type preheater, Fuchs F<strong>in</strong>ger Shaft, and<br />

Fuchs Tw<strong>in</strong> Shaft. Tw<strong>in</strong> shell furnaces (see below) can also be used as scrap preheat<strong>in</strong>g systems.<br />

All systems can be applied to new constructions, and also to retr<strong>of</strong>it exist<strong>in</strong>g plants.<br />

Con<strong>steel</strong> process consists <strong>of</strong> a conveyor belt with <strong>the</strong> scrap go<strong>in</strong>g through a tunnel, down to <strong>the</strong><br />

EAF through a “hot heel”. Various US plants have <strong>in</strong>stalled a Con<strong>steel</strong> process, i.e. Florida Steel<br />

(now AmeriSteel, Charlotte, NC) New Jersey Steel (Sayreville, NJ) and Nucor (Darl<strong>in</strong>gton, SC),<br />

and one plant <strong>in</strong> Japan. The <strong>in</strong>stallation at New Jersey Steel is a retr<strong>of</strong>it <strong>of</strong> an exist<strong>in</strong>g furnace<br />

(Lahita, 1995). Besides <strong>energy</strong> sav<strong>in</strong>gs, <strong>the</strong> Con<strong>steel</strong>-process results <strong>in</strong> a productivity <strong>in</strong>crease <strong>of</strong><br />

33% (Jones, 1997a), reduced electrode consumption <strong>of</strong> 40% (Jones, 1997a) and reduced dust<br />

emissions (Her<strong>in</strong> and Busbee, 1996). Electricity use can be decreased to approximately 370-390<br />

kWh/t (Her<strong>in</strong> and Busbee, 1996) without supplementary fuel <strong>in</strong>jection <strong>in</strong> retr<strong>of</strong>it situation, while<br />

consumption as low as 340-360 kWh/t have been achieved (Jones, 1997c) <strong>in</strong> new plants. We<br />

estimate <strong>the</strong> electricity sav<strong>in</strong>gs to be 60 kWh/t for retr<strong>of</strong>it. The extra <strong>in</strong>vestments are estimated to<br />

be $2M (1989) for a capacity <strong>of</strong> 400-500,000 ton per year (Bosley and Klesser, 1991), result<strong>in</strong>g <strong>in</strong><br />

specific <strong>in</strong>vestments <strong>of</strong> approximately $4.4 to $5.5/t. The annual costs sav<strong>in</strong>gs due <strong>in</strong>creased<br />

productivity, reduced electrode costs and <strong>in</strong>creased yield are estimated to be $1.9/t (Bosley and<br />

Klesser, 1991). Though, Con<strong>steel</strong> process is less effective compared to <strong>the</strong> shaft furnace because<br />

<strong>of</strong> <strong>the</strong> low heat transfer. The conveyor travels parallel to <strong>the</strong> gas flow not penetrat<strong>in</strong>g <strong>the</strong> scrap<br />

(Toulouevski, 2005). Therefore <strong>the</strong> shaft furnace or tw<strong>in</strong> shell are preferred over <strong>the</strong> Con<strong>steel</strong><br />

process.<br />

FUCHS shaft furnace consists <strong>of</strong> a vertical shaft that channels <strong>the</strong> <strong>of</strong>fgases to preheat <strong>the</strong> scrap.<br />

The scrap can be fed cont<strong>in</strong>uously (4 plants <strong>in</strong>stalled <strong>world</strong>wide) or through a so-called system <strong>of</strong><br />

‘f<strong>in</strong>gers’ (15 plants <strong>in</strong>stalled <strong>world</strong>wide) (VAI, 1997). The optimal recovery system is <strong>the</strong> ‘double<br />

shaft’ furnace (3 plants <strong>in</strong>stalled <strong>world</strong>wide), which can only be applied for new construction. The<br />

Fuchs-systems make almost 100% scrap preheat<strong>in</strong>g possible, lead<strong>in</strong>g to potential <strong>energy</strong> sav<strong>in</strong>gs<br />

<strong>of</strong> 100-120 kWh/t (H<strong>of</strong>er, 1997). The <strong>energy</strong> sav<strong>in</strong>gs depend on <strong>the</strong> scrap used, and <strong>the</strong> degree <strong>of</strong><br />

post-combustion (oxygen levels). In <strong>the</strong> US Fuchs systems have been <strong>in</strong>stalled at North Star<br />

(s<strong>in</strong>gle shaft (1996), K<strong>in</strong>gman, AZ), North Star-BHP (double shaft (1996), Delta, OH),<br />

Birm<strong>in</strong>gham Steel (f<strong>in</strong>ger shaft (1997), Memphis, TN). Two o<strong>the</strong>r F<strong>in</strong>ger shaft processes have been<br />

ordered by Chapparel (TX) and North Star (Youngstown, OH). Carbon monoxide and oxygen<br />

concentrations should be well controlled to reduce <strong>the</strong> danger <strong>of</strong> explosions, as happened at North<br />

Star-BHP. The scrap preheat<strong>in</strong>g systems lead to reduced electrode consumption, yield<br />

improvement <strong>of</strong> 0.25-2% (CMP, 1997; VAI, 1997), up to 20% productivity <strong>in</strong>crease (VAI, 1997) and<br />

25% reduced flue gas dust emissions (reduc<strong>in</strong>g hazardous waste handl<strong>in</strong>g costs) (CMP, 1997). A<br />

special system has been developed for retr<strong>of</strong>itt<strong>in</strong>g exist<strong>in</strong>g furnaces called <strong>the</strong> Fuchs Optimized<br />

Retr<strong>of</strong>it Shaft, with a relatively short shaft. Retr<strong>of</strong>it costs are estimated at $6/t (H<strong>of</strong>er, 1997) for an<br />

84


exist<strong>in</strong>g 100 t furnace. Us<strong>in</strong>g post-combustion <strong>the</strong> <strong>energy</strong> consumption is estimated at 340-350<br />

kWh/t (Jones, 1997d) and 0.7 GJ fuel <strong>in</strong>jection (H<strong>of</strong>er, 1996). Accord<strong>in</strong>g to VAI (1997) only 6-<br />

8Nm³/tonne CS, as additional natural gas <strong>in</strong>jection is required. This equals a requirement <strong>of</strong><br />

about 0.23-0.31 GJ/tonne (if 39 MJ/Nm³ is assumed). Assumed is <strong>the</strong> measure will <strong>in</strong>crease fuel<br />

consumption by 0.4 GJ/tonne. The production costs sav<strong>in</strong>gs amount up to $4.5/t (exclud<strong>in</strong>g<br />

saved electricity costs) (H<strong>of</strong>er, 1997).<br />

Scrap preheat<strong>in</strong>g competes with oxy-fuel <strong>in</strong>jection and post combustion, as <strong>the</strong>se options are<br />

basically <strong>in</strong>tegrated <strong>in</strong> most scrap preheat<strong>in</strong>g systems. All furnaces over 70 t capacity could be<br />

retr<strong>of</strong>itted cost-effectively (H<strong>of</strong>er, 1996), or 74% <strong>of</strong> <strong>the</strong> 1994 US capacity (us<strong>in</strong>g on average 470<br />

kWh/t <strong>in</strong> 1994), lead<strong>in</strong>g to net power sav<strong>in</strong>gs <strong>of</strong> approximately 120 kWh/t and <strong>in</strong>creased fuel<br />

consumption <strong>of</strong> 0.4 GJ/t.<br />

Tw<strong>in</strong> shell furnace. The Tw<strong>in</strong> shell concept comprises two EAF-vessels with a common arc and<br />

power supply system. The system <strong>in</strong>creases <strong>the</strong> productivity by reduc<strong>in</strong>g <strong>the</strong> tap-to-tap time to<br />

approximately 45 to 50 m<strong>in</strong>utes (He<strong>in</strong>rich, 1995, N<strong>in</strong>neman, 1997), and reduc<strong>in</strong>g <strong>energy</strong> costs<br />

through reduced heat losses. Also, <strong>the</strong> hot flue gases <strong>of</strong> one shell can be used to preheat <strong>the</strong> second<br />

shell. A tw<strong>in</strong> shell AC plant is estimated to use 393 kWh/t compared to 412 kWh/t, sav<strong>in</strong>g 19<br />

kWh/t (Macauley and Smailer, 1997) compared to current state-<strong>of</strong>-<strong>the</strong>-art s<strong>in</strong>gle vessel plants for<br />

a 100% scrap feed. The tw<strong>in</strong> shell DC plant can save even more, 80 kWh/t compared to <strong>the</strong> 1994<br />

average large scale AC furnace. The tw<strong>in</strong>-shell concept can only be applied <strong>in</strong> <strong>the</strong> construction <strong>of</strong> a<br />

new plant. New plants <strong>in</strong> <strong>the</strong> US us<strong>in</strong>g <strong>the</strong> Tw<strong>in</strong> Shell concept are Gallat<strong>in</strong> Steel, Nucor, Steel<br />

Dynamics, and Tuscaloosa Steel, and <strong>the</strong> result<strong>in</strong>g <strong>energy</strong> use varies for each <strong>of</strong> <strong>the</strong>se plants. The<br />

EAF at Gallat<strong>in</strong> <strong>steel</strong> has two AC furnaces, and consumes approximately 450 kWh/t (Jones,<br />

1997b). DC furnaces can be used as well, reduc<strong>in</strong>g <strong>the</strong> power consumption fur<strong>the</strong>r (see above). The<br />

Tw<strong>in</strong> Shell concept competes with <strong>the</strong> scrap preheat<strong>in</strong>g processes discussed above. Tw<strong>in</strong> shells<br />

seem to be an appropriate process for m<strong>in</strong>i mills with capacities over 1 Mt per year. Very little cost<br />

data exists on <strong>the</strong> Tw<strong>in</strong> Shell (Jones, 1997b). The capital cost lay-out is expected to be a little more<br />

(with estimated payback <strong>in</strong> <strong>the</strong> US <strong>of</strong> 2 years), while <strong>the</strong> production costs are expected to be 6%<br />

lower than that <strong>of</strong> a s<strong>in</strong>gle shell (Jones, 1997b). We will assume extra <strong>in</strong>vestments <strong>of</strong> $4-6/t (over<br />

those <strong>of</strong> a new s<strong>in</strong>gle shell furnace, based on <strong>the</strong> <strong>in</strong>vestments at Nucor, Berkeley County, SC), and<br />

production cost reduction <strong>of</strong> $1.1/t (derived from (CMP, 1987), exclud<strong>in</strong>g <strong>energy</strong> cost sav<strong>in</strong>gs). We<br />

assume application <strong>of</strong> <strong>the</strong> DC tw<strong>in</strong> shell concept to 10% <strong>of</strong> <strong>the</strong> 1994 production capacity.<br />

Siemens EAF Quantum claims to be able to produce <strong>steel</strong> with an electricity <strong>energy</strong><br />

consumption <strong>of</strong> 280 kWh/tonne (Siemens-VAI, 2011b). This is substantially lower than <strong>the</strong><br />

average electricity consumption <strong>in</strong> <strong>the</strong> US Steel market. This newer type <strong>of</strong> furnace is expected<br />

to <strong>in</strong>crease fuel consumption by 0.3 GJ/tonne, compared to normal EAF operations. The<br />

electricity sav<strong>in</strong>gs are estimated at 0.58 GJ/tonne. The operational benefits <strong>of</strong> such a production<br />

system is estimate at $4/tonne and <strong>the</strong> <strong>in</strong>vestment costs are estimated $2.5/tonne <strong>of</strong> <strong>steel</strong>. This<br />

measure is only expected to be <strong>in</strong>cluded <strong>in</strong> 2010.<br />

Increased usage <strong>of</strong> hot metal <strong>in</strong> <strong>the</strong> EAF can reduce <strong>the</strong> <strong>energy</strong> use by about 35-50<br />

kWh/tonne. Also tap-to-tap times can be reduced by about 5-10 m<strong>in</strong>utes (Duan, 2009). Hot<br />

metal is however only available <strong>in</strong> EAF built near a blast furnace or basic oxygen furnace and is<br />

<strong>the</strong>refore estimated to be applicable to only 10% <strong>of</strong> <strong>the</strong> EAF furnaces. The operational costs <strong>of</strong> an<br />

85


EAF with hot metal use are expected to be reduced by 1.5$/tonne due to <strong>the</strong> reduced tap-to-tap<br />

time. The <strong>in</strong>vestment costs are estimated at 9$/tonne. This measure is only <strong>in</strong>cluded for 2006<br />

and 2010.<br />

post-combustion <strong>of</strong> CO gas for preheat<strong>in</strong>g <strong>of</strong> scrap <strong>in</strong> <strong>the</strong> EAF furnace can be a benefit<br />

for <strong>the</strong> <strong>energy</strong> consumption. Accord<strong>in</strong>g to Grant (2000), <strong>the</strong> benefits are not always viable <strong>in</strong> all<br />

EAF production facilities. Careful analysis <strong>of</strong> <strong>the</strong> system should be done to assess <strong>the</strong> benefits to<br />

<strong>the</strong> <strong>energy</strong> balance. It is <strong>the</strong>refore expected this technology can be applied <strong>in</strong> only 35% <strong>of</strong> all<br />

EAF’s. From a few case studies <strong>the</strong> average electricity sav<strong>in</strong>gs were 35-40 kWh/tonne (Grant,<br />

2000). It would also reduce tap-to-tap times with 3-6%, and a power on time reduction <strong>of</strong> about<br />

10%. We assume an operational benefit <strong>of</strong> about $0.9/tonne. This measure is only <strong>in</strong>cluded for<br />

2006 and 2010.<br />

Appendix F. Cast<strong>in</strong>g<br />

Once crude <strong>steel</strong> is produced it is cast <strong>in</strong>to different shapes (billets, blooms, slabs, or <strong>in</strong>gots).<br />

Molten <strong>steel</strong> is poured <strong>in</strong>to a tundish and <strong>the</strong>n released <strong>in</strong>to a mold <strong>of</strong> one or more strands. A<br />

majority <strong>of</strong> <strong>steel</strong> <strong>in</strong> <strong>the</strong> US is cont<strong>in</strong>uously cast which reduces <strong>the</strong> need for several <strong>in</strong>termediate<br />

process steps. In 1994 we estimate that cast<strong>in</strong>g <strong>energy</strong> use was 17 PJ fuel and 15 PJ <strong>of</strong> electricity<br />

result<strong>in</strong>g <strong>in</strong> a primary <strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> 0.7 GJ/t (US DOE, OIT, 1996).<br />

Efficient ladle preheat<strong>in</strong>g. The ladle <strong>of</strong> <strong>the</strong> caster (and <strong>the</strong> BOF vessel) is preheated with gas<br />

burners. Heat losses can occur through lack <strong>of</strong> lids and through radiation. The losses can be<br />

reduced by <strong>in</strong>stall<strong>in</strong>g temperature controls (Caddet, 1989), <strong>in</strong>stall<strong>in</strong>g hoods, by us<strong>in</strong>g recuperative<br />

burners (Caddet, 1987), use <strong>of</strong> oxygen burners (Gitman, 1998), or by efficient ladle management<br />

(reduc<strong>in</strong>g <strong>the</strong> need for preheat<strong>in</strong>g). Oxygen burners for ladle preheat<strong>in</strong>g are used by many <strong>steel</strong><br />

companies <strong>in</strong> <strong>the</strong> US already (Gitman, 1998), but use can be expanded considerably. No data are<br />

available on <strong>the</strong> actual <strong>energy</strong> use for preheat<strong>in</strong>g ladles <strong>in</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. Therefore, we<br />

assume typical fuel use <strong>of</strong> approximately 0.04 GJ/t crude <strong>steel</strong> (Worrell et al., 1993). Efficient<br />

preheat<strong>in</strong>g will reduce <strong>energy</strong> use by 50% or 0.02 GJ/t crude <strong>steel</strong>, with an estimated payback<br />

time <strong>of</strong> 1.1 year (tak<strong>in</strong>g <strong>in</strong>to account sav<strong>in</strong>gs on ladle handl<strong>in</strong>g), or $0.06/t product, assum<strong>in</strong>g a<br />

gas price <strong>of</strong> $2.8/GJ (IEA, 1995).<br />

Accord<strong>in</strong>g to an application <strong>of</strong> efficient ladle preheat<strong>in</strong>g with so called DOC burner technology<br />

on exist<strong>in</strong>g preheaters resulted <strong>in</strong> a 50% reduction <strong>in</strong> fuel use for ladle preheat<strong>in</strong>g. In that case<br />

<strong>the</strong> <strong>energy</strong> reduction was 0.028 GJ/tonne. The net cost sav<strong>in</strong>gs from <strong>the</strong> use <strong>of</strong> <strong>the</strong> DOC burner<br />

technology would result <strong>in</strong> a $0.29 per tonne cost reduction (Kelly, 2010). This updated<br />

<strong>in</strong>formation is only applied for 2006 and 2010.<br />

Th<strong>in</strong> slab cast<strong>in</strong>g A more advanced technology, near net shape cast<strong>in</strong>g, reduces <strong>the</strong> need for<br />

hot roll<strong>in</strong>g because products are cast closer to <strong>the</strong>ir f<strong>in</strong>al shape. It is a new technology <strong>in</strong>tegrat<strong>in</strong>g<br />

cast<strong>in</strong>g and hot roll<strong>in</strong>g <strong>in</strong> one process. Pioneered <strong>in</strong> <strong>the</strong> US by Nucor at <strong>the</strong> Crawfordsville and<br />

Hickmann plants, various plants are operat<strong>in</strong>g, under construction, or ordered <strong>world</strong>wide.<br />

Orig<strong>in</strong>ally designed for small scale process-l<strong>in</strong>es, <strong>the</strong> first <strong>in</strong>tegrated plants constructed (Acme,<br />

US; Posco, Korea) or announced <strong>the</strong> construction <strong>of</strong> th<strong>in</strong> slab casters (Germany, Ne<strong>the</strong>rlands,<br />

Spa<strong>in</strong>) with capacities up to 1.5 Mt/year (Worrell and Moore, 1997). Currently, four suppliers<br />

(Germany (2), Austria and Italy) supply this technology. We base our description on <strong>the</strong> CSP-<br />

86


process developed by SMS (Germany) as it represents most <strong>of</strong> <strong>the</strong> capacity <strong>in</strong>stalled <strong>world</strong>wide.<br />

Energy sav<strong>in</strong>gs are estimated to be 4.9 GJ/t crude <strong>steel</strong> (primary <strong>energy</strong>). The <strong>energy</strong><br />

consumption <strong>of</strong> a CSP-plant is 94 MJ fuel per ton for <strong>the</strong> reheat<strong>in</strong>g furnace and electricity use <strong>of</strong><br />

43 kWh/t (Flemm<strong>in</strong>g, 1995). The <strong>in</strong>vestments for a large scale plant are estimated to vary between<br />

$110/t and $180/t product (Anon, 1997a; Anon., 1997b, Schorsch, 1996). We assume <strong>the</strong>refore an<br />

<strong>in</strong>vestment cost <strong>of</strong> $134/t crude <strong>steel</strong>, with estimated operation cost sav<strong>in</strong>gs <strong>of</strong> between $25/t and<br />

$46/t product (derived from Ritt, 1997 and Hogan, 1992, Schorsch, 1996). We <strong>the</strong>refore assume<br />

an operation cost sav<strong>in</strong>gs <strong>of</strong> $31/t crude <strong>steel</strong>. The potential capacity <strong>of</strong> th<strong>in</strong> slab cast<strong>in</strong>g is<br />

estimated to be 20% <strong>of</strong> US <strong>in</strong>tegrated production and 64% <strong>of</strong> secondary <strong>steel</strong>. 6<br />

Use <strong>of</strong> dry rolls <strong>in</strong>stead <strong>of</strong> water cooled rolls <strong>in</strong> tunnel furnaces is an application only<br />

for th<strong>in</strong> slab casters where a tunnel oven is used for <strong>the</strong> even temperature distribution <strong>in</strong> <strong>the</strong><br />

slab before roll<strong>in</strong>g. If ceramic rolls can be used <strong>in</strong>stead <strong>of</strong> water cooled rolls, <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs<br />

on fuel use for <strong>the</strong> tunnel oven are estimated to be about 0.05 GJ/tonne (Duraloy, 2011). Also<br />

<strong>the</strong> ovens will require shorter heat up times, which is estimated to save about $0.01/t product.<br />

The <strong>in</strong>vestment costs are estimated at $5/t product (Duraloy, 2011). This measure is only<br />

applied for 2006 and 2010.<br />

Proper seal<strong>in</strong>g on ladle furnace preheat<strong>in</strong>g will improve <strong>efficiency</strong> s<strong>in</strong>ce ladles can have<br />

large gaps through which flue gasses escape. The seal<strong>in</strong>g <strong>of</strong> <strong>the</strong>se can result <strong>in</strong> an <strong>energy</strong> sav<strong>in</strong>g.<br />

The total estimated <strong>energy</strong> sav<strong>in</strong>gs from ladle preheat<strong>in</strong>g from <strong>the</strong> DOE <strong>energy</strong> audits are about<br />

0.07 GJ/tonne. The expected <strong>in</strong>vestment costs are estimated at $0.2/tonne. It is assumed all<br />

ladle furnaces are <strong>in</strong> EAF facilities, where <strong>in</strong> about 50% <strong>of</strong> <strong>the</strong> cases proper seal<strong>in</strong>g can be<br />

applied.<br />

Appendix G. Hot Roll<strong>in</strong>g 7<br />

After cast<strong>in</strong>g, <strong>the</strong> shaped products are fur<strong>the</strong>r rolled to produce sheet, strip, plate, and o<strong>the</strong>r<br />

structural products (US DOE, OIT, 1996). In 1994, 79.6 Mt <strong>of</strong> <strong>steel</strong> was hot rolled with an<br />

estimated <strong>energy</strong> requirement <strong>of</strong> 259 PJ fuel and 56 PJ <strong>of</strong> electricity, result<strong>in</strong>g <strong>in</strong> a primary<br />

<strong>energy</strong> <strong>in</strong>tensity <strong>of</strong> 5.4 GJ/t. This <strong>energy</strong> <strong>in</strong>tensity is relatively high compared to o<strong>the</strong>r countries<br />

and additional data is required to improve this estimate (US DOE, OIT, 1996).<br />

6 Estimate for <strong>the</strong> potential <strong>of</strong> th<strong>in</strong> slab cast<strong>in</strong>g <strong>in</strong> <strong>in</strong>tegrated mills is estimated to be 60% <strong>of</strong> <strong>in</strong>tegrated hot strip and<br />

sheet production <strong>in</strong> 1994 or 11 Mt (AISI, 1996). Estimated potential for secondary mills is based on implementation <strong>in</strong><br />

slabs <strong>in</strong> m<strong>in</strong>imills not currently cont<strong>in</strong>uously cast. These estimates will need to be ref<strong>in</strong>ed <strong>in</strong> <strong>the</strong> future.<br />

7 An additional measure is efficient power use <strong>in</strong> <strong>the</strong> roll<strong>in</strong>g mill, which can reduce <strong>the</strong> power demand <strong>of</strong> <strong>the</strong> hot roll<strong>in</strong>g<br />

mill. Current hot strip mill power use <strong>in</strong> US is estimated to be 220 kWh/t (0.8 GJ/t) (US DOE, OIT, 1996). A modern hot<br />

strip mill has a power consumption <strong>of</strong> about 105 kWh/t (0.4 GJ/t) (Worrell et al., 1993). Thus, <strong>in</strong>stallation <strong>of</strong> a modern<br />

hot strip mill could represent a sav<strong>in</strong>gs <strong>of</strong> up to 115 kWh/t (0.4 GJ/t). One component <strong>in</strong> <strong>the</strong>se mills is motors which are<br />

used for <strong>the</strong> roll<strong>in</strong>g as well as <strong>in</strong> quench pumps. The quench pumps <strong>in</strong> a hot roll<strong>in</strong>g mill are estimated to use 2.5 kWh/t<br />

(Anon., 1994), on which sav<strong>in</strong>gs <strong>of</strong> 42-76% are feasible through <strong>the</strong> application <strong>of</strong> variable speed drives and <strong>in</strong>stall<strong>in</strong>g<br />

control equipment. This system required an <strong>in</strong>vestment equivalent to 0.24$/t product sav<strong>in</strong>g 1.9 kWh/t hot rolled <strong>steel</strong><br />

(7 MJe/t). Reduced ma<strong>in</strong>tenance costs amount to 0.02$/t product (Anon., 1994). This measure needs fur<strong>the</strong>r<br />

quantification before it can be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analysis.<br />

87


Hot charg<strong>in</strong>g is used to charge slabs at an elevated temperature <strong>in</strong>to <strong>the</strong> reheat<strong>in</strong>g furnace <strong>of</strong> <strong>the</strong><br />

hot roll<strong>in</strong>g mill. The slabs can be charged at various temperatures. Higher charg<strong>in</strong>g temperatures<br />

will save more <strong>energy</strong>. The implementation <strong>of</strong> <strong>the</strong> technique depends on <strong>the</strong> lay-out <strong>of</strong> <strong>the</strong> plant,<br />

and <strong>the</strong> distance between <strong>the</strong> caster and <strong>the</strong> hot roll<strong>in</strong>g mill. In some plants <strong>the</strong> caster and<br />

reheat<strong>in</strong>g furnace are “next door” mak<strong>in</strong>g hot charg<strong>in</strong>g less costly (e.g. LTV <strong>in</strong> Cleveland and<br />

Us<strong>in</strong>es Gustav Boel, Belgium). Handl<strong>in</strong>g and transport <strong>of</strong> <strong>the</strong> slabs (i.e. a so-called ‘hot<br />

connection’) is required if <strong>the</strong>re is more distance between <strong>the</strong> caster and <strong>the</strong> roll<strong>in</strong>g mill (Worrell<br />

et al., 1993). Hot charg<strong>in</strong>g not only saves <strong>energy</strong>, but also improves material quality, reduces<br />

material losses, improves productivity (by up to 6%), and may reduce slab stock<strong>in</strong>g (Ritt,1996).<br />

Care should be taken to descale <strong>the</strong> slab before charg<strong>in</strong>g <strong>in</strong> <strong>the</strong> reheat<strong>in</strong>g furnace (Caddet, 1990a).<br />

The measure competes with th<strong>in</strong> slab cast<strong>in</strong>g (because <strong>in</strong> th<strong>in</strong> slab cast<strong>in</strong>g <strong>the</strong> slab is coupled<br />

through a reheat<strong>in</strong>g furnace to <strong>the</strong> roll<strong>in</strong>g stands) and direct roll<strong>in</strong>g. A few plants <strong>in</strong> <strong>the</strong> US now<br />

hot charge a portion <strong>of</strong> <strong>the</strong> production, e.g. LTV (Cleveland), USS (Fairfield), Bethlehem (Burns<br />

Harbor), and Geneva Steel, although generally only a small percentage <strong>of</strong> <strong>the</strong> slab production (10-<br />

15%) is hot charged (Ritt, 1996). We assume that 60% <strong>of</strong> cold rolled products (36% <strong>of</strong> <strong>the</strong> slabs)<br />

can ultimately be “hot charged”, depend<strong>in</strong>g on <strong>the</strong> lay-out <strong>of</strong> <strong>the</strong> plants. A plant-by-plant analysis<br />

is required to determ<strong>in</strong>e <strong>the</strong> actual potential. Assum<strong>in</strong>g a charg<strong>in</strong>g temperature <strong>of</strong> 700°C, <strong>the</strong><br />

sav<strong>in</strong>gs may be up to 0.6 GJ/t “hot charged” <strong>steel</strong> based on experiences at Bethlehem Steel at<br />

Burns Harbor (Ritt, 1996). Additional annual costs sav<strong>in</strong>gs amount up to $1.15/t “hot charged”.<br />

Investment costs will strongly depend on lay-out and are estimated to be $15/t hot rolled <strong>steel</strong><br />

based on experience at LTV (Wakel<strong>in</strong>, 1997).<br />

Process control <strong>in</strong> hot strip mill saves <strong>energy</strong> and <strong>in</strong>creases productivity and quality <strong>of</strong> <strong>the</strong><br />

rolled <strong>steel</strong> products (Heesen and Burggraaf, 1991; Schriefer, 1996; Vergote, 1996). Although<br />

direct <strong>energy</strong> sav<strong>in</strong>gs may be limited, <strong>the</strong> <strong>in</strong>direct <strong>energy</strong> sav<strong>in</strong>gs may be substantial due to<br />

reduced rejection <strong>of</strong> product, improved productivity, and reduced down-time. Based on a system<br />

<strong>in</strong>stalled at Sidmar (Belgium) <strong>the</strong> share <strong>of</strong> rejects was reduced from 1.5% to 0.2% and down-time<br />

was reduced from more than 50% <strong>of</strong> <strong>the</strong> time to 6%. The costs <strong>of</strong> roll<strong>in</strong>g were reduced from $7/t to<br />

$4.7/t (Vergote, 1996). Similar systems have been <strong>in</strong>stalled <strong>in</strong> mills <strong>in</strong> many countries. We<br />

estimate <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs based on <strong>the</strong> reduced rejection rate and improved productivity to be<br />

9% <strong>of</strong> fuel use. We assume this to be equivalent to 0.3 GJ/t product. The <strong>in</strong>vestment costs for <strong>the</strong><br />

Sidmar plant were estimated to be $2M for a hot strip mill with a capacity <strong>of</strong> 2.8 Mt (Serjeantson,<br />

1987), equivalent to $0.7/t product. This measure will be applicable to all slabs that are not cast <strong>in</strong><br />

a th<strong>in</strong>-slab caster or sold, i.e. 69% <strong>of</strong> <strong>the</strong> total <strong>steel</strong> production. The lifetime <strong>of</strong> process control<br />

equipment is estimated at 10 years.<br />

Recuperative burners <strong>in</strong> <strong>the</strong> reheat<strong>in</strong>g furnace can reduce <strong>energy</strong> consumption. Industry-wide<br />

average sav<strong>in</strong>gs for <strong>the</strong> metals <strong>in</strong>dustry are estimated to be up to 30% (Worrell et al., 1997).<br />

Energy use <strong>in</strong> a reheat<strong>in</strong>g furnace will depend on production factors (e.g. stock, <strong>steel</strong> type),<br />

operational factors (e.g. schedul<strong>in</strong>g), and design features. Therefore, <strong>in</strong> practice <strong>energy</strong><br />

consumption can vary widely between 0.6 and 3.0 GJ/t (Flanagan, 1993), with <strong>the</strong> low figures due<br />

to hot charg<strong>in</strong>g (see above). Based on a survey <strong>of</strong> 151 furnaces (represent<strong>in</strong>g 20% <strong>of</strong> Western <strong>world</strong><br />

<strong>steel</strong> production) <strong>in</strong> Japan, Australia, UK and Canada, it was found that 18% <strong>of</strong> <strong>the</strong> furnaces had<br />

no heat recovery and 75% had separate heat recovery (Flanagan, 1993). As no specific US data<br />

were available, we assume a similar distribution for <strong>the</strong> US Install<strong>in</strong>g recuperative or regenerative<br />

88


urners may require substantial changes <strong>in</strong> <strong>the</strong> furnace construction and may have high<br />

<strong>in</strong>vestment costs. New designs have typically low NOx emissions, despite higher flame<br />

temperatures. We assume <strong>in</strong>stall<strong>in</strong>g regenerative burners <strong>in</strong> 20% <strong>of</strong> <strong>the</strong> furnaces used <strong>in</strong> hot<br />

roll<strong>in</strong>g mills, sav<strong>in</strong>g approximately 25% on fuel <strong>in</strong> <strong>the</strong>se (mostly small) furnaces, based on<br />

experiences <strong>in</strong> <strong>the</strong> UK (Flanagan, 1993), or roughly estimated at 0.7 GJ/t product. The<br />

<strong>in</strong>vestments for a 12t/hour furnace were approximately $2-3/t. We assume $2.5/t product. The<br />

burners are expected to have a lifetime <strong>of</strong> approximately 10 years.<br />

Insulation <strong>of</strong> furnaces us<strong>in</strong>g ceramic low-<strong>the</strong>rmal mass <strong>in</strong>sulation materials (LTM) can reduce<br />

<strong>the</strong> heat losses through <strong>the</strong> walls fur<strong>the</strong>r than conventional <strong>in</strong>sulation materials. A survey <strong>of</strong> <strong>steel</strong><br />

reheat<strong>in</strong>g furnaces <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry <strong>in</strong> four countries (not <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> US) showed that<br />

approximately 30% <strong>of</strong> <strong>the</strong> furnaces had ceramic fiber l<strong>in</strong><strong>in</strong>gs (Flanagan, 1993). We assume a<br />

similar figure for <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. For a cont<strong>in</strong>uous furnace, <strong>the</strong> sav<strong>in</strong>gs <strong>of</strong> implement<strong>in</strong>g<br />

ceramic fiber l<strong>in</strong><strong>in</strong>g are estimated to be 2-5% (Flanagan, 1993). We assume sav<strong>in</strong>gs <strong>of</strong> 0.16 GJ/t<br />

product. We assume that 30% <strong>of</strong> <strong>the</strong> furnace capacity can be equipped with ceramic l<strong>in</strong><strong>in</strong>g dur<strong>in</strong>g<br />

ma<strong>in</strong>tenance and reconstruction (assum<strong>in</strong>g an approximate life-time <strong>of</strong> 30 years) <strong>in</strong> <strong>the</strong> period<br />

until 2005. Although we did not f<strong>in</strong>d recent cost data, we assume relative large <strong>in</strong>vestments <strong>of</strong><br />

approximately $10/t product, derived from de Beer et al. (1994). The lifetime is estimated at 10<br />

years.<br />

From <strong>the</strong> DOE assessments <strong>the</strong> improvement <strong>of</strong> <strong>in</strong>sulation on <strong>the</strong> reheat<strong>in</strong>g furnaces would<br />

decrease <strong>the</strong> <strong>energy</strong> use by 0.04 GJ/tonne or 0.24 $/tonne. The mentioned amount <strong>of</strong> 0.16 GJ<br />

per tonne is <strong>the</strong>refore a high estimate for 2006. The estimated total sav<strong>in</strong>gs from furnace<br />

<strong>in</strong>sulation is <strong>the</strong>refore 0.2GJ/tonne. From analysis <strong>of</strong> <strong>the</strong> DOE reports, <strong>the</strong> improvement <strong>of</strong><br />

furnace <strong>in</strong>sulation was suggested to 9 <strong>of</strong> <strong>the</strong> 12 plants which an analysis <strong>of</strong> reheat<strong>in</strong>g furnaces<br />

was done. These updated figures are used <strong>in</strong> <strong>the</strong> 2006 and 2010 data.<br />

Controll<strong>in</strong>g oxygen levels and variable speed drives on combustion air fans on <strong>the</strong><br />

reheat<strong>in</strong>g furnace helps to control <strong>the</strong> oxygen level, and hence optimize <strong>the</strong> combustion <strong>in</strong> <strong>the</strong><br />

furnace, especially as <strong>the</strong> load <strong>of</strong> <strong>the</strong> furnace may vary over time. The sav<strong>in</strong>gs depend on <strong>the</strong> load<br />

factor <strong>of</strong> <strong>the</strong> furnace and control strategies applied. Two cases from <strong>the</strong> UK <strong>steel</strong> <strong>in</strong>dustry<br />

demonstrate <strong>the</strong> variety. Implement<strong>in</strong>g a variable speed drive combustion fan on a walk<strong>in</strong>g beam<br />

furnace at Cardiff Rod Mill (UK) reduced <strong>the</strong> fuel consumption by 48% with a payback period <strong>of</strong><br />

16 months (1985 UK conditions) (Caddet, 1994). Ano<strong>the</strong>r example (without <strong>in</strong>stall<strong>in</strong>g variable<br />

speed drives) is a walk<strong>in</strong>g beam furnace for reheat<strong>in</strong>g billets, sav<strong>in</strong>g approximately 2% on fuel use,<br />

with a payback <strong>of</strong> one year (1990 UK conditions) (Flanagan, 1993). We conservatively assume<br />

sav<strong>in</strong>gs <strong>of</strong> 10% (after previous <strong>measures</strong> have been <strong>in</strong>troduced), equivalent to 0.33 GJ/t product,<br />

at an <strong>in</strong>vestment <strong>of</strong> 0.5$/t product. As no data is available on <strong>the</strong> current penetration <strong>of</strong> VSDs <strong>in</strong><br />

reheat<strong>in</strong>g furnaces, we assume that this measure can be implemented <strong>in</strong> half <strong>of</strong> <strong>the</strong> furnaces, with<br />

a lifetime <strong>of</strong> approximately 10 years.<br />

Accord<strong>in</strong>g to <strong>the</strong> DOE assessments <strong>the</strong> optimization <strong>of</strong> oxygen levels would reduce <strong>the</strong> <strong>energy</strong><br />

consumption with on average 0.035 GJ/tonne. The use <strong>of</strong> VSD on combustion air fans could<br />

reduce <strong>the</strong> fuel and electricity use <strong>of</strong> <strong>the</strong> combustion fans. Due to over eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> equipment<br />

<strong>the</strong> typical flow range <strong>of</strong> a fan is about 60-80% (Vesel, 2007). If a VSD is used to keep <strong>the</strong> fan at<br />

70%, this could save about 60% <strong>in</strong> electricity use <strong>of</strong> <strong>the</strong> fan (Saidur, 2010). This would mean a<br />

89


m<strong>in</strong>or reduction <strong>of</strong> electric <strong>energy</strong> <strong>of</strong> about 0.001 GJ/tonne <strong>of</strong> crude <strong>steel</strong>. The application <strong>of</strong> a<br />

VSD on a boiler house, reduced <strong>the</strong> fuel consumption with 2.5%, with a payback period <strong>of</strong> about<br />

3.2 months (Kilicaslan, 2005). It is estimated <strong>the</strong> technology would reduce <strong>energy</strong> <strong>in</strong> reheat<br />

furnaces with about 3% which is about 0.05 GJ/ton. Also <strong>the</strong> <strong>in</strong>vestment for a boiler was about<br />

$9,000, it is <strong>the</strong>refore estimated <strong>the</strong> <strong>in</strong>vestment for reheat<strong>in</strong>g furnaces is about 0.1 $/tonne<br />

(Kilicaslan, 2005). These updated figures have been used for <strong>the</strong> 2006 and 2010 data.<br />

Energy efficient drives <strong>in</strong> <strong>the</strong> hot roll<strong>in</strong>g mill can replace <strong>the</strong> currently used conventional<br />

AC drives. The <strong>efficiency</strong> <strong>of</strong> large AC drives (> 200 kWe) is estimated to be 91-97% (Worrell and<br />

Moore, 1997). High <strong>efficiency</strong> motors can save approximately 1-2% <strong>of</strong> <strong>the</strong> electricity consumption<br />

(de Almeida and Fonsesca, 1997). Assum<strong>in</strong>g an electricity demand <strong>of</strong> 200 kWh/t rolled <strong>steel</strong>, <strong>the</strong><br />

electricity sav<strong>in</strong>gs are estimated to be 4 kWh/t, or 0.01 GJ/t product. Replacement costs are<br />

estimated to be $5/kW (<strong>the</strong> extra costs compared to that <strong>of</strong> an ord<strong>in</strong>ary drive) (de Almeida and<br />

Fonsesca, 1997), equivalent to $0.05/kWh-saved, or $0.2/t rolled <strong>steel</strong>. Large motors have<br />

generally a lifetime <strong>of</strong> 20 years (de Almeida and Fonsesca, 1997). Accord<strong>in</strong>g to Rosenberg (1997)<br />

<strong>the</strong> average penetration <strong>of</strong> efficient motors <strong>in</strong> all <strong>in</strong>dustrial applications is between 6 and 8%. We<br />

assume that 50% <strong>of</strong> <strong>the</strong> motors will be replaced at <strong>the</strong> above mentioned costs.<br />

Waste heat recovery from cool<strong>in</strong>g water. Waste heat can be recovered from <strong>the</strong> cool<strong>in</strong>g<br />

water <strong>of</strong> <strong>the</strong> hot strip mill. When ejected, <strong>the</strong> rolled <strong>steel</strong> is cooled by spray<strong>in</strong>g water at a<br />

temperature <strong>of</strong> 80 o C. An absorption heat pump (or heat transformer) has been <strong>in</strong>stalled at<br />

Hoogovens (The Ne<strong>the</strong>rlands) to generate low pressure steam (1.7-3.5 bar, 130 o C), which is<br />

delivered to <strong>the</strong> grid on <strong>the</strong> site. Fuel sav<strong>in</strong>gs are estimated to be 0.04 GJ/t product, with an<br />

<strong>in</strong>creased electricity consumption <strong>of</strong> 0.15 kWh/t (Farla et al., 1998). Investment costs are 42<br />

Dfl/GJ-saved equivalent to $0.8/t product (Worrell et al., 1993), with <strong>in</strong>creased O&M costs<br />

estimated at $0.07/t product. The heat transformer could be applied with all quench water <strong>in</strong> <strong>the</strong><br />

hot roll<strong>in</strong>g mills, e.g. 69% <strong>of</strong> <strong>the</strong> total production. The life time is estimated to be 15 years.<br />

Ceramic wall <strong>in</strong> reheat furnace. A ceramic porous wall <strong>in</strong> a reheat<strong>in</strong>g furnace for billets<br />

resulted <strong>in</strong> <strong>energy</strong> sav<strong>in</strong>gs <strong>of</strong> up to 22% on <strong>the</strong> reheat<strong>in</strong>g <strong>of</strong> billets (Tucker, 2008). The flue gas<br />

will pass through <strong>the</strong> porous wall, <strong>the</strong> heat is absorbed by <strong>the</strong> materials and for a substantial<br />

part reradiated back <strong>in</strong>to <strong>the</strong> furnace. The <strong>energy</strong> sav<strong>in</strong>gs for this measure are estimated to be<br />

about 0.3 GJ/tonne <strong>of</strong> hot rolled <strong>steel</strong>. The <strong>in</strong>vestment costs have been estimated to be about<br />

$2/tonne <strong>of</strong> hot rolled <strong>steel</strong>. Application <strong>of</strong> <strong>the</strong> technology is expected not be applied <strong>in</strong> any <strong>steel</strong><br />

furnaces <strong>in</strong> 2006. In 2010 maybe 5% <strong>of</strong> <strong>the</strong> <strong>steel</strong> factories may have applied this method. The<br />

potential is expected to be applicable for all <strong>the</strong> <strong>steel</strong> plant with reheat<strong>in</strong>g furnaces. This option<br />

is only <strong>in</strong>cluded <strong>in</strong> 2010.<br />

Reduce reheat furnace door open<strong>in</strong>g losses. From <strong>the</strong> assessment <strong>of</strong> DOE audits a<br />

reduction <strong>in</strong> <strong>energy</strong> loss by <strong>the</strong> furnace door open<strong>in</strong>g should be possible accord<strong>in</strong>g to an audit <strong>in</strong><br />

four <strong>steel</strong> plants <strong>in</strong> <strong>the</strong> US. The estimated <strong>energy</strong> sav<strong>in</strong>gs from reduc<strong>in</strong>g <strong>the</strong>se losses are<br />

0.014GJ/tonne <strong>of</strong> <strong>steel</strong>. The estimated <strong>in</strong>vestment needed for <strong>the</strong> reduced losses through door<br />

open<strong>in</strong>gs is $0.2/tonne <strong>of</strong> <strong>steel</strong>. Assumed to be implemented <strong>in</strong> all non-th<strong>in</strong>-slab cast<strong>in</strong>g<br />

facilities. This measure has only been added <strong>in</strong> 2006 and 2010 data.<br />

90


Appendix H. Cold Roll<strong>in</strong>g and F<strong>in</strong>ish<strong>in</strong>g 8<br />

Steel that has been hot rolled may be cold rolled and fur<strong>the</strong>r f<strong>in</strong>ished to make a product th<strong>in</strong>ner<br />

and smoo<strong>the</strong>r. In 1994, 31.7 Mt (35%) <strong>of</strong> product was cold rolled, all <strong>in</strong> <strong>in</strong>tegrated mills. Based on<br />

fuel consumption <strong>of</strong> 43 PJ and electricity consumption <strong>of</strong> 15 PJ, <strong>the</strong> primary <strong>energy</strong> <strong>in</strong>tensity was<br />

2.8 GJ/t.<br />

Heat recovery on <strong>the</strong> anneal<strong>in</strong>g l<strong>in</strong>e can be done through steam generation us<strong>in</strong>g <strong>the</strong> waste heat,<br />

or by <strong>in</strong>stall<strong>in</strong>g regenerative or recuperative burners <strong>in</strong> <strong>the</strong> anneal<strong>in</strong>g furnace (Meunier and<br />

Cambier, 1993). We aggregate <strong>the</strong> various <strong>energy</strong> sav<strong>in</strong>g opportunities <strong>in</strong> one measure, as <strong>the</strong> total<br />

<strong>energy</strong> consumption <strong>in</strong> <strong>the</strong> anneal<strong>in</strong>g stage is limited. Energy use for batch anneal<strong>in</strong>g is estimated<br />

at 1.0 GJ/t fuel and 25 kWh/t, and for cont<strong>in</strong>uous anneal<strong>in</strong>g 0.8 GJ/t and 45 kWh/t (IISI, 1982).<br />

Energy use can be reduced by up to 40% (Meunier and Cambier, 1993), by implement<strong>in</strong>g heat<br />

recovery (us<strong>in</strong>g regenerative burners), improved <strong>in</strong>sulation, process management equipment, as<br />

well as variable speed drives. We estimate <strong>the</strong> sav<strong>in</strong>gs at 0.3 GJ fuel/t and 3 kWh/t. All cold rolled<br />

<strong>steel</strong> is assumed to be treated <strong>in</strong> <strong>the</strong> anneal<strong>in</strong>g furnace, i.e. 30.9 Mt (1994). The total potential<br />

<strong>energy</strong> sav<strong>in</strong>gs are estimated at 9 PJ. The <strong>in</strong>vestment costs are estimated at $2.7/t, based on<br />

practices at Hoogovens (The Ne<strong>the</strong>rlands).<br />

Reduced steam use <strong>in</strong> <strong>the</strong> pickl<strong>in</strong>g l<strong>in</strong>e. In <strong>the</strong> pickl<strong>in</strong>g l<strong>in</strong>e heat escapes through<br />

evaporation from <strong>the</strong> hydrochloric acid bath. The bath is normally heated to temperatures <strong>of</strong> 95°C<br />

(IISI, 1982). The IISI (1982) reports that steam use can be reduced by 5kg/t, with an assumed<br />

steam use <strong>of</strong> 30 kg/t, by <strong>in</strong>stall<strong>in</strong>g a system <strong>of</strong> lids and float<strong>in</strong>g balls on top <strong>of</strong> <strong>the</strong> bath. This is<br />

equivalent to sav<strong>in</strong>gs <strong>of</strong> 17%. For <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry we estimate <strong>the</strong> sav<strong>in</strong>gs (<strong>in</strong>clud<strong>in</strong>g boiler<br />

losses) to be 0.19 GJ/t. At a production <strong>of</strong> 32 Mt cold rolled product, <strong>the</strong> total fuel sav<strong>in</strong>gs are<br />

estimated to be 6 PJ. No <strong>in</strong>vestment cost data were available for this study. We estimate <strong>the</strong> costs<br />

on <strong>the</strong> basis <strong>of</strong> a conservative estimate by de Beer et al. (1994) at $2.8/t.<br />

Automated monitor<strong>in</strong>g and target<strong>in</strong>g system. Install<strong>in</strong>g an automated monitor<strong>in</strong>g and<br />

target<strong>in</strong>g system at a cold strip mill can reduce <strong>the</strong> power demand <strong>of</strong> <strong>the</strong> mill, as well as reduc<strong>in</strong>g<br />

effluents. A system <strong>in</strong>stalled at British Steel at Br<strong>in</strong>sworth Strip Mills, reduced <strong>the</strong> <strong>energy</strong> demand<br />

<strong>of</strong> <strong>the</strong> cold roll<strong>in</strong>g mill by approximately 15-20%, depend<strong>in</strong>g on <strong>the</strong> load factor (Caddet, 1990b).<br />

The sav<strong>in</strong>gs are estimated to be 60 kWh/t assum<strong>in</strong>g an average electricity consumption <strong>of</strong> 360<br />

kWh/t (US DOE, OIT, 1996). We assume <strong>the</strong> implementation <strong>of</strong> a similar system, at <strong>in</strong>stallation<br />

costs <strong>of</strong> $1.1/t product ($0.63/t crude <strong>steel</strong>) (Caddet, 1990b), for half <strong>of</strong> <strong>the</strong> cold strip mills <strong>in</strong> <strong>the</strong><br />

US <strong>steel</strong> <strong>in</strong>dustry, or 17% <strong>of</strong> <strong>the</strong> total <strong>steel</strong> production.<br />

8 One measure <strong>in</strong> cold roll<strong>in</strong>g is cont<strong>in</strong>uous anneal<strong>in</strong>g, which will reduce <strong>the</strong> heat losses <strong>of</strong> <strong>the</strong> batch furnaces but<br />

demands relative high <strong>in</strong>vestment costs. We do not assume implementation <strong>of</strong> this measure as an <strong>energy</strong> <strong>efficiency</strong><br />

measure.<br />

91


Appendix I. References<br />

Adolph, A., G. Paul, K.H. Kle<strong>in</strong>, E. Lepoutre, J.C. Vuilermoz, and M. Devaux, 1990. “A New<br />

Concept for Us<strong>in</strong>g Oxy-Fuel Burners and Oxygen Lances to Optimize Electric Arc Furnace<br />

Operation,” La Revue de Metallurgie – CIT 87(1): 47-53.<br />

American Iron and Steel Institute, 1995. 1994 Annual Statistical Report, Wash<strong>in</strong>gton, DC: AISI.<br />

American Iron and Steel Institute, 1996. 1995 Annual Statistical Report, Wash<strong>in</strong>gton, DC: AISI.<br />

American Iron and Steel Institute, 2010. 2010 Annual Statistical Report, Wash<strong>in</strong>gton, DC: AISI.<br />

Anonymous, 1994. “Energy Sav<strong>in</strong>g VSD Quench Pumps,” Steel Times, April: 150.<br />

Anonymous, 1995. “Natural Gas Injection Tests Show Benefits,” Iron & Steelmaker 22(10): 12.<br />

Anonymous, 1996. “BS announces 70M pound Investment,” Ironmak<strong>in</strong>g and Steel mak<strong>in</strong>g,”<br />

23(1).<br />

Anonymous, 1997a. “$137 Million Expansion Project to Increase Capacity to 1.5 Mt,” Iron & Steel<br />

Maker 24(2).<br />

Anonymous, 1997b. “Hoogovens envisage l’<strong>in</strong>stallation d’une coulee cont<strong>in</strong>ue des brames m<strong>in</strong>ces,”<br />

La Revue de Metallurgie-CIT 94(3): 583<br />

Bureau <strong>of</strong> Economic Analysis (BEA). 2011. National <strong>in</strong>come and product accounts -NIPAs, 2011.<br />

Section1 all tables. GDP and O<strong>the</strong>r Major NIPA Aggregates. US Department <strong>of</strong> Commerce.<br />

http://www.bea.gov/.<br />

Beentjes, P.A., S.P.A.M. Wokke, and J. van Breda, 1989. “Benefits <strong>of</strong> Automation <strong>of</strong> Hot Blast<br />

Stove Operation,” Proceed<strong>in</strong>gs 1989 AISE Iron and Steel Exposition and Annual Convention,<br />

September, 18-21, 1989, Pittsburgh, PA: AISE.<br />

Bosley, J. and D. Klesser, 1991. The Con<strong>steel</strong> Scrap Preheat<strong>in</strong>g Process, CMP Report 91-9, Center<br />

for Materials Production, Pittsburgh, PA.<br />

CADDET, 1987. A Horizontal Ladle Preheat<strong>in</strong>g Station fired with a Self-Recuperative Burner<br />

Improves Steel Production Operations, (Project 2B.F06.1451.87.UK), Sittard, The Ne<strong>the</strong>rlands:<br />

CADDET.<br />

CADDET, 1989. “Improved Design for Foundry Ladle Pre-Heaters,” CADDET Energy Efficiency<br />

Register 3.0 (project UK-89-003), Sittard, The Ne<strong>the</strong>rlands: CADDET.<br />

CADDET, 1990a. “Energy Sav<strong>in</strong>g by Scale Removal from Charg<strong>in</strong>g Slab,” CADDET Energy<br />

Efficiency Register 3.0 (project JP-90-022), Sittard, The Ne<strong>the</strong>rlands: CADDET.<br />

CADDET, 1990b. “Computer-based Monitor<strong>in</strong>g and Target<strong>in</strong>g on a Roll<strong>in</strong>g Mill,” Result 139<br />

(Project UK 90.056/2B.FO3), Sittard, The Ne<strong>the</strong>rlands: CADDET.<br />

92


Caddet, 1994. “Variable Speed Drive on a Large Cont<strong>in</strong>uous Furnace Combustion Air Fan,”<br />

CADDET Energy Efficiency Register 3.0 (project UK-94-452), Sittard, The Ne<strong>the</strong>rlands:<br />

CADDET.<br />

Caffal, C., 1995. “Energy Management <strong>in</strong> Industry,” CADDET Analyses Series 17, Sittard, The<br />

Ne<strong>the</strong>rlands: Caddet.<br />

Center for Materials Production, 1987. Technoeconomic Assessment <strong>of</strong> Electric Steel mak<strong>in</strong>g<br />

Through <strong>the</strong> Year 2000, EPRI/CMP, Report 2787-2, October 1987.<br />

Center for Materials Production, 1991. Direct Current Electric Arc Furnaces, Tech Commentary<br />

CMP-063, CMP, Pittsburgh, PA.<br />

Center for Materials Production, 1992. Electric Arc Furnace Efficiency, EPRI/CMP, Report 92-10,<br />

Pittsburgh, PA: CMP.<br />

Center for Materials Production, 1995. Coal & Oxygen Injection <strong>in</strong> Electric Arc Furnaces, Tech<br />

Bullet<strong>in</strong> CMP 95-7TB, CMP, Pittsburgh, PA.<br />

Center for Materials Production. 1997. Electric Arc Furnace Scrap Preheat<strong>in</strong>g. Tech<br />

Commentary, Pittsburgh, PA: Carnegie Mellon Research Institute.<br />

Cores, A., A. Formoso, M. Sirgado, J. L. Verduras, and L. Calleja. 1996. "Recovery <strong>of</strong> <strong>Potential</strong><br />

Thermal Energy <strong>of</strong> Roll<strong>in</strong>g Mill Waste Oil Through S<strong>in</strong>ter<strong>in</strong>g," Ironmak<strong>in</strong>g and Steel mak<strong>in</strong>g<br />

23(6): 486-492.<br />

Dawson, P.R., 1993. “Recent Developments <strong>in</strong> Iron Ore S<strong>in</strong>ter<strong>in</strong>g, Part 4: The S<strong>in</strong>ter<strong>in</strong>g<br />

Process,” Ironmak<strong>in</strong>g and Steel mak<strong>in</strong>g 20(2): 150-159.<br />

de Almeida, A. and P. Fonsesca, 1997. “Characterisation <strong>of</strong> <strong>the</strong> Electricity Use <strong>in</strong> European Union<br />

and <strong>the</strong> Sav<strong>in</strong>gs <strong>Potential</strong> 2010,” <strong>in</strong>: A. de Almeida, P. Bertoldi and W. Leonhard (eds.), Energy<br />

Efficiency Improvements <strong>in</strong> Electric Motors and Drives, Berl<strong>in</strong>, Germany: Spr<strong>in</strong>ger Verlag.<br />

de Beer, J.G., M.T. van Wees, E. Worrell and K. Blok, 1994. ICARUS-3, The <strong>Potential</strong> <strong>of</strong> Energy<br />

Efficiency Improvement <strong>in</strong> The Ne<strong>the</strong>rlands from 1990 to 2000 and 2015, Utrecht, The<br />

Ne<strong>the</strong>rlands: Department <strong>of</strong> Science, Technology & Society, Utrecht University.<br />

de Castro, J.A., Nogami, H., et al. (2002), Numerical <strong>in</strong>vestigation <strong>of</strong> simultaneous <strong>in</strong>jection <strong>of</strong><br />

pulverized coal and natural gas with oxygen enrichment to <strong>the</strong> blast furnace, Isij International<br />

42(11), p. 1203-1211<br />

Derycke, J., R. Bekaert, P. Couse<strong>in</strong>, L. Bonte, and H. Bruneel, 1990. “Automation <strong>of</strong> Hot Blast<br />

Stove Operation at Sidmar: Control and Optimisation <strong>of</strong> Energy Consumption,” Ironmak<strong>in</strong>g and<br />

Steel mak<strong>in</strong>g 17(2): 135-138.<br />

DOE <strong>energy</strong> audits, Steel – Plant assessments performed for plants <strong>in</strong> <strong>the</strong> <strong>steel</strong> <strong>in</strong>dustry.<br />

http://www1.eere.<strong>energy</strong>.gov/manufactur<strong>in</strong>g/tech_deployment/partners/by_<strong>in</strong>dustry_list.cfm<br />

?<strong>in</strong>dustry=Steel Visited Mar, 2012.<br />

93


Dong, H., Jie Li, et al., 2010, Grade Recovery and Cascade Utilization <strong>of</strong> Residual Heat <strong>in</strong> S<strong>in</strong>ter<br />

Cogeneration System, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 2010 Asia-Pacific Power and Energy Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conference (APPEEC 2010), p. 5<br />

Douglas, J., 1993. “New technologies for Electric Steel mak<strong>in</strong>g” EPRI Journal, October/<br />

November 1993, pp.7-15.<br />

Duan, J. P., Y. L. Zhang, et al. (2009), EAF <strong>steel</strong>mak<strong>in</strong>g process with <strong>in</strong>creas<strong>in</strong>g hot metal<br />

charg<strong>in</strong>g ratio and improv<strong>in</strong>g slagg<strong>in</strong>g regime, International Journal Of M<strong>in</strong>erals Metallurgy<br />

And Materials 16(4), p. 375-382<br />

Dungs, H. and U. Tschirner, 1994. “Energy and Material Conversion <strong>in</strong> Coke Dry Quench<strong>in</strong>g<br />

Plants as Found <strong>in</strong> Exist<strong>in</strong>g Facilities,” Cokemak<strong>in</strong>g International 6(1): 19-29.<br />

Duraloy (2011), Duraloy dry rolls for use <strong>in</strong> heat<strong>in</strong>g zones, Duraloy technologies, Scottsdale PA,<br />

USA, http://www.duraloy.com/csptunnelrolls.html, visited Mar 2012.<br />

EPA, Environmental protection agency (2010), Available and emerg<strong>in</strong>g technologies for reduc<strong>in</strong>g<br />

greenhouse gas emissions from <strong>the</strong> iron and <strong>steel</strong> <strong>in</strong>dustry, Policies and programs division.<br />

Erem<strong>in</strong>, A., V. G. Mishchikh<strong>in</strong>, et al. (2011) Us<strong>in</strong>g coke-battery flue gas to dry coal batch before<br />

cok<strong>in</strong>g, Coke and Chemistry 54(3), p. 77-85<br />

Errera, M.R., Milanez, L.F., (2000), Thermodynamic analysis <strong>of</strong> a coke dry quench<strong>in</strong>g unit,<br />

Energy Conversion and Management 41(2), p. 109<br />

ETSU, 1992. “Reduction <strong>of</strong> Costs Us<strong>in</strong>g an Advanced Energy Management System,” Best Practice<br />

Programme, R&D Pr<strong>of</strong>ile 33, Harwell, UK: ETSU<br />

Farla, J.C.M., E. Worrell, L. He<strong>in</strong>, and K. Blok, 1998. Actual Implementation <strong>of</strong> Energy<br />

Conservation Measures <strong>in</strong> <strong>the</strong> Manufactur<strong>in</strong>g Industry 1980-1994, The Ne<strong>the</strong>rlands: Dept. <strong>of</strong><br />

Science, Technology & Society, Utrecht University.<br />

Ferretti, I., Zanoni, S., Zavanella, L. (2006), Energy Efficiency <strong>in</strong> a <strong>steel</strong> plant us<strong>in</strong>g optimizationsimulation,<br />

Università degli Studi di Brescia, Brescia, Italy.<br />

F<strong>in</strong>lay, P., (2004), Guidel<strong>in</strong>es on Best Available Techniques (BAT) for S<strong>in</strong>ter Plants <strong>in</strong> <strong>the</strong> Iron<br />

Industry,<br />

http://www.pops.<strong>in</strong>t/documents/meet<strong>in</strong>gs/bat_bep/2nd_session/egb2_followup/draftguide/5<br />

D2IronS<strong>in</strong>ter<strong>in</strong>gDRAFTc.pdf, visited March, 2012.<br />

Fitzgerald, F., 1992. “Energy Use and Management <strong>in</strong> British Steel Plc.,” Ironmak<strong>in</strong>g and Steel<br />

mak<strong>in</strong>g 19(2): 98-106.<br />

Flanagan, J.M., 1993. “Process Heat<strong>in</strong>g <strong>in</strong> <strong>the</strong> Metals Industry,” CADDET Analyses Series 11,<br />

Sittard, The Ne<strong>the</strong>rlands: CADDET.<br />

Flemm<strong>in</strong>g, G., 1995. Personal Communication with G. Flemm<strong>in</strong>g, SMS, Dusseldorf, Germany.<br />

94


Gitman, G., 1998. American Combustion, Inc., Personal Communication, August 12 th , 1998.<br />

Gongfa, L., Kong Jianyi, et al. (2010), Intelligent Control <strong>of</strong> Coke Oven Production Process,<br />

Advanced Materials Research 129-131, p. 198-203<br />

Grant, M.G., (2000), Pr<strong>in</strong>cipals and strategy <strong>of</strong> EAF post combustion, 58 th Electric Furnace<br />

Conference – Orlando (USA) –Nov 12-15th, 2000.<br />

H. Sakaue (2009), Improvement <strong>of</strong> Production by Decreas<strong>in</strong>g Air Leak at Nagoya No. 3<br />

S<strong>in</strong>ter<strong>in</strong>g Plant, Tetsu To Hagane-Journal Of The Iron And Steel Institute Of Japan 95(7), p. 52-<br />

55<br />

Haissig, M., 1994. “Enhancement <strong>of</strong> EAF Performance by Injection Technology” Steel Times,<br />

October 1994 pp.391-393.<br />

Hanes, C., 1999. USS/Kobe Steel, Personal communication, June 1999.<br />

Heesen, G.J. and D.H. Burggraaf, 1991. “New Process Control System <strong>of</strong> Hoogoven’s Hot Strip<br />

Mill - Key to Improved Product Quality,” Ironmak<strong>in</strong>g and Steel mak<strong>in</strong>g 18(3): 190-195<br />

Hendriks, C.A., 1994. Carbon Dioxide Removal From Coal-Fired Power Plants, Kluwer Academic<br />

Publishers, Dordrecht, The Ne<strong>the</strong>rlands.<br />

Her<strong>in</strong>, H.H. and T. Busbee, 1996. “The Con<strong>steel</strong>® Process <strong>in</strong> Operation at Florida Steel” Iron &<br />

Steelmaker 23(2): 43-46.<br />

H<strong>of</strong>er, L., 1996. Electric Steel mak<strong>in</strong>g with FUCHS Shaft Furnace Technology, L<strong>in</strong>z, Austria:<br />

Voest Alp<strong>in</strong>e Industrieanlagenbau Gmbh, VAI.<br />

H<strong>of</strong>er, L., 1997. Personal communication, Voest Alp<strong>in</strong>e Industrieanlagenbau Gmbh, L<strong>in</strong>z, Austria,<br />

25 September 1997.<br />

Hogan, W.T., 1992. Capital Investment <strong>in</strong> Steel, A World Plan for <strong>the</strong> 1990’s, New York, NY:<br />

Lex<strong>in</strong>gton Books.<br />

Hogan, W.T., and F.T. Koelble, 1996a. “Fewer Blast Furnaces, but Higher Productivity,” New Steel<br />

12(11): 62-66.<br />

Hogan, W.T., and F.T. Koelble, 1996b. “Steel’s Coke Deficit: 5.6 Million Tons and Grow<strong>in</strong>g,” New<br />

Steel 12(12): 50-60.<br />

Hsun L<strong>in</strong>, P., Wang., P., Huang, T., (2009), Exergy Analysis <strong>of</strong> a Coke Dry Quench<strong>in</strong>g System,<br />

Ch<strong>in</strong>a Steel Technical Report, No. 22, pp. 63-67<br />

I&SM, 1997a. “Iron & Steelmaker’s 1997 Blast Furnace Roundup,” Iron and Steelmaker 24(8):<br />

24-2<br />

I&SM, 1997b. "Electric Arc Furnace Roundup – United States," Iron and Steelmaker 24(5): 20-<br />

39.<br />

95


Inoue, K., 1995. “The Steel Industry <strong>in</strong> Japan: Progress <strong>in</strong> Cont<strong>in</strong>uous Cast<strong>in</strong>g.”<br />

International Energy Agency, 1995. Energy Prices and Taxes, First Quarter 1995, Paris: IEA.<br />

International Iron and Steel Institute (IISI). 1999. IISI web site:<br />

http://www.<strong>world</strong><strong>steel</strong>.org/<strong>steel</strong>datacentre/lgcountry.htm. Brussels: IISI.<br />

International Iron and Steel Institute, 1993. World Cokemak<strong>in</strong>g Capacity, Brussels, Belgium:<br />

IISI.<br />

International Iron and Steel Institute, Committee on Technology, 1982. Energy and <strong>the</strong> Steel<br />

Industry, Brussels, Belgium: IISI.<br />

Janz, J. and W. Weis, 1996. “Injection <strong>of</strong> Waste Plastics <strong>in</strong>to <strong>the</strong> Blast Furnace <strong>of</strong> Stahlwerke<br />

Bremen,” La Revue de Metallurgie-CIT 93(10): 1219-1226.<br />

Jones, J. A. T. 1996. "New Steel Melt<strong>in</strong>g Technologies: Part III, Application <strong>of</strong> Oxygen Lanc<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> EAF." Iron and Steelmaker 23(6): 41-42.<br />

Jones, J. A. T. 1997a. "New Steel Melt<strong>in</strong>g Technologies: Part X, New EAF Melt<strong>in</strong>g Processes."<br />

Iron and Steelmaker 24(January): 45-46.<br />

Jones, J. A. T. 1997b. Electric Arc Furnace Evolution: In Search <strong>of</strong> <strong>the</strong> Optimal Design. Bechtel<br />

Corporation..<br />

Jones, J. A. T. 1997c. "New Steel Melt<strong>in</strong>g Technologies: Part XVI, CONSTEEL Process." Iron<br />

and Steelmaker 24(July): 47-48.<br />

Jones, J. A. T. 1997d. "New Steel Melt<strong>in</strong>g Technologies: Part XV, Fuchs Shaft Furnace." Iron<br />

and Steelmaker 24(June): 43-45.<br />

Jones, J.A.T., 1993. Increased EAF Productivity through Improved Operat<strong>in</strong>g Efficiency, Nupro<br />

Corporation.<br />

Jones, J.A.T., 1998. Acutus Gladw<strong>in</strong>, Personal Communication, August 8 th , 1998.<br />

Jones, R. T., Q. G. Reynolds, et al. Some myths about DC arc furnaces, Journal Of The South<br />

African Institute Of M<strong>in</strong><strong>in</strong>g And Metallurgy 111(10), p. 665-673<br />

Kelly, J., Dentella, F., Recanati, A., Visus, J., Miclo, E., (2010) Oxygen-Enhanced Ladle<br />

Preheat<strong>in</strong>g Systems: Improved Tap-to-Tap Cycle Time and Operat<strong>in</strong>g Cost Reductions, AISTech<br />

2010 - The Iron & Steel Technology Conference and Exposition, Pittsburgh, Pa.<br />

Kilicaslan, I., and E. Ozdemir (2005), Energy economy with a variable speed drive <strong>in</strong> an oxygen<br />

trim controlled boiler house, Transactions <strong>of</strong> <strong>the</strong> ASME. Journal <strong>of</strong> Energy Resources Technology<br />

127(1), p. 59-65.<br />

Kimmerl<strong>in</strong>g, K., 1997. Personal communication and reference list, Neural Applications<br />

Corporation, Coralville, IA (26 August 1997).<br />

96


Kowalski, W., K-H. Peters, W. Cronert, P. Kuhn, and D. Sucker, 1990. “Optimierung der Brenner<br />

von W<strong>in</strong>derhitzern im H<strong>in</strong>blick auf e<strong>in</strong>en hohen CO-Ausbrand,” Stahl u. Eisen 110(11): 41-50.<br />

Ladoux, P., Postiglione, G., Foch, H., Nuns, J., (2005), A comparative study <strong>of</strong> AC/DC Converters<br />

for High-Power DC arc furnace, IEEE Transactions on Industrial Electronics 52(3), p. 747 – 757<br />

Lahita, J.A., 1995. “The Con<strong>steel</strong>® Process <strong>in</strong> Operation at New Jersey Steel Corporation”<br />

Proceed<strong>in</strong>gs 5 th European Electric Steel Congress, Paris, June 19-23, 1995.<br />

Lanzer, W. and H.B. Lungen, 1996. “Roheisenerzeugung <strong>in</strong> Nordamerika,” Stahl und Eisen<br />

116(8): 61-69.<br />

Li, H. F., W. J. Bao, et al. (2010) Energy recovery and abatement potential <strong>of</strong> CO2 emissions for<br />

an <strong>in</strong>tegrated iron and <strong>steel</strong> mak<strong>in</strong>g enterprise, Science Ch<strong>in</strong>a-Technological Sciences 53(1), p.<br />

129-133<br />

Macauley, D. and R.M. Smailer, 1997. “Eng<strong>in</strong>eer<strong>in</strong>g Fundamentals for a Least Cost/Flexible Steel<br />

mak<strong>in</strong>g Solution” Paper presented at 25 th Advanced Technology Symposium on New Melt<strong>in</strong>g<br />

Technologies, St. Petersburg Beach, FL, May 11-14, 1997.<br />

Maiolo, J., Butazakhti, M., Li, W.L. (2006), Developments towards an Intellegent Electric Arc<br />

Furnace at CMC Texas us<strong>in</strong>g Goodfellow EFSOP(R) Technology, Tenova Goodfellow Inc.,<br />

Mississauga, ON.<br />

McAloon, T.P., 1994. “Alternate Ironmak<strong>in</strong>g Update,” Iron & Steelmaker 21(2): 37-39 + 55.<br />

Meunier, H. and M. Cambier, 1993. “Use <strong>of</strong> Furnace Modell<strong>in</strong>g to Improve Energy Efficiency <strong>in</strong><br />

<strong>the</strong> Deepdraw<strong>in</strong>g Steel Sheet Industry,” P.A. Pilavachi (ed.), Energy Efficiency <strong>in</strong> Process<br />

Technology, Amsterdam: Elsevier Applied Science.<br />

Midrex, 1993. The Midrex Direct Reduction Process, Charlotte, NC: Midrex Direct Reduction<br />

Corporation.<br />

Midrex, 1995. 1994 World Direct Reduction Statistics, Charlotte, NC: Midrex Direct Reduction<br />

Corporation.<br />

Mueller, E.G., 1997. “High Production Meltshops: Trends and Innovations” Paper presented at<br />

25 th Advanced Technology Symposium on New Melt<strong>in</strong>g Technologies, St. Petersburg Beach, FL,<br />

May 11-14, 1997.<br />

Nashan, G., 1992. “Conventional Ma<strong>in</strong>tenance and <strong>the</strong> Renewal <strong>of</strong> Cokemak<strong>in</strong>g Technology,” In:<br />

IISI, Committee on Technology, The Life <strong>of</strong> Coke Ovens and New Cok<strong>in</strong>g Processes under<br />

Development, Brussels: IISI.<br />

Nelson, K., 1994. “F<strong>in</strong>d<strong>in</strong>g and Implement<strong>in</strong>g Projects that Reduce Waste,” <strong>in</strong>: R. Socolow, C.<br />

Andrews, F. Berkhout and V. Thomas, Industrial Ecology and Global Change, Cambridge, UK:<br />

Cambridge University Press.<br />

N<strong>in</strong>neman, P., 1997. “New Melt Shops and Roll<strong>in</strong>g Mills” New Steel 13 (9): pp.40-58.<br />

97


Oda, J., Akimoto, K. (2007), Evaluation <strong>of</strong> Energy Sav<strong>in</strong>g and CO2 Emission Reduction<br />

Technologies <strong>in</strong> Energy Supply and End-use Sectors Us<strong>in</strong>g a Global Energy Model, Transaction<br />

on electrical and electronic eng<strong>in</strong>eer<strong>in</strong>g, IEEJ Trans; 1: p72–83<br />

Ooi, T., et al. (2008), The study <strong>of</strong> sunflower seed husks as a fuel <strong>in</strong> <strong>the</strong> iron ore s<strong>in</strong>ter<strong>in</strong>g<br />

process, M<strong>in</strong>erals Eng<strong>in</strong>eer<strong>in</strong>g 21, p167–177<br />

Opfermann, A., Ried<strong>in</strong>ger, D. (2008), Energy <strong>efficiency</strong> <strong>of</strong> electric arc furnace, International Arab<br />

Iron and Steel Conference 2008, Qatar, Badische Steel Eng<strong>in</strong>eer<strong>in</strong>g GmbH<br />

Oshnock, T.W., 1995a. “Pulverized Coal Injection for Blast Furnace Operation, Part IV,” Iron &<br />

Steelmaker 22(2): 41-42.<br />

Oshnock, T.W., 1995b. “Pulverized Coal Injection for Blast Furnace Operation, Part VI,” Iron &<br />

Steelmaker 22(4): 49-50.<br />

Palasios, J.M. and J.L. Arana,1995. “Research and Development <strong>of</strong> <strong>the</strong> EAF <strong>in</strong> Europe”<br />

Proceed<strong>in</strong>gs 5 th European Electric Steel Congress, Paris, June 19-23, 1995, pp.391-400.<br />

Pisila, E., S. Kallo, T. Ahalo, and K. He<strong>in</strong>anen, 1995. “High Productivity Operation <strong>of</strong> Rautaruukki<br />

Blast Furnaces,” La Revue de Metallurgie-CIT 92(3): 375-380.<br />

Rengersen, J., Oosterhuis, E., de Boer, W.F., Veel, T.J.M. and Otto, J. 1995. “First Industrial<br />

Experience with Partial Waste Gas Recirculation <strong>in</strong> a S<strong>in</strong>ter Plant,” Revue de Metallurgie-CIT 3<br />

92 pp. 329-335 (1995).<br />

Riley, M.F. and S.K. Sharma, 1987. “An Evaluation <strong>of</strong> <strong>the</strong> Technical and Economic Benefits <strong>of</strong><br />

Submerged Inert Gas Stirr<strong>in</strong>g <strong>in</strong> an Electric Arc Furnace” Iron & Steelmaker 14(6): 27-32.<br />

Ritt, A., 1996a. “The Benefits <strong>of</strong> Hot-Charg<strong>in</strong>g Slabs,” New Steel 12(7): 34-37+44.<br />

Ritt, A., 1996b. “Build<strong>in</strong>g More Powerful Melt Shops,” New Steel 12(11).<br />

Ritt, A., 1997. “Acme Rolls 0.030 Inch Hot Band,” New Steel 13(5).<br />

Roederer, C. and L. Gourtsoyannis, 1996. Coord<strong>in</strong>ated Study Steel-Environment, Luxembourg:<br />

European Commission, DG-XII.<br />

Rosenberg, M, 1997. “The United States Motor Systems Basel<strong>in</strong>e: Inventory and Trends,” <strong>in</strong>: A. de<br />

Almeida, P. Bertoldi and W. Leonhard (eds.), Energy Efficiency Improvements <strong>in</strong> Electric Motors<br />

and Drives, Berl<strong>in</strong>, Germany: Spr<strong>in</strong>ger Verlag.<br />

Saidur, R., Ahamed, J.U., Masjuki, H.H., Energy, (2010), Exergy and economic analysis <strong>of</strong><br />

<strong>in</strong>dustrial boilers, Energy Policy 38, p.2188–2197<br />

Schade, R.J., 1991. Bottom Stirr<strong>in</strong>g <strong>in</strong> an Electric Arc Furnace, Center for Metals Production,<br />

Pittsburgh, PA, February 1991.<br />

Schorsch, L. L., 1996. “Why M<strong>in</strong>imills Give <strong>the</strong> US Huge Advantages <strong>in</strong> Steel,” McK<strong>in</strong>sey<br />

Quarterly (2):44-55.<br />

98


Schriefer, J., 1996. “Improv<strong>in</strong>g Quality by Better Process Control,” New Steel 12(4): 81-83.<br />

Schriefer, J., 1997. “Reap<strong>in</strong>g <strong>the</strong> Value from Dust and Slag,” New Steel 13(2): 24-33.<br />

Schuett, K.J., and D.G. White, 1997. “Record Production on US Steel Gary Works’ No. 13 Blast<br />

Furnace with 450 Pounds/THM Co-Injection Rates,” Iron and Steelmaker, 24(3): 65-68.<br />

Serjeantson, R., R. Cordero and H. Cooke, 1987. Iron and Steel Works <strong>of</strong> <strong>the</strong> World, 9 th edition,<br />

Worcester Park, UK: Metal Bullet<strong>in</strong> Books Ltd.<br />

Siemens-VAI (2011a), Metals technologies, Solutions for s<strong>in</strong>terplants, Order No. E10001-M3-<br />

A6-V3-7600.<br />

Siemens-VAI (2011b), Metals technologies,Simetal EAF Quantum, Order No. E10001-M3-A125-<br />

V2-7600, claimed at:<br />

http://www.<strong>in</strong>dustry.siemens.com/datapool/<strong>in</strong>dustry/<strong>in</strong>dustrysolutions/metals/simetal/en/SI<br />

METAL-EAF-Quantum-en.pdf<br />

Staib, W.E. and N.G. Bliss, 1995. “Neural Network Control System for Electric Arc Furnaces”<br />

Metallurgical Plant & Technology International 2: 58-61.<br />

Stelco, 1993. Present and Future Use <strong>of</strong> Energy <strong>in</strong> <strong>the</strong> Canadian Steel Industry, Ottawa, Canada:<br />

CANMET.<br />

Stockmeyer, R., K-H. He<strong>in</strong>en, H. Veuh<strong>of</strong>f, and H. Siegert, 1990. “E<strong>in</strong>sparung von elektrischer<br />

Energie am Lichtbogen<strong>of</strong>en durch e<strong>in</strong>e neue Ausqualmregelung” Stahl u. Eisen 110(12): 113-116.<br />

Teoh, L.L., 1989. “Electric Arc Furnace Technology: Recent Developments and Future Trends”<br />

Ironmak<strong>in</strong>g and Steel mak<strong>in</strong>g 16(5): 303-313.<br />

Toulouevski, Y.N., Z<strong>in</strong>urov, I.Y., (2010), Innovation <strong>in</strong> Electric arc furnaces, Heidelberg,<br />

Spr<strong>in</strong>ger, ISBN 978-3-642-03800-6<br />

Tucker, R. J., J. Ward, et al. (2008), Development and experimental test<strong>in</strong>g <strong>of</strong> a porous ceramic<br />

wall to improve <strong>the</strong> <strong>the</strong>rmal performance <strong>of</strong> <strong>steel</strong> billet reheat<strong>in</strong>g furnaces, Journal Of The<br />

Energy Institute 81(3), p. 135-142<br />

US Department <strong>of</strong> Energy, Office <strong>of</strong> Industrial Technologies, 1996. Energy and Environmental<br />

Pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> US Iron and Steel Industry, Wash<strong>in</strong>gton DC: US DOE, OIT.<br />

Uematsu, H., 1989. “Control <strong>of</strong> Operation and Equipment Prevents Coke Oven Damage,”<br />

Ironmak<strong>in</strong>g Conference Proceed<strong>in</strong>gs, Warrendale, PA: Iron and Steel Society.<br />

VAI, 1997. FUCHS Shaft Furnaces, The Power, The Performance, The Pr<strong>of</strong>it, L<strong>in</strong>z, Austria: Voest<br />

Alp<strong>in</strong>e Industrieanlagenbau Gmbh,<br />

Vergote, H, 1996. “New Technologies <strong>in</strong> Process Control for Hot Strip Mills,” Iron & Steelmaker<br />

23(2): 21-25.<br />

99


Vesel, R., J. Gregory, et al. (2007), Drive technology enables combustion optimization, Power<br />

Eng<strong>in</strong>eer<strong>in</strong>g 111(4), p. 50.<br />

Wakel<strong>in</strong>, D.H., 1997. Personal communication with David H. Wakel<strong>in</strong>, Manager <strong>of</strong> Development<br />

Eng<strong>in</strong>eer<strong>in</strong>g, LTV Cleveland Works, December 1.<br />

Walli, R.A., 1991. Adjustable Speed Drives for Electric Arc Furnace Air Pollution Control<br />

Systems, Center for Metals Production, Pittsburgh, PA, December 1991.<br />

Worrell, E. and C. Moore, 1997. “Energy Efficiency and Advanced Technologies <strong>in</strong> <strong>the</strong> Iron and<br />

Steel Industry,” <strong>in</strong>: Proceed<strong>in</strong>gs 1997 ACEEE Summer Study on Energy Efficiency <strong>in</strong> Industry,<br />

Wash<strong>in</strong>gton, DC: ACEEE.<br />

Worrell, E., J.G. de Beer, and K. Blok, 1993. “Energy Conservation <strong>in</strong> <strong>the</strong> Iron and Steel Industry,”<br />

<strong>in</strong>: P.A. Pilavachi (ed.), Energy Efficiency <strong>in</strong> Process Technology, Amsterdam: Elsevier Applied<br />

Science.<br />

100


Appendix J. Calculation example<br />

In order to provide some <strong>in</strong>sight <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> total <strong>energy</strong> sav<strong>in</strong>gs potential for<br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> <strong>in</strong> <strong>the</strong> different <strong>steel</strong> <strong>in</strong>dustries. Here an example calculation <strong>of</strong> one<br />

<strong>energy</strong> <strong>efficiency</strong> <strong>measures</strong> will be shown.<br />

For this example we will take <strong>the</strong> ‘Improved blast furnace control systems’. For this measure an<br />

<strong>energy</strong> sav<strong>in</strong>g <strong>of</strong> 0.4 GJ/tonne <strong>of</strong> hot metal was found. The capital costs were estimated at $0.36<br />

per tonne <strong>of</strong> hot metal, while <strong>the</strong>re were no changes <strong>in</strong> operat<strong>in</strong>g costs expected. It was expected<br />

<strong>the</strong> <strong>measures</strong> was applicable to 50% <strong>of</strong> <strong>the</strong> US <strong>steel</strong> <strong>in</strong>dustry. For this example, just like <strong>in</strong> o<strong>the</strong>r<br />

calculation, we will use a discount rate <strong>of</strong> 30% with a usual measure lifetime <strong>of</strong> 10 years.<br />

The capital recovery factor is described <strong>in</strong> <strong>the</strong> formula below,<br />

d<br />

q =<br />

−<br />

( 1−<br />

( 1+<br />

d)<br />

n<br />

)<br />

From this formula we f<strong>in</strong>d a capital recovery factor <strong>of</strong> 0.32.<br />

Then to calculate <strong>the</strong> CCE we use <strong>the</strong> follow<strong>in</strong>g formula below,<br />

∙∆<br />

The <strong>in</strong>vestment cost <strong>of</strong> <strong>the</strong> measure are given above, $0.36 per tonne <strong>of</strong> hot metal, and no o<strong>the</strong>r<br />

non-<strong>energy</strong> benefits are <strong>in</strong>cluded (so M and B are 0). Delta E is <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs, which is 0.4<br />

GJ/ tonne <strong>of</strong> hot metal <strong>in</strong> this case. So <strong>the</strong> CCE can be calculated, which is $0.28/GJ.<br />

This is much lower than <strong>the</strong> average weighted fuel price, which for <strong>the</strong> US was $6.76/GJ, so <strong>the</strong><br />

measure can be considered cost-effective.<br />

With a total production <strong>of</strong> <strong>in</strong>tegrated <strong>steel</strong> <strong>in</strong> <strong>the</strong> US <strong>in</strong> 2006 <strong>of</strong> 37.9 Mt <strong>of</strong> hot metal, <strong>the</strong><br />

measure could save a potential <strong>of</strong> 15.2 PJ <strong>in</strong> <strong>the</strong> US. Provided <strong>the</strong> measure is expected to be<br />

applicable for only 50%, as mentioned above, <strong>the</strong> total potential <strong>of</strong> this measure 7.1 PJ for an<br />

average cost <strong>of</strong> $0.28 per GJ saved.<br />

101


102<br />

Appendix K. Results <strong>of</strong> <strong>energy</strong> <strong>efficiency</strong> calculation for <strong>the</strong> US 2006<br />

2006 BASELINE<br />

Secondary Steelmak<strong>in</strong>g<br />

Steelmak<strong>in</strong>g Electric Arc Furnace<br />

Applied<br />

Carbon<br />

Sav<strong>in</strong>gs<br />

Applied<br />

F<strong>in</strong>al<br />

Energy<br />

Sav<strong>in</strong>gs<br />

Cost <strong>of</strong><br />

Measure<br />

Operation<br />

Cost Change<br />

Measure<br />

Lifetime<br />

Applied<br />

Carbon<br />

Sav<strong>in</strong>gs F<strong>in</strong>al CCR F<strong>in</strong>al CCE<br />

Primary<br />

Capital<br />

Recovery<br />

CCE F<strong>in</strong>al MCCE Factor<br />

kgC/tonne<br />

<strong>steel</strong> (GJ/tonne) (US$/tonne) (US$/tonne) (years) (M illion kgC) US$/tC (US$/GJ) (US$/GJ) (US$/GJ)<br />

Real discount<br />

rate<br />

Improved process control (neural network) 3.3 0.07 0.63 (0.66) 10.0 324 (139.45) (6.21) (2.28) (18.76) $0.32<br />

Fluegas Monitor<strong>in</strong>g and Control 0.5 0.01 0.73 (0.49) 15.0 49 (526.42) (19.71) (8.47) (30.90) $0.31<br />

Transformer <strong>efficiency</strong> - UHP transformers 1.2 0.03 0.71 - 15.0 116 183.13 8.15 3.00 (4.40) $0.31<br />

Bottom Stirr<strong>in</strong>g / Stirr<strong>in</strong>g gas <strong>in</strong>jection 0.2 0.00 0.05 (0.16) 0.5 20 (215.77) (9.60) (3.53) (22.15) $2.44<br />

Foamy slag 0.1 0.00 1.47 (0.26) 10.0 11 1,925.44 85.68 31.50 73.13 $0.32<br />

Oxy-fuel burners 1.5 0.00 1.09 (0.32) 10.0 151 23.32 16.63 0.41 (124.83) $0.32<br />

Eccentric Bottom Tapp<strong>in</strong>g (EBT) on exist<strong>in</strong>g furnace 0.1 0.00 0.12 - 20.0 7 518.10 23.05 8.48 10.50 $0.30<br />

DC-Arc furnace 1.7 0.04 0.57 (0.37) 30.0 165 (116.29) (5.17) (1.90) (17.72) $0.30<br />

FUCHS Shaft furnace 2.7 0.01 1.54 (1.03) 30.0 270 (206.53) (88.66) (3.66) (175.40) $0.30<br />

Tw<strong>in</strong> Shell w/ scrap preheat<strong>in</strong>g 0.4 0.01 z (0.08) 30.0 36 141.06 6.28 2.31 (6.27) $0.30<br />

Recover heat from waste gas 0.3 0.02 0.91 (0.09) 10.0 31 651.70 8.94 8.94 2.32 $0.32<br />

Post combustion <strong>of</strong> CO gas 2.6 0.06 1.37 (0.41) 10.0 252 12.55 0.56 0.21 (11.99) $0.32<br />

Increased usage <strong>of</strong> hot metal 0.4 0.01 0.51 (0.09) 10.0 38 207.27 9.22 3.39 (3.33) $0.32<br />

Secondary Cast<strong>in</strong>g<br />

Efficient ladle preheat<strong>in</strong>g 0.1 0.00 0.01 - 10.0 6 74.12 0.89 0.89 (7.18) $0.32<br />

Proper seal<strong>in</strong>g on ladle furnace preheat<strong>in</strong>g 0.2 0.02 0.06 - 10.0 24 76.61 0.92 0.92 (7.15) $0.32<br />

Near net shape cast<strong>in</strong>g/th<strong>in</strong> slab cast<strong>in</strong>g 9.4 0.57 28.54 (6.66) 20.0 924 207.86 3.44 2.68 (5.38) $0.30<br />

Use dry rolls <strong>in</strong> tunnel ovens for TSC 0.9 0.07 0.74 (0.00) 20.0 84 258.70 3.12 3.12 (4.96) $0.30<br />

Secondary Hot Roll<strong>in</strong>g<br />

Process control <strong>in</strong> hot strip mill 1.3 0.10 0.27 - 10.0 131 65.92 0.90 0.90 (7.17) $0.32<br />

Recuperative burners 3.1 0.23 1.04 - 10.0 307 108.65 1.49 1.49 (6.59) $0.32<br />

Insulation <strong>of</strong> furnaces 0.4 0.03 1.96 - 10.0 41 1,521.14 20.86 20.86 12.79 $0.32<br />

Reduce losses from furnace door open<strong>in</strong>g 0.1 0.00 0.08 - 10.0 6 434.61 5.96 5.96 (2.11) $0.32<br />

Controll<strong>in</strong>g oxygen levels and VSDs on combustion air fans 0.1 0.01 0.03 - 15.0 11 86.57 1.27 1.21 (6.95) $0.31<br />

Energy-efficient drives <strong>in</strong> <strong>the</strong> roll<strong>in</strong>g mill 0.2 0.00 0.12 - 20.0 20 174.86 7.78 2.86 (4.77) $0.30<br />

Waste heat recovery from cool<strong>in</strong>g water 0.2 0.01 0.33 0.03 15.0 17 774.06 10.29 10.54 2.28 $0.31<br />

General Technologies<br />

Preventative Ma<strong>in</strong>tenance 4.0 0.13 0.01 0.01 20.0 393 4.23 0.13 0.10 (7.32) $0.30<br />

Optimiz<strong>in</strong>g <strong>the</strong> steam system 2.4 0.08 0.57 - 20.0 233 72.46 2.15 2.15 (4.41) $0.30<br />

Increase <strong>efficiency</strong> <strong>of</strong> boilers 0.2 0.01 0.09 - 20.0 17 152.16 4.52 4.52 (2.04) $0.30<br />

Optimiz<strong>in</strong>g <strong>the</strong> air system 0.2 0.01 0.14 - 20.0 17 243.45 7.24 2.66 (5.31) $0.30<br />

Variable speed drive: flue gas control, pumps, fans 0.1 0.00 0.20 - 5.0 8 966.69 28.74 10.57 16.19 $0.41<br />

Energy monitor<strong>in</strong>g and management system 0.7 0.02 0.10 - 5.0 71 56.65 1.68 1.34 (5.76) $0.41<br />

Integrated Steelmak<strong>in</strong>g<br />

Iron Ore Preparation (S<strong>in</strong>ter<strong>in</strong>g)<br />

S<strong>in</strong>ter plant heat recovery 1.1 0.04 0.27 - 10.0 109 80.50 2.30 2.34 (2.49) $0.32<br />

Reduction <strong>of</strong> air leakages 0.0 0.00 0.03 (0.01) 10.0 4 (6.81) (0.30) (0.11) (12.85) $0.32<br />

Increas<strong>in</strong>g bed depth 0.2 0.01 0.00 - 10.0 17 0.12 0.00 0.00 (5.03) $0.32<br />

Improved process control (s<strong>in</strong>ter plant) 0.1 0.00 0.02 (0.02) 10.0 8 (142.33) (4.24) (3.79) (9.63) $0.32<br />

Use <strong>of</strong> waste fuels <strong>in</strong> <strong>the</strong> s<strong>in</strong>ter plant 0.0 0.00 0.00 - 10.0 4 15.73 0.45 0.45 (4.42) $0.32<br />

Improved process control (s<strong>in</strong>ter plant) 0.1 0.01 0.21 (0.01) 10.0 14 410.63 11.79 11.79 6.92 $0.32<br />

Coke Mak<strong>in</strong>g<br />

Coal moisture control 0.1 0.02 6.78 - 10.0 14 15,095.87 92.94 92.94 78.64 $0.32<br />

Programmed heat<strong>in</strong>g - coke plant 0.1 0.02 0.03 - 10.0 12 82.05 0.51 0.51 (13.79) $0.32<br />

Variable speed drive coke oven gas compressors 0.0 0.00 0.04 - 15.0 0 2,747.72 16.92 16.92 2.62 $0.31<br />

Coke dry quench<strong>in</strong>g 1.1 0.17 9.68 (0.81) 18.0 104 2,003.29 12.33 12.33 (1.96) $0.30<br />

Iron Mak<strong>in</strong>g (Blast Furnace)<br />

Pulverized coal <strong>in</strong>jection to 130 kg/thm 1.0 0.06 0.73 (0.21) 20.0 102 11.19 0.19 0.19 (5.19) $0.30<br />

Pulverized coal <strong>in</strong>jection to 225 kg/thm 0.9 0.06 0.67 (0.08) 20.0 93 124.82 2.08 2.08 (3.30) $0.30<br />

Injection <strong>of</strong> natural gas to 140 kg/thm 1.2 0.07 0.50 (0.18) 20.0 113 (23.71) (0.39) (0.39) (5.77) $0.30<br />

Injection <strong>of</strong> oil up to 130 kg/thm 1.1 0.07 0.46 (0.15) 20.0 107 (13.48) (0.22) (0.22) (5.60) $0.30<br />

Top pressure recovery turb<strong>in</strong>es (wet type) 2.4 0.05 7.94 - 15.0 233 1,026.64 45.68 16.80 33.13 $0.31<br />

Recovery <strong>of</strong> blast furnace gas 0.1 0.01 0.04 - 15.0 12 107.90 1.79 1.79 (3.58) $0.31<br />

Hot blast stove automation 1.4 0.09 0.09 - 5.0 140 25.83 0.43 0.43 (4.95) $0.41<br />

Recuperator hot blast stove 0.5 0.03 0.69 - 10.0 50 439.15 7.30 7.30 1.93 $0.32<br />

Improved blast furnace control systems 2.1 0.13 0.15 - 5.0 209 28.67 0.48 0.48 (4.90) $0.41<br />

Steelmak<strong>in</strong>g<br />

BOF gas + sensible heat recovery 6.2 0.41 12.23 - 10.0 614 634.48 9.57 8.88 1.35 $0.32<br />

Variable speed drive on ventilation fans 0.1 0.00 0.11 - 10.0 6 578.83 25.76 9.47 13.21 $0.32<br />

Integrated Cast<strong>in</strong>g<br />

Efficient ladle preheat<strong>in</strong>g 0.1 0.01 0.02 - 10.0 8 65.19 0.89 0.89 (5.34) $0.32<br />

Proper seal<strong>in</strong>g on ladle furnace preheat<strong>in</strong>g 0.2 0.02 0.04 - 10.0 20 67.38 0.92 0.92 (5.31) $0.32<br />

Th<strong>in</strong> slab cast<strong>in</strong>g 5.6 0.30 14.96 (3.49) 20.0 550 182.81 3.44 2.68 (3.84) $0.30<br />

Use dry rolls <strong>in</strong> tunnel ovens for TSC 0.7 0.05 0.56 (0.00) 20.0 72 227.53 3.12 3.12 (3.11) $0.30<br />

Integrated Hot Roll<strong>in</strong>g<br />

Hot charg<strong>in</strong>g 0.6 0.05 1.48 (0.15) 20.0 62 474.00 6.50 6.50 (1.57) $0.30<br />

Process control <strong>in</strong> hot strip mill 0.8 0.06 0.16 - 10.0 78 65.92 0.90 0.90 (7.17) $0.32<br />

Recuperative burners 0.7 0.05 0.25 - 10.0 73 108.65 1.49 1.49 (6.59) $0.32<br />

Insulation <strong>of</strong> furnaces 0.3 0.02 1.48 - 10.0 31 1,521.14 20.86 20.86 12.79 $0.32<br />

Reduce losses from furnace door open<strong>in</strong>g 0.0 0.00 0.05 - 10.0 5 336.91 4.62 4.62 (3.45) $0.32<br />

Controll<strong>in</strong>g oxygen levels and VSDs on combustion air fans 0.1 0.01 0.02 - 15.0 9 86.57 1.27 1.21 (6.95) $0.31<br />

Energy-efficient drives <strong>in</strong> <strong>the</strong> roll<strong>in</strong>g mill 0.1 0.00 0.05 - 20.0 8 174.86 7.78 2.86 (4.77) $0.30<br />

Waste heat recovery from cool<strong>in</strong>g water 0.1 0.01 0.22 0.02 15.0 11 774.06 10.29 10.54 2.28 $0.31<br />

Integrated Cold Roll<strong>in</strong>g and F<strong>in</strong>ish<strong>in</strong>g<br />

Heat recovery on <strong>the</strong> anneal<strong>in</strong>g l<strong>in</strong>e 1.3 0.09 0.98 - 10.0 131 237.05 3.62 3.42 (3.65) $0.32<br />

Reduced steam use <strong>in</strong> <strong>the</strong> pickl<strong>in</strong>g l<strong>in</strong>e 0.8 0.06 1.08 - 10.0 80 431.82 6.15 6.15 (0.93) $0.32<br />

Automated monitor<strong>in</strong>g and target<strong>in</strong>g system 1.8 0.04 0.27 - 5.0 177 60.62 2.70 0.99 (9.85) $0.41<br />

General<br />

Preventative Ma<strong>in</strong>tenance 3.5 0.17 0.01 0.01 20.0 342 3.69 0.07 0.07 (5.62) $0.30<br />

Optimiz<strong>in</strong>g <strong>the</strong> steam system 2.4 0.12 0.86 - 20.0 239 107.35 2.15 2.15 (3.23) $0.30<br />

Increase <strong>efficiency</strong> <strong>of</strong> boilers 0.2 0.01 0.13 - 20.0 17 225.45 4.52 4.52 (0.86) $0.30<br />

Optimiz<strong>in</strong>g <strong>the</strong> air system 0.1 0.00 0.10 - 20.0 9 360.71 7.24 2.66 (5.31) $0.30<br />

Energy monitor<strong>in</strong>g and management system 0.6 0.03 0.08 - 5.0 62 49.34 0.99 0.92 (4.70) $0.41<br />

Variable speed drive: flue gas control, pumps, fans 0.0 0.00 0.15 - 5.0 4 1,432.30 28.74 10.57 16.19 $0.41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!