PREFACE This report is the result of my graduation ... - Archief IVEM

PREFACE This report is the result of my graduation ... - Archief IVEM PREFACE This report is the result of my graduation ... - Archief IVEM

ivem.eldoc.ub.rug.nl
from ivem.eldoc.ub.rug.nl More from this publisher
14.07.2013 Views

PREFACE This report is the result of my graduation research project at KEMA Gas Consulting & Services in Groningen, for my Master program “Energy and Environmental Sciences”, affiliated to the faculty of mathematics and natural sciences at the University of Groningen, the Netherlands. The reported research is the graduation thesis, conducted during the period between March 2010 and September 2010. I worked together with fellow student and intern Lukas Grond at KEMA, to determine the costs and energy use throughout the green gas chain. Similarities could therefore occur in his report and this one. I would like to thank Harm Vlap for offering me this research opportunity and his supervision at KEMA. I enjoyed the weekly meetings where we discussed the progress and results at a down-toearth way and with humor. I also would like to thank Henk Moll and Sandra Bellekom for their supervision at the university. A word of thank to Henk Moll for his scenario teaching, and Sandra Bellekom for her quick replies to my drafts. My appreciation goes to those who were willing to help me with this research by taking time for an interview and/or discussion: Harm Vlap, Johan Holstein, Rob van Ommen, and Janneke van Wingerden at KEMA. I also would like to thank my parents for their faith in me. Last but not least, I would like to express my gratitude to Lukas Grond, with whom I enjoyed working as interns at KEMA. You helped me at lot with your technical process explanations, discussions about green gas and your great sense of humor.

<strong>PREFACE</strong><br />

<strong>Th<strong>is</strong></strong> <strong>report</strong> <strong>is</strong> <strong>the</strong> <strong>result</strong> <strong>of</strong> <strong>my</strong> <strong>graduation</strong> research project at KEMA Gas Consulting & Services<br />

in Groningen, for <strong>my</strong> Master program “Energy and Environmental Sciences”, affiliated to <strong>the</strong><br />

faculty <strong>of</strong> ma<strong>the</strong>matics and natural sciences at <strong>the</strong> University <strong>of</strong> Groningen, <strong>the</strong> Ne<strong>the</strong>rlands. The<br />

<strong>report</strong>ed research <strong>is</strong> <strong>the</strong> <strong>graduation</strong> <strong>the</strong>s<strong>is</strong>, conducted during <strong>the</strong> period between March 2010 and<br />

September 2010.<br />

I worked toge<strong>the</strong>r with fellow student and intern Lukas Grond at KEMA, to determine <strong>the</strong> costs<br />

and energy use throughout <strong>the</strong> green gas chain. Similarities could <strong>the</strong>refore occur in h<strong>is</strong> <strong>report</strong> and<br />

th<strong>is</strong> one.<br />

I would like to thank Harm Vlap for <strong>of</strong>fering me th<strong>is</strong> research opportunity and h<strong>is</strong> superv<strong>is</strong>ion at<br />

KEMA. I enjoyed <strong>the</strong> weekly meetings where we d<strong>is</strong>cussed <strong>the</strong> progress and <strong>result</strong>s at a down-toearth<br />

way and with humor. I also would like to thank Henk Moll and Sandra Bellekom for <strong>the</strong>ir<br />

superv<strong>is</strong>ion at <strong>the</strong> university. A word <strong>of</strong> thank to Henk Moll for h<strong>is</strong> scenario teaching, and Sandra<br />

Bellekom for her quick replies to <strong>my</strong> drafts. My appreciation goes to those who were willing to<br />

help me with th<strong>is</strong> research by taking time for an interview and/or d<strong>is</strong>cussion: Harm Vlap, Johan<br />

Holstein, Rob van Ommen, and Janneke van Wingerden at KEMA. I also would like to thank <strong>my</strong><br />

parents for <strong>the</strong>ir faith in me. Last but not least, I would like to express <strong>my</strong> gratitude to Lukas<br />

Grond, with whom I enjoyed working as interns at KEMA. You helped me at lot with your technical<br />

process explanations, d<strong>is</strong>cussions about green gas and your great sense <strong>of</strong> humor.


GLOSSARY<br />

CH4 Methane<br />

CO2 Carbon Dioxide<br />

CRF Capital Recovery Factor. The CRF gives <strong>the</strong> annual capital cost based on an annuity,<br />

<strong>result</strong>ing from <strong>the</strong> investment, by including interest rate and economic lifetime.<br />

Eq. Equivalent<br />

GHG Greenhouse gas<br />

Green gas A bio-based gas with <strong>the</strong> quality <strong>of</strong> natural gas. In th<strong>is</strong> research, biogas from anaerobic<br />

digestion <strong>of</strong> manure and maize silage <strong>is</strong> used as a bio-based gas. <strong>Th<strong>is</strong></strong> <strong>is</strong><br />

upgraded to <strong>the</strong> quality (composition) <strong>of</strong> natural gas.<br />

IRR Internal Rate <strong>of</strong> Return; presents <strong>the</strong> interest rate (in %) to reach <strong>the</strong> break-even<br />

point.<br />

MCDA Multi Criteria Dec<strong>is</strong>ion Analys<strong>is</strong><br />

MEA Mono-ethanolamine. Chemical scrubbing absorbent in <strong>the</strong> liquid scrub upgrading<br />

technique.<br />

MJ Mega Joule. In th<strong>is</strong> research, MJ refers to <strong>the</strong>rmal MJ.<br />

N Nitrogen<br />

N2O Nitrous oxide<br />

Natural gas In th<strong>is</strong> research, natural gas refers to natural gas <strong>of</strong> Groningen quality.<br />

Nm 3 Normal cubic meter. Normal means normal conditions: 0 o C and 1 bar <strong>of</strong> pressure.<br />

NPV Net Present Value; indicates how much value (in €) an investment will add, or<br />

not.<br />

PP Payback Period


SUMMARY<br />

The use <strong>of</strong> fossil fuels has environmental consequences, which drives developments in bioenergy.<br />

For <strong>the</strong> Ne<strong>the</strong>rlands, green gas <strong>is</strong> a potential, new emerging form <strong>of</strong> bio-energy. Generally,<br />

green gas <strong>is</strong> anaerobic digested biomass upgraded to natural gas quality. The source for biogas<br />

production by anaerobic digestion <strong>is</strong> organic material, for which currently manure <strong>is</strong> used,<br />

enriched with maize silage. The produced biogas has a different composition than that <strong>of</strong> natural<br />

gas, so upgrading <strong>is</strong> required. Among <strong>the</strong> most commonly used upgrading techniques are <strong>the</strong> liquid<br />

scrub and water wash, which are considered in th<strong>is</strong> research. The <strong>the</strong>n produced green gas<br />

could be injected into <strong>the</strong> natural gas grid, currently being <strong>the</strong> d<strong>is</strong>tribution grid and regional grid.<br />

At <strong>the</strong> moment a nationwide d<strong>is</strong>cussion <strong>is</strong> going on about <strong>the</strong> sustainability <strong>of</strong> renewable energy.<br />

Sustainability <strong>is</strong>, and sustainable bio-energy systems are, based on three aspects: <strong>the</strong> environmental,<br />

economic and social demands, also known as People, Planet and Pr<strong>of</strong>it. The sustainability<br />

<strong>of</strong> bio-energy <strong>is</strong> important since unsustainable bio-energy production could negatively influence<br />

<strong>the</strong> image <strong>of</strong> biomass as a sustainable energy carrier, and hence hinder fur<strong>the</strong>r development.<br />

Therefore, th<strong>is</strong> research ra<strong>is</strong>es <strong>the</strong> question to what extent green gas <strong>is</strong> sustainable.<br />

The green gas production chain analyzed in th<strong>is</strong> research includes all steps from biomass production<br />

to green gas injection in a natural gas grid. The d<strong>is</strong>posal <strong>of</strong> and em<strong>is</strong>sions <strong>result</strong>ing from <strong>the</strong><br />

production <strong>of</strong> capital goods are not included.<br />

The sustainability <strong>of</strong> green gas production <strong>is</strong> assessed by <strong>the</strong> use <strong>of</strong> scenarios. First, an assessment<br />

<strong>is</strong> made per aspect <strong>of</strong> sustainability. For <strong>the</strong> environmental sustainability, <strong>the</strong> indicators CO2,<br />

CH4, and N2O em<strong>is</strong>sions are used, expressed in global warming potential as grams <strong>of</strong> CO2equivalents<br />

per Mega Joule. For <strong>the</strong> economic sustainability, <strong>the</strong> Net Present Value, Internal Rate<br />

<strong>of</strong> Return and Payback Period are calculated, and costs are expressed in Euros per Mega Joule.<br />

The social aspect <strong>is</strong> expressed in a single index based on employment and competition with food.<br />

The highest environmental and social sustainability <strong>is</strong> found when a biomass composition <strong>of</strong> 50%<br />

manure – 50% maize silage <strong>is</strong> used as input. For economic sustainability large biogas production<br />

capacity shows <strong>the</strong> best <strong>result</strong>s.<br />

Subsequently, <strong>the</strong> environmental, economic and social aspects <strong>of</strong> sustainability are related to each<br />

o<strong>the</strong>r by use <strong>of</strong> normalization. In doing so, each aspect <strong>is</strong> considered to be <strong>of</strong> equal importance.<br />

Trade <strong>of</strong>fs are found when <strong>the</strong> biomass composition <strong>is</strong> changed from 90% manure – 10% maize<br />

silage to 50% manure – 50% maize silage, where better environmental and social <strong>result</strong>s come at<br />

higher economic cost. The increase <strong>of</strong> biogas production capacity leads to somewhat better environmental<br />

<strong>result</strong>s at a higher cost for <strong>the</strong> economic and social aspects. When digestate <strong>is</strong> processed,<br />

social benefits come at higher economic cost.<br />

From <strong>the</strong> studied scenarios in th<strong>is</strong> research, it can be concluded that <strong>the</strong> most sustainable green<br />

gas chain has a <strong>result</strong> <strong>of</strong> 1.8 on an index scale between 0.0 and 3.0. Moreover, <strong>the</strong> most sustainable<br />

green gas chain has a configuration with a biomass composition <strong>of</strong> 50% manure – 50%<br />

maize silage, liquid scrub upgrading and large biogas production capacity. The differences between<br />

<strong>the</strong> location <strong>of</strong> <strong>the</strong> digester, being de-central or central, and <strong>the</strong> way digestate <strong>is</strong> used are<br />

too small to draw a valid conclusion, considering <strong>the</strong> sensitivity <strong>of</strong> used input parameters. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> total <strong>result</strong>s <strong>of</strong> each scenario are dependent on <strong>the</strong> gas yields <strong>of</strong> manure and maize<br />

silage, <strong>the</strong> maize silage price and <strong>the</strong> investment period.<br />

<strong>Th<strong>is</strong></strong> research <strong>is</strong> based on a limited set <strong>of</strong> indicators. Including more indicators could influence <strong>the</strong><br />

conclusion. Fur<strong>the</strong>rmore, <strong>the</strong> scenarios represent <strong>the</strong> current situation <strong>of</strong> <strong>the</strong> green gas chain in <strong>the</strong><br />

Ne<strong>the</strong>rlands. These are not necessarily representing optimal configurations. Fur<strong>the</strong>r research <strong>is</strong><br />

recommended for both aspects.


SAMENVATTING<br />

Het gebruik van fossiele brandst<strong>of</strong>fen heeft gevolgen voor het milieu. Dit vormt een stimulans<br />

voor het ontwikkelen van groene energie. In Nederland <strong>is</strong> groen gas één van de nieuw opkomende<br />

vormen van groene energie. Groen gas <strong>is</strong> het product van anaerobe verg<strong>is</strong>ting van biomassa dat <strong>is</strong><br />

opgewaardeerd tot aardgaskwaliteit. Op dit moment wordt mest en maïs gebruikt als input voor<br />

de verg<strong>is</strong>ting. Het geproduceerde biogas heeft een andere gassamenstelling dan aardgas, waardoor<br />

opwerking noodzakelijk <strong>is</strong>. Twee veel voorkomende technieken hiervoor werken op bas<strong>is</strong><br />

van water en op bas<strong>is</strong> van een chem<strong>is</strong>ch absorptiemiddel. Het hiermee geproduceerde groen gas<br />

kan in het aardgasnet worden geïnjecteerd. Op dit moment worden het d<strong>is</strong>tributienet en het regionale<br />

net hiervoor gebruikt. Momenteel wordt er landelijk een d<strong>is</strong>cussie gevoerd over de duurzaamheid<br />

van groene energie. Duurzaamheid <strong>is</strong>, en duurzame energiesystemen zijn, gebaseerd op<br />

drie factoren: milieu, econom<strong>is</strong>che en sociale vere<strong>is</strong>ten, tevens bekend als People, Plant, Pr<strong>of</strong>it.<br />

De duurzaamheid van groene energie <strong>is</strong> belangrijk omdat niet duurzame groene energie het imago<br />

van biomassa als duurzame energie drager kan beschadigen en zo verdere ontwikkelingen kan<br />

belemmeren. Dit rapport onderzoekt daarom de duurzaamheid van groen gas.<br />

In dit onderzoek <strong>is</strong> de groen gas-keten geanalyseerd. Deze keten omvat alle stappen van biomassa<br />

productie tot groen gas injectie in het aardgasnet. Het verwijderen van en em<strong>is</strong>sies afkomstig uit<br />

de productie van kapitaalgoederen zijn niet meegenomen in de analyse. De duurzaamheid van<br />

groen gas productie <strong>is</strong> bepaald middels scenario’s. Eerst <strong>is</strong> de duurzaamheid van elke factor afzonderlijk<br />

uitgedrukt met indicatoren. Voor milieu zijn de indicatoren CO2, CH4, and N2O gebruikt,<br />

uitgedrukt in het potentieel voor klimaatverwarming in gr. CO2-equivalents per megajoule.<br />

Voor de econom<strong>is</strong>che duurzaamheid zijn de netto contante waarde, de interne opbrengstvoet en<br />

de terugverdientijd berekend, en zijn als indicator de kosten uitgedrukt in euro's per megajoule.<br />

Het sociale aspect <strong>is</strong> uitgedrukt in een index die gebaseerd <strong>is</strong> op werkgelegenheid en concurrentie<br />

met voedsel. De beste uitkomsten voor de milieu- en sociale factoren worden bepaald door het<br />

gebruik van een biomassa samenstelling van 50% mest en 50% maïs. Econom<strong>is</strong>ch gezien <strong>is</strong> een<br />

grotere schaal van biogas productie voordelig. Vervolgens zijn de milieu, econom<strong>is</strong>che en sociale<br />

aspecten aan elkaar gekoppeld door de uitkomsten te normal<strong>is</strong>eren en op te tellen. Hierbij <strong>is</strong> elke<br />

duurzaamheidaspect van gelijk belang geacht. Er <strong>is</strong> een w<strong>is</strong>selwerking tussen de milieu- en sociale<br />

aspecten enerzijds en de econom<strong>is</strong>che anderzijds bij het veranderen van de biomassa samenstelling<br />

van 90% mest – 10% maïs naar 50% mest – 50% maïs. Een hogere biogas productie capaciteit<br />

leidt to wat lagere kosten, terwijl de milieu en sociale aspecten inleveren aan duurzaamheid.<br />

Bij het verwerken van digestaat, het residu na verg<strong>is</strong>ting, tot kunstmest komen sociale voordelen<br />

met hogere kosten.<br />

Dit onderzoek concludeert dat de meest duurzame groen-gas-productieketen een <strong>result</strong>aat heeft<br />

van 1.8 op een indexschaal van 0.0 tot 3.0. Deze groen-gas-productieketen bestaat uit, in volgorde<br />

van invloed, een biomassa samenstelling van 50% mest - 50% maïs, een opwaardeertechniek op<br />

bas<strong>is</strong> van een chem<strong>is</strong>ch absorbeermiddel en een hoge capaciteit biogasproductie. Dit <strong>is</strong> gebaseerd<br />

op de gebruikte scenario’s. Het effect van de locatie van de verg<strong>is</strong>tinginstallatie en de wijze van<br />

digestaat gebruik zijn erg klein in vergelijking met de gevoeligheid van de invoer parameters. De<br />

totale <strong>result</strong>aten van de scenario’s zijn afhankelijk van de gasopbrengsten van mest en maïs, de<br />

maïsprijs, en de investeringsperiode.<br />

Dit onderzoek <strong>is</strong> gebaseerd op een beperkte set van indicatoren. Het gebruik van nog meer indicatoren<br />

kan invloed hebben op de getrokken conclusie. Verder zijn de scenario’s gebaseerd op de<br />

groen gas-keten zoals deze op dit moment in Nederland <strong>is</strong> ingericht. Dit zijn niet noodzakelijkerwijs<br />

optimale configuraties. Deze punten worden aanbevolen als onderwerpen voor verder onderzoek.


TABLE OF CONTENTS<br />

1 Introduction......................................................................................................................................... 7<br />

1.1 Problem formulation.................................................................................................................... 7<br />

1.2 Research outline .......................................................................................................................... 8<br />

2 Methodology...................................................................................................................................... 11<br />

2.1 System design............................................................................................................................ 11<br />

2.2 Scenarios ................................................................................................................................... 12<br />

2.3 Indicators................................................................................................................................... 15<br />

2.4 Interpretation ............................................................................................................................. 17<br />

2.5 Summary ................................................................................................................................... 18<br />

3 Environmental aspect ....................................................................................................................... 19<br />

3.1 Inventory ................................................................................................................................... 19<br />

3.2 Assessment ................................................................................................................................ 20<br />

3.3 Summary ................................................................................................................................... 22<br />

4 Economic apsect................................................................................................................................ 23<br />

4.1 Inventory ................................................................................................................................... 23<br />

4.2 Assessment ................................................................................................................................ 23<br />

4.3 Summary ................................................................................................................................... 25<br />

5 Social aspect....................................................................................................................................... 27<br />

5.1 Inventory ................................................................................................................................... 27<br />

5.2 Assessment ................................................................................................................................ 28<br />

5.3 Summary ................................................................................................................................... 30<br />

6 Interpretation .................................................................................................................................... 31<br />

6.1 Compar<strong>is</strong>on ............................................................................................................................... 31<br />

6.2 Combination.............................................................................................................................. 32<br />

6.3 Validation.................................................................................................................................. 33<br />

6.4 Summary ................................................................................................................................... 35<br />

7 Conclusion & D<strong>is</strong>cussion .................................................................................................................. 37<br />

7.1 Conclusion................................................................................................................................. 37<br />

7.2 D<strong>is</strong>cussion ................................................................................................................................. 38<br />

7.3 Recommendations for fur<strong>the</strong>r research...................................................................................... 40<br />

References ................................................................................................................................................... 41<br />

Appendices .............................................................................................................................................. 47<br />

1. Gas composition............................................................................................................................. 48<br />

2. Upgrading techniques..................................................................................................................... 49<br />

3. General input calculations.............................................................................................................. 50<br />

4. Environmental data inventory & calculation.................................................................................. 52<br />

5. Economic data inventory & calculations........................................................................................ 57<br />

6. Social data inventory & calculations.............................................................................................. 61<br />

7. Compression calculation ................................................................................................................ 64<br />

8. Total <strong>result</strong>s.................................................................................................................................... 66<br />

9. Normalized <strong>result</strong>s ......................................................................................................................... 67<br />

10. Sensitivity analys<strong>is</strong>......................................................................................................................... 68


1 INTRODUCTION<br />

1.1 Problem formulation<br />

The use <strong>of</strong> fossil fuels has environmental consequences, which drives developments in bioenergy.<br />

However, bio-energy <strong>is</strong> not sustainable per se (Buchholz et al., 2009; Cherubini et al.,<br />

2009; Jury et al., 2010). For <strong>the</strong> Ne<strong>the</strong>rlands, green gas <strong>is</strong> a potential, new emerging form <strong>of</strong> bioenergy<br />

(Welink et al., 2007). Generally, it <strong>is</strong> anaerobic digested a biomass upgraded to natural gas<br />

quality. Currently <strong>the</strong>re <strong>is</strong> a nationwide d<strong>is</strong>cussion going on about <strong>the</strong> sustainability <strong>of</strong> renewable<br />

energy (Bekkering et al., 2010). Therefore, th<strong>is</strong> research ra<strong>is</strong>es <strong>the</strong> question to what extent green<br />

gas <strong>is</strong> sustainable.<br />

Sustainability <strong>is</strong> "meeting <strong>the</strong> needs <strong>of</strong> <strong>the</strong> present generation without comprom<strong>is</strong>ing <strong>the</strong> ability <strong>of</strong><br />

future generations to meet <strong>the</strong>ir needs" (World Comm<strong>is</strong>sion on Environment and Development<br />

(WCED), 1987). Sustainability <strong>is</strong>, and sustainable bio-energy systems are, based on three aspects:<br />

economic, environmental and social demands (United Nations, 2005), also known as People,<br />

Planet and Pr<strong>of</strong>it (Cramer, 2007). Although sometimes technology <strong>is</strong> included as a fourth aspect<br />

<strong>of</strong> sustainability (La Rovere et al., 2010; Wang et al., 2009), its indicators b are included under<br />

environment in case <strong>of</strong> three aspects. Therefore, <strong>the</strong> most commonly accepted definition based on<br />

three aspects <strong>is</strong> used (Buchholz et al., 2009).<br />

‘Green gas’ <strong>is</strong> a bio-based gas with <strong>the</strong> quality <strong>of</strong> natural gas. Green gas can be ei<strong>the</strong>r upgraded<br />

biogas or Syn<strong>the</strong>tic Natural Gas (SNG). Upgraded biogas <strong>is</strong> produced by anaerobic digestion<br />

(from here on referred to as digestion) <strong>of</strong> waste water, fermentation <strong>of</strong> organic waste at landfills,<br />

or digestion at farms <strong>of</strong> manure possibly enriched with co-products. The principle behind SNG <strong>is</strong><br />

gasification <strong>of</strong> biomass (Welink, 2007; Zwart, 2006). Since SNG <strong>is</strong> currently in its experimental<br />

phase <strong>of</strong> development and (co-)digestion has <strong>the</strong> highest green gas potential in <strong>the</strong> Ne<strong>the</strong>rlands,<br />

th<strong>is</strong> research will only focus on <strong>the</strong> (co-)digestion biogas route (Wempe et al., 2004; Bekkering et<br />

al., 2010; CBS, 2009).<br />

The source for biogas production by anaerobic digestion <strong>is</strong> organic material. Currently manure <strong>is</strong><br />

used, enriched with biomass. All organic matter can be digested, except for woody materials<br />

(Appels et al., 2008). The fermented residue <strong>is</strong> called digestate. The d<strong>is</strong>posal <strong>of</strong> digestate <strong>is</strong>,<br />

among o<strong>the</strong>rs, a key concern for <strong>the</strong> production <strong>of</strong> biogas and, consequently, green gas (Gebrezgabher<br />

et al., 2009). In <strong>the</strong> Ne<strong>the</strong>rlands, when <strong>the</strong> digestion <strong>is</strong> based on at least 50 (weight)<br />

percent manure and <strong>the</strong> co-products are l<strong>is</strong>ted on <strong>the</strong> so-called “white l<strong>is</strong>t” or “positive l<strong>is</strong>t”, <strong>the</strong><br />

digestate <strong>is</strong> considered as manure. Then, it <strong>is</strong> to be used like manure, namely, among o<strong>the</strong>rs, as a<br />

fertilizer.<br />

Biogas has a different composition than natural gas, and can <strong>the</strong>refore not instantly be used as<br />

green gas. The main components that are not in accordance with natural gas are CO2, H2S, NH3,<br />

nitrogen and siloxanes. c The gas composition <strong>is</strong> important, since differences have consequences<br />

on <strong>the</strong> combustion process at end users (Polman, 2007; Wellinger & Lindberg, 2001).<br />

Therefore, upgrading <strong>is</strong> necessary to meet natural gas quality. <strong>Th<strong>is</strong></strong> cons<strong>is</strong>ts <strong>of</strong> removal <strong>of</strong> <strong>the</strong><br />

mentioned components and o<strong>the</strong>r contaminants like siloxanes. Techniques that could be used are<br />

(vacuum) pressure swing adsorption, water wash, liquid scrub, cryogen and membranes (Bekker-<br />

a Anaerobic digestion <strong>is</strong> <strong>the</strong> process <strong>of</strong> <strong>the</strong> breakdown <strong>of</strong> biodegradable material by micro-organ<strong>is</strong>ms in <strong>the</strong><br />

absence <strong>of</strong> oxygen, with biogas and digestate (<strong>the</strong> residue) as output.<br />

b Generally focused on energy performance <strong>of</strong> <strong>the</strong> system.<br />

c An overview <strong>of</strong> <strong>the</strong> compositions <strong>of</strong> biogas and natural gas (<strong>of</strong> Groningen quality) <strong>is</strong> given in appendix 1.<br />

7


ing et al., 2010; Zwart, 2009). The liquid scrub and <strong>the</strong> water wash are among <strong>the</strong> most widely<br />

used techniques (Petersson & Wellinger, 2006)<br />

The green gas produced can be injected into one <strong>of</strong> <strong>the</strong> three different natural gas grid types, being<br />

<strong>the</strong> d<strong>is</strong>tribution grid at 8 bar <strong>of</strong> pressure, <strong>the</strong> regional grid at 40 bar, or <strong>the</strong> high pressure grid<br />

at 67 bar. Currently, green gas <strong>is</strong> generally injected into <strong>the</strong> d<strong>is</strong>tribution grid. Recently, one location<br />

in <strong>the</strong> Ne<strong>the</strong>rlands establ<strong>is</strong>hed green gas injection into <strong>the</strong> regional grid.<br />

Research on green gas so far focused on technologies for green gas production (e.g. Wempe et al.,<br />

2007), potential estimations (e.g. Koppejan et al., 2009), possible use <strong>of</strong> green gas (e.g. Welink et<br />

al., 2007), gas compositions (e.g. Polman, 2007), and economics <strong>of</strong> green gas production (e.g.<br />

Gebrezgabher et al., 2010).<br />

What has not been addressed <strong>is</strong> <strong>the</strong> sustainability <strong>of</strong> green gas (Pöschl et al., 2010). The sustainability<br />

<strong>of</strong> bio-energy <strong>is</strong> important since unsustainable bio-energy production could negatively influence<br />

<strong>the</strong> image <strong>of</strong> biomass as a sustainable energy carrier, and hence hinder fur<strong>the</strong>r development<br />

(Cramer, 2006).<br />

Therefore, <strong>the</strong> main question <strong>of</strong> th<strong>is</strong> research <strong>is</strong> which green gas production route <strong>is</strong> <strong>the</strong> most sustainable.<br />

1.2 Research outline<br />

The aim <strong>of</strong> th<strong>is</strong> research <strong>is</strong> to assess <strong>the</strong> sustainability <strong>of</strong> <strong>the</strong> green gas, through <strong>the</strong> compar<strong>is</strong>on <strong>of</strong><br />

differently organized green gas chains in scenarios, by presenting <strong>the</strong> benefits and burdens<br />

throughout <strong>the</strong> chain and indicate trade-<strong>of</strong>fs between <strong>the</strong> three aspects <strong>of</strong> sustainability.<br />

The green gas chain in th<strong>is</strong> research <strong>is</strong> defined from biomass production to injection into <strong>the</strong> natural<br />

gas grid. <strong>Th<strong>is</strong></strong> research <strong>is</strong> limited to cattle manure digestion and co-digestion based on a biomass<br />

composition <strong>of</strong> manure and maize silage, like in Pöschl et al. (2010); Urban et al. (2009);<br />

Walla & Schneeberger (2008). The use <strong>of</strong> fertilization for <strong>the</strong> cultivation <strong>of</strong> maize silage <strong>is</strong> included,<br />

by applying chemical fertilizer and processed digestate. Also unprocessed digestate <strong>is</strong><br />

assessed.<br />

A Multi-criteria Dec<strong>is</strong>ion Analys<strong>is</strong> (MCDA) will be used for interpretation <strong>of</strong> <strong>the</strong> <strong>result</strong>s. By presenting<br />

<strong>the</strong> relative <strong>result</strong>s, arbitrary weighting factors are avoided.<br />

<strong>Th<strong>is</strong></strong> research <strong>is</strong> a static assessment <strong>of</strong> <strong>the</strong> sustainability <strong>of</strong> green gas production in <strong>the</strong> Ne<strong>the</strong>rlands,<br />

based on <strong>the</strong> most recent developments.<br />

Based on <strong>the</strong> most commonly accepted definition, sustainability <strong>is</strong> defined by environmental,<br />

economic and social aspects (Buchholz et al., 2009). For th<strong>is</strong> research environment <strong>is</strong> defined by<br />

<strong>the</strong> greenhouse gas (GHG) balance (based on CO2, CH4, and N2O) , and <strong>the</strong> use <strong>of</strong> chemical fertilizer;<br />

economics <strong>is</strong> defined by <strong>the</strong> Net Present Value (NPV), Internal Rate <strong>of</strong> Return (IRR) and<br />

Payback Period (PP); social demands are defined by food competition and job creation.<br />

Sub-questions<br />

− What are <strong>the</strong> environmental consequences <strong>of</strong> green gas production, throughout <strong>the</strong> chain?<br />

o What <strong>is</strong> <strong>the</strong> GHG em<strong>is</strong>sion balance?<br />

o What are <strong>the</strong> environmental effects <strong>of</strong> <strong>the</strong> use <strong>of</strong> chemical fertilizer?<br />

− What are <strong>the</strong> economic consequences <strong>of</strong> green gas production, throughout <strong>the</strong> chain?<br />

o What <strong>is</strong> <strong>the</strong> Net Present Value <strong>of</strong> a green gas chain?<br />

o What <strong>is</strong> <strong>the</strong> Payback Period <strong>of</strong> a green gas chain?<br />

− What are <strong>the</strong> social consequences <strong>of</strong> green gas production, throughout <strong>the</strong> chain?<br />

8


o To what extent does green gas production compete with food?<br />

o To what extent does green gas production create new jobs?<br />

− How can <strong>the</strong> environmental, economic and social consequences be related to each o<strong>the</strong>r?<br />

o Where are <strong>the</strong> benefits and burdens throughout <strong>the</strong> chain for <strong>the</strong> three aspects <strong>of</strong> sustainability?<br />

o Can trade-<strong>of</strong>fs be identified between <strong>the</strong> aspects, and, if so, what are those trade-<strong>of</strong>fs?<br />

In <strong>the</strong> next chapter, <strong>the</strong> integral methodology <strong>is</strong> given. The system design and scenario development<br />

are described, <strong>the</strong> various indicators are more extensively explained, and <strong>the</strong> use <strong>of</strong> <strong>the</strong><br />

multi criteria dec<strong>is</strong>ion analys<strong>is</strong> <strong>is</strong> clarified. In chapter three, <strong>the</strong> environmental aspects <strong>of</strong> green<br />

gas production are d<strong>is</strong>cussed. Then, in chapter four, <strong>the</strong> economic aspects <strong>of</strong> green gas are given.<br />

Here, <strong>the</strong> data inventory <strong>is</strong> clarified, <strong>the</strong> chosen indicators are explained, and <strong>the</strong> <strong>result</strong>s are given.<br />

Chapter five covers <strong>the</strong> social aspects <strong>of</strong> <strong>the</strong> green gas chain. The three aspects are related to each<br />

o<strong>the</strong>r in chapter six. Finally, in chapter seven, th<strong>is</strong> <strong>report</strong> <strong>is</strong> concluded with a d<strong>is</strong>cussion <strong>of</strong> <strong>the</strong><br />

<strong>result</strong>s and <strong>the</strong> used method, and <strong>the</strong> conclusion <strong>is</strong> drawn.<br />

9


2 METHODOLOGY<br />

<strong>Th<strong>is</strong></strong> chapter addresses <strong>the</strong> methodology that <strong>is</strong> used to assess <strong>the</strong> sustainability <strong>of</strong> green gas.<br />

First, <strong>the</strong> system design <strong>is</strong> described. Then <strong>the</strong> scenario set up <strong>is</strong> explained. Thirdly, a literature<br />

overview that determines <strong>the</strong> indicators that are used <strong>is</strong> presented. After that, <strong>the</strong> use <strong>of</strong> a multi<br />

criteria dec<strong>is</strong>ion analys<strong>is</strong> (MCDA) for interpretation <strong>of</strong> <strong>the</strong> <strong>result</strong> <strong>is</strong> given. <strong>Th<strong>is</strong></strong> chapter <strong>is</strong> concluded<br />

with a short summary.<br />

2.1 System design<br />

The green gas chain in th<strong>is</strong> research <strong>is</strong> defined from biomass production to injection into <strong>the</strong> natural<br />

gas grid.<br />

Extensive studies on green gas focus on two types <strong>of</strong> input for digestion, being maize silage and<br />

cattle manure (Pöschl et al., 2010; Urban et al., 2009; Zwart et al., 2006; Walla & Schneeberger,<br />

2008). For maize silage production, cultivation and harvest are included. For manure, cattle manure<br />

available in sheds <strong>is</strong> used as a source for digestion.<br />

Depending on <strong>the</strong> location <strong>of</strong> <strong>the</strong> availability <strong>of</strong> <strong>the</strong> biomass, transport <strong>is</strong> required to <strong>the</strong> digester.<br />

The produced biogas <strong>is</strong> upgraded to natural gas quality. The green gas can <strong>the</strong>n be injected into<br />

<strong>the</strong> natural gas grid.<br />

Besides biogas a residue called digestate <strong>is</strong> produced. The d<strong>is</strong>posal <strong>of</strong> digestate <strong>is</strong> a key concern<br />

for <strong>the</strong> production <strong>of</strong> biogas and, consequently, green gas (Gebrezgabher et al., 2009; Poeschl et<br />

al., 2010). Since maize silage <strong>is</strong> on <strong>the</strong> so-called "white l<strong>is</strong>t" or "positive l<strong>is</strong>t", <strong>the</strong> digestate may<br />

be treated as manure. Therefore, <strong>the</strong> digestate can be used like manure to be spread on <strong>the</strong> fields,<br />

or it can be processed to a replacement for chemical fertilizer. Fertilization during <strong>the</strong> cultivation<br />

<strong>of</strong> maize silage <strong>is</strong> included in <strong>the</strong> system by chemical fertilizer and by <strong>the</strong> processed digestate.<br />

Nitrogen <strong>is</strong> <strong>the</strong> most important element in fertilizer, so <strong>the</strong> required fertilizer <strong>is</strong> calculated based<br />

on <strong>the</strong> nitrogen requirements.<br />

Fur<strong>the</strong>rmore, th<strong>is</strong> system design <strong>is</strong> assessed for <strong>the</strong> three aspects <strong>of</strong> sustainability. <strong>Th<strong>is</strong></strong> system<br />

does not include <strong>the</strong> em<strong>is</strong>sions from <strong>the</strong> production <strong>of</strong> capital goods, like <strong>the</strong> truck, digester, upgrading<br />

installation, compressor and injection facility. <strong>Th<strong>is</strong></strong> <strong>is</strong> <strong>the</strong> <strong>result</strong> <strong>of</strong> a lack <strong>of</strong> data on <strong>the</strong><br />

material requirements for most <strong>of</strong> <strong>the</strong>se capital goods. d Also <strong>the</strong> d<strong>is</strong>posal <strong>of</strong> capital goods <strong>is</strong> not<br />

included. For <strong>the</strong> fuels that are used in <strong>the</strong> chain, being electricity, natural gas and diesel, <strong>the</strong> full<br />

cycle CO2 em<strong>is</strong>sions are used.<br />

<strong>Th<strong>is</strong></strong> system design <strong>is</strong> shown in Figure 2.1.<br />

d For th<strong>is</strong> reason, a full Life Cycle Analys<strong>is</strong> could not be made.<br />

11


Figure 2.1: System design.<br />

2.2 Scenarios<br />

A spreadsheet model has been developed in which <strong>the</strong> system as above <strong>is</strong> modeled. In th<strong>is</strong> model,<br />

data <strong>is</strong> collected and linked to generate outcomes for all possible chain configurations. However,<br />

numerous chain configurations are possible to assess <strong>the</strong> sustainability <strong>of</strong> green gas. Therefore,<br />

scenarios are developed to assess <strong>the</strong> sustainability <strong>of</strong> <strong>the</strong> most commonly used configurations.<br />

The aim <strong>of</strong> <strong>the</strong> scenarios <strong>is</strong> to identify <strong>the</strong> best overall chain configuration by assessing <strong>the</strong> aspects<br />

that determine <strong>the</strong> benefits and burdens <strong>of</strong> green gas production.<br />

Chain variables<br />

The variables in <strong>the</strong> green gas production chain are <strong>the</strong> biomass source, <strong>the</strong> biogas production<br />

capacity, <strong>the</strong> upgrading technique (Berglund, 2006; Pöschl et al., 2010; Pertl et al, 2010; Urban et<br />

al., 2009), <strong>the</strong> grid type injection, <strong>the</strong> use <strong>of</strong> digestate (Gebrezgabher et al., 2009), <strong>the</strong> d<strong>is</strong>tances<br />

between <strong>the</strong> biomass, digester, upgrading installation and injection point (Ghafoori et al., 2007;<br />

Caputo et al., 2005), and <strong>the</strong> type <strong>of</strong> transport that <strong>is</strong> used to cover <strong>the</strong>se d<strong>is</strong>tances.<br />

Some <strong>of</strong> <strong>the</strong>se variables are not independent. The biogas production capacity <strong>is</strong> related to <strong>the</strong> grid<br />

type <strong>of</strong> injection after upgrading, caused by relative low intake capacities in <strong>the</strong> D<strong>is</strong>tribution Grid.<br />

The d<strong>is</strong>tances are linked to <strong>the</strong> type <strong>of</strong> transport. D<strong>is</strong>tances in <strong>the</strong> Ne<strong>the</strong>rlands are ra<strong>the</strong>r small,<br />

which determines that maize transport <strong>is</strong> done by truck (Walla & Schneeberger, 2008), manure<br />

12<br />

Sustainability<br />

System boundary<br />

Maize<br />

production<br />

Manure<br />

Spreading<br />

digestate<br />

Chemical<br />

fertilizer<br />

production<br />

Environment Economic Social<br />

Transport<br />

maize<br />

silage<br />

Transport<br />

manure<br />

Transport<br />

digestate<br />

Transport<br />

processed<br />

digestate<br />

Digestion<br />

Digestate<br />

processing<br />

Transport<br />

biogas<br />

Diesel<br />

Natural<br />

gas (heat)<br />

Upgrading Injection<br />

Em<strong>is</strong>sions from production <strong>of</strong> capital goods D<strong>is</strong>posal <strong>of</strong> capital goods<br />

Electricity<br />

Primary<br />

energy


transport <strong>is</strong> also done by truck (Ghafoori et al., 2007), and biogas <strong>is</strong> transported through a<br />

(HDPE) e pipeline at a pressure <strong>of</strong> 8 bars f .<br />

As a <strong>result</strong> <strong>of</strong> <strong>the</strong>se dependencies, <strong>the</strong> number <strong>of</strong> variables to design <strong>the</strong> scenarios <strong>is</strong> reduced to<br />

five, being: <strong>the</strong> biomass source, <strong>the</strong> biogas production capacity (and hence <strong>the</strong> grid type injection),<br />

<strong>the</strong> location <strong>of</strong> <strong>the</strong> digester, <strong>the</strong> upgrading technique, and <strong>the</strong> use <strong>of</strong> digestate. These variables<br />

determine <strong>the</strong> scenarios.<br />

1. Biomass composition<br />

As stated before, extensive studies on green gas focus on two types <strong>of</strong> input for digestion, being<br />

maize silage and cattle manure (Pöschl et al., 2010; Urban et al., 2009; Zwart et al., 2006; Walla<br />

& Schneeberger, 2008). The biomass composition <strong>is</strong> assessed by a combination <strong>of</strong> 90% manure –<br />

10% maize silage and 50% manure – 50% maize silage. In terms <strong>of</strong> <strong>the</strong> steps in <strong>the</strong> system design,<br />

th<strong>is</strong> variable includes maize production, manure, and chemical fertilizer production.<br />

2. Biogas production capacity<br />

Two biogas production capacities <strong>of</strong> digesters are chosen. The biogas production capacity <strong>of</strong> 250<br />

Nm 3 biogas/hr g <strong>is</strong> in line with <strong>the</strong> average digester size in <strong>the</strong> Ne<strong>the</strong>rlands (Bekkering et al., 2010).<br />

Consequences <strong>of</strong> scale enlargement (Bekkering et al., 2010) are assessed by 1000 Nm 3 biogas/hr<br />

biogas production capacity. After digestion and upgrading, <strong>the</strong> green gas <strong>is</strong> injected into <strong>the</strong> two<br />

most common grid types, being <strong>the</strong> D<strong>is</strong>tribution Grid (DG) for <strong>the</strong> lower biogas production capacity<br />

and <strong>the</strong> Regional Grid (RG) for <strong>the</strong> higher biogas production capacity.<br />

Consequently, th<strong>is</strong> variable includes digestion and injection.<br />

3. Digester location<br />

The effect <strong>of</strong> transport <strong>of</strong> ei<strong>the</strong>r manure or biogas <strong>is</strong> assessed by <strong>the</strong> location <strong>of</strong> <strong>the</strong> digester. Central<br />

digestion means digestion at <strong>the</strong> point <strong>of</strong> injection, de-central digestion means digestion at <strong>the</strong><br />

farm. In terms <strong>of</strong> <strong>the</strong> steps in <strong>the</strong> system design, th<strong>is</strong> variable includes <strong>the</strong> transport <strong>of</strong> manure and<br />

<strong>the</strong> transport <strong>of</strong> biogas.<br />

4. Upgrading technique<br />

Two commonly used upgrading techniques are chosen that can be used for <strong>the</strong> biogas production<br />

capacities, being Liquid Scrub and Water Wash (Petersson & Wellinger, 2009). Fur<strong>the</strong>rmore, data<br />

<strong>is</strong> available for <strong>the</strong>se techniques, which <strong>is</strong> not <strong>the</strong> case for all o<strong>the</strong>r techniques.<br />

5. Use <strong>of</strong> digestate<br />

Digestate can be spread untreated or processed to a chemical fertilizer replacement. In <strong>the</strong> case <strong>of</strong><br />

<strong>the</strong> latter, processing <strong>is</strong> done at <strong>the</strong> digester location. The digestate <strong>is</strong> separated into a liquid and<br />

solid fraction. The solid fraction <strong>is</strong> treated by drying and composting to create commercial fertilizer<br />

replacement (Pöschl et al., 2010; Veefkind et al., 2009). As a <strong>result</strong>, th<strong>is</strong> variable includes<br />

digestate spreading and digestate processing.<br />

Each <strong>of</strong> <strong>the</strong>se five variables <strong>is</strong> assessed by changing only one variable in compar<strong>is</strong>on to <strong>the</strong> previous<br />

scenario, to identify <strong>the</strong> aspects that determine <strong>the</strong> benefits and burdens <strong>of</strong> green gas production,<br />

to <strong>result</strong> in identification <strong>of</strong> <strong>the</strong> best overall chain configuration. <strong>Th<strong>is</strong></strong> <strong>result</strong>s in <strong>the</strong> scenarios<br />

that are given in Table 2.1.<br />

e<br />

HDPE: High Density Poly-Ethylene, a syn<strong>the</strong>tic that <strong>is</strong> used for relatively small gas pipelines and can deal<br />

with <strong>the</strong> composition <strong>of</strong> biogas.<br />

f<br />

Hence compression <strong>is</strong> included for biogas transport.<br />

g 3 o<br />

Nm = Normal cubic meter, referring to normal conditions: 0 C and 1 atmosphere <strong>of</strong> pressure.<br />

13


Table 2.1: Scenario configuration<br />

Scenario Biomass composition Capacity<br />

(manure-maize) (Nm 3 Digester loca- Upgrading Use <strong>of</strong> diges-<br />

biogas/hr) tion<br />

technique tate<br />

1 90% - 10% 250 (+DG) de-central liquid scrub spread<br />

2 50% - 50% 250 (+DG) de-central liquid scrub spread<br />

3 50% - 50% 1000 (+RG) de-central liquid scrub spread<br />

4 50% - 50% 1000 (+RG) central liquid scrub spread<br />

5 50% - 50% 1000 (+RG) central water wash spread<br />

6 50% - 50% 1000 (+RG) central water wash fertilizer<br />

DG = D<strong>is</strong>tribution Grid; RG = Regional Grid; spread = spreading at <strong>the</strong> dairy farm; fertilizer = processing<br />

to chemical fertilizer replacement.<br />

Additional parameters<br />

The scenarios are based on a Dutch dairy farm, on an approximated d<strong>is</strong>tance <strong>of</strong> 5 km from an injection<br />

point in <strong>the</strong> D<strong>is</strong>tribution Grid and 10 km from an injection point in <strong>the</strong> Regional Grid.<br />

Maize <strong>is</strong> cultivated at a maize farm located approximately 50 km from <strong>the</strong> dairy farm h . It <strong>is</strong> transported<br />

by a 8 ton truck to <strong>the</strong> dairy farm for co-digestion. The upgrading installation <strong>is</strong> assumed<br />

to be located at <strong>the</strong> point <strong>of</strong> injection. Transport <strong>of</strong> manure requires quality control to prevent <strong>the</strong><br />

spread <strong>of</strong> d<strong>is</strong>eases (Luesink, 2010). The processed digestate to chemical fertilizer replacement <strong>is</strong><br />

used in <strong>the</strong> area where <strong>the</strong> maize <strong>is</strong> cultivated. Consequently, <strong>the</strong> processed digestate transport<br />

d<strong>is</strong>tance <strong>is</strong> 50 km.<br />

The scenarios are based on additional input values, given in Table 2.2. These values are used for<br />

all three aspects <strong>of</strong> sustainability. More specific values per aspect are explained in <strong>the</strong> particular<br />

chapters.<br />

As presented in Table 2.2, <strong>the</strong>re <strong>is</strong> a large difference in gas yield for manure and maize silage.<br />

The low gas yield <strong>of</strong> manure <strong>is</strong> <strong>the</strong> <strong>result</strong> <strong>of</strong> its high water content. Combining <strong>the</strong> gas yields <strong>result</strong><br />

in a requirement <strong>of</strong> 5.5 ton manure per hour and 0.6 ton maize per hour for a biomass composition<br />

<strong>of</strong> 90% manure – 10% maize silage and a biogas production capacity <strong>of</strong> 250 Nm 3 biogas/hr,<br />

while a biomass composition <strong>of</strong> 50% manure – 50% maize silage requires 1.12 ton manure per<br />

hour and 1.12 ton maize silage per hour for <strong>the</strong> same biogas production capacity. <strong>Th<strong>is</strong></strong> calculation<br />

<strong>is</strong> explained in appendix 3.<br />

Table 2.2: Main input data<br />

Aspect Value Unit Reference<br />

Operational hours/yr 8000 hrs/yr Urban et al., 2009<br />

Maize silage harvest yield 45 ton/ha Walla & Schneeberger, 2008<br />

Manure gas yield 23 Nm 3 biogas/ton Pöschl et al., 2010; Gebrezgabher et<br />

al., 2010<br />

Maize silage gas yield 200 Nm 3 biogas/ton Walla & Schneeberger, 2008;<br />

Pöschl et al., 2010<br />

Energy content biogas 21 MJ/Nm 3 biogas Appels et al., 2008; Wellinger and<br />

Lindberg, 2001.<br />

Energy content green gas i 31.7 MJ/Nm 3 green gas NMa, 2006<br />

Max nitrogen application 170 kg N/ha/yr European Comm<strong>is</strong>sion, 1991<br />

Manure digestate, % <strong>of</strong> ton input 70 % Poeschl et al., 2010.<br />

Maize silage digestate, % <strong>of</strong> ton input 90 % Bermejo & Ellmer, 2010<br />

Processed digestate, % <strong>of</strong> total digestate<br />

40 % Poeschl et al., 2010.<br />

h It <strong>is</strong> assumed that <strong>the</strong> d<strong>is</strong>tance between <strong>the</strong> areas with dairy farms and arable farming <strong>is</strong> 50 km.<br />

i Equals by definition <strong>the</strong> energy content <strong>of</strong> natural gas. For th<strong>is</strong> research, <strong>the</strong> natural gas quality <strong>of</strong> Groningen<br />

gas <strong>is</strong> used. The presented value <strong>is</strong> <strong>the</strong> lower value.<br />

14


The <strong>result</strong> <strong>of</strong> <strong>the</strong> scenarios are presented in <strong>the</strong> different processes in <strong>the</strong> green gas chain. Table<br />

2.3 explains which steps as mentioned in <strong>the</strong> system design toge<strong>the</strong>r form a process.<br />

Table 2.3: Process definitions<br />

Process Steps as mentioned in <strong>the</strong> system design<br />

Biomass Maize production; manure; chemical fertilizer production<br />

Digestion Digestion<br />

Upgrading Upgrading<br />

Injection Injection<br />

Transport Transport maize silage; transport manure; transport processed digestate; transport biogas<br />

Digestate Digestate processing; spreading digestate<br />

2.3 Indicators<br />

A literature review <strong>is</strong> given to determine <strong>the</strong> indicators to assess <strong>the</strong> performance <strong>of</strong> each aspect<br />

<strong>of</strong> sustainability.<br />

Environmental indicators<br />

Little research <strong>is</strong> done in <strong>the</strong> environmental consequences <strong>of</strong> green gas production. The study by<br />

Pertl et al. (2010) <strong>is</strong> explicitly about green gas production from biogas based on a life cycle approach,<br />

uses <strong>the</strong> indicators CO2, N2O, and CH4 (Pertl et al., 2010).<br />

From a broader perspective, La Rovere et al. (2010) mention in <strong>the</strong>ir research on sustainable expansion<br />

<strong>of</strong> electricity generation, among o<strong>the</strong>rs, CO2 and non-CO2 em<strong>is</strong>sions as environmental<br />

indicators. Wang et al. (2009) are more specific by l<strong>is</strong>ting CO2, CO, NOx, SO2, and particles<br />

em<strong>is</strong>sions, for a multi-criteria dec<strong>is</strong>ion analys<strong>is</strong> in sustainable energy dec<strong>is</strong>ion making. In particular<br />

for sustainability criteria bio-energy, Buchholz et al. (2009) state in <strong>the</strong>ir research that <strong>the</strong><br />

most important criterion for <strong>the</strong> environmental aspect <strong>is</strong> <strong>the</strong> greenhouse gas balance (Buchholz et<br />

al. 2009). More specific, Cherubini et al. (2009) use CO2, N2O and CH4 em<strong>is</strong>sions as environmental<br />

indicators for bio-fuels and bio-energy systems.<br />

The effects <strong>of</strong> em<strong>is</strong>sions <strong>of</strong> CO2, CH4 and N2O are global warming, (Forster et al., 2007, in IPCC,<br />

2007; Pehnt, 2006) expressed in CO2-equivalents. The conversion factors are presented in Table<br />

2.4. Therefore, <strong>the</strong> indicators CO2, CH4, and N2O are selected as indicators for <strong>the</strong> environmental<br />

performance <strong>of</strong> green gas. The lowest total em<strong>is</strong>sions in CO2-equivalents determine <strong>the</strong> best scenario.<br />

Table 2.4: Global Warming Potential (Forster et al., 2007, in IPCC, 2007).<br />

Em<strong>is</strong>sion Global Warming Potential (CO2-equivalent; time horizon 100 yrs)<br />

CO2<br />

1<br />

CH4<br />

25<br />

N2O 298<br />

Economic indicators<br />

The microeconomic sustainability <strong>is</strong> <strong>the</strong> most important economic criterion in an sustainability<br />

assessment <strong>of</strong> bio-energy (Buchholz et al, 2009). Microeconomics <strong>is</strong> based on <strong>the</strong> individual parts<br />

<strong>of</strong> <strong>the</strong> econo<strong>my</strong>. <strong>Th<strong>is</strong></strong> <strong>is</strong> analyzed by <strong>the</strong> Net Present Value (NPV) and <strong>the</strong> Internal Rate <strong>of</strong> Return<br />

(IRR) concepts as valuation criteria (Gebrezgabher et al., 2009), <strong>the</strong> two most important criteria<br />

for choosing between investment projects (Osborne, 2010).<br />

The NPV indicates how much value an investment will add, or not. All incoming and outgoing<br />

cash flows (CF) are included in <strong>the</strong> calculation and are d<strong>is</strong>counted to <strong>the</strong>ir present value. The IRR<br />

<strong>is</strong> similar to <strong>the</strong> NPV, but now <strong>the</strong> minimal interest rate <strong>is</strong> calculated to recover <strong>the</strong> investment.<br />

Generally speaking, <strong>the</strong> higher a project's internal rate <strong>of</strong> return, <strong>the</strong> more desirable it <strong>is</strong> to under-<br />

15


take <strong>the</strong> project. The Payback Period (PP) indicates after how many years pr<strong>of</strong>it will be made,<br />

calculated by dividing <strong>the</strong> investment with <strong>the</strong> annual net income.<br />

NPV = −I<br />

+<br />

0 = −I<br />

+<br />

I<br />

PP =<br />

Ra<br />

16<br />

n<br />

∑<br />

t=<br />

0<br />

n<br />

∑<br />

t=<br />

0<br />

CFt<br />

( 1+<br />

r)<br />

CF<br />

t<br />

( 1+<br />

IRR)<br />

t<br />

t<br />

Equation 1: Net Present Value (€)<br />

Equation 2: Internal Rate <strong>of</strong> Return (%)<br />

Equation 3: Payback Period (years)<br />

With: I = Investment (€); CF = Cash Flow (€); r = inflation rate (%); t = time (yrs); Ra = Revenues<br />

per annum.<br />

The best <strong>result</strong> has <strong>the</strong> largest NPV, <strong>the</strong> largest IRR and <strong>the</strong> smallest PP.<br />

To gain more insight into <strong>the</strong> aspects that determine <strong>the</strong> costs and revenues <strong>of</strong> which <strong>the</strong> NPV,<br />

IRR and PP are calculated, <strong>the</strong> scenarios will also be expressed in €/MJ. To calculate <strong>the</strong> annual<br />

costs, de Hullu et al. (2008) use in <strong>the</strong>ir review <strong>of</strong> upgrading techniques a ra<strong>the</strong>r straight forward<br />

calculation, where <strong>the</strong>y do not include <strong>the</strong> effect <strong>of</strong> time on <strong>the</strong> interest rate. Therefore, <strong>the</strong> more<br />

detailed calculation <strong>of</strong> Urban et al. (2009) and Karellas et al (2010) <strong>is</strong> used, based on an annuity j .<br />

The annuity <strong>is</strong> calculated with <strong>the</strong> so-called capital recovery factor (CRF), given in Equation 4.<br />

<strong>Th<strong>is</strong></strong> formula gives <strong>the</strong> percentage <strong>of</strong> <strong>the</strong> investment that has to be paid annually during <strong>the</strong> economic<br />

lifetime (n) <strong>of</strong> <strong>the</strong> facility, dependent on <strong>the</strong> interest rate (i). The used interest rate <strong>is</strong> based<br />

on <strong>the</strong> ‘weighted average cost <strong>of</strong> capital’ value <strong>of</strong> 7.8% (Lensink et al., 2010). k<br />

CRF<br />

n<br />

i(<br />

1+<br />

i)<br />

( 1+<br />

i)<br />

−1<br />

= n<br />

Equation 4: Capital Recovery Factor<br />

The scenario with <strong>the</strong> lowest costs determine <strong>the</strong> best scenario.<br />

Social indicators<br />

The study <strong>of</strong> Evans et al. (2010) about sustainability <strong>of</strong> electricity generation from biomass, states<br />

that food competition <strong>is</strong> <strong>the</strong> key social <strong>is</strong>sue to be addressed. La Rovere et al. (2010) only focus<br />

on job creation, which <strong>is</strong> also mentioned in Wang et al. (2009). Job creation and food competition<br />

are also l<strong>is</strong>ted in <strong>the</strong> review <strong>of</strong> sustainability criteria by Buchholz et al. (2009). Therefore <strong>the</strong>se<br />

two aspects are used in th<strong>is</strong> research as indicators for <strong>the</strong> social aspect <strong>of</strong> green gas production.<br />

Food competition <strong>is</strong> expressed in terms <strong>of</strong> land requirement, in m 2 /MJ (Buchholz et al., 2009),<br />

where a lower <strong>result</strong> <strong>is</strong> better (La Rovere et al., 2010). Land requirements are <strong>the</strong> <strong>result</strong> <strong>of</strong> <strong>the</strong><br />

biomass demand, <strong>the</strong> size <strong>of</strong> <strong>the</strong> installations and <strong>the</strong> additional land that <strong>is</strong> needed to spread <strong>the</strong><br />

digestate. In o<strong>the</strong>r words, <strong>the</strong> additional land for digestate <strong>is</strong> <strong>the</strong> amount <strong>of</strong> land that <strong>is</strong> needed<br />

j In an annuity, <strong>the</strong> repayment <strong>of</strong> <strong>the</strong> loan and interest <strong>is</strong> constant over time.<br />

k Weighted Average Cost <strong>of</strong> Capital (WACC) <strong>is</strong> <strong>the</strong> minimum return that should be earned to sat<strong>is</strong>fy providers<br />

<strong>of</strong> <strong>the</strong> capital, or that might be earned by an investment elsewhere. In <strong>the</strong> Dutch situation it <strong>is</strong> assumed<br />

to cons<strong>is</strong>t <strong>of</strong> 80% liability at 6% interest and 20% equity at 15% interest. (Lensink et al., 2010; van<br />

Ommen, 2010)


from spreading <strong>the</strong> digestate at maximum nitrogen levels, minus <strong>the</strong> land that <strong>is</strong> available at an<br />

<strong>the</strong> average dairy farm.<br />

Employment <strong>is</strong> expressed in seconds <strong>of</strong> work per MJ, where a higher <strong>result</strong> <strong>is</strong> better (Wang et al.,<br />

2009; La Rovere et al., 2010). To obtain one single indicator for <strong>the</strong> social performance, a social<br />

index Is <strong>is</strong> set up. First, both aspects are multiplied by a factor to obtain <strong>the</strong> same unit, based on<br />

<strong>the</strong> commonly used additive value function (Løken, 2007; Wang et al., 2009; La Rovere et al.,<br />

2010). Employment <strong>is</strong> multiplied with <strong>the</strong> cost <strong>of</strong> work; competition with food <strong>is</strong> multiplied with<br />

cost for land use. Both factors are based on <strong>the</strong> Dutch situation. <strong>Th<strong>is</strong></strong> <strong>result</strong>s in Is being defined as<br />

given in Equation 5.<br />

I s =<br />

α1 f i −α<br />

2<br />

e<br />

i<br />

Equation 5: Social index<br />

With: α1 = average price for arable land (0.25 €/m 2 l ); α2 = average income throughout <strong>the</strong> green<br />

gas production chain (0.01 €/s m ); fi = total competition with food for scenario i (in m 2 /MJ); ei =<br />

total employment for scenario i (in s/MJ).<br />

The interpretation <strong>of</strong> <strong>the</strong> social index <strong>is</strong> based on both factors separately. However, <strong>the</strong> scenario<br />

with <strong>the</strong> lowest overall index <strong>is</strong> <strong>the</strong> best scenario.<br />

2.4 Interpretation<br />

Conventional single criteria dec<strong>is</strong>ion making usually aimed for minimizing costs to maximize<br />

benefits. Growing environmental awareness <strong>result</strong>ed in including environmental and social considerations<br />

into energy planning. As a consequence multi criteria approaches are increasingly<br />

used. (Pohekar & Ramachandran, 2004). In th<strong>is</strong> research, a Multi-Criteria Dec<strong>is</strong>ion Analys<strong>is</strong><br />

(MCDA) will be used for interpretation <strong>of</strong> <strong>the</strong> <strong>result</strong>s. <strong>Th<strong>is</strong></strong> method <strong>is</strong> useful because <strong>of</strong> <strong>the</strong> multidimensionality<br />

<strong>of</strong> sustainability (Wang et al., 2009).<br />

The aim <strong>of</strong> an MCA <strong>is</strong> to compare and rank different options and to evaluate <strong>the</strong>ir impacts based<br />

on <strong>the</strong> establ<strong>is</strong>hed criteria. As in Life Cycle Assessments, MCDAs <strong>of</strong>ten use weighting factors to<br />

avoid conversion into a common unit (Hermann et al., 2007). However, weighting factors are a<br />

subjective expression <strong>of</strong> relative severity, which make <strong>the</strong>m a matter <strong>of</strong> controversy (Lundie &<br />

Huppes, 1999).<br />

So, to avoid subjectivity, a common unit should be developed for compar<strong>is</strong>on. Afgan et al (2000)<br />

assess energy systems with sustainability indicators, by normalizing each indicator on <strong>the</strong> minimal<br />

value <strong>of</strong> <strong>the</strong> options under consideration.<br />

Since in th<strong>is</strong> research <strong>the</strong> indicators that are used to assess <strong>the</strong> aspects <strong>of</strong> sustainability are based<br />

on a minimum value as most desirable, each indicator <strong>is</strong> normalized to its maximum total scenario<br />

value. In o<strong>the</strong>r words, <strong>the</strong> maximum scenario <strong>result</strong> <strong>of</strong> each aspect <strong>is</strong> converted to a value <strong>of</strong><br />

1. Without converting <strong>the</strong> minimal value to zero, <strong>the</strong> relative size <strong>of</strong> <strong>the</strong> <strong>result</strong>s per aspect can still<br />

be compared. Subsequently, <strong>the</strong>se relative <strong>result</strong>s are used to determine trade <strong>of</strong>fs between <strong>the</strong><br />

aspects.<br />

For economics <strong>the</strong> revenues (presented as a negative value) <strong>of</strong> digestate are subtracted from <strong>the</strong><br />

digestate costs, and <strong>the</strong>n normalized. The o<strong>the</strong>r aspects only give positive values, so no additional<br />

step <strong>is</strong> needed.<br />

l Based on average arable land price (January to July 2010), and a CRF (annuity; formula given in Equation<br />

4) based on 30 yrs and 5% interest rate. <strong>Th<strong>is</strong></strong> <strong>result</strong>s in 2500 €/ha/yr = 0.25 €/m 2 /yr.<br />

m Assumed average income throughout <strong>the</strong> chain <strong>of</strong> 36 €/hr = 0.01 €/s<br />

17


To avoid additional weighting factors by determining <strong>the</strong> best scenario, <strong>the</strong> best scenario <strong>is</strong> defined<br />

by <strong>the</strong> sum <strong>of</strong> <strong>the</strong> normalized values <strong>of</strong> <strong>the</strong> aspects. By doing so, each aspect <strong>is</strong> assumed to<br />

be <strong>of</strong> equal importance <strong>of</strong> <strong>the</strong> overall <strong>result</strong>. Consequently, <strong>the</strong> best scenario has <strong>the</strong> lowest <strong>result</strong>,<br />

while <strong>the</strong> worst scenario has <strong>the</strong> highest <strong>result</strong>, with a maximum value <strong>of</strong> 3 (3 x 1).<br />

2.5 Summary<br />

The system design <strong>of</strong> th<strong>is</strong> research includes <strong>the</strong> green gas production chain, defined from biomass<br />

production to natural gas grid injection. Em<strong>is</strong>sions from <strong>the</strong> production <strong>of</strong> capital goods and d<strong>is</strong>posal<br />

<strong>of</strong> capital goods in general are not included.<br />

Since many configurations are possible, scenarios are developed to assess <strong>the</strong> sustainability <strong>of</strong> <strong>the</strong><br />

green gas production chain. The scenarios are based on <strong>the</strong> current state <strong>of</strong> green gas in <strong>the</strong> Ne<strong>the</strong>rlands.<br />

The parameters in <strong>the</strong> scenarios, which are all assessed, are: <strong>the</strong> biomass composition;<br />

<strong>the</strong> biogas production capacity with corresponding grid type injection; <strong>the</strong> location <strong>of</strong> <strong>the</strong> digester;<br />

<strong>the</strong> upgrading technique; and <strong>the</strong> use <strong>of</strong> digestate.<br />

The indicators that are selected for <strong>the</strong> environmental aspect are CO2, CH4, and N2O, expressed in<br />

global warming potential as gr. CO2-equivalents. The indicators for <strong>the</strong> economic aspect are <strong>the</strong><br />

NPV, IRR and PP, and, additionally, <strong>the</strong> costs will be expressed in €/MJ. For <strong>the</strong> social aspect,<br />

food competition and employment are combined into a single social index. The lowest <strong>result</strong> <strong>is</strong><br />

<strong>the</strong> best for all three aspects.<br />

The environmental, economic and social aspects <strong>of</strong> sustainability are related to each o<strong>the</strong>r by<br />

normalization, where <strong>the</strong> maximum scenario <strong>result</strong> per aspect <strong>is</strong> given <strong>the</strong> value 1. Since <strong>the</strong><br />

minimum scenario <strong>result</strong> per aspect <strong>is</strong> not set as zero, <strong>the</strong> total relative <strong>result</strong>s can be compared.<br />

18


3 ENVIRONMENTAL ASPECT<br />

In th<strong>is</strong> chapter <strong>the</strong> environmental aspect <strong>of</strong> <strong>the</strong> sustainability <strong>of</strong> green gas <strong>is</strong> assessed, to answer<br />

<strong>the</strong> first sub-question: what are <strong>the</strong> environmental consequences <strong>of</strong> green gas production,<br />

throughout <strong>the</strong> chain? First, <strong>the</strong> data inventory <strong>is</strong> described. <strong>Th<strong>is</strong></strong> <strong>is</strong> followed by <strong>the</strong> assessment<br />

where <strong>the</strong> <strong>result</strong>s <strong>of</strong> <strong>the</strong> scenarios are presented. The chapter <strong>is</strong> concluded with a short summary.<br />

3.1 Inventory<br />

Biomass composition<br />

The data used for em<strong>is</strong>sions from maize cultivation are derived from Zwart et al. (2006) and Meijer<br />

et al. (2008). Data for em<strong>is</strong>sions from manure before it enters <strong>the</strong> digester <strong>is</strong> derived from<br />

Broeze et al. (2005). Em<strong>is</strong>sions as a <strong>result</strong> <strong>of</strong> diesel consumption for agricultural practices, like<br />

plough and harvesting, are derived from Gerin et al. (2008) and converted to CO2 em<strong>is</strong>sions, by<br />

<strong>the</strong> full-cycle diesel CO2 em<strong>is</strong>sions, derived from Börjesson (1996). It <strong>is</strong> assumed that <strong>the</strong> maximum<br />

allowed level <strong>of</strong> nitrogen fertilizer <strong>is</strong> applied for maize production, by chemical fertilizer.<br />

Em<strong>is</strong>sions for <strong>the</strong> production <strong>of</strong> chemical fertilizer are derived from Bos et al. (2007) and Cederberg<br />

& Flysjö (2004). In case <strong>of</strong> chemical nitrogen fertilizer application, N2O em<strong>is</strong>sions are 1%<br />

<strong>of</strong> <strong>the</strong> NH3 em<strong>is</strong>sions and <strong>the</strong>y occur according to IPCC (2006) at a rate <strong>of</strong> 10% <strong>of</strong> total nitrogen<br />

applied (Cherubini et al., 2009). A reduction <strong>of</strong> 80% <strong>of</strong> <strong>the</strong> ammonia em<strong>is</strong>sions could be achieved<br />

by good agricultural practices (Jury et al., 2010). It <strong>is</strong> assumed that <strong>the</strong> Ne<strong>the</strong>rlands has good agricultural<br />

practices. Therefore, <strong>the</strong> NH3 em<strong>is</strong>sions <strong>of</strong> chemical nitrogen fertilizer are 2% <strong>of</strong> total<br />

nitrogen n . Fur<strong>the</strong>rmore, <strong>the</strong>re are direct N2O em<strong>is</strong>sions from <strong>the</strong> soil as a <strong>result</strong> <strong>of</strong> <strong>the</strong> use <strong>of</strong><br />

chemical fertilizer, at a rate <strong>of</strong> 1% <strong>of</strong> <strong>the</strong> nitrogen in <strong>the</strong> NH3 (IPCC, 2006). Finally, 0.225% <strong>of</strong><br />

total nitrogen applied <strong>is</strong> emitted to <strong>the</strong> air as N2O via run<strong>of</strong>f to groundwater.<br />

Biogas production capacity<br />

The digester emits 1% <strong>of</strong> <strong>the</strong> em<strong>is</strong>sions that occur during long term storage, as a <strong>result</strong> <strong>of</strong> losses<br />

(Zwart et al., 2006). To heat <strong>the</strong> sludge in <strong>the</strong> digester it <strong>is</strong> assumed that natural gas <strong>is</strong> used, with a<br />

<strong>the</strong>rmal efficiency <strong>of</strong> 90%. Heat requirements are derived from Urban et al. (2009). These are<br />

presented <strong>the</strong>re in Euros, and are calculated to heat requirement by <strong>the</strong>ir used costs for heat.<br />

Digester location<br />

Values for truck transport <strong>of</strong> biomass are derived from Berglund and Börjesson (2006), based on<br />

a 16 ton truck, including return trips. Gas pipeline em<strong>is</strong>sions occur in <strong>the</strong> form <strong>of</strong> leakage at a rate<br />

<strong>of</strong> approximately 0.0001% per km (Koornneef et al., 2008 o ; Dienst & Lechtenbohmer, 2009).<br />

Direct em<strong>is</strong>sions from compression to inject in <strong>the</strong> natural gas grids are 0.03% <strong>of</strong> <strong>the</strong> green gas<br />

compressed due to leakage (Koornneef et al, 2008). Indirect em<strong>is</strong>sions <strong>of</strong> grid injection are based<br />

on <strong>the</strong> energy consumption for an electricity driven compressor, derived from <strong>the</strong> formula in Damen<br />

(2007), which are converted to CO2 em<strong>is</strong>sions by <strong>the</strong> average electricity production em<strong>is</strong>sions<br />

in <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Upgrading technique<br />

Em<strong>is</strong>sions during upgrading occur directly by methane slip and <strong>the</strong> removal <strong>of</strong> CO2 from <strong>the</strong><br />

treated biogas, and indirectly by its energy consumption (Pertl et al., 2010). Data for <strong>the</strong> energy<br />

consumption <strong>of</strong> both upgrading techniques are calculated from Urban et al. (2009). According to<br />

Vlap (2010), <strong>the</strong>se values are more in line with <strong>result</strong>s in practice than <strong>the</strong> values presented in<br />

Zwart (2009) and Bekkering et al. (2010). The indirect em<strong>is</strong>sions from <strong>the</strong> consumption <strong>of</strong> <strong>the</strong><br />

n <strong>Th<strong>is</strong></strong> corresponds with <strong>the</strong> 2% mentioned by van den Broek, 2000, in Cherubini et al., 2010.<br />

o <strong>Th<strong>is</strong></strong> article <strong>is</strong> about Carbon Capture and Storage. To address CO2 transport, it uses data <strong>of</strong> natural gas<br />

pipelines without adjustments. <strong>Th<strong>is</strong></strong> data can <strong>the</strong>refore be used in th<strong>is</strong> <strong>the</strong>s<strong>is</strong>.<br />

19


scrubbing liquid (in th<strong>is</strong> research mono-ethanolamine (MEA) <strong>is</strong> used as scrubbing liquid) in <strong>the</strong><br />

liquid scrub are determined by Urban et al. (2009) (for <strong>the</strong> rate <strong>of</strong> consumption) and Koornneef et<br />

al. (2008) (for MEA production).<br />

Use <strong>of</strong> digestate<br />

When manure <strong>is</strong> used as a fertilizer, NH3 em<strong>is</strong>sions occur according to IPCC (2006) at a rate <strong>of</strong><br />

20% <strong>of</strong> total N applied (Cherubini et al., 2009). Analogously to <strong>the</strong> argument for chemical fertilizer,<br />

<strong>the</strong> NH3 em<strong>is</strong>sions <strong>of</strong> chemical N-fertilizer are 4% <strong>of</strong> total N. Direct N2O em<strong>is</strong>sions from <strong>the</strong><br />

soil as a <strong>result</strong> <strong>of</strong> <strong>the</strong> use <strong>of</strong> manure as a fertilizer are 2% <strong>of</strong> <strong>the</strong> N in <strong>the</strong> NH3 (IPCC, 2006). Fur<strong>the</strong>rmore,<br />

0.225% <strong>of</strong> total N applied <strong>is</strong> emitted to <strong>the</strong> air in <strong>the</strong> form <strong>of</strong> N2O through run<strong>of</strong>f and<br />

leaching to groundwater (Cherubini et al., 2009).<br />

The values for em<strong>is</strong>sions to <strong>the</strong> air from <strong>the</strong> soil <strong>of</strong> manure are used to determine <strong>the</strong> em<strong>is</strong>sions <strong>of</strong><br />

spreading untreated digestate, those <strong>of</strong> chemical fertilizer are used for processed digestate used<br />

for maize cultivation.<br />

The used input values and calculations are included in appendix 4.<br />

3.2 Assessment<br />

The em<strong>is</strong>sions <strong>result</strong>ing from <strong>the</strong> scenarios are given in Figure 3.1. It should be noted that <strong>the</strong> unit<br />

<strong>is</strong> CO2-equivalents, for which <strong>the</strong> CH4 em<strong>is</strong>sions are multiplied by a factor 25 and N2O em<strong>is</strong>sions<br />

are multiplied by a factor 298 (as stated in chapter 2; Table 2.4; page 15).<br />

Figure 3.1: Em<strong>is</strong>sions in <strong>the</strong> green gas chain for <strong>the</strong> six scenarios.<br />

Biomass composition<br />

The difference between scenario 1 and 2 shows <strong>the</strong> impact <strong>of</strong> change in em<strong>is</strong>sions between a<br />

biomass composition <strong>of</strong> 90% manure – 10% maize silage and 50% manure – 50% maize silage,<br />

respectively. The total reduction <strong>of</strong> scenario 2 by 20% relative to scenario 1, <strong>is</strong> primary (18 percentage<br />

points <strong>of</strong> <strong>the</strong> 20) caused by <strong>the</strong> reduction in digestate, by lower em<strong>is</strong>sions from soil <strong>result</strong>ing<br />

from <strong>the</strong> spreading <strong>of</strong> digestate. <strong>Th<strong>is</strong></strong> decrease <strong>is</strong> explained by <strong>the</strong> higher gas yield <strong>of</strong><br />

maize silage than <strong>of</strong> that <strong>of</strong> manure. <strong>Th<strong>is</strong></strong> requires less input volume for <strong>the</strong> same biogas production<br />

capacity and consequently a lower digestate production. Also <strong>the</strong> em<strong>is</strong>sions from digestion<br />

are reduced, <strong>result</strong>ing from a lower heat demand. The em<strong>is</strong>sions from 10% maize silage in sce-<br />

20<br />

gr CO2-eq./MJ<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

scenario 1<br />

scenario 2<br />

scenario 3<br />

scenario 4<br />

scenario 5<br />

scenario 6<br />

digestate<br />

transport<br />

injection<br />

upgrading<br />

digestion<br />

biomass


nario 1 are ra<strong>the</strong>r high, <strong>result</strong>ing from <strong>of</strong> <strong>the</strong> high conversion factor from N2O em<strong>is</strong>sions to CO2equivalents.<br />

The change in biomass composition <strong>of</strong> 10 % maize silage to 50% maize silage, <strong>result</strong>s<br />

in only a doubling <strong>of</strong> <strong>the</strong> weight <strong>of</strong> <strong>the</strong> maize silage input, which <strong>is</strong> seen by larger em<strong>is</strong>sions<br />

from biomass and <strong>the</strong> transport to <strong>the</strong> digester. These higher em<strong>is</strong>sions from biomass are compensated<br />

by lower em<strong>is</strong>sions from <strong>the</strong> digester, because <strong>of</strong> lower heating requirements.<br />

Biogas production capacity<br />

The decrease between scenario 2 and 3 (4% reduction <strong>of</strong> total CO2-eq. em<strong>is</strong>sions when increasing<br />

biogas production capacity from 250 to 1000 Nm 3 biogas/hr) <strong>result</strong>s from <strong>the</strong> reduced em<strong>is</strong>sions <strong>of</strong><br />

injection and by lower em<strong>is</strong>sions from digestion. <strong>Th<strong>is</strong></strong> <strong>is</strong> probably <strong>the</strong> <strong>result</strong> <strong>of</strong> lower heat losses<br />

from <strong>the</strong> digester, since <strong>the</strong> total surface <strong>of</strong> <strong>the</strong> digester <strong>is</strong> relatively smaller at higher capacities.<br />

Digester location<br />

The difference between scenario 3 and 4 <strong>is</strong> de-central digestion and central digestion. <strong>Th<strong>is</strong></strong> means<br />

ei<strong>the</strong>r biogas <strong>is</strong> transported, or manure, respectively. The effect <strong>of</strong> th<strong>is</strong> change <strong>is</strong> shown by <strong>the</strong><br />

minor increase <strong>of</strong> scenario 4, relative to scenario 3 (0.5% increase <strong>of</strong> total em<strong>is</strong>sions in terms <strong>of</strong><br />

CO2-eq.).<br />

Upgrading technique<br />

A large increase in total em<strong>is</strong>sions <strong>is</strong> found between scenario 4 and 5; scenario 5 has 23% higher<br />

total em<strong>is</strong>sions than scenario 4. The difference between <strong>the</strong> scenarios <strong>is</strong> <strong>the</strong> upgrading technique,<br />

changed from liquid scrub to water wash. The high em<strong>is</strong>sions are <strong>the</strong> <strong>result</strong> <strong>of</strong> <strong>the</strong> purpose <strong>of</strong> upgrading,<br />

namely, among o<strong>the</strong>rs, to remove CO2 from <strong>the</strong> biogas. The liquid scrub technique could<br />

reach a methane level <strong>of</strong> 100% in <strong>the</strong> gas; <strong>the</strong> water wash reaches 97%. Hence, <strong>the</strong> liquid scrub<br />

has higher CO2 em<strong>is</strong>sions. However, <strong>the</strong> difference in em<strong>is</strong>sions <strong>is</strong> mainly caused by CH4 losses.<br />

These are considerably higher for <strong>the</strong> water wash technique (3%) than when <strong>the</strong> liquid scrub <strong>is</strong><br />

used (0.1%), p which makes <strong>the</strong> latter more attractive from an environmental point <strong>of</strong> view. Em<strong>is</strong>sions<br />

<strong>result</strong>ing from <strong>the</strong> scrubbing absorbent (MEA) in <strong>the</strong> liquid scrub technique are very small,<br />

as a <strong>result</strong> <strong>of</strong> its reuse.<br />

Em<strong>is</strong>sions <strong>result</strong>ing from <strong>the</strong> energy use in upgrading also increase, but th<strong>is</strong> <strong>is</strong> partly compensated<br />

by lower energy requirements for compression. <strong>Th<strong>is</strong></strong> <strong>is</strong> <strong>the</strong> <strong>result</strong> <strong>of</strong> <strong>the</strong> working pressure <strong>of</strong> <strong>the</strong><br />

upgrading techniques: a liquid scrub operates at atmospheric pressure, while <strong>the</strong> water wash operates<br />

at 8 bar. The latter reduces <strong>the</strong> need for compression for injection into <strong>the</strong> natural gas grid.<br />

Use <strong>of</strong> digestate<br />

Processing digestate to chemical fertilizer replacement requires much energy per ton <strong>of</strong> digestate,<br />

and hence high indirect CO2 em<strong>is</strong>sions in scenario 6. When only comparing <strong>the</strong> em<strong>is</strong>sions from<br />

digestate between scenario 5 and 6, <strong>the</strong> em<strong>is</strong>sions <strong>of</strong> processing digestate are fully compensated,<br />

mainly by <strong>the</strong> reduction in soil em<strong>is</strong>sions <strong>of</strong> unprocessed digestate. Looking at <strong>the</strong> whole chain,<br />

<strong>the</strong> reduction by avoiding <strong>the</strong> use <strong>of</strong> chemical fertilizer, a total reduction <strong>of</strong> 5% <strong>is</strong> achieved, relative<br />

to scenario 5.<br />

The role <strong>of</strong> chemical fertilizer ranges from a minimal value <strong>of</strong> 4.1% in scenario 1, to a maximum<br />

value <strong>of</strong> 9.7% in scenario 3 (see Table 3.1). In scenario 6 no chemical fertilizer <strong>is</strong> used, but processed<br />

digestate, so <strong>the</strong> em<strong>is</strong>sions here are nil. The highest percentage <strong>is</strong> caused by <strong>the</strong> lowest total<br />

em<strong>is</strong>sions for th<strong>is</strong> scenario. In absolute terms it can be seen that <strong>the</strong> em<strong>is</strong>sions per MJ are equal<br />

for scenario 2 to 5. Scenario 1 has a lower maize silage requirement, since here 90% manure –<br />

10% maize silage <strong>is</strong> used in <strong>the</strong> digester, <strong>result</strong>ing in less use <strong>of</strong> chemical fertilizer. Fur<strong>the</strong>rmore,<br />

p Values based on averages from Zwart (2009), Pertl et al. (2010) and Bekkering et al. (2010). See also ap-<br />

pendix 0.<br />

21


it can be seen that <strong>the</strong> em<strong>is</strong>sions from soil after application are double in <strong>the</strong>ir environmental effect<br />

than that <strong>of</strong> production <strong>of</strong> chemical fertilizer.<br />

Table 3.1: Share in total scenario em<strong>is</strong>sions <strong>of</strong> <strong>the</strong> use <strong>of</strong> chemical fertilizer.<br />

Scenario 1 2 3 4 5 6<br />

% <strong>of</strong> total scenario em<strong>is</strong>sions 4.1 9.3 9.7 9.7 7.9 0.0<br />

CO2 em<strong>is</strong>sions from production (gr.CO2/MJ) 1.3 2.4 2.4 2.4 2.4 0.0<br />

N2O em<strong>is</strong>sions from soil after application<br />

(gr. CO2-equiv./MJ) 2.9 5.2 5.2 5.2 5.2 0.0<br />

3.3 Summary<br />

<strong>Th<strong>is</strong></strong> chapter assessed <strong>the</strong> first sub-question, about <strong>the</strong> environmental consequences <strong>of</strong> green gas<br />

production. The scenario with <strong>the</strong> lowest total em<strong>is</strong>sions <strong>is</strong> scenario 3, followed by scenario 4<br />

(0.5% higher total em<strong>is</strong>sions) and 2 (7% total higher em<strong>is</strong>sions than scenario 3). In absolute <strong>result</strong>s,<br />

<strong>the</strong> greenhouse gas balance varies among <strong>the</strong> scenarios from 78.4 gr. CO2-equivalents to<br />

102.8 gr. CO2-equivalents per MJ.<br />

O<strong>the</strong>r findings are that benefits <strong>of</strong> a larger biogas production capacity are hardly noticeable, and<br />

that benefits <strong>of</strong> digestate processing are <strong>the</strong> <strong>result</strong> <strong>of</strong> <strong>the</strong> lack <strong>of</strong> em<strong>is</strong>sions from chemical fertilizer.<br />

The environmental effects <strong>of</strong> <strong>the</strong> use <strong>of</strong> chemical fertilizer <strong>is</strong> ranging between 4.1% to 9.7%<br />

<strong>of</strong> <strong>the</strong> total em<strong>is</strong>sions <strong>of</strong> its scenario. <strong>Th<strong>is</strong></strong> <strong>is</strong> mainly caused by <strong>the</strong> em<strong>is</strong>sions from soil after application.<br />

Concluding, <strong>the</strong> lowest environmental impact <strong>is</strong> found when a biomass composition <strong>of</strong> 50% manure<br />

- 50% maize silage and <strong>the</strong> liquid scrub upgrading technique <strong>is</strong> used.<br />

22


4 ECONOMIC APSECT<br />

<strong>Th<strong>is</strong></strong> chapter addresses <strong>the</strong> economic sustainability <strong>of</strong> green gas. First, <strong>the</strong> used data <strong>is</strong> explained.<br />

Then <strong>the</strong> <strong>result</strong>s <strong>of</strong> <strong>the</strong> scenarios are presented. The chapter <strong>is</strong> concluded with a short summary.<br />

4.1 Inventory<br />

Extensive research into costs <strong>of</strong> biogas production, upgrading and injection into natural gas networks<br />

has been performed in Germany by <strong>the</strong> Fraunh<strong>of</strong>er Institute (Urban et al., 2009). These<br />

data are adjusted to <strong>the</strong> Dutch situation by adjusting <strong>the</strong> economic lifetime and biomass prices.<br />

The economic lifetime for investments in green gas <strong>is</strong> set to 12 years, since <strong>the</strong> Dutch subsidy<br />

regime for renewable gas lasts th<strong>is</strong> long (Agentschap NL, 2010).<br />

Biomass composition<br />

The Dutch biomass prices are derived from Lensink et al. (2009), Lensink et al. (2010) and Walla<br />

& Schneeberger (2008).<br />

Biogas production capacity<br />

Urban et al. (2009) present data for digesters that handle biomass compositions <strong>of</strong> 90% manure –<br />

10% maize silage and 10% manure – 90% maize silage. From <strong>the</strong>se data a digester for a biomass<br />

composition <strong>of</strong> 50% manure – 50% maize silage <strong>is</strong> calculated by using <strong>the</strong> average values <strong>of</strong> both<br />

given digesters.<br />

Digester location<br />

The cost <strong>of</strong> a typical HDPE gas pipeline <strong>is</strong> calculated, using data from <strong>the</strong> publically available<br />

document <strong>of</strong> Enex<strong>is</strong> (2009), in which grid expansion <strong>is</strong> calculated. <strong>Th<strong>is</strong></strong> <strong>result</strong>s in a cost <strong>of</strong> 98<br />

€/m, which <strong>is</strong> confirmed to be used as an approximate value (Vlap, 2010; Holstein, 2010). Investment<br />

costs for compressors are not publically available. These data were analyzed to find a<br />

relation between <strong>the</strong> capacity and <strong>the</strong> investment, and between <strong>the</strong> capacity and <strong>the</strong> costs per<br />

normal cubic meter <strong>of</strong> biogas. Based on <strong>the</strong>se relations, <strong>the</strong> costs for <strong>the</strong> different capacities are<br />

determined. These figures are rounded and used as indicative values.<br />

Costs for manure and maize silage transport are derived from Walla & Schneeberger (2008).<br />

When manure <strong>is</strong> transported, it needs to be checked and weighted, costing an additional 1 €/ton<br />

(Luesink, 2010).<br />

Upgrading technique<br />

The costs for <strong>the</strong> upgrading techniques are derived from Urban et al., (2009).<br />

Use <strong>of</strong> digestate<br />

Costs for digestate processing are derived from Veefkind et al. (2009), costs for digestate transport<br />

and loading and spreading are derived from Poeschl et al. (2010). The price <strong>of</strong> processed digestate<br />

<strong>is</strong> derived from Ahlgren et al. (2010), where it <strong>is</strong> calculated based on <strong>the</strong> price for nitrogen<br />

in chemical fertilizer.<br />

The used values and calculations are l<strong>is</strong>ted in appendix 5.<br />

4.2 Assessment<br />

The <strong>result</strong>s in Table 4.1 represent <strong>the</strong> total <strong>result</strong> <strong>of</strong> <strong>the</strong> green gas chain for <strong>the</strong> different scenarios.<br />

From th<strong>is</strong> table it can be seen that scenario 3, 4, and 5 are economically feasible, because <strong>the</strong>se<br />

NPVs are positive. Consequently, <strong>the</strong> IRR could be calculated, which <strong>is</strong> ma<strong>the</strong>matically not possible<br />

for negative NPVs. Scenario 1 has a payback period, but th<strong>is</strong> <strong>is</strong> very long. Negative payback<br />

23


period values are given, since <strong>the</strong>se are ma<strong>the</strong>matically a solution to <strong>the</strong> equation, but should be<br />

interpreted that <strong>the</strong> project would not be paid back by its generated revenues. Concluding, scenario<br />

5 <strong>is</strong> <strong>the</strong> best scenario based on <strong>the</strong> values for <strong>the</strong> NPV, IRR and PP.<br />

Table 4.1: Results <strong>of</strong> <strong>the</strong> indictors for <strong>the</strong> six scenarios.<br />

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6<br />

NPV (*10 3 €) -322 -1,332 2,613 3,227 4,147 -7,524<br />

IRR (%) not possible not possible 6.9% 7.6% 8.4% not possible<br />

PP (yr) -274 -22 18 15 13 -9<br />

Since <strong>the</strong> gas revenues are equal per MJ <strong>of</strong> produced gas for all scenarios, and to interpret <strong>the</strong><br />

outcome <strong>of</strong> Table 4.1 correctly, Figure 4.1 presents <strong>the</strong> costs more into detail, by giving <strong>the</strong> costs<br />

per MJ throughout <strong>the</strong> chain for <strong>the</strong> different scenarios. As digestate, when processed, gives additional<br />

revenues, <strong>the</strong>se are included as negative cost. In general, th<strong>is</strong> figure shows that <strong>the</strong> total<br />

costs are mainly determined by biomass, digestion, upgrading and processing digestate.<br />

Figure 4.1: Costs over <strong>the</strong> green gas chain for <strong>the</strong> six scenarios.<br />

Biomass composition<br />

The difference between scenario 1 and 2 shows <strong>the</strong> impact <strong>of</strong> change in em<strong>is</strong>sions between a<br />

biomass composition <strong>of</strong> 90% manure – 10% maize silage and 50% manure – 50% maize silage,<br />

respectively. The difference between <strong>the</strong> two scenarios <strong>is</strong> caused by <strong>the</strong> change in biomass. Since<br />

<strong>the</strong> manure <strong>is</strong> assumed to be freely available, <strong>the</strong> price for biomass <strong>is</strong> low in scenario 1. The price<br />

for biomass in scenario 2 <strong>is</strong> higher since more maize silage has to be bought. But as a <strong>result</strong> <strong>of</strong> <strong>the</strong><br />

relative small biogas production capacity, <strong>the</strong> share <strong>of</strong> biomass in <strong>the</strong> total costs remains relatively<br />

small. The largest share <strong>of</strong> <strong>the</strong> total cost are accounted by <strong>the</strong> digester.<br />

Biogas production capacity<br />

By increasing <strong>the</strong> biogas production capacity from 250 to 1000 Nm 3 biogas/hr, (scenario 2 to 3, respectively)<br />

<strong>the</strong> total costs decreases strongly (by 20% relative to scenario 2). <strong>Th<strong>is</strong></strong> <strong>is</strong> <strong>the</strong> <strong>result</strong> <strong>of</strong><br />

economies <strong>of</strong> scale for digestion and upgrading. For digestion <strong>the</strong> economies <strong>of</strong> scale are <strong>the</strong> <strong>result</strong><br />

<strong>of</strong> <strong>the</strong> investment and heat requirements. For upgrading economies <strong>of</strong> scale are mainly <strong>the</strong><br />

<strong>result</strong> <strong>of</strong> <strong>the</strong> investment.<br />

24<br />

€/MJ<br />

0.025<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

0.000<br />

-0.005<br />

scenario 1<br />

scenario 2<br />

scenario 3<br />

scenario 4<br />

scenario 5<br />

scenario 6<br />

digestate<br />

transport<br />

injection<br />

upgrading<br />

digestion<br />

biomass<br />

digestate revenues


Digester location<br />

The difference between scenario 3 and 4 <strong>is</strong> in <strong>the</strong> location <strong>of</strong> <strong>the</strong> digester, being de-central or central.<br />

As a <strong>result</strong>, a 2% reduction <strong>is</strong> seen in scenario 4 relative to scenario 3, caused by a reduction<br />

in transport. <strong>Th<strong>is</strong></strong> difference <strong>is</strong> surpr<strong>is</strong>ing, since manure has a low methane content, and hence<br />

requires much transport for relatively little biogas production. However, for biogas transport,<br />

compression <strong>is</strong> needed, independent <strong>of</strong> <strong>the</strong> d<strong>is</strong>tance. Therefore, biogas transport <strong>is</strong> expensive at<br />

short d<strong>is</strong>tances. As a consequence, a small decrease <strong>is</strong> found when <strong>the</strong> digester <strong>is</strong> centrally located.<br />

Upgrading technique<br />

The costs <strong>of</strong> upgrading when <strong>the</strong> water wash technique <strong>is</strong> used, are slightly lower than <strong>the</strong> costs <strong>of</strong><br />

<strong>the</strong> liquid scrub technique, as shown by <strong>the</strong> difference <strong>of</strong> 4% between scenario 4 and 5. <strong>Th<strong>is</strong></strong> <strong>is</strong> <strong>the</strong><br />

<strong>result</strong> <strong>of</strong> lower operational cost for <strong>the</strong> water wash than for <strong>the</strong> liquid scrub, which <strong>is</strong> per MJ more<br />

influential that lower investment <strong>of</strong> <strong>the</strong> liquid scrub.<br />

Use <strong>of</strong> digestate<br />

The difference between scenario 5 and 6 <strong>is</strong> in <strong>the</strong> handling <strong>of</strong> digestate. The costs for digestate<br />

processing to a replacement for chemical fertilizer <strong>is</strong> significant relative to <strong>the</strong> total costs. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> revenues <strong>of</strong> <strong>the</strong> processed digestate are much smaller than <strong>the</strong> costs. Consequently,<br />

processing digestate <strong>is</strong> economically not beneficial. Moreover, since <strong>the</strong> price <strong>of</strong> processed digestate<br />

<strong>is</strong> assumed to be equal to chemical fertilizer, <strong>the</strong>re <strong>is</strong> no benefit for <strong>the</strong> cost <strong>of</strong> biomass.<br />

4.3 Summary<br />

<strong>Th<strong>is</strong></strong> chapter assessed <strong>the</strong> second sub-question about <strong>the</strong> economic consequences <strong>of</strong> green gas<br />

production. The best economic scenario <strong>is</strong> scenario 5.<br />

The least costs, or <strong>the</strong> highest economic sustainability, <strong>is</strong> mainly caused by a large biogas production<br />

capacity and no digestate processing. In addition, using <strong>the</strong> water wash upgrading technique<br />

and de-central digestion, scenario 5 has <strong>the</strong> lowest costs per MJ, followed by scenario 4 and 3. In<br />

absolute terms, <strong>the</strong> costs <strong>of</strong> producing green gas vary between 0.016 and 0.022 €/MJ.<br />

For <strong>the</strong>se three best scenarios, <strong>the</strong> highest NPV <strong>is</strong> seen, best IRR and shortest PP. Also in terms <strong>of</strong><br />

<strong>the</strong>se indicators, <strong>the</strong> best scenario <strong>is</strong> scenario 5, with a NPV 4,147 (*10 3 ) €, an IRR <strong>of</strong> 8.4% and a<br />

PP <strong>of</strong> 13 years.<br />

Ano<strong>the</strong>r finding <strong>is</strong> that manure transport <strong>is</strong> cheaper than biogas transport on relative short d<strong>is</strong>tances.<br />

Fur<strong>the</strong>rmore, costs <strong>of</strong> digestate processing do not outweigh <strong>the</strong> benefits <strong>of</strong> avoiding<br />

chemical fertilizer.<br />

Concluding, <strong>the</strong> lowest economic cost <strong>is</strong> found when a large biogas production capacity <strong>is</strong> used<br />

and when digestate <strong>is</strong> spread unprocessed.<br />

25


5 SOCIAL ASPECT<br />

<strong>Th<strong>is</strong></strong> chapter addresses <strong>the</strong> social sustainability <strong>of</strong> green gas. First, <strong>the</strong> used data <strong>is</strong> explained.<br />

Then <strong>the</strong> <strong>result</strong>s <strong>of</strong> <strong>the</strong> scenarios are presented. The chapter <strong>is</strong> concluded with a short summary.<br />

5.1 Inventory<br />

Biomass composition<br />

The land requirement <strong>result</strong>ing from <strong>the</strong> demand for maize silage <strong>is</strong> calculated by <strong>the</strong> yield <strong>of</strong><br />

maize. The level <strong>of</strong> employment in agriculture <strong>is</strong> derived from Bos & van de Ven (1999). They<br />

present a value <strong>of</strong> 2000 hrs/yr for an arable farm <strong>of</strong> 80 ha. Based on <strong>the</strong> land requirement for<br />

maize silage, <strong>the</strong> employment for maize silage cultivation <strong>is</strong> calculated.<br />

Biogas production capacity<br />

Data for land requirements for digesters are not found. These are <strong>the</strong>refore calculated, by determining<br />

<strong>the</strong> volume <strong>of</strong> sludge in <strong>the</strong> digester (based on a density <strong>of</strong> maize silage <strong>of</strong> 0,7 ton/m 3 and<br />

a density <strong>of</strong> manure <strong>of</strong> 1 ton/m 3 ; and a retention time <strong>of</strong> 20 days (Appels et al., 2008)), with <strong>the</strong><br />

assumption that <strong>the</strong> radius equals <strong>the</strong> height <strong>of</strong> <strong>the</strong> digester (Grond, 2010). q The employment for<br />

digestion for <strong>the</strong> different biogas production capacities are calculated from Urban et al. (2009).<br />

Although <strong>the</strong>se data are given in Euros, <strong>the</strong>y are converted to annual employment by <strong>the</strong> use <strong>of</strong><br />

<strong>the</strong>ir assumptions for employment cost. Finally, th<strong>is</strong> value <strong>is</strong> converted to employment in seconds<br />

<strong>of</strong> work per MJ.<br />

Digester location<br />

Employment for transport <strong>is</strong> calculated by <strong>the</strong> transport time. <strong>Th<strong>is</strong></strong> <strong>is</strong> done by using <strong>the</strong> type <strong>of</strong><br />

truck that was used in <strong>the</strong> economic assessment in chapter 4 (maize silage 8t; manure 16t; Walla<br />

& Schneeberger, 2008), and an assumed average speed <strong>of</strong> 30 km/hr. r An extensive study to <strong>the</strong><br />

cost composition <strong>of</strong> natural gas pipelines <strong>is</strong> given by Schoots et al. (2010). However, th<strong>is</strong> study<br />

only focuses on steel pipelines. On average, about 1/3 <strong>of</strong> <strong>the</strong> costs are for labor. The cost structure<br />

for HDPE (bio)gas pipelines are different, by much lower material costs and lower costs <strong>result</strong>ing<br />

from right-<strong>of</strong>-way. Therefore, labor costs for HDPE pipelines are assumed to be 50% <strong>of</strong> <strong>the</strong> investment,<br />

at a labor cost <strong>of</strong> 50 €/hr. Employment for a compressor are assumed to be 40% <strong>of</strong> <strong>the</strong><br />

investment, at 50 €/hr. Data from practice on <strong>the</strong> injection facility are not publically available.<br />

Therefore, <strong>the</strong>se figures are rounded and serve as indicative values.<br />

Upgrading technique<br />

The land required for upgrading <strong>is</strong> given by <strong>the</strong> water wash technique <strong>of</strong> <strong>the</strong> company DMT<br />

(DMT, 2009). <strong>Th<strong>is</strong></strong> technique measures 14m by 6m for 250 Nm 3 biogas/hr, and at a very large biogas<br />

capacity <strong>of</strong> 4000 Nm 3 biogas/hr <strong>is</strong> measures 16m by 8m. The latter <strong>is</strong> used for <strong>the</strong> scenarios with<br />

1000 Nm 3 biogas/hr production. Due to a lack <strong>of</strong> data for <strong>the</strong> liquid scrub technique, <strong>the</strong> same dimensions<br />

are assumed. These data are also used as indicative for <strong>the</strong> injection facility. Employment<br />

for upgrading for <strong>the</strong> different biogas production capacities are calculated from Urban et al.<br />

(2009). Although <strong>the</strong>se data are given in Euros, <strong>the</strong>y are converted to annual employment by <strong>the</strong><br />

use <strong>of</strong> <strong>the</strong>ir assumptions for cost <strong>of</strong> employees. Finally, th<strong>is</strong> value <strong>is</strong> converted to employment in<br />

seconds <strong>of</strong> work per MJ.<br />

q 2 V<br />

V = π*r *h. By using r = h, r = 3 . Now r can be calculated, <strong>the</strong> surface can be calculated with S = πr<br />

π<br />

2<br />

r<br />

Although <strong>the</strong> actual average speed <strong>is</strong> probably higher, th<strong>is</strong> low estimation aims to take waiting time at <strong>the</strong><br />

farm into account.<br />

27


Use <strong>of</strong> digestate<br />

For digestate <strong>the</strong> additional land requirement (as competition with food <strong>is</strong> defined) <strong>is</strong> calculated<br />

by <strong>the</strong> nitrogen levels <strong>of</strong> <strong>the</strong> digestate and <strong>the</strong> maximum level <strong>of</strong> nitrogen application to <strong>the</strong> land.<br />

Employment for loading and spreading <strong>of</strong> digestate <strong>is</strong> derived from Rohde et al. (2006). From th<strong>is</strong><br />

data in Euros, it <strong>is</strong> assumed that <strong>the</strong> variable cost are only employment costs. By <strong>the</strong> use <strong>of</strong> <strong>the</strong>ir<br />

used cost for employment, <strong>the</strong> employment in seconds <strong>of</strong> work per MJ <strong>is</strong> calculated.<br />

5.2 Assessment<br />

The <strong>result</strong>s <strong>of</strong> <strong>the</strong> social index are given in Figure 5.1. To interpret <strong>the</strong> social index correctly, <strong>result</strong>s<br />

<strong>of</strong> employment and competition with food are also included, at <strong>the</strong> bottom left and right,<br />

respectively. Data and calculations are included in appendix 6.<br />

Figure 5.1: Social index.<br />

Biomass composition<br />

Competition with food <strong>result</strong>ing from a biomass composition <strong>of</strong> 90% manure – 10% maize silage<br />

(scenario 1 in Figure 5.1) are mainly determined by <strong>the</strong> spreading <strong>of</strong> digestate. The change to a<br />

biomass composition <strong>of</strong> 50% manure – 50% maize silage <strong>result</strong>s in a much lower competition<br />

28<br />

sec/MJ<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

scenario 1<br />

scenario 2<br />

scenario 3<br />

I s<br />

scenario 4<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

scenario 5<br />

scenario 1<br />

scenario 6<br />

scenario 2<br />

scenario 3<br />

m 2 /MJ<br />

Social index<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

scenario 4<br />

scenario 1<br />

scenario 2<br />

scenario 5<br />

scenario 3<br />

scenario 6<br />

Employment Competition with food<br />

.<br />

scenario 4<br />

scenario 5<br />

scenario 6<br />

digestate<br />

transport<br />

injection<br />

upgrading<br />

digestion<br />

biomass


with food to spread <strong>the</strong> unprocessed digestate. <strong>Th<strong>is</strong></strong> <strong>is</strong> explained by higher gas yields <strong>of</strong> maize<br />

silage than <strong>of</strong> manure, so less input volume and hence a lower digestate volume. The competition<br />

with food for biomass increases by a factor two with <strong>the</strong> change from a biomass composition <strong>of</strong><br />

90% manure – 10% maize silage to 50% manure – 50% maize silage.<br />

In scenario 1, biomass digestate account both for <strong>the</strong> largest shares <strong>of</strong> total employment. The<br />

change to a biomass composition <strong>of</strong> 50% maize silage <strong>result</strong>s in a much higher employment requirement,<br />

due to more employment in biomass (due to cultivation) and in transport. The latter <strong>is</strong><br />

caused by <strong>the</strong> higher maize silage requirement. The digestate requires less employment in scenario<br />

2, caused by <strong>the</strong> lower amount <strong>of</strong> digestate. However, th<strong>is</strong> does not counteract <strong>the</strong> increase<br />

<strong>of</strong> employment in biomass and transport.<br />

Biogas production capacity<br />

The impact <strong>of</strong> a larger biogas production capacity <strong>is</strong> assessed by <strong>the</strong> changes between scenario 2<br />

and 3. The increase in competition with food <strong>is</strong> caused by more digestate at a higher biogas production<br />

capacity.<br />

Employment per MJ <strong>is</strong> reduced by increasing <strong>the</strong> biogas production capacity, mainly at digestion,<br />

upgrading and injection.<br />

Digester location<br />

The influence <strong>of</strong> de-central and central digestion has no consequences on <strong>the</strong> competition with<br />

food.<br />

The location <strong>of</strong> <strong>the</strong> digester does have an influence on employment, which <strong>is</strong> higher for central<br />

digestion (scenario 4) than de-central (scenario 3). Employment for truck transport for central<br />

digestion are operationally dependent, while a biogas pipeline for de-central digestion only have<br />

employment in construction.<br />

Upgrading technique<br />

There <strong>is</strong> no change in competition with food when <strong>the</strong> liquid scrub (scenario 4) or <strong>the</strong> water wash<br />

(scenario 5) technique <strong>is</strong> used, since <strong>the</strong>se are assumed to be equal in size. Fur<strong>the</strong>rmore, <strong>the</strong> share<br />

<strong>of</strong> <strong>the</strong> upgrading installation <strong>is</strong> very small relative to <strong>the</strong> competition with food <strong>of</strong> biomass cultivation<br />

and/or digestate spreading.<br />

A reduction in employment <strong>is</strong> seen between scenario 4 and 5. Employment for upgrading <strong>is</strong> a<br />

small share in <strong>the</strong> total per MJ. The consequence <strong>of</strong> applying <strong>the</strong> water wash technique <strong>is</strong> noticed<br />

at employment for injection, since <strong>the</strong> water wash technique operates at a higher pressure than <strong>the</strong><br />

liquid scrub technique and hence less additional compression <strong>is</strong> needed than when <strong>the</strong> liquid<br />

scrub technique <strong>is</strong> used.<br />

Use <strong>of</strong> digestate<br />

The effect <strong>of</strong> processing digestate <strong>is</strong> seen in <strong>the</strong> difference between scenario 5 (unprocessed digestate)<br />

and scenario 6 (processed digestate). The reduction in competition with food <strong>is</strong> <strong>the</strong> <strong>result</strong><br />

<strong>of</strong> less digestate. Even though processed digestate contains higher levels <strong>of</strong> nitrogen, and hence<br />

influences <strong>the</strong> amount <strong>of</strong> additional land required (and <strong>the</strong>refore competition with food), th<strong>is</strong> does<br />

not compensate <strong>the</strong> reduction in digestate volume.<br />

Processing digestate influences <strong>the</strong> employment requirements, mainly by its transport to <strong>the</strong><br />

maize farm. Processing digestate requires only a small amount employment. It should be noted<br />

that th<strong>is</strong> <strong>is</strong> based on a rough assumption.<br />

29


5.3 Summary<br />

<strong>Th<strong>is</strong></strong> chapter assessed <strong>the</strong> third sub-question about <strong>the</strong> social consequences <strong>of</strong> green gas production.<br />

The best scenario <strong>is</strong> scenario 6, followed by scenario 2 (29% higher than scenario 6). In absolute<br />

terms, <strong>the</strong> impact <strong>of</strong> producing green gas varies between 0.007 and 0.053.<br />

These best index outcomes are <strong>the</strong> <strong>result</strong> <strong>of</strong> high levels <strong>of</strong> employment and low competition with<br />

food. One trade-<strong>of</strong>f <strong>is</strong> seen in scenario 1, between <strong>the</strong> highest level <strong>of</strong> food competition and <strong>the</strong><br />

lowest labor requirement. The explanation <strong>is</strong> <strong>the</strong> use <strong>of</strong> manure, which has less employment and a<br />

high amount <strong>of</strong> digestate. The latter <strong>result</strong>s in a high additional land requirement, and hence food<br />

competition. Ano<strong>the</strong>r findings <strong>is</strong> that economies <strong>of</strong> scale are socially not beneficial.<br />

Green gas production competes with food production as a <strong>result</strong> <strong>of</strong> <strong>the</strong> use <strong>of</strong> maize silage and,<br />

more important, <strong>the</strong> additional land required to spread digestate. Fur<strong>the</strong>rmore, it generates <strong>the</strong><br />

most employment by using a biomass composition <strong>of</strong> 50% manure and 50% maize silage, small<br />

biogas production capacity and processing digestate.<br />

Concluding, <strong>the</strong> lowest social impact, or <strong>the</strong> highest social sustainability, <strong>is</strong> mainly caused by a<br />

biomass composition <strong>of</strong> 50% manure and 50% maize silage and processing digestate.<br />

30


6 INTERPRETATION<br />

<strong>Th<strong>is</strong></strong> chapter addresses <strong>the</strong> sub-question about <strong>the</strong> interpretation <strong>of</strong> <strong>the</strong> three aspects <strong>of</strong> sustainability.<br />

First, <strong>the</strong> benefits, burdens and trade-<strong>of</strong>fs throughout <strong>the</strong> chain are assessed, based on <strong>the</strong><br />

<strong>result</strong>s <strong>of</strong> <strong>the</strong> previous three chapters. After that, <strong>the</strong> aspects are combined to make an compar<strong>is</strong>on<br />

<strong>of</strong> <strong>the</strong> scenarios, to find <strong>the</strong> best overall scenario. The chapter <strong>is</strong> concluded with a short summary.<br />

6.1 Compar<strong>is</strong>on<br />

Benefits and burdens<br />

The benefits and burdens <strong>of</strong> <strong>the</strong> green gas chain are shown in Figure 6.1, where <strong>the</strong> normalized<br />

indicator <strong>result</strong>s are presented.<br />

Environmental benefits are found when a biomass composition <strong>of</strong> 50% manure – 50% maize silage<br />

and <strong>the</strong> liquid scrub upgrading technique <strong>is</strong> used. The lowest costs are mainly caused by a<br />

large biogas production capacity and no digestate processing. The highest social benefits are<br />

mainly caused by a biomass composition <strong>of</strong> 50% manure – 50% maize silage and processing digestate.<br />

So, <strong>the</strong> biomass composition and <strong>the</strong> way digestate <strong>is</strong> used determines benefits (and<br />

<strong>the</strong>refore also burdens).<br />

The worst environmental <strong>result</strong> <strong>is</strong> found in scenario 1, <strong>result</strong>ing from a biomass composition <strong>of</strong><br />

90% manure – 10% maize silage. The highest costs are found in scenario 2. <strong>Th<strong>is</strong></strong> <strong>is</strong> explained by<br />

<strong>the</strong> small biogas production capacity in combination with a biomass composition <strong>of</strong> 50% manure<br />

– 50% maize silage. The cause for <strong>the</strong> high <strong>result</strong> <strong>of</strong> scenario 6 <strong>is</strong> found in <strong>the</strong> high costs for digestate<br />

processing. The highest social burdens are found in scenario 1, where <strong>the</strong> highest amount<br />

<strong>of</strong> digestate requires much additional land and <strong>the</strong>refore a high competition with food.<br />

normalized value<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

environment<br />

economics<br />

social index<br />

environment<br />

economics<br />

social index<br />

environment<br />

economics<br />

Figure 6.1: Compar<strong>is</strong>on <strong>of</strong> all normalized indicator <strong>result</strong>s. Exact values are given in appendix 9.<br />

social index<br />

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6<br />

environment<br />

economics<br />

social index<br />

environment<br />

economics<br />

social index<br />

environment<br />

economics<br />

social index<br />

31


Trade <strong>of</strong>fs<br />

A trade-<strong>of</strong>f <strong>is</strong> defined as benefits from a changing situation for one variable with at <strong>the</strong> same time<br />

burdens for ano<strong>the</strong>r aspect. Trade <strong>of</strong>fs are found by using Figure 6.1.<br />

A first trade <strong>of</strong>f <strong>is</strong> found between scenario 1 and 2. The difference between scenario 1 and 2 <strong>is</strong> <strong>the</strong><br />

change <strong>of</strong> biomass composition, from 90% manure – 10% maize silage to 50% manure – 50%<br />

maize silage. As a consequence, high environmental and social burdens change to much better<br />

environmental and social <strong>result</strong>s, while <strong>the</strong> economic aspect increases. <strong>Th<strong>is</strong></strong> <strong>is</strong> explained by a<br />

higher biomass price for maize silage, but since maize silage has a much higher gas yield than<br />

manure, <strong>the</strong> digestate volume decreases significant and hence less additional land requirements<br />

and em<strong>is</strong>sions from spreading. However, <strong>the</strong> increase in economics <strong>is</strong> minor relative to <strong>the</strong> strong<br />

decrease <strong>of</strong> <strong>the</strong> o<strong>the</strong>r two aspects.<br />

Also <strong>the</strong> change between scenario 2 and 3 <strong>result</strong> in a trade <strong>of</strong>f. Increasing <strong>the</strong> biogas production<br />

capacity <strong>result</strong>s in somewhat better environmental and much better economic sustainability, while<br />

<strong>the</strong> social index r<strong>is</strong>es strongly. The better environmental and economic sustainability are <strong>the</strong> <strong>result</strong><br />

<strong>of</strong> a higher efficiency at a larger biogas production capacity, while <strong>the</strong> higher amount <strong>of</strong> digestate<br />

causes more additional land requirement en hence a higher social index.<br />

The difference between scenario 4 and 5 <strong>is</strong> <strong>the</strong> change from <strong>the</strong> liquid scrub upgrading technique<br />

to <strong>the</strong> water wash upgrading technique. Although <strong>the</strong> latter <strong>result</strong>s in a somewhat higher economic<br />

sustainability, it <strong>is</strong> less environmentally sustainable.<br />

Between scenario 5 and 6 a trade <strong>of</strong>f <strong>is</strong> found <strong>result</strong>ing from <strong>the</strong> use <strong>of</strong> digestate. Using digestate<br />

as a chemical fertilizer replacement instead <strong>of</strong> unprocessed spreading, <strong>result</strong>s in a significant reduction<br />

<strong>of</strong> <strong>the</strong> social index, but at cost <strong>of</strong> <strong>the</strong> economic aspect. <strong>Th<strong>is</strong></strong> <strong>is</strong> caused by <strong>the</strong> high price for<br />

processing digestate and less additional land requirements, so less food competition.<br />

6.2 Combination<br />

The normalized values <strong>of</strong> <strong>the</strong> previous section are combined to generate total scenario <strong>result</strong>s.<br />

<strong>Th<strong>is</strong></strong> <strong>is</strong> presented in Figure 6.2. It should be noted that, as explained in <strong>the</strong> methodology chapter,<br />

additional weighting factors are not used, and each aspect <strong>is</strong> considered as equal important.<br />

Scenario 1 has <strong>the</strong> highest combined <strong>result</strong>, primary caused by <strong>the</strong> highest (and <strong>the</strong>refore worst)<br />

environmental and social impact. <strong>Th<strong>is</strong></strong> implies that a biomass composition <strong>of</strong> 90% manure – 10%<br />

maize silage <strong>is</strong> <strong>the</strong> least sustainable.<br />

Scenario 2 <strong>is</strong> 31% more sustainable than scenario 1. <strong>Th<strong>is</strong></strong> means that <strong>the</strong> trade <strong>of</strong>f between economics<br />

on <strong>the</strong> one hand and environment and social aspects on <strong>the</strong> o<strong>the</strong>r, as identified in <strong>the</strong> previous<br />

section, has a positive net effect. So, a biomass composition <strong>of</strong> 50% manure – 50% maize<br />

silage <strong>is</strong> more sustainable than a biomass composition <strong>of</strong> 90% manure – 10% maize silage.<br />

Scenario 3 <strong>is</strong> 6% more sustainable than scenario 2. It has <strong>the</strong> best environmental sustainability<br />

and <strong>the</strong> second best economic sustainability. <strong>Th<strong>is</strong></strong> scenario <strong>is</strong> less socially sustainable, but in<br />

terms <strong>of</strong> <strong>the</strong> normative index, <strong>the</strong> social <strong>result</strong> <strong>is</strong> lower relative to <strong>the</strong> environmental and economic<br />

index <strong>result</strong>. The higher sustainability <strong>of</strong> scenario 3 compared to scenario 2 implies that a<br />

high biogas production capacity <strong>is</strong> more favorable.<br />

Scenario 4 <strong>is</strong> <strong>the</strong> most sustainable scenario. The total decrease relative to scenario 3 <strong>is</strong> caused by<br />

<strong>the</strong> economic aspect and a small social benefit (a total difference <strong>of</strong> 1% relative to scenario 3). In<br />

o<strong>the</strong>r words, <strong>the</strong>re <strong>is</strong> a minor positive effect <strong>of</strong> using manure truck transport to a centrally located<br />

32


digester instead <strong>of</strong> a biogas pipeline. <strong>Th<strong>is</strong></strong> scenario does not include any <strong>of</strong> <strong>the</strong> best <strong>result</strong>s per<br />

aspect.<br />

Scenario 5 has a less overall sustainability (8% higher overall <strong>result</strong> than scenario 4). <strong>Th<strong>is</strong></strong> <strong>is</strong> primarily<br />

caused by <strong>the</strong> lowest environmental sustainability, although <strong>the</strong>re are some small economic<br />

benefits. <strong>Th<strong>is</strong></strong> implies that <strong>the</strong> liquid scrub upgrading technique <strong>is</strong> more sustainable that <strong>the</strong><br />

water wash.<br />

Scenario 6 has a slightly worse overall sustainability than scenario 5 (by 2%). <strong>Th<strong>is</strong></strong> <strong>is</strong> explained<br />

by <strong>the</strong> trade <strong>of</strong>f mentioned in <strong>the</strong> previous section: <strong>the</strong> lower social impact <strong>of</strong> digestate processing<br />

comes at a much higher economic cost. So, <strong>the</strong> social benefit <strong>of</strong> processing digestate do not outweigh<br />

<strong>the</strong> higher economic burden. Consequently, spreading unprocessed digestate <strong>is</strong> more sustainable.<br />

normalized index<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

scenario 1<br />

1.00<br />

0.89<br />

1.00<br />

scenario 2<br />

0.19<br />

1.00<br />

Figure 6.2: Normalized overall <strong>result</strong>s.<br />

0.31 0.30<br />

0.79 0.78<br />

0.80 0.76 0.77<br />

scenario 3<br />

scenario 4<br />

0.94 0.89<br />

Thus, scenario 4 <strong>is</strong> <strong>the</strong> most sustainable scenario. <strong>Th<strong>is</strong></strong> <strong>is</strong> explained by, in order <strong>of</strong> importance, <strong>the</strong><br />

biomass composition <strong>of</strong> 50% manure – 50% maize silage (reduction <strong>of</strong> 31% relative to 90% manure<br />

– 10% maize silage), liquid scrub upgrading (8% relative to water wash), large biogas production<br />

capacity (6% relative to small biogas production capacity), digestate spreading (2% relative<br />

to digestate processing) and <strong>the</strong> location <strong>of</strong> <strong>the</strong> digester (1% in favor <strong>of</strong> manure truck transport<br />

relative to biogas pipeline transport).<br />

6.3 Validation<br />

A sensitivity analys<strong>is</strong> <strong>is</strong> made for several parameters to check whe<strong>the</strong>r <strong>the</strong> used assumptions influence<br />

<strong>the</strong> <strong>result</strong>s for <strong>the</strong> best scenario from <strong>the</strong> previous section.<br />

Within <strong>the</strong> scenario design, assumptions are made on <strong>the</strong> d<strong>is</strong>tance from <strong>the</strong> farm to <strong>the</strong> natural gas<br />

grid (<strong>the</strong> grid type <strong>is</strong> included in <strong>the</strong> biogas production capacity) and <strong>the</strong> d<strong>is</strong>tance <strong>of</strong> <strong>the</strong> maize<br />

farm to <strong>the</strong> digester. Besides, it <strong>is</strong> assumed that <strong>the</strong> maize farm has good arable practices. The<br />

social index uses <strong>the</strong> average income throughout <strong>the</strong> green gas chain to convert employment to a<br />

unit that <strong>is</strong> can be related to food competition. The assumed value for average income <strong>is</strong> <strong>the</strong>refore<br />

<strong>of</strong> influence on <strong>the</strong> social index and hence on <strong>the</strong> total <strong>result</strong>. Also <strong>the</strong> average speed <strong>of</strong> <strong>the</strong> truck<br />

<strong>is</strong> <strong>of</strong> influence on employment.<br />

Fur<strong>the</strong>rmore, parameters that are used for all scenarios are included in <strong>the</strong> sensitivity analys<strong>is</strong>.<br />

Several prices are volatile, and consequently influence <strong>the</strong> <strong>result</strong>s. <strong>Th<strong>is</strong></strong> counts for <strong>the</strong> price <strong>of</strong><br />

scenario 5<br />

0.30<br />

0.74<br />

scenario 6<br />

0.13<br />

1.00<br />

social<br />

economics<br />

environment<br />

33


natural gas and hence <strong>of</strong> green gas, <strong>the</strong> price <strong>of</strong> chemical fertilizer and consequently for <strong>the</strong> price<br />

<strong>of</strong> processed digestate, and for <strong>the</strong> price <strong>of</strong> maize silage.<br />

Besides, influencing all <strong>result</strong>s, <strong>the</strong> investment period in th<strong>is</strong> research <strong>is</strong> 12 years, as <strong>the</strong> subsidy<br />

regime requires, but investment periods for (natural) gas pipelines can be 30 years. Finally, <strong>the</strong><br />

gas yields from maize silage and manure <strong>is</strong> <strong>of</strong> influence on all <strong>result</strong>s.<br />

For <strong>the</strong>se 10 input parameters a sensitivity analys<strong>is</strong> <strong>is</strong> made and related to <strong>the</strong> overall sustainability<br />

index <strong>result</strong> <strong>of</strong> <strong>the</strong> best scenario (no. 4). <strong>Th<strong>is</strong></strong> <strong>is</strong> presented in Figure 6.3.<br />

Since <strong>the</strong> effects <strong>of</strong> <strong>the</strong> assumptions <strong>of</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong> digester, upgrading installation and digestate<br />

processer are negligible in <strong>the</strong> <strong>result</strong>s, <strong>the</strong>se are not assessed in <strong>the</strong> sensitivity analys<strong>is</strong>.<br />

Figure 6.3: Sensitivity analys<strong>is</strong> for ten input parameters.<br />

Figure 6.3 shows that <strong>the</strong> sensitivity six out <strong>of</strong> ten input parameters <strong>is</strong> small relative to <strong>the</strong> overall<br />

<strong>result</strong> <strong>of</strong> scenario 4. It should be noted that <strong>the</strong> x-ax<strong>is</strong> scale <strong>is</strong> ra<strong>the</strong>r large, while <strong>the</strong> scale on <strong>the</strong><br />

y-ax<strong>is</strong> <strong>is</strong> ra<strong>the</strong>r small. The change <strong>of</strong> <strong>the</strong> output <strong>of</strong> scenario 4 <strong>is</strong> sensitive for six parameters in <strong>the</strong><br />

order <strong>of</strong> -2% to 1%. The explanation for th<strong>is</strong> small influence <strong>is</strong> that <strong>the</strong> effect <strong>is</strong> dampened by <strong>the</strong><br />

aspect(s) that are not influenced by <strong>the</strong> change.<br />

The maize silage price shows, in relation to <strong>the</strong> o<strong>the</strong>r parameters, that <strong>the</strong> overall <strong>result</strong> <strong>is</strong> sensitive<br />

for changes in th<strong>is</strong> value. A higher price has a negative effect on <strong>the</strong> overall sustainability.<br />

The opposite holds for <strong>the</strong> investment period: a longer period <strong>result</strong>s in a higher sustainability.<br />

The outcome <strong>is</strong> most sensitive to <strong>the</strong> maize silage gas yield. Somewhat higher gas yield <strong>result</strong> in a<br />

much higher sustainability. These last four parameters to which <strong>the</strong> <strong>result</strong>s are highly sensitive<br />

play a role in each scenario. Therefore, <strong>the</strong> overall <strong>result</strong>s are dependent on <strong>the</strong> gas yields, maize<br />

silage price and investment period.<br />

34<br />

change <strong>of</strong> overall <strong>result</strong> (%)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-50 -25 0 25 50<br />

change <strong>of</strong> input value (%)<br />

d<strong>is</strong>tance gas grid<br />

d<strong>is</strong>tance maize farm<br />

arable practice<br />

average income<br />

average speed truck<br />

investment period<br />

fertilizer price<br />

maize silage price<br />

manure gas yield<br />

maize silage gas yield


Table 6.1: Sensitivity <strong>of</strong> green gas price on <strong>the</strong> economic viability.<br />

Change in green gas price s -10% -5% 0% (=scenario 4) 5% 10%<br />

NPV (*10 3 €) -41 1,570 3,227 4,884 6,494<br />

IRR (%) not possible 5.4% 7.6% 9.2% 10.3%<br />

PP (yrs) 95 27 15 11 8<br />

The green gas price <strong>is</strong> only included in <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> NPV, IRR and PP. The sensitivity <strong>of</strong><br />

<strong>the</strong> green gas price <strong>is</strong> <strong>the</strong>refore assessed on <strong>the</strong>se indicators. The <strong>result</strong>s are shown in Table 6.1.<br />

As can be seen, <strong>the</strong> economic viability <strong>is</strong> highly sensitive for changes in <strong>the</strong> green gas price. For a<br />

10% lower total green gas price <strong>the</strong>re <strong>is</strong> a negative net present value, consequently no internal<br />

rate <strong>of</strong> return and a very much larger payback period.<br />

6.4 Summary<br />

Benefits for <strong>the</strong> environmental and social aspect are found when a biomass composition <strong>of</strong> 50%<br />

manure – 50% maize silage <strong>is</strong> used. For economics, large biogas production capacity <strong>is</strong> beneficial.<br />

Trade <strong>of</strong>fs are found between a significant reduction in <strong>the</strong> environmental and social aspect at<br />

cost <strong>of</strong> <strong>the</strong> economic aspect, by <strong>the</strong> change from a biomass composition <strong>of</strong> 90% manure – 10%<br />

maize silage to 50% manure – 50% maize silage. A trade <strong>of</strong>f <strong>is</strong> also identified by <strong>the</strong> biogas production<br />

capacity increase, where better environmental and economic <strong>result</strong>s are at higher cost for<br />

<strong>the</strong> social aspect. A third trade <strong>of</strong>f <strong>is</strong> identified by digestate processing: social benefits come at<br />

higher economic cost.<br />

When <strong>the</strong> normalized <strong>result</strong>s <strong>of</strong> each scenario are combined, <strong>the</strong> best scenario <strong>is</strong> scenario 4. <strong>Th<strong>is</strong></strong><br />

most sustainable green gas chain has a <strong>result</strong> <strong>of</strong> 1.8 on an index scale between 0.0 and 3.0. <strong>Th<strong>is</strong></strong><br />

scenario does not include any <strong>of</strong> <strong>the</strong> best <strong>result</strong>s per aspect. The best scenario has a chain configuration<br />

with, in order <strong>of</strong> importance, a biomass composition <strong>of</strong> 50% manure – 50% maize silage,<br />

liquid scrub upgrading, large biogas production capacity, unprocessed digestate spreading and a<br />

centrally located digester <strong>is</strong> <strong>the</strong> most sustainable. However, <strong>the</strong> difference between de-centrally<br />

and centrally located digestion <strong>is</strong> very small. Moreover, <strong>the</strong> sensitivity <strong>of</strong> specific input parameters<br />

<strong>is</strong> in <strong>the</strong> same range. Therefore, scenario 3 and 4 are concluded to be <strong>the</strong> most sustainable<br />

scenarios. However, <strong>the</strong> total <strong>result</strong>s <strong>of</strong> all scenarios are dependent on <strong>the</strong> gas yields <strong>of</strong> manure<br />

and maize silage, <strong>the</strong> maize silage price and <strong>the</strong> investment period.<br />

s The green gas price in th<strong>is</strong> research <strong>is</strong> <strong>the</strong> total price for green gas, so <strong>the</strong> natural gas price plus subsidy.<br />

35


7 CONCLUSION & DISCUSSION<br />

7.1 Conclusion<br />

<strong>Th<strong>is</strong></strong> paragraph follows <strong>the</strong> sub-questions, which lead to an answer to <strong>the</strong> main research question.<br />

The highest environmental sustainability <strong>is</strong> found when a biomass composition <strong>of</strong> 50% manure –<br />

50% maize silage and <strong>the</strong> liquid scrub upgrading technique are used. In absolute <strong>result</strong>s, <strong>the</strong> green<br />

house gas balance varies among <strong>the</strong> studied scenarios from 78.4 gr. CO2-equivalents to 102.8 gr.<br />

CO2-equivalents. The environmental effects <strong>of</strong> <strong>the</strong> use <strong>of</strong> chemical fertilizer ranges between 4.1%<br />

to 9.7% <strong>of</strong> <strong>the</strong> total em<strong>is</strong>sions per scenario. Although production <strong>of</strong> chemical fertilizer <strong>is</strong> energy<br />

intensive, th<strong>is</strong> <strong>is</strong> mainly caused by <strong>the</strong> em<strong>is</strong>sions from soil after application.<br />

The highest economic sustainability, <strong>is</strong> found when a high biogas production capacity <strong>is</strong> used and<br />

digestate <strong>is</strong> spread unprocessed. Of less importance to <strong>the</strong> overall <strong>result</strong> are <strong>the</strong> use <strong>of</strong> <strong>the</strong> water<br />

wash upgrading technique and de-central digestion. For <strong>the</strong> best scenario, <strong>the</strong> highest NPV <strong>is</strong> seen<br />

(4,147 *10 3 €), best IRR (8.4 %) and PP (13 years). Ano<strong>the</strong>r finding <strong>is</strong> that <strong>the</strong> costs <strong>of</strong> digestate<br />

processing do not outweigh <strong>the</strong> benefits <strong>of</strong> avoiding chemical fertilizer.<br />

The highest social sustainability <strong>is</strong> mainly caused by a biomass composition <strong>of</strong> 50% manure –<br />

50% maize silage and processing digestate to chemical fertilizer replacement. Green gas production<br />

competes with food production as a <strong>result</strong> <strong>of</strong> <strong>the</strong> use <strong>of</strong> maize silage and, more important,<br />

additional land required to spread digestate. Fur<strong>the</strong>rmore, employment <strong>is</strong> generated when a biomass<br />

composition <strong>of</strong> 50% manure – 50% maize silage <strong>is</strong> used, at a small biogas production capacity<br />

and <strong>the</strong> digestate <strong>is</strong> processed.<br />

Subsequently, <strong>the</strong> environmental, economic and social aspects <strong>of</strong> sustainability are related to each<br />

o<strong>the</strong>r, by normalizing <strong>the</strong> <strong>result</strong>.<br />

Benefits for <strong>the</strong> environmental and social aspect are found when a biomass composition <strong>of</strong> 50%<br />

manure – 50% maize silage <strong>is</strong> used. For economics, large biogas production capacity <strong>is</strong> beneficial.<br />

Trade <strong>of</strong>fs are found between a significant reduction in <strong>the</strong> environmental and social aspect at<br />

cost <strong>of</strong> <strong>the</strong> economic aspect, by <strong>the</strong> change from a biomass composition <strong>of</strong> 90% manure – 10%<br />

maize silage to 50% manure – 50% maize silage. A trade <strong>of</strong>f <strong>is</strong> also identified by biogas production<br />

capacity increase, where somewhat better environmental <strong>result</strong>s come at high cost for <strong>the</strong><br />

economic and social aspects. A third and last trade <strong>of</strong>f <strong>is</strong> identified by digestate processing: social<br />

benefits come at higher economic cost.<br />

From <strong>the</strong> studied scenarios in th<strong>is</strong> research, it can be concluded that <strong>the</strong> most sustainable green<br />

gas chain has a <strong>result</strong> <strong>of</strong> 1.8 on an index scale between 0.0 and 3.0. Moreover, <strong>the</strong> most sustainable<br />

green gas chain has a configuration with a biomass composition <strong>of</strong> 50% manure – 50%<br />

maize silage, liquid scrub upgrading and large biogas production capacity. The differences between<br />

<strong>the</strong> location <strong>of</strong> <strong>the</strong> digester, being de-central or central, and <strong>the</strong> way digestate <strong>is</strong> used are<br />

too small to draw a valid conclusion, considering <strong>the</strong> sensitivity <strong>of</strong> used input parameters. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> total <strong>result</strong>s <strong>of</strong> each scenario are dependent on <strong>the</strong> gas yields <strong>of</strong> manure and maize<br />

silage, <strong>the</strong> maize silage price and <strong>the</strong> investment period.<br />

37


7.2 D<strong>is</strong>cussion<br />

First <strong>the</strong> conclusions will be d<strong>is</strong>cussed. Then <strong>the</strong> <strong>result</strong>s <strong>of</strong> th<strong>is</strong> research are d<strong>is</strong>cussed by <strong>the</strong> used<br />

data, indicators, scenarios and <strong>the</strong> interpretation method. After that more o<strong>the</strong>r considerations are<br />

presented.<br />

Conclusions<br />

Some sub conclusions can be related to o<strong>the</strong>r studies.<br />

The conclusion on <strong>the</strong> environmental sustainability <strong>is</strong> partly confirmed by <strong>the</strong> article <strong>of</strong> Pertl et al.<br />

(2010), which <strong>is</strong> specifically about <strong>the</strong> climate balance <strong>of</strong> green gas production. They conclude<br />

that “GHG em<strong>is</strong>sions from scenarios including digestion <strong>of</strong> organic waste are less harmful to <strong>the</strong><br />

climate than energy production based on renewable agricultural resources” (Pertl et al., 2010; p.<br />

98). <strong>Th<strong>is</strong></strong> research shows <strong>the</strong> contrary: GHG em<strong>is</strong>sions <strong>of</strong> manure (as an organic waste) are <strong>the</strong><br />

most harmful to <strong>the</strong> climate. <strong>Th<strong>is</strong></strong> <strong>is</strong> caused by <strong>the</strong> large share in <strong>the</strong> total em<strong>is</strong>sions by spreading<br />

<strong>the</strong> digestate. It <strong>is</strong> <strong>the</strong> digestate that <strong>is</strong> not included in <strong>the</strong> study by Pertl et al. (2010).<br />

The study <strong>of</strong> Jury et al. (2010) <strong>is</strong> a (partial) LCA <strong>of</strong> green gas production, compared to <strong>the</strong> environmental<br />

effects <strong>of</strong> natural gas. They conclude that farming activities have <strong>the</strong> highest contribution<br />

to climate damages. However, <strong>the</strong>ir research does not include direct CO2 em<strong>is</strong>sions from upgrading<br />

and use <strong>of</strong> digestate, which are indicated in th<strong>is</strong> research as factors that have a large influence<br />

on <strong>the</strong> conclusion.<br />

The conclusion on <strong>the</strong> economic sustainability <strong>is</strong> ra<strong>the</strong>r confirmed by <strong>the</strong> article by Gebrezgabher<br />

et al. (2010). They indicate that a positive NPV for green gas production <strong>is</strong> <strong>the</strong> <strong>result</strong> <strong>of</strong> <strong>the</strong> subsidized<br />

green gas price, and that <strong>the</strong> price <strong>of</strong> <strong>the</strong> additional product that <strong>is</strong> used besides manure in<br />

digestion <strong>is</strong> an important determinant <strong>of</strong> <strong>the</strong> economic success. They also conclude that <strong>the</strong> choice<br />

<strong>of</strong> digestate handling <strong>is</strong> an important factor in <strong>the</strong> economic success. These findings are in line<br />

with <strong>the</strong> <strong>result</strong>s <strong>of</strong> th<strong>is</strong> research.<br />

No references were found to confirm or contradict <strong>the</strong> <strong>result</strong>s and conclusions for <strong>the</strong> social aspect<br />

<strong>of</strong> sustainability and <strong>the</strong> combination and interpretation <strong>of</strong> <strong>the</strong> separate aspects.<br />

Therefore, a strength <strong>of</strong> th<strong>is</strong> research seems <strong>the</strong> inclusion <strong>of</strong> more steps <strong>of</strong> <strong>the</strong> green gas production<br />

chain in <strong>the</strong> system design, <strong>the</strong> assessment <strong>of</strong> social sustainability <strong>of</strong> green gas production<br />

and relating <strong>the</strong> three aspects. However, as a consequence <strong>of</strong> insufficient external validation <strong>of</strong><br />

<strong>the</strong> social sustainability and <strong>the</strong> interpretation, <strong>the</strong>se findings include a level <strong>of</strong> uncertainty.<br />

Data<br />

In addition to <strong>the</strong> above stated, due to <strong>the</strong> lack <strong>of</strong> data, no margin <strong>of</strong> error <strong>is</strong> given for <strong>the</strong> <strong>result</strong>s.<br />

Fur<strong>the</strong>rmore, in th<strong>is</strong> research, <strong>the</strong> direct energy requirements <strong>of</strong> compression were used to determine<br />

<strong>the</strong> em<strong>is</strong>sions. While <strong>the</strong> energy requirements are <strong>the</strong> largest at its use phase, th<strong>is</strong> does not<br />

necessarily imply that <strong>the</strong> largest environmental impact <strong>is</strong> at its usage (Moll, 1993). Therefore,<br />

more specific data for construction <strong>is</strong> needed. Additionally, many studies, including th<strong>is</strong> one, use<br />

<strong>the</strong> study <strong>of</strong> Urban et al. (2009) because <strong>of</strong> its specificity. More data at th<strong>is</strong> level <strong>of</strong> detail <strong>is</strong><br />

needed for verification, and could <strong>the</strong>n possibly influence <strong>the</strong> <strong>result</strong>s. Moreover, particularly for<br />

<strong>the</strong> social aspect, assumptions are made to assess <strong>the</strong> sustainability, as a <strong>result</strong> <strong>of</strong> data limitations.<br />

Again, more data could help in verification and could <strong>result</strong> in o<strong>the</strong>r findings.<br />

Finally, <strong>the</strong> economic data used, could be influenced by economic considerations. Since, for example,<br />

<strong>the</strong> provider <strong>of</strong> upgrading techniques has commercial interest to promote its own technique,<br />

given data might be too low. On <strong>the</strong> o<strong>the</strong>r hand, economic data from Urban et al. (2009)<br />

might be too high, since all costs (investment and variable costs) <strong>of</strong> digestion and upgrading are<br />

higher in Germany than in <strong>the</strong> Ne<strong>the</strong>rlands (Vlap, 2010). Both aspects could influence <strong>the</strong> <strong>result</strong>s<br />

and hence <strong>the</strong> conclusion.<br />

38


Indicators<br />

In th<strong>is</strong> study, only a limited number <strong>of</strong> indicators are used per aspect <strong>of</strong> sustainability. It <strong>is</strong> argued<br />

that <strong>the</strong> chosen indicators are <strong>the</strong> most important for th<strong>is</strong> research. However, <strong>the</strong>re are many more<br />

indicators that could be included, which consequently could influence <strong>the</strong> <strong>result</strong>s.<br />

For <strong>the</strong> environmental aspect <strong>of</strong> sustainability, for instance water consumption <strong>is</strong> not included.<br />

<strong>Th<strong>is</strong></strong> <strong>is</strong> noteworthy since <strong>the</strong> water wash technique has a high water consumption (Electrigaz,<br />

2008; Reppich et al., 2009). Fur<strong>the</strong>rmore, <strong>the</strong> removal <strong>of</strong> CO2 from biogas at <strong>the</strong> upgrading step<br />

could be excluded by considering <strong>the</strong>se em<strong>is</strong>sions as short cyclic. However, when included, th<strong>is</strong><br />

would not drastically influence <strong>the</strong> <strong>result</strong>s, since <strong>the</strong> level <strong>of</strong> removal <strong>is</strong> about <strong>the</strong> same for both<br />

upgrading techniques.<br />

For <strong>the</strong> economic aspect <strong>of</strong> sustainability, <strong>the</strong> revenues are not included in <strong>the</strong> finally used indicator,<br />

since <strong>the</strong>se are equal in <strong>the</strong> expressed unit (per MJ). Ano<strong>the</strong>r indicator could be <strong>the</strong> size <strong>of</strong> <strong>the</strong><br />

total initial investment, since th<strong>is</strong> could be a barrier to invest in a green gas production chain.<br />

For <strong>the</strong> social aspect <strong>of</strong> sustainability, <strong>the</strong> calculations for food competition fertilization <strong>of</strong> chemical<br />

fertilizer and digestate (as <strong>the</strong> additional land requirements) are based on <strong>the</strong> nitrogen levels.<br />

Although th<strong>is</strong> <strong>is</strong> a very important aspect, also Phosphorus and Potassium are important nutrients.<br />

Fur<strong>the</strong>rmore, including an indicator for animal wellbeing might be interesting, since many cows<br />

are needed for only a small amount <strong>of</strong> biogas production. Moreover, from a biogas production<br />

point <strong>of</strong> view, <strong>the</strong> cows are preferably kept in shed for easy manure collection. Including such<br />

indicators could influence <strong>the</strong> presented <strong>result</strong>s.<br />

Scenarios<br />

The scenarios <strong>of</strong> th<strong>is</strong> research are based on <strong>the</strong> current green gas situation in <strong>the</strong> Ne<strong>the</strong>rlands, and<br />

cover only <strong>the</strong> most commonly seen configurations. New developments, e.g. in upgrading techniques,<br />

o<strong>the</strong>r co-products instead <strong>of</strong> maize silage, or gas hubs (where several biogas producers<br />

upgrade <strong>the</strong>ir gas to green gas), could <strong>result</strong> <strong>is</strong> different outcomes.<br />

Also, <strong>the</strong> scenarios do not necessarily represent <strong>the</strong> best routing. A best chain configuration <strong>is</strong><br />

dependent on site specific elements, like <strong>the</strong> number <strong>of</strong> farms in <strong>the</strong> area that could possibly cooperate<br />

in <strong>the</strong> green gas production chain, difficulty <strong>of</strong> pipeline construction (e.g. when (rail)road<br />

crossings are necessary) and exact location <strong>of</strong> <strong>the</strong> natural gas grids.<br />

Interpretation<br />

In normalizing <strong>the</strong> <strong>result</strong>s, no baseline <strong>is</strong> used. Using a baseline influences <strong>the</strong> relative changes,<br />

and could hence influence <strong>the</strong> conclusions. The interpretation <strong>of</strong> <strong>the</strong> <strong>result</strong>s did not use additional<br />

weighting factors. It was chosen to consider <strong>the</strong> three aspects <strong>of</strong> sustainability <strong>of</strong> equal importance.<br />

However, <strong>the</strong>re <strong>is</strong> a vivid d<strong>is</strong>cussion about <strong>the</strong> use <strong>of</strong> weighting factors. When additional<br />

weighting factors are applied, <strong>the</strong> aspect with <strong>the</strong> highest normative <strong>result</strong> <strong>is</strong> <strong>the</strong> most sensitive.<br />

For <strong>the</strong> most sustainable scenario found in th<strong>is</strong> research, applying additional weighting factors for<br />

<strong>the</strong> environmental and economic aspect would consequently have <strong>the</strong> most influence. Additional<br />

weighting factors could be used by <strong>the</strong> different stakeholders involved in green gas production.<br />

Without <strong>the</strong> use <strong>of</strong> weighting factors, <strong>the</strong> stakeholders could still choose to only consider one or<br />

two aspects <strong>of</strong> sustainability. For example, from <strong>the</strong> perspective <strong>of</strong> <strong>the</strong> investor, <strong>the</strong> lowest cost<br />

and highest NPV would probably be chosen. <strong>Th<strong>is</strong></strong> <strong>is</strong> scenario 5. In compar<strong>is</strong>on to <strong>the</strong> overall best<br />

scenario (no. 4), th<strong>is</strong> implies a significantly worse environmental sustainability. In addition, one<br />

could argue to exclude <strong>the</strong> scenarios that <strong>result</strong> in a negative NPV, sinces <strong>the</strong>se are not pr<strong>of</strong>itable<br />

and might <strong>the</strong>refore not be real<strong>is</strong>ed as such. However, it should <strong>the</strong>n also be noted that <strong>the</strong> NPV <strong>is</strong><br />

very sensitive to changes in <strong>the</strong> (green) gas price.<br />

39


O<strong>the</strong>r considerations<br />

Although green gas production, as considered in th<strong>is</strong> research, <strong>is</strong> a bio-energy partly from cattle<br />

manure, th<strong>is</strong> does not prevent em<strong>is</strong>sions from <strong>the</strong> Dutch dairy production. About 80% <strong>of</strong> <strong>the</strong><br />

methane <strong>is</strong> already emitted in <strong>the</strong> gaseous form by <strong>the</strong> cows <strong>the</strong>mselves (Bos et al., 2007).<br />

Fur<strong>the</strong>rmore, <strong>the</strong> number <strong>of</strong> cows that are needed for biogas production <strong>is</strong> high. For instance, <strong>the</strong><br />

manure <strong>of</strong> 220 cows are needed for a biomass composition <strong>of</strong> 50% manure – 50% maize silage at<br />

a biogas production capacity <strong>of</strong> 250 Nm 3 biogas/hr. <strong>Th<strong>is</strong></strong> <strong>is</strong> due to <strong>the</strong> low methane yield <strong>of</strong> cattle<br />

manure. Moreover, biogas production <strong>is</strong> no solution to <strong>the</strong> manure surplus in <strong>the</strong> Ne<strong>the</strong>rlands, as<br />

can be seen by <strong>the</strong> high additional land requirements.<br />

The fluctuating green gas price seems to cause investment uncertainty, since <strong>the</strong> <strong>result</strong>s are highly<br />

sensitive to th<strong>is</strong> parameter. In addition, <strong>the</strong> investment period <strong>of</strong> 12 years <strong>is</strong> low compared to <strong>the</strong><br />

investment periods in natural gas. As <strong>the</strong> sensitivity analys<strong>is</strong> showed, th<strong>is</strong> parameter has a high<br />

influence on <strong>the</strong> overall <strong>result</strong>s. Both aspects could be interesting findings for an evaluation <strong>of</strong> <strong>the</strong><br />

Dutch subsidy regime for green gas.<br />

7.3 Recommendations for fur<strong>the</strong>r research<br />

Based on <strong>the</strong> d<strong>is</strong>cussion, fur<strong>the</strong>r research <strong>is</strong> recommended.<br />

More data <strong>is</strong> required throughout <strong>the</strong> green gas chain, to verify <strong>the</strong> used data. Especially <strong>the</strong> role<br />

<strong>of</strong> Urban et al. (2009) <strong>is</strong> large throughout publications about green gas, since many studies are<br />

indirectly based on <strong>the</strong>se data.<br />

Interesting would be research to a optimal green gas production chain configuration, by looking at<br />

<strong>the</strong> effect <strong>of</strong> a green gas hub (central upgrading for several biogas producing farms) and specific<br />

system configurations.<br />

Finally, it would be interesting to compare <strong>the</strong> <strong>result</strong>s <strong>of</strong> th<strong>is</strong> research with <strong>the</strong> use <strong>of</strong> biogas in a<br />

Combined Heat and Power (CHP) installation and with similar assessments for o<strong>the</strong>r (green) energy<br />

carriers.<br />

40


REFERENCES<br />

Afgan, N.H., Carvalho, M.G., Hovanov, N.V. (2000). Energy system assessment with sustainability<br />

indicators. Energy Policy. 28. 603 – 612.<br />

Agenstschap NL. (2010). Biomassa 2010, Stimuleringsregeling Duurzame Energieproductie.<br />

Ahlgren, S., Bernesson, S., Nordberg, A., Hansson, P.-A. (2010). Nitrogen fertilizer production<br />

based on biogas – Energy input, environmental impact and land use. Bioresource Technology.<br />

101. 7181 – 1784.<br />

Appels, L., Baeyens, J., Degrève, J., Dewil, R. (2008). Principles and potential <strong>of</strong> anaerobic digestion<br />

<strong>of</strong> waste-activated sludge. Progress in Energy and Combustion Science 34, 755 – 781.<br />

Bekkering, J., Broekhu<strong>is</strong>, A.A., van Gemert, W.J.T. (2010). Optim<strong>is</strong>ation <strong>of</strong> a green gas supply<br />

chain – A review. Bioresource Technology. 101. 450 – 456.<br />

Berglund, M., Börjesson, P. (2006). Assessment <strong>of</strong> energy performance in <strong>the</strong> life-cycle <strong>of</strong> biogas<br />

production. Biomass and Bioenergy. 30. 254 – 266.<br />

Bermejo, G., Ellmer, F. (2010). Use <strong>of</strong> dry and wet digestates from biogas plants as fertilizer in<br />

<strong>the</strong> agriculture. Humboldt University Berlin.<br />

Börjesson, P.I.I. (1996). Em<strong>is</strong>sions <strong>of</strong> CO2 from biomass production and transportation in agriculture<br />

and forestry. Energy Conversion Management. 37. Nos 6-8. 1235 – 1240.<br />

Bos, J., de Haan, J., Sukkel, W. (2007). Energieverbruik, broeikasgasem<strong>is</strong>sies en koolst<strong>of</strong>-opslag:<br />

de biolog<strong>is</strong>che en gangbare landbouw vergeleken. Wageningen University. Rapport 140.<br />

Broeze, J., Hoekstra, P., Willers, H., Corré, W. (2005). De waarde van digestaat van coverg<strong>is</strong>ting<br />

ten opzichte van dierlijke mest. Agrotechnology and Food Innovation. Wageningen<br />

University.<br />

Buchholz, T., Rametsteiner, E., Volk, T.A., Luzad<strong>is</strong>, V.A. (2009). Multi Criteria Analys<strong>is</strong> for<br />

bioenergy systems assesments. Energy Policy. 37. 484 – 495.<br />

Caputo, A.C., Palumbo, M., Pelagagge, P.M. & Scacchia, F. (2005). Economics <strong>of</strong> biomass energy<br />

utilization in combustion and gasification plants: effects <strong>of</strong> log<strong>is</strong>tic variables. Biomass<br />

and Bioenergy. 28. 35 – 51.<br />

CBS, Dutch Central Bureau for Stat<strong>is</strong>tics. (2009). Dierlijke mest en mineralen, 1990-2008*.<br />

Heerlen.<br />

Cederberg, C., Flysjö, A. (2004). Life Cycle Inventory <strong>of</strong> 23 Dairy Farms in South-Western Sweden.<br />

Swed<strong>is</strong>h Dairy Association. SIK rapport Nr. 728-2004.<br />

Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schalmadinger, B., Woess-Gasllasch, S.<br />

(2009). Energy- and greenhouse gas-based LCA <strong>of</strong> bi<strong>of</strong>uel and bioenergy systems: Key <strong>is</strong>sues,<br />

ranges and recommendations. Resources, Conservation and Recycling. 53. 434 – 447.<br />

Cramer, J. et al. (2006). Testing Framework for sustainable biomass. SenterNovem.<br />

41


Damen, K. (2007). Reforming Fossil Fuel Use: The Merits, Costs and R<strong>is</strong>ks <strong>of</strong> Carbon Dioxide<br />

Capture and Storage. PhD <strong>the</strong>s<strong>is</strong> performed at <strong>the</strong> University <strong>of</strong> Utrecht.<br />

Dants<strong>is</strong>, T., Douma, C., Giourga, C., Loumou, A., Polychronaki, E.A. (2010). A methodological<br />

approach to assess and compare <strong>the</strong> sustainability level <strong>of</strong> agricultural plant production systems.<br />

Ecological indicators. 10. 256 – 263.<br />

DENA (Deutsche Energie-Agentur; German Energy Agency) (2009). The German Market for<br />

Biomethane. Technologies and Costs <strong>of</strong> Conditioning Biogas and Feed-in into <strong>the</strong> Natural<br />

Gas Network. DENA 2009.<br />

Dewil, R., Appels, L., Baeyens, J. (2006). Energy use <strong>of</strong> biogas hampered by <strong>the</strong> presence <strong>of</strong> siloxanes.<br />

Energy Conversion and Management. 47. 1711 – 1722.<br />

Dienst, S. & Lechtenbohmer, C. (2009). Future development <strong>of</strong> <strong>the</strong> GHG em<strong>is</strong>sions from natural<br />

gas industry. 5 th International Symposium on non-CO2 Greenhouse Gases. Wuppertal institute.<br />

[Powerpoint slides].<br />

DMT, Dirkse Milieu Techniek. (2009). TS-PWS. Total Solution for Biogas Upgrading. Brochure<br />

derived from website: www.dirkse-milieutechniek.com, accessed on June 8 th , 2010.<br />

Dumont, M. (2009). From biogas to green gas. Upgrading techniques and supplies. SenterNovem.<br />

Electrigaz. (2008). Feasibility Study – Biogas upgrading and grid injection in <strong>the</strong> Fraser Valley,<br />

Brit<strong>is</strong>h Columbia.<br />

Enex<strong>is</strong>. (2009). Kwaliteits- en capaciteitsdocument gas 2010-2016. Deel A. Derived from:<br />

www.enex<strong>is</strong>.nl. Last accessed on: August 12, 2010.<br />

European Comm<strong>is</strong>sion. (1991). Council Directive, 91/676/EEC concerning <strong>the</strong> protection <strong>of</strong> water<br />

against pollution caused by nitrates from agricultural sources. Official Journal <strong>of</strong> <strong>the</strong><br />

European Community. 12. 1 – 8.<br />

Evans, A., Strezov, V., Evans, T.J. (2010) Sustainable considerations for electricity generation<br />

from biomass. Renewable and sustainable energy reviews. 14. 1419 – 1427.<br />

Forster, P., V. Ramaswa<strong>my</strong>, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean,<br />

D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007:<br />

Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007:<br />

The Physical Science Bas<strong>is</strong>. Contribution <strong>of</strong> Working Group I to <strong>the</strong> Fourth Assessment Report<br />

<strong>of</strong> <strong>the</strong> Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning,<br />

Z. Chen, M. Marqu<strong>is</strong>, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University<br />

Press, Cambridge, United Kingdom and New York, NY, USA.<br />

Ghafoori, E., Flynn P.C., Feddes, J.J. (2007). Pipeline vs. truck transport <strong>of</strong> beef cattle manure.<br />

Biomass and Bioenergy. 31. 168 – 175.<br />

Gebrezgabher, A.S., Meuw<strong>is</strong>sen, M.P.M., Prins, B.A.M. & Oude Lansink, A.G.J.M. (2009). Economic<br />

analys<strong>is</strong> <strong>of</strong> anaerobic digestion – A case <strong>of</strong> Green power biogas plant in The Ne<strong>the</strong>r-<br />

42


lands. NJAS – Wageningen Journal <strong>of</strong> Life Science. Doi: 10.1016/j.njas.2009.07.006. Article<br />

in Press.<br />

Gebrezgabher, S.A., Meuw<strong>is</strong>sen, M.P.M., Oude Lansink, A.G.J.M. (2010). Costs <strong>of</strong> Producing<br />

Biogas at Dairy Farms in The Ne<strong>the</strong>rlands. International Journal on Foodsystem Dynamics.<br />

1. 26 -35.<br />

Gerin, P.A., Vliegen, F., Jossart, J.-M. (2008). Energy and CO2 balance <strong>of</strong> maize and grass as<br />

energy crops for anaerobic digestion. Bioresource Technology. 99. 2620 – 2627.<br />

Grond, L.J. (2010). Personal communication about digester dimensions.<br />

Hagen, M., Polman, E., Myken, A., Jensen, J., Jönsson, O., Dahl, A. (2001). Adding Gas from<br />

biomass to <strong>the</strong> Gas Grid. Contract No: XVII/4.1030/Z/99-412.<br />

Hermann, B.G., Kroeze, C., Jawijt, W. (2007). Assessing environmental performance by combining<br />

life cycle assessment, multi-criteria analys<strong>is</strong> and environmental performance indicators.<br />

Journal <strong>of</strong> Cleaner Production. 15. 1787 – 1796.<br />

Holstein, J. (2010). Personal communication about costs for (bio-)gas pipelines and compressors.<br />

de Hullu, J., Maassen, J.I.W., van Meel, P.A., Shazad, S., Vaessen, J.M.P. (2008). Comparing<br />

different upgrading techniques. Eindhoven University <strong>of</strong> Technology, Dirkse Milieutechniek.<br />

IEA, International Energy Agency. (2003). Energy to 2050. Scenarios for a sustainable future.<br />

IEA, Par<strong>is</strong>, 2003.<br />

IPCC, Intergovernmental Panel on Climate Change. (2006). Guidelines for national greenhouse<br />

gas inventories, volume 4, Agriculture, forestry and o<strong>the</strong>r land use.<br />

Janssen, M., Verbruggen, V., Hegaret, C., Keyrrooz, S. Madhani, S., Swinkels, M., Trampe, J.<br />

(2010). Liquefaction <strong>of</strong> carbon dioxide from biogas upgrading. Eindhoven University <strong>of</strong><br />

Technology.<br />

Jury, C., Benetto, E., Koster, D., Schmitt, B., Welfring, J. (2010). Life Cycle Assessment <strong>of</strong> biogas<br />

production by mon<strong>of</strong>ermentation <strong>of</strong> energy crops and injection into <strong>the</strong> natural gas grid.<br />

Biomass and Bioenergy. 34. 54 – 66.<br />

Kapdi, S.S., Vijay, V.K., Rajesh, S.K., Prasad, R. (2005). Biogas scrubbing, compression and<br />

storage: perspectives and prospectus in Indian context. Renewable Energy. 30. 1195 – 1202.<br />

Karellas, S., Bouk<strong>is</strong>, I., Kontopoulos, G. (2010). Development <strong>of</strong> an investment dec<strong>is</strong>ion tool for<br />

biogas production form agricultural waste. Renewable and Sustainable Energy Reviews. 14.<br />

1273 – 1282.<br />

Klaas, U. (2007). Economic and technical aspects <strong>of</strong> biogases and <strong>the</strong>ir injection, growth potential<br />

for biomass/biogas in Germany. [PowerPoint slides]<br />

Kool, A. et al. (2005). Kenn<strong>is</strong>bundeling coverg<strong>is</strong>ting. CLM advies, Animal Science Group Wageningen<br />

University, Ec<strong>of</strong>ys. (SenterNovem).<br />

43


Koornneef, J., van Keulen, T., Faaij, A., Turkenburg, W. (2008). Life cycle assessment on a pulverized<br />

coal-fired power plant with post combustion capture, transport and storage <strong>of</strong> CO2.<br />

International journal <strong>of</strong> greenhouse gas control. 2. 448 – 467.<br />

Koppejan, J., Elbersen, W., Meeusen, M., Bindraban, P., van Erp, F. (2009) Beschikbaarheid van<br />

Nederlandse biomassa voor elektriciteit en warmte in 2020. Report by order <strong>of</strong> SenterNovem.<br />

La Rovere, E.L., Soares, L.B., Oliverira, L.B., Lauria, T. (2010). Sustainability expansion <strong>of</strong> electricity<br />

sector: Sustainability indicators as an instrument to support dec<strong>is</strong>ion making. Renewable<br />

and Sustainable Energy Reviews. 14. 422 – 429.<br />

Lensink, S.N., Cleijne, J.W., Mozaffarian, M., Pfeiffer, E.A., Luxembourg, S.L., Stienstra, G.J.<br />

(2009). Conceptadvies bas<strong>is</strong>bedragen 2010 voor elektriciteit en groen gas in het kader van de<br />

SDE regeling. ECN, KEMA. ECN-E--09-049<br />

Lensink, S.N., Wassenaar, J.A., Mozaffarian, M., Pfeiffer, E.A., Luxembourg, S.L., Cleijne, J.W.<br />

(2010). Conceptadvies bas<strong>is</strong>bedragen 2011 voor elektriciteit en groen gas in het kader van de<br />

SDE regeling. ECN, KEMA. ECN-E--10-053.<br />

Lensink, S.N., Cleijne, J.W., Mozaffarian, M., Pfeiffer, E.A., Luxembourg, S.L., Stienstra, G.J.<br />

(2009). Conceptadvies bas<strong>is</strong>bedragen 2010 voor elektriciteit en groen gas in het kader van de<br />

SDE regeling. ECN. ECN-E--09-058.<br />

Løken, E. (2007). Use <strong>of</strong> multicriteria dec<strong>is</strong>ion analys<strong>is</strong> methods for energy planning problems.<br />

Renewable and Sustainable Energy Reviews. 11. 1584 – 1595.<br />

Luesink, H. (2010). E-mail about transport costs <strong>of</strong> manure. Mr. Luesink <strong>is</strong> affiliated to <strong>the</strong><br />

Wageningen University.<br />

Lundie, S., Huppes, G. (1999). Environmental Assessment <strong>of</strong> Products. The ranges <strong>of</strong> <strong>the</strong> societal<br />

Preferences Method. International Journal <strong>of</strong> Life Cycle Assessment. 4. (1). 7 – 15.<br />

McKinsey Zicari, S. (2003). Removal <strong>of</strong> hydrogen sulfide from biogas using cow-manure compost.<br />

Master <strong>the</strong>s<strong>is</strong> at <strong>the</strong> Cornell University, NY, USA.<br />

Meijer, G.A.L., Klein Teeselink, H., Stroomer, J.C.J., Köttner, M., Ongenae, R.C.J. (2008). Strateg<strong>is</strong>che<br />

verkenning coverg<strong>is</strong>ting van mest. EG-publicatienummer: 2007/S-003260. Wageningen<br />

University, HoSt, IBBK, Epro.<br />

Moll, H.C. (1993). Energy counts and materials matter in models for sustainable development:<br />

Dynamic lifecycle modelling as a tool for design and evaluation <strong>of</strong> longterm environmental<br />

strategies. PhD Thes<strong>is</strong>, University <strong>of</strong> Groningen.<br />

NMa, Nederlandse Mededingings Authoriteit, Dienst Toezicht Energie. (2006). Aansluit- en<br />

transportvoorwaarden gas – RNB.<br />

van Ommen, R. (2010). Personal communication. D<strong>is</strong>cussion about economic costs in <strong>the</strong> green<br />

gas chain.<br />

Osborne, M.J. (2010). A resolution to <strong>the</strong> NPV–IRR debate? The Quarterly Review <strong>of</strong> Economics<br />

and Finance. 50. 234 – 239.<br />

44


Pehnt, M. (2006). Dynamic life cycle assessment (LCA) <strong>of</strong> renewable energy technologies. Renewable<br />

Energy. 31. 55 – 71.<br />

Persson, M., Jönsson, O., Wellinger, A. (2007). Biogas Upgrading to Vehicle Fuel Standards and<br />

Grid Injection. IEA Bioenergy. Task 37 – Energy from Biogas and Landfill Gas.<br />

Pertl, A., Mostbauer, P., Obersteiner, G. (2010). Climate Balance <strong>of</strong> biogas upgrading systems.<br />

Waste Management. 30. 92 – 99.<br />

Petersson, A., Wellinger, A. (2009). Biogas upgrading technologies – developments and innovations.<br />

IEA Bioenergy. Task 37 – Energy from biogas and landfill gas.<br />

Pierik, C. (2001a). Agroreuzen en Agrokneuzen. Steeds grotere verschillen tussen grote en kleine<br />

boerderij. CBS, Dutch Central Bureau for Stat<strong>is</strong>tics.<br />

Pierik, C. (2001b). Grote melkveebedrijven groeien minder snel. CBS, Dutch Central Bureau for<br />

Stat<strong>is</strong>tics. Webmagazine <strong>of</strong> Monday June 18, 2001. Available at: http://www.cbs.nl/nl-<br />

NL/menu/<strong>the</strong>mas/landbouw/publicaties/artikelen/archief/2001/2001-0792-wm.htm. Last accessed<br />

on: July 21, 2010.<br />

Pohekar, S.D. and Ramachandran, M. (2004). Application <strong>of</strong> multi-criteria dec<strong>is</strong>ion making to<br />

sustainable energy planning – A review. Renewable and Sustainable Energy Reviews. 8. 365<br />

– 381.<br />

Poeschl, M., Ward, S., Owende, P. (2010) Prospects for expanded utilization <strong>of</strong> biogas in Germany.<br />

Applied Energy. 14. 1782 - 1797.<br />

Polman, E.A. (2007). Kwaliteitsaspecten biogas. KIWA / SenterNovem.<br />

Polman et al. (2007). State-<strong>of</strong>-<strong>the</strong>-art waterst<strong>of</strong>- en biogasinvoeding. KIWA Gas Technology,<br />

NUON Techno, Gasunie, KEMA.<br />

Pöschl, M., Ward, S., Owende, P. (2010) Evaluation <strong>of</strong> energy efficiency <strong>of</strong> various biogas production<br />

and utilization pathways. Applied Energy. Doi: 10.1016/j.apenergy.2010.05.011. Article<br />

in press.<br />

Rabou et al. (2006). Biomass in <strong>the</strong> Dutch Energy Infrastructure. Energy Research Centre <strong>of</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands/ Wageningen University. Platform Groene Grondst<strong>of</strong>fen.<br />

Reppich, M., Datzmann, S., Li, X., Rosenbauer, S., Schlecht, C., Tschepur, S. (2009). Vergleich<br />

Verschiedener Aufbereitungsverfahren von Biogas zur Einspe<strong>is</strong>ung in das Erdgasnetz. Chemie<br />

Ingenieur Technik. 81. No. 3. DOI:10.1002/cite.200800125.<br />

Rohde, L., Salomon, E., Edström, M. (2006). Handling <strong>of</strong> Digestate on Farm Level. JTI-rapport.<br />

Lantbruk & Industri. 347.<br />

Schenk, S.J. (2007). Groen gas op het aardgasnet. Naar een energieneutrale zuivelketen. Courage.<br />

45


Schoots, K., Rivera-Tinoco, R., Verbond, G.P.J., van der Zwaan, B.C.C. (2010). The Costs <strong>of</strong><br />

Pipelining Climate Change Mitigation: an overview fo <strong>the</strong> economies <strong>of</strong> CH4, CO2, and H2<br />

transportation. Social Science Research Network. Available at:<br />

http://ssrn.com/abstract=1548328. Last accessed on June 17, 2010.<br />

Spicer, A.J., Wang, M.H. (1995). A s<strong>of</strong>tware tool for <strong>the</strong> End-Of-Life-Cycle Cosideration within a<br />

DSS Approach to Environmentally Conscious Design and Manufacturing. Computers ind.<br />

Engng. 29. 501 – 505.<br />

Urban, W., Lohmann, H., Girod, K. (2009). BMBF-Verbundproject Biogaseinspe<strong>is</strong>ung. Band 4:<br />

Technologien und Kosten der Biogasaufbereitung und Eindspe<strong>is</strong>ung in das Erdgasnetz. Ergebn<strong>is</strong>se<br />

der Markterhebung 2007-2008. Fraunh<strong>of</strong>er Institut.<br />

United Nations (2005). Resolution adopted by <strong>the</strong> General Assembly, 60/1. 2005 World Summit<br />

Outcome. United Nations.<br />

Veefkind et al. (2009). Literatuuronderzoek digestaat en verg<strong>is</strong>tingsystemen. LTO Noord,<br />

SenterNovem.<br />

Vlap, H. (2010). Personal communication.<br />

Volleberg, H. (1997). Environmental externalities and social optimality in biomass markets:<br />

waste-to-energy in The Ne<strong>the</strong>rlands and bi<strong>of</strong>uels in France. Energy Policy. 25. 605 – 621.<br />

Vreuls, H.H.J. (2004). Nederlandse lijst van energiedragers en standaard CO2 em<strong>is</strong>siefactoren.<br />

SenterNovem.<br />

Walla, C. and Schneeberger, W. (2008). The optimal size for biogas plants. Biomass and Bioenergy.<br />

32. 551 – 557.<br />

Wang, J-J., Jing, Y-Y., Zhang, C-F., Zhao, J-H. (2009). Review on multi-criteria dec<strong>is</strong>ion analys<strong>is</strong><br />

aid in sustainable energy dec<strong>is</strong>ion-making. Renewable and sustainable energy reviews. 13.<br />

2263 – 2278.<br />

Welink, Dumont, Kwant. (2007). Groen gas. Gas van aardgaskwaliteit uit biomassa. Update van<br />

de studie uit 2004. SenterNovem.<br />

Wellinger, A., Lindberg, A. (2001). Biogas upgrading and utilization. IEA Bioenergy. Task 24:<br />

Energy from biological conversion <strong>of</strong> organic waste.<br />

Wempe et al. (2004). Vol gas vooruit! De rol van groen gas in de Nederlandse energiehu<strong>is</strong>houding.<br />

Platform Nieuw Gas, Energie Transitie.<br />

World Comm<strong>is</strong>sion on Environment and Development (WCED), 1987 World Comm<strong>is</strong>sion on<br />

Environment and Development (WCED), Our Common Future, Oxford University Press,<br />

New York (1987).<br />

Zwart et al. (2006). Production <strong>of</strong> Syn<strong>the</strong>tic Natural Gas (SNG) from Biomass. Energy Research<br />

Centre <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands. ECN-E—06-018.<br />

Zwart. (2009). Gas cleaning, downstream biomass gasification. Status <strong>report</strong> 2009. Energy Research<br />

Centre <strong>of</strong> <strong>the</strong> Ne<strong>the</strong>rlands/ SenterNovem. ECN-E--08-078<br />

46


Appendices<br />

47


1. Gas composition<br />

The composition <strong>of</strong> biogas and <strong>the</strong> composition <strong>of</strong> natural gas <strong>is</strong> given in <strong>the</strong> table below. The<br />

composition <strong>of</strong> biogas produced by anaerobic digestion <strong>is</strong> derived from Klaas (2007). The values<br />

given are <strong>the</strong> typical values; <strong>the</strong> values between <strong>the</strong> brackets indicate <strong>the</strong> range <strong>of</strong> <strong>the</strong> component<br />

in <strong>the</strong> gas. The average values are l<strong>is</strong>ted in <strong>the</strong> table below, with <strong>the</strong>ir outer values for <strong>the</strong>se cases<br />

given between <strong>the</strong> brackets.<br />

The l<strong>is</strong>t <strong>is</strong> completed with values given in <strong>the</strong> article <strong>of</strong> Appels et al. (2008).<br />

The composition <strong>of</strong> Groningen gas <strong>is</strong> given by DTe (Service <strong>of</strong> Superv<strong>is</strong>ion for Energy) <strong>of</strong> <strong>the</strong><br />

NMa (Dutch Competition Authority), derived from “aansluit- en transportvoorwaarden gas”<br />

(connection and transport conditions for gas). The document <strong>is</strong> part <strong>of</strong> <strong>the</strong> conditions as referred<br />

to in <strong>the</strong> Dutch gas law. The range <strong>of</strong> <strong>the</strong> Wobbe index and specific gas quality values are given.<br />

In some cases higher values are allowed, indicated with <strong>the</strong>ir outer value (ov).<br />

BIOGAS t Component Unit<br />

NATURAL GAS<br />

AD G-gas u<br />

Caloric value MJ/Nm 3 Wobbe index MJ/Nm<br />

23 31.67<br />

3 20 43.46-44.41<br />

Methane nr. >130 (ov=>80)<br />

Methane % 57 (55-58)<br />

Sulphur (total) mg/Nm 3 0.9 (ov=45)<br />

H2S mg/Nm 3


2. Upgrading techniques<br />

Upgrading <strong>is</strong> necessary to meet natural gas quality. Generally, <strong>the</strong> removal <strong>of</strong> CO2 <strong>result</strong>s in<br />

higher methane levels and consequently in a higher Wobbe index (Hagen et al., 2001). Fur<strong>the</strong>rmore,<br />

biogas has to be cleaned from o<strong>the</strong>r contaminants as H2S, NH3, and siloxanes.<br />

Currently five different techniques ex<strong>is</strong>t for upgrading biogas to natural gas quality, being: pressure<br />

swing adsorption, membrane, water wash, liquid scrubbing and cryogen.<br />

Vacuum Pressure Swing Adsorption (VPSA)<br />

In th<strong>is</strong> technique biogas <strong>is</strong> filtered by <strong>the</strong> use <strong>of</strong> activated carbon molecular sieves. In <strong>the</strong>se sieves<br />

mainly CO2 <strong>is</strong> adsorbed, while <strong>the</strong> methane passes. Lowering <strong>the</strong> pressure to a vacuum releases<br />

<strong>the</strong> CO2. <strong>Th<strong>is</strong></strong> also regenerates <strong>the</strong> coal, which can be used again at <strong>the</strong> higher pressure for CO2<br />

adsorption (Zwart, 2009).<br />

Membranes<br />

The continuous biogas flow <strong>is</strong> split into two different streams by a membrane. <strong>Th<strong>is</strong></strong> membrane<br />

has a high selectivity for CO2 and a low selectivity for CH4 (Zwart, 2009). <strong>Th<strong>is</strong></strong> technique <strong>is</strong> also<br />

currently under development for <strong>the</strong> removal <strong>of</strong> H2S (McKinsey Zicari, 2003). Membranes can be<br />

used for biogas capacities up to 2000 Nm 3 biogas/hr.<br />

Water scrubber<br />

The principle <strong>of</strong> th<strong>is</strong> technique <strong>is</strong> <strong>the</strong> higher d<strong>is</strong>solving rate <strong>of</strong> CO2 in circulating cold water, than<br />

CH4. The contaminated water <strong>is</strong> heated to remove <strong>the</strong> CO2 and can be reused when cooled down.<br />

<strong>Th<strong>is</strong></strong> technique also removes H2S (Polman et al., 2007), and H2 (IEA, 2004).<br />

Liquid scrubber<br />

The principle <strong>of</strong> water wash <strong>is</strong> used here, but with ano<strong>the</strong>r absorber to improve <strong>the</strong> separation <strong>of</strong><br />

CO2 and CH4. The absorber <strong>is</strong> an amine solution, like mono-ethanolamine (MEA) (Kapdi et al.,<br />

2005; Reppich et al., 2009). It <strong>is</strong> a continuous process at a low pressure. Liquid absorption <strong>is</strong> also<br />

used to remove siloxanes, for example since 1993 at a landfill in Dortmund-Huckarde, Germany<br />

(IEA, 2004). However, siloxane removal <strong>is</strong> still under research (Polman et al., 2007). <strong>Th<strong>is</strong></strong> technique<br />

<strong>is</strong> suitable for plants with a capacity <strong>of</strong> 160 – 1600 Nm 3 biogas/hr (Dumont, 2009).<br />

Cryogen<br />

The principle <strong>of</strong> th<strong>is</strong> technique <strong>is</strong> <strong>the</strong> lower temperature <strong>of</strong> CH4 to liquefy (-160 o C), than CO2 (-<br />

78 o C) (Zwart, 2009). Also a combination <strong>of</strong> high pressure (80 bars) and less extreme temperatures<br />

(-45 o C) are used (Kapdi et al., 2005). It can ei<strong>the</strong>r be used in batches or continuously. <strong>Th<strong>is</strong></strong><br />

technique <strong>is</strong> expected to become viable in <strong>the</strong> near future, because <strong>of</strong> its low energy requirements<br />

(Schenk, 2007). Moreover, CO2 <strong>is</strong> captured in its liquid phase and highly pure, which make it<br />

possible to be marketed (Reppich et al., 2009) in for example <strong>the</strong> food industry (Janssen, 2010).<br />

Fur<strong>the</strong>rmore, 99.3% <strong>of</strong> all siloxanes are removed when biogas <strong>is</strong> cooled to -70 o C (Dewil et al.,<br />

2006) x . <strong>Th<strong>is</strong></strong> technique <strong>is</strong> available for gas flows as from 300 Nm 3 biogas/hr.<br />

x Cooling to 5 o C leads to 12% siloxane removal; -25 o C leads to a removal <strong>of</strong> 26%; at -70 o C 99,8% <strong>is</strong> re-<br />

moved (Dewil et al., 2006).<br />

49


3. General input calculations<br />

General input data<br />

Aspect Value Unit Reference<br />

Operational hours/yr 8000 hrs/yr Urban et al., 2009<br />

Maize silage harvest yield 45 ton/ha Walla & Schneeberger, 2008<br />

Manure gas yield 23 Nm 3 biogas/ton Pöschl et al., 2010; Gebrezgabher et<br />

al., 2010<br />

Maize silage gas yield 200 Nm 3 biogas/ton Walla & Schneeberger, 2008;<br />

Pöschl et al., 2010<br />

Energy content biogas 21 MJ/Nm 3 biogas Appels et al., 2008; Wellinger and<br />

Lindberg, 2001.<br />

Energy content green gas y 31.7 MJ/Nm 3 green gas NMa, 2006<br />

Max nitrogen application 170 kg N/ha/yr European Comm<strong>is</strong>sion, 1991<br />

Manure digestate, % <strong>of</strong> ton input 70 % Poeschl et al., 2010.<br />

Maize silage digestate, % <strong>of</strong> ton input 90 % Bermejo & Ellmer, 2010<br />

Processed digestate, % <strong>of</strong> total digestate<br />

40 % Poeschl et al., 2010.<br />

D<strong>is</strong>tances used in <strong>the</strong> scenarios.<br />

Scenario Maize Manure trans- Biogas Digestate trans- Processed digestate<br />

transport<br />

port transport<br />

port<br />

transport<br />

1 50 0 5 0 0<br />

2 50 0 5 0 0<br />

3 50 0 10 0 0<br />

4 50 10 0 10 0<br />

5 50 10 0 10 0<br />

6 50 10 0 10 50<br />

Biomass input; digestate output in <strong>the</strong> scenarios<br />

Total biomass input = biogas production capacity / (manure share * gas yield manure + maize<br />

silage share * maize silage gas yield)<br />

Scenario Maize silage Manure Biogas<br />

(ton/hr) (ton/hr) (Nm 3 Digestate Processed digestate<br />

biogas/hr) (ton/hr)<br />

(ton/hr)<br />

1 0.61 5.53 250 4.98 0<br />

2 1.12 1.12 250 1.91 0<br />

3 4.48 4.48 1000 7.62 0<br />

4 4.48 4.48 1000 7.62 0<br />

5 4.48 4.48 1000 7.62 0<br />

6 4.48 4.48 1000 0 3.05<br />

y Equals by definition <strong>the</strong> energy content <strong>of</strong> natural gas. For th<strong>is</strong> research, <strong>the</strong> natural gas quality <strong>of</strong> Groningen<br />

gas <strong>is</strong> used. The presented value <strong>is</strong> <strong>the</strong> lower value.<br />

50


Biomass composition<br />

Calculation <strong>of</strong> <strong>the</strong> amount <strong>of</strong> hectares <strong>of</strong> land required, needed to calculate <strong>the</strong> em<strong>is</strong>sions from<br />

cultivation and harvest, and fertilizer requirement.<br />

Annual maize silage requirement = ton input per hour * operational hours<br />

Ha land required = annual maize silage requirement / maize silage yield.<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

250 250 1000<br />

silage maize yield 45 45 45 ton/ha/yr<br />

ton maize req/yr 4,914 8,969 35,874 ton maize/yr<br />

ha required 109 199 797 ha/yr<br />

51


4. Environmental data inventory & calculation<br />

Environmental input values.<br />

Aspect Value Unit Reference<br />

Cattle manure availability 23 ton/cow/yr CBS, 2009<br />

Nitrogen content cattle manure 4.3 kg N/ton Zwart et al., 2006<br />

Nitrogen content maize silage 13 kg N/ton Zwart et al., 2006<br />

CH4 em<strong>is</strong>sion factor, manure 1.8 kg CH4/ton Zwart et al., 2006<br />

CH4 em<strong>is</strong>sion factor, maize silage 3.1 kg CH4/ton Zwart et al., 2006<br />

Digestate processing (scrubber) 78.6 MJprimary/ton Pöschl et al., 2010<br />

Loading digestate 15.5 MJprimary/ton Berglund & Börjesson, 2006<br />

Spreading digestate 4.75 MJprimary/ton Berglund & Börjesson, 2006<br />

Manure transport 1.6 MJprimary/ton km Berglund & Börjesson, 2006<br />

Maize transport 1.1 MJprimary/ton km Berglund & Börjesson, 2006<br />

Electricity production em<strong>is</strong>sion 69.4 gr CO2/MJprimary SenterNovem<br />

Em<strong>is</strong>sions from natural gas use 56.1 gr CO2/MJ Vreuls, 2004<br />

Em<strong>is</strong>sions from diesel use 3.255 gr CO2/l Börjesson, 1996 z<br />

Global Warming Potential CH4 25 aa gr CO2-eq./gr CH4 Forster et al. [IPCC], 2007<br />

Global Warming Potential N2O 298 gr CO2-eq./gr N2O Forster et al. [IPCC], 2007<br />

Diesel consumption for cultivation <strong>of</strong> maize, from Gerin et al. (2008).<br />

diesel (liter /ha /yr)<br />

Soil ploughing and crumbling 32.7<br />

sowing 9.4<br />

weed control 3<br />

harvest 27.4<br />

harvest transport (2km) 7.3<br />

Em<strong>is</strong>sions from maize cultivation = diesel consumption * maize land requirement * CO2 em<strong>is</strong>sion<br />

per liter <strong>of</strong> diesel.<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

250 250 1000<br />

Em<strong>is</strong>sions from cultivation 28,365 51,769 207,074 kg CO2 /yr<br />

Chemical N-fertilizer production, from Cederberg & Flysjo, 2004; WUR, 2007.<br />

energy requirements 41.8 MJ/kg N<br />

CO2 em<strong>is</strong>sion 2.95 kg CO2/kg N<br />

N2O em<strong>is</strong>sion 9.3 gr N2O-N/kg N<br />

Fertilizer requirement = Fertilizer rate * land required for maize silage cultivation.<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

250 250 1000<br />

Fertilizer rate 170 170 170 Kg N/ha/yr<br />

Max N to be applied 18,564 33,881 135,526 Kg N/yr<br />

z 3.255 kgCO2 <strong>is</strong> emitted per liter diesel, including <strong>the</strong> em<strong>is</strong>sions involved in diesel production and d<strong>is</strong>tribution.<br />

Based on 23 kgC/GJ for full fuel-cycle (Börjesson, 1996) and an energy content <strong>of</strong> 38.6 MJ/l.<br />

aa On a time horizon <strong>of</strong> 100 years.<br />

52


Em<strong>is</strong>sions from fertilization <strong>of</strong> arable land, from Cherubini et al. (2000)<br />

30% <strong>of</strong> total N to Nitrate<br />

0,75% <strong>of</strong> Nitrate to N2O<br />

2% <strong>of</strong> total N as N in NH3, for chemical fertilizer<br />

4% <strong>of</strong> total N as N in NH3, for manure<br />

1% direct soil em<strong>is</strong>sion <strong>of</strong> N2O, for chemical fertilizer<br />

2% direct soil em<strong>is</strong>sion <strong>of</strong> N2O, for manure<br />

So, <strong>the</strong> em<strong>is</strong>sions <strong>of</strong> chemical fertilizer are in total:<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

250 250 1000<br />

CO2 em<strong>is</strong>sion from chemical<br />

fertilizer production 54,764 99,950 399,801 kg CO2 /yr<br />

Em<strong>is</strong>sion from soil 404 737 2,948 kg N2O-N /yr<br />

Em<strong>is</strong>sions from unprocessed digestate:<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

CO2 em<strong>is</strong>sion from chemical<br />

250 250 1000<br />

fertilizer production 0 0 0 kg CO2 /yr<br />

Em<strong>is</strong>sion from soil 4,251 1,628 6,513 kg N2O-N /yr<br />

Em<strong>is</strong>sions from processed digestate:<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

CO2 em<strong>is</strong>sion from chemical<br />

250 250 1000<br />

fertilizer production 0 0 0 kg CO2 /yr<br />

Em<strong>is</strong>sion from soil 1,814 695 2,779 kg N2O-N /yr<br />

Em<strong>is</strong>sions <strong>of</strong> storage, from Zwart et al., 2006.<br />

Content * em<strong>is</strong>sions fraction * amount <strong>of</strong> biomass required = long term storage em<strong>is</strong>sion.<br />

kg/m3 em<strong>is</strong>sion fraction<br />

Manure Methane 1.8<br />

N2O 4.3 0.10%<br />

Maize silage Methane 3.1<br />

N2O 13 0.10%<br />

5% <strong>of</strong> <strong>the</strong> em<strong>is</strong>sions <strong>of</strong> long term storage are emitted before <strong>the</strong> biomass enters <strong>the</strong> di-<br />

gester (Zwart et al., 2006).<br />

Manure – maize silage; biogas<br />

production capacity<br />

90-10;<br />

250<br />

50-50;<br />

250<br />

50-50;<br />

1000<br />

CH4 4,742 2,197 8,789 Kg CH4 / yr<br />

N2O 13 8 31 Kg N2O-N/ yr<br />

Em<strong>is</strong>sions from digester are 1% <strong>of</strong> long term storage:<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

250 250 1000<br />

CH4 948 439 1,758 Kg CH4 / yr<br />

N2O 3 2 6 Kg N2O-N/ yr<br />

53


Digestion<br />

Em<strong>is</strong>sions from energy use by <strong>the</strong> digester, based on Urban et al., 2009.<br />

90% manure - 10% maize 50% manure - 50% maize<br />

biogas production capacity Nm3/hr 250 1000 250 1000<br />

Electricity 0.045 0.045 0.045 0.045 MJprimary /MJbiogas<br />

heat (by natural gas boiler) 0.192 0.130 0.058 0.045 MJprimary /MJbiogas<br />

CO2 em<strong>is</strong>sions <strong>of</strong> electricity cons 129,917 519,667 129,917 519,667 kgCO2 /yr<br />

CO2 em<strong>is</strong>sions <strong>of</strong> heat cons 452,390 1,229,369 137,782 422,770 kgCO2 /yr<br />

CO2 em<strong>is</strong>sions 582,307 1,749,037 267,698 942,437 kgCO2 /yr<br />

Upgrading<br />

Source: Urban et al., 2009.<br />

company: Malmberg MT-Energie<br />

Water wash Chemical scrub<br />

input cap Nm3/hr 250 1000 250 1000<br />

output cap Nm3/hr 135 539 136 544<br />

MJp el/yr 3,000,000 12,000,000 1,800,000 7,200,000<br />

MJ th/ yr 480,000 480,000 440,000 1,304,000<br />

kgCO2/ yr 235,128 859,728 149,604 572,834<br />

kg MEA/ yr - - 9,540 30,720<br />

Em<strong>is</strong>sions from production <strong>of</strong> chemical liquid (MEA) in <strong>the</strong> liquid scrub technique.<br />

MEA em<strong>is</strong>sions<br />

0.333 kWh/kg MEA Koornneef et al., 2008<br />

1.58 gr NH3/kg MEA Koornneef et al., 2008<br />

26.5 gr CO2/kg MEA Koornneef et al., 2008<br />

0.2091 gr NH3/kg CO2 Koornneef et al., 2008<br />

250 Nm 15.07 kg NH3/yr direct, at use<br />

3 biogas/hr<br />

252.89 kg CO2/yr indirect at MEA production<br />

1000 Nm 48.54 kg NH3/yr direct, at use<br />

3 biogas/hr<br />

814.16 kg CO2/yr indirect at MEA production<br />

Methane losses.<br />

Zwart Pertl et al. Bekkering et al.<br />

(2009) (2010) (2010) Avergage<br />

water wash 3% 1.5% 3% 2.5% 0.0171 kg CH4/Nm3 biogas<br />

liquid scrub 0% 0% 0% 0.00057 kg CH4/Nm3 biogas<br />

Transport<br />

Em<strong>is</strong>sions from biogas transport are calculated from <strong>the</strong> electricity requirement. Calculation <strong>of</strong><br />

<strong>the</strong> electricity requirement are given in appendix 7.<br />

Em<strong>is</strong>sions from truck transport are calculated with <strong>the</strong> data given in <strong>the</strong> environmental input values,<br />

times d<strong>is</strong>tance, and ton <strong>of</strong> biomass.<br />

Injection<br />

Em<strong>is</strong>sions from injection are based on <strong>the</strong> electricity requirement <strong>of</strong> compression needed from<br />

upgrading to <strong>the</strong> grid pressure. Calculation <strong>of</strong> <strong>the</strong> electricity requirement are given in appendix 7.<br />

Methane em<strong>is</strong>sions are 0.03% <strong>of</strong> <strong>the</strong> amount <strong>of</strong> compressed gas.<br />

54


Digestate<br />

digestate processing (decanter +<br />

scrub)<br />

78.6 MJprimary/ton digestate Pöschl et al., 2010<br />

Processing digestate: drying, electricity<br />

130 MJprimary/ton digestate Pöschl et al., 2010<br />

Processing digestate: composting,<br />

electricity<br />

510 MJprimary/ton digestate Pöschl et al., 2010<br />

Processed digestate fraction <strong>of</strong> initial<br />

digestate<br />

40 % Poeschl et al., 2010<br />

loading digestate 15.5 MJprimary/ton digestate Berglund & Borjesson, 2006<br />

spreading digestate 4.75 MJprimary/ton digestate Berglund & Borjesson, 2006<br />

transport, incl empty return 1.6 MJprimary/ton digestate km Berglund & Borjesson, 2006<br />

Em<strong>is</strong>sions <strong>of</strong> digestate processing = energy requirements digestate processing * amount <strong>of</strong> digestate<br />

+ (energy requirements drying + composting) * amount <strong>of</strong> solid digestate.<br />

Manure – maize silage; biogas 90-10; 50-50; 50-50;<br />

production capacity<br />

250 250 1000<br />

Digestate processing 924,285 354,046 1,416,183 Kg CO2/yr<br />

Digestate transport 107,416 41,146 164,582 Kg CO2/yr<br />

Digestate loading & spreading 27,190 10,415 41,660 Kg CO2/yr<br />

55


Scenario <strong>result</strong>s for environment<br />

Global Warming Potential<br />

gr. CO2-equivalents / MJ<br />

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6<br />

CO2 direct, biomass 0.675 1.233 1.233 1.233 1.233 1.233<br />

CO2 indirect, biomass 1.304 2.380 2.380 2.380 2.380 0.000<br />

CH4, biomass 2.823 1.308 1.308 1.308 1.308 1.308<br />

N2O-N, biomass 3.741 5.774 5.774 5.774 5.774 0.545<br />

CO2 direct, biomass transport 0.543 0.990 0.990 1.279 1.279 1.279<br />

CO2 indirect, digester 13.864 10.119 8.010 8.010 8.010 8.010<br />

CH4, digester 0.565 0.262 0.262 0.262 0.262 0.262<br />

N2O-N, digester 0.175 0.109 0.109 0.109 0.109 0.109<br />

CO2 indirect, biogas transport 0.097 0.097 0.097 0.000 0.000 0.000<br />

CH4, biogas transport 0.000 0.000 0.000 0.000 0.000 0.000<br />

CO2 direct, upgrading 40.449 40.449 40.449 40.449 37.714 37.714<br />

CO2 indirect, upgrading 3.568 3.568 3.415 3.415 5.117 5.117<br />

CH4, upgrading 0.679 0.679 0.679 0.679 20.357 20.357<br />

CO2 indirect, injection 2.868 2.868 1.555 1.555 0.930 0.930<br />

CH4, injection 0.132 0.132 0.132 0.132 0.130 0.130<br />

CO2 indirect, digestate processing 0.000 0.000 0.000 0.000 0.000 8.430<br />

CO2 direct, digestate transport 0.000 0.000 0.000 0.000 0.000 0.980<br />

CO2 direct, digestate load & spread 0.647 0.248 0.248 0.248 0.248 0.248<br />

N2O, digestate soil 30.704 11.761 11.761 11.761 11.761 5.010<br />

56


5. Economic data inventory & calculations<br />

Economic parameters<br />

Parameter Value Unit Source<br />

Investment period 12 yrs Agentschap NL, 2010; Lensink et al., 2010<br />

Inflation rate 2 %<br />

Interest rate 7.8 % Lensink et al., 2010<br />

Green gas price bb 0.713 €/Nm 3 Lensink et al., 2010<br />

Electricity price 0.10 €/kWh<br />

Manure price 10 cc €/ton Lensink et al., 2009<br />

Maize silage price 18 €/ton Lensink et al., 2009; Walla & Schneeberger,<br />

2008<br />

Digestate processing 17 €/ton Veefkind et al., 2009<br />

Digestate load & spread, manure 0.25 €/ton Poeschl et al., 2010<br />

Digestate load & spread, maize silage 1.05 €/ton Poeschl et al., 2010<br />

Transport <strong>of</strong> digestate, manure 0.04 €/ton/km Poeschl et al., 2010<br />

Transport <strong>of</strong> digestate, maize silage 0.14 €/ton/km Poeschl et al., 2010<br />

Price for nitrogen in (chemical) fertilizer<br />

1.00 €/kg N Ahlgren et al., 2010.<br />

CRF = interest rate * (1 + interest rate) investment period / ((1 + interest rate) investment period – 1)<br />

Biomass<br />

Biomass price [€/Nm 3 biogas] = manure price * manure input / manure yield + maize silage price *<br />

maize silage input / maize silage yield<br />

Price chemical fertilizer [€/Nm 3 biogas] = N fertilizer rate * land requirement for maize cultivation *<br />

price for nitrogen in fertilizer / (biogas production capacity * operational hours per year).<br />

bb Maximum green gas price including subsidy.<br />

cc The manure price <strong>is</strong> dependent on <strong>the</strong> location: in a manure surplus area manure d<strong>is</strong>posal cost about 10<br />

€/ton, while in a shortage area manure <strong>is</strong> valued with 10 €/ton. Since manure <strong>is</strong> a waste product, it <strong>is</strong> considered<br />

to be available at dairy farms without cost.<br />

57


Digester<br />

Capital costs = Investment * CRF Annual costs = variable costs + capital cost.<br />

Costs <strong>of</strong> digestion [€/Nm 3 biogas] = annual cost / (biogas production capacity * operational hours<br />

per year).<br />

Source: Urban et al., 2009<br />

58<br />

90% manure, 10% maize silage<br />

digester<br />

50% manure – 50% maize silage<br />

digester<br />

unit 250 Nm 3 biogas 1000 Nm 3 biogas 250 Nm 3 biogas 1000 Nm 3 biogas<br />

Investment costs € 1,080,000 3,226,316 1,227,500 3,813,158<br />

machine technology € 147,000 437,684 150,500 449,842<br />

digester € 619,500 1,875,789 623,250 1,894,895<br />

substrate storage € 125,000 500,000<br />

electro and control technology € 94,500 250,105 107,750 290,053<br />

o<strong>the</strong>r € 189,000 562,737 193,500 578,368<br />

D<strong>is</strong>mantling € 30,000 100,000 27,500 100,000<br />

Annual costs €/a 331,095 991,695 327,803 997,315<br />

Variable costs €/a 189,266 555,380 166,604 496,559<br />

Employees €/a 38,300 106,472 44,700 117,136<br />

Maintenance €/a 16,200 49,859 18,400 57,929<br />

Electricity €/a 20,800 83,200 20,800 83,200<br />

Heat costs €/a 96,666 262,690 63,054 176,514<br />

o<strong>the</strong>r €/a 17,300 53,159 19,650 61,780<br />

Capital costs €/a 141,829 436,315 161,199 500,756<br />

Upgrading<br />

Capital costs = Investment * CRF Annual costs = variable costs + capital cost<br />

Costs <strong>of</strong> upgrading [€/Nm 3 biogas] = annual cost / (biogas production capacity * operational hours<br />

per year).<br />

Source: Urban et al., 2009<br />

Water Wash Chemical scrub<br />

input cap Nm3/hr 250 1000 500 1000<br />

output cap Nm3/hr 135 539 272 544<br />

Investment costs € 1,145,000 1,699,000 1,057,400 1,556,100<br />

installation € 900,000 1,380,000 1,007,000 1,482,000<br />

<strong>of</strong>f-gas treatment € 200,000 250,000<br />

associated costs € 45,000 69,000 50,400 74,100<br />

construction on site €<br />

comm<strong>is</strong>sioning €<br />

initial installation spare parts €<br />

Annual costs €/a 236,519 471,072 332,525 553,984<br />

operational costs €/a 86,154 247,954 193,664 349,632<br />

electricity €/a 50,000 200,000 60,000 120,000<br />

means <strong>of</strong> production €/a 300 1,000 92,400 153,600<br />

heat €/a<br />

<strong>the</strong>rmal <strong>of</strong>f-gas treatment €/a 5.754 5,754 7,864 15,632<br />

equipment €/a<br />

employees €/a 7,200 7,200 6,400 6,400<br />

repair- and maintenance costs €/a 22.900 34,000 27,000 54,000<br />

capital costs €/a 150,365 223,118 138,861 204,352


Injection<br />

Indicative figures.<br />

Capital costs = Investment * CRF<br />

source: Vlap, 2010 8 bar 40 bar 67 bar<br />

fysical connection 25,000 250,000 350,000<br />

gaschromatograph 40,000 40,000 40,000<br />

dewpoint meter 5,000 5,000 5,000<br />

flowmeter 10,000 10,000 10,000<br />

hepa filter 20,000 20,000 20,000<br />

odor<strong>is</strong>ation 20,000 20,000 20,000<br />

TOTAL 120,000 345,000 445,000<br />

entry tarif 40 bar grid 15 €/(m3/hr)/yr<br />

Compression<br />

Calculated from confidential data; rounded figures, used as indicative data.<br />

Capital costs = Investment * CRF<br />

Variable costs are calculated with <strong>the</strong> energy requirements for compression; see appendix 7.<br />

investment<br />

1 bar - 8 bar 400,000<br />

8 bar - 40 bar 450,000<br />

1 bar - 40 bar 800,000<br />

Digestate<br />

Manure – maize silage; biogas 90-10; 50-50; 50-50;<br />

production capacity<br />

250 250 1000<br />

Digestate processing 676,658 259,193 1,036,771 €/yr<br />

Digestate transport 40,688 28,341 113,363 €/yr<br />

Digestate loading & spreading 5,396 4,108 16,430 €/yr<br />

Costs <strong>of</strong> digestate [€/Nm 3 biogas] = annual cost / (biogas production capacity * operational hours per<br />

year).<br />

59


Economic <strong>result</strong>s<br />

€/MJ<br />

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6<br />

biomass 0.00255 0.00465 0.00465 0.00465 0.00465 0.00384<br />

biomass transport 0.00035 0.00064 0.00064 0.00104 0.00104 0.00104<br />

digester 0.00788 0.00780 0.00594 0.00594 0.00594 0.00594<br />

biogas transport 0.00186 0.00186 0.00109 0.00000 0.00000 0.00000<br />

upgrading 0.00513 0.00513 0.00330 0.00330 0.00280 0.00280<br />

injection 0.00055 0.00055 0.00076 0.00076 0.00056 0.00056<br />

digestate processing 0.00000 0.00000 0.00000 0.00000 0.00000 0.00617<br />

digestate transport 0.00000 0.00000 0.00000 0.00034 0.00034 0.00169<br />

digestate loading & spreading 0.00032 0.00024 0.00024 0.00024 0.00024 0.00024<br />

green gas revenues -0.02249 -0.02249 -0.02249 -0.02249 -0.02249 -0.02249<br />

digestate revenues 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00135<br />

NPV -322,113 -1,332,125 2,612,644 3,226,688 4,147,095 -7,523,613<br />

IRR not possible not possible 6.9% 7.6% 8.4% not possible<br />

PP -274 -22 18 15 13 -9<br />

60


6. Social data inventory & calculations<br />

Social parameters<br />

Parameter Value Unit Source<br />

Employment pipeline construc- 50 % Schoots et al., 2010<br />

tion (% <strong>of</strong> total cost)<br />

Approximate value.<br />

Minimal space cow in shed 6 m 2<br />

Employment in agriculture 25 hr/ha/yr Bos & van de Veen, 1999<br />

Cattle manure availability 23 ton/cow/yr CBS, 2009<br />

N-content unprocessed digestate 4.8 kg/ton Jury et al., 2010; Pöschl et al, 2010; Broeze et<br />

al., 2005<br />

N-content solid digestate 9.3 kg/ton Gebrezgabher et al., 2009<br />

Land at a dairy farm 125 ha Pierik, 2001b<br />

Land at a arable farm 300 ha Pierik, 2001a<br />

Biomass<br />

Annual labor requirement = Employment in agriculture * annual land requirement for maize cultivation<br />

Digestion<br />

Manure – maize silage; bio- 90-10; 50-50; 50-50;<br />

gas production capacity<br />

250 250 1000<br />

Employment 1,094 1,277 3,347 hrs/yr<br />

Land surface 295 138 348 m 2<br />

Upgrading<br />

water wash 250 m3/hr 14*6*8m 84 m2<br />

4,000 m3/hr 16*8*8m 128 m2<br />

Assumption 1: 1000 Nm 3 biogas/hr <strong>is</strong> equal in size <strong>of</strong> <strong>the</strong> 4000 Nm 3 biogas/hr.<br />

Assumption 2: same sizes account for <strong>the</strong> liquid scrub technique.<br />

Employment. Source: Urban et al., 2009<br />

Water Wash Chemical scrub<br />

input cap Nm3/hr 250 1000 500 1000<br />

output cap Nm3/hr 135 539 272 544<br />

Employees (@ 35 €/hr) €/a 7,200 7,200 6,400 6,400<br />

hrs hrs/a 206 206 183 183<br />

Injection<br />

Source: Vlap, 2010.<br />

Employment grid connection € €/hr hrs<br />

indirect engineering 10,000 50 200<br />

management design 100,000 100 1,000<br />

construction 40,000 50 800<br />

TOTAL 150,000 2,000<br />

The employment for grid connection <strong>is</strong> divided by <strong>the</strong> economic lifetime.<br />

61


Compression<br />

assumption 40% labor cost <strong>of</strong> total investment 50 €/hr<br />

employment, employment<br />

investment<br />

€<br />

hrs/compressor<br />

1 bar - 8 bar 250,000 100,000 2,000<br />

8 bar - 40 bar 200,000 80,000 1,600<br />

1 bar - 40 bar 375,000 150,000 3,000<br />

Digestate<br />

Source: Rohde et al., 2006. Variable cost are assumed to cover only employment; based on a labor<br />

cost <strong>of</strong> 17 €/hr.<br />

liquid digestate (=unprocessed); load 0.12 €/t actual t/ha:<br />

liquid digestate (=unprocessed); spread 0.80 €/t; based on 30 t/ha 35<br />

solid digestate; load 0.45 €/t<br />

solid digestate; spread 0.35 €/t; based on 20 t/ha 18<br />

Employment unprocessed digestate = (liquid digestate; load + liquid digestate; spread) * amount<br />

<strong>of</strong> liquid digestate / labor cost.<br />

Employment processed digestate = (solid digestate; load + solid digestate; spread) * amount <strong>of</strong><br />

solid digestate / labor cost.<br />

Manure – maize silage; biogas production 90-10; 50-50; 50-50;<br />

capacity<br />

250 250 1000<br />

Total N in unprocessed digestate 191,057 73,184 292,735 kgN/yr<br />

Total N in solid digestate 148,069 56,717 226,870 kgN/yr<br />

Land for unprocessed digestate 1,124 430 1,722 ha/yr<br />

Land for solid digestate spreading 871 334 1,335 ha/yr<br />

Food competition liquid digestate = Additional land requirement liquid digestate = total kg N in unprocessed<br />

digestate / max kg annual N application – land area at dairy farm<br />

Food competition solid digestate = Additional land requirement solid digestate = total kg N in solid digestate<br />

/ max kg annual N application – land area at maize farm<br />

Social <strong>result</strong>s<br />

employment sec/MJ<br />

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6<br />

biomass 0.234 0.427 0.427 0.427 0.427 0.427<br />

biomass transport 0.088 0.160 0.160 0.182 0.182 0.182<br />

digester 0.094 0.109 0.072 0.072 0.072 0.072<br />

biogas transport 0.000 0.000 0.000 0.000 0.000 0.000<br />

upgrading 0.016 0.016 0.004 0.004 0.004 0.004<br />

injection 0.035 0.035 0.015 0.015 0.010 0.010<br />

digestate processing 0.000 0.000 0.000 0.000 0.000 0.004<br />

digestate transport 0.000 0.000 0.000 0.022 0.022 0.109<br />

digestate loading & spreading 0.185 0.071 0.071 0.071 0.071 0.025<br />

62


land use m 2 /MJ<br />

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6<br />

biomass, maize 0.026 0.047 0.047 0.047 0.047 0.047<br />

biomass, shed 0.000158 0.000032 0.000032 0.000032 0.000032 0.000032<br />

biomass transport 0 0 0 0 0 0<br />

digester 0.000007 0.000003 0.000002 0.000002 0.000002 0.000002<br />

biogas transport 0 0 0 0 0 0<br />

upgrading 0.000002 0.000002 0.000001 0.000001 0.000001 0.000001<br />

injection 0.000002 0.000002 0.000001 0.000001 0.000001 0.000001<br />

digestate processing 0.000002 0.000002 0.000001 0.000001 0.000001 0.000001<br />

digestate transport 0 0 0 0 0 0<br />

digestate loading & spreading 0.238 0.073 0.095 0.095 0.095 0.062<br />

Social index<br />

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6<br />

0.052986 0.010009 0.016286 0.015855 0.015902 0.007079<br />

63


7. Compression calculation<br />

γ −1/<br />

Nγ<br />

ZRT1<br />

Nγ<br />

⎡⎛<br />

p ⎤<br />

2 ⎞<br />

W = ⎢ −1⎥<br />

1 ⎜<br />

⎟<br />

M γ − ⎢⎣<br />

⎝ p1<br />

⎠ ⎥⎦<br />

W<br />

Eel<br />

=<br />

η η 3600<br />

E<br />

64<br />

primary<br />

<strong>is</strong><br />

m<br />

E<br />

=<br />

el<br />

× ρ × 3.<br />

6×<br />

2.<br />

5<br />

31.<br />

6<br />

Formula to calculate <strong>the</strong> energy requirement <strong>of</strong> compressors (Damen, 2007).<br />

In <strong>the</strong>se formulas W <strong>is</strong> <strong>the</strong> specific work (in kJ/kg gas); E <strong>is</strong> <strong>the</strong> specific electricity requirement<br />

(kWh/kg gas); Z <strong>is</strong> <strong>the</strong> compressibility factor (0.9942); R <strong>is</strong> <strong>the</strong> universal gas constant (8.3145<br />

J/(mole K)); T1 <strong>is</strong> <strong>the</strong> suction temperature (313.15 K); γ <strong>is</strong> <strong>the</strong> specific heat ratio (cp/cv)<br />

(1.293759); M <strong>is</strong> <strong>the</strong> molar mass (18.63 g/mole); p1 <strong>is</strong> <strong>the</strong> suction pressure (MPa) (transport =<br />

0.101325); p2, d<strong>is</strong>charge pressure (MPa) (dependent on <strong>the</strong> type <strong>of</strong> grid that <strong>is</strong> injected into); N <strong>is</strong><br />

<strong>the</strong> number <strong>of</strong> compressor stages (transport = 4, injection = 2). E <strong>is</strong> <strong>the</strong> electricity requirement<br />

(kWh/kg gas), η<strong>is</strong> <strong>is</strong> <strong>the</strong> <strong>is</strong>entropic efficiency (0.8%) and ηm <strong>is</strong> <strong>the</strong> mechanical efficiency (0.9%).<br />

The primary energy use, Eprimary (MJprimary/MJgas) <strong>is</strong> found by multiplying it with <strong>the</strong> density <strong>of</strong> <strong>the</strong><br />

gas (0.81 for natural gas), <strong>the</strong>n converting <strong>the</strong> electric energy to Mega Joule by <strong>the</strong> factor 3.6,<br />

and converting it to primary energy by multiplying with a factor 2.5 (after Zwart, 2009). Dividing<br />

th<strong>is</strong> by <strong>the</strong> energy content <strong>of</strong> a normal cubic meter <strong>of</strong> gas , gives <strong>the</strong> primary energy requirement<br />

for compression. The first formula <strong>is</strong> used to calculate <strong>the</strong> energy required for compression <strong>of</strong><br />

different gasses, by adjusting <strong>the</strong> molar mass to o<strong>the</strong>r gasses, in th<strong>is</strong> case biogas and green gas.<br />

Molar mass calculation <strong>of</strong> biogas<br />

density mass/m3 biogas mol%<br />

CO2 1.98 0.792 kg CO2/m 3 biogas 0.01800 mol/l 65<br />

CH4 0.717 0.4302 kg CH4/m 3 biogas 0.00978 mol/l 35<br />

total 1.2222 kg/m 3 biogas 0.02778 mol/l<br />

Component Formula Mol-% Molar mass / component Molar mass<br />

Methane CH4 35 16.043 5.615<br />

Carbon dioxide CO2 62 44.010 27.286<br />

TOTAL 32.901<br />

Molar mass <strong>of</strong> natural gas<br />

Component Formula Mol-% Molar mass / component Molar mass<br />

Methane CH4 81.29 16.043 13.041<br />

Ethane C2H6 2.87 30.070 0.863<br />

Propane C3H8 0.38 44.097 0.167<br />

Butane C4H10 0.15 50.125 0.075<br />

Pentane C5H12 0.04 72.150 0.029<br />

Hexane C6H14 0.05 86.177 0.043<br />

Nitrogen N2 14.32 28.013 4.011<br />

Oxygen O2 0.01 31.999 0.003<br />

Carbon dioxide CO2 0.89 44.010 0.392<br />

TOTAL 18.625


Pressure <strong>of</strong> green gas after upgrading<br />

Unit: bar Zwart et al., 2009 Dena, 2009 Persson et al. 2006 de Hullu et al 2008 Average<br />

water wash 8 6 8 10 8<br />

liquid scrub 8 0 1 3<br />

65


8. Total <strong>result</strong>s<br />

The unit for <strong>the</strong> environmental <strong>result</strong>s <strong>is</strong> gr. CO2-equivalent/MJ.<br />

The unit for <strong>the</strong> economic <strong>result</strong>s <strong>is</strong> €/MJ.<br />

scenario 1 scenario 2 scenario 3<br />

social<br />

social<br />

social<br />

Environment economics index environment economics index environment economics index<br />

biomass 8.543 0.003 10.694 0.005 10.694 0.005<br />

digestion 14.604 0.008 10.490 0.008 8.381 0.006<br />

upgrading 44.695 0.005 44.695 0.005 44.542 0.003<br />

injection 2.999 0.001 2.999 0.001 1.686 0.001<br />

transport 0.640 0.002 1.087 0.002 1.087 0.002<br />

digestate 31.352 0.000 12.009 0.000 12.009 0.000<br />

Is 0.053 0.010 0.016<br />

TOTAL 102.832 0.019 0.053 81.975 0.021 0.010 78.399 0.017 0.016<br />

continued:<br />

scenario 4 scenario 5 Scenario 6<br />

social<br />

social<br />

social<br />

environment economics index environment economics index environment economics index<br />

biomass 10.694 0.005 10.694 0.005 3.085 0.004<br />

digestion 8.381 0.006 8.381 0.006 8.381 0.006<br />

upgrading 44.542 0.003 63.189 0.003 63.189 0.003<br />

injection 1.686 0.001 1.061 0.001 1.061 0.001<br />

transport 1.475 0.001 1.475 0.001 2.258 0.003<br />

digestate 12.009 0.000 12.009 0.000 13.688 0.008<br />

Is 0.016 0.016 0.007<br />

TOTAL 78.786 0.016 0.016 96.808 0.016 0.016 91.662 0.021 0.007<br />

66


9. Normalized <strong>result</strong>s<br />

The <strong>result</strong>s are normalized on <strong>the</strong> maximum scenario value per aspect.<br />

scenario 1 scenario 2 scenario 3<br />

social<br />

social<br />

social<br />

environment economics index environment economics index environment economics index<br />

biomass 0.083 0.122 0.104 0.222 0.104 0.222<br />

digestion 0.142 0.376 0.102 0.373 0.082 0.284<br />

upgrading 0.435 0.245 0.435 0.245 0.433 0.157<br />

injection 0.029 0.026 0.029 0.026 0.016 0.036<br />

transport 0.006 0.105 0.011 0.119 0.011 0.083<br />

digestate 0.305 0.015 0.117 0.012 0.117 0.012<br />

Is 1.000 0.248 0.363<br />

TOTAL 1.000 0.891 1.000 0.797 0.997 0.248 0.762 0.794 0.363<br />

continued:<br />

scenario 4 scenario 5 Scenario 6<br />

social<br />

social<br />

social<br />

environment economics index environment economics index environment economics index<br />

biomass 0.104 0.222 0.104 0.222 0.030 0.184<br />

digestion 0.082 0.284 0.082 0.284 0.082 0.284<br />

upgrading 0.433 0.157 0.614 0.134 0.614 0.134<br />

injection 0.016 0.036 0.010 0.027 0.010 0.027<br />

transport 0.014 0.066 0.014 0.066 0.022 0.130<br />

digestate 0.117 0.012 0.117 0.012 0.133 0.242<br />

Is 0.353 0.355 0.210<br />

TOTAL 0.766 0.777 0.353 0.941 0.744 0.355 0.891 1.000 0.210<br />

67


10. Sensitivity analys<strong>is</strong><br />

Absolute change <strong>of</strong> input parameter. 0% <strong>is</strong> <strong>the</strong> used parameter value in th<strong>is</strong> research.<br />

-50% -25% 0% 25% 50%<br />

d<strong>is</strong>tance gas grid 5 7.5 10 12.5 15<br />

d<strong>is</strong>tance maize farm 25 37.5 50 62.5 75<br />

fertilizer price 0.5 0.75 1.00 1.25 1.5<br />

average income 18 27 36.00 45 54<br />

investment period 6 9 12.00 15 18<br />

average speed truck 15 22.5 30.00 37.5 45<br />

maize silage price 9 13.5 18.00 22.5 27<br />

manure gas yield 11.5 17.25 23.00 28.75 34.5<br />

maize silage gas<br />

yield 100 150 200.00 250 300<br />

arable practice 40 60 80 - -<br />

Results<br />

change <strong>of</strong> input parameter<br />

parameter -50% -25% 0% 25% 50%<br />

d<strong>is</strong>tance gas grid -0.45 -0.23 0.00 0.23 0.45<br />

d<strong>is</strong>tance maize farm -0.16 -0.08 0.00 0.08 0.16<br />

fertilizer price -1.10 -0.55 0.00 0.55 1.10<br />

average income 0.00 0.00 0.00 0.00 0.00<br />

investment period 7.61 2.49 0.00 -1.45 -2.37<br />

average speed truck -2.08 -0.69 0.00 0.42 0.69<br />

maize price -5.25 -2.63 0.00 2.63 5.25<br />

manure gas yield 2.63 1.28 0.00 -1.21 -2.37<br />

maize silage gas<br />

yield 39.27 13.96 0.00 -8.85 -14.95<br />

arable practice 0.28 0.14 0.00<br />

Arable practice was assumed to be best in <strong>the</strong> Ne<strong>the</strong>rlands. Therefore only worse situations are assessed<br />

in <strong>the</strong> sensitivity.<br />

Economic sensitivity<br />

-10% -5% 0% 5% 10%<br />

gas revenues 0.642 0.677 0.713 0.749 0.784<br />

NPV (absolute. €) -41.008 1.569.828 3.226.688 4.883.547 6.494.383<br />

IRR (absolute. %) not possible 5.4% 7.6% 9.2% 10.3%<br />

PP (absolute. yr) 95 27 15.47 11 8<br />

NPV (relative. %) -1% 49% 100% 151% 201%<br />

IRR (relative. %) not possible 70% 100% 120% 135%<br />

PP (relative. %) 613% 174% 100% 70% 54%<br />

68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!