14.07.2013 Views

c) RDC Theory

c) RDC Theory

c) RDC Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Residual dipolar couplings<br />

NMR workshop, Rosario November 2008<br />

Markus Zweckstetter<br />

Department for NMR-based Structural Biology,<br />

Göttingen, Germany<br />

15 N<br />

Max Planck Institute<br />

For Biophysical Chemistry<br />

1 H<br />

1<br />

B 0


NMR workshop, Rosario November 2008<br />

Background material<br />

Saupe A, Englert G (1963) Phys. Rev. Lett. 11: 462-464<br />

BothnerBy AA. (1996) In Grant DM, Harris RK (eds.), Encyclopedia of Nuclear Magnetic Resonance.<br />

Wiley, Chichester: pp. 2932-2938<br />

Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a<br />

dilute liquid crystalline medium. Science 278: 1111-1114<br />

Bax A, Kontaxis G, Tjandra N. (2001) Dipolar couplings in macromolecular structure determination. In<br />

Nuclear Magnetic Resonance of Biological Macromolecules, Pt B, Vol. 339, pp. 127-174<br />

Prestegard JH, Al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field<br />

oriented media and residual dipolar couplings. Q. Rev. Biophys. 33: 371-424<br />

Kramer F, Deshmukh MV, Kessler H, Glaser SJ (2004) Residual dipolar coupling constants: An<br />

elementary derivation of key equations. Concepts Magn. Reson. Part A 21A: 10-21<br />

2


NOE/ROE~1/r<br />

(NOESY, ROESY)<br />

N<br />

H N<br />

φ<br />

H α k<br />

C α k<br />

R<br />

C'<br />

ψ ω<br />

O<br />

Distance Restraints<br />

Bacteria<br />

13C,15N-Source<br />

NMR workshop, Rosario November 2008<br />

N<br />

H k+1<br />

Nk+1<br />

NMR structure determination<br />

J<br />

ω<br />

J − Coupling<br />

(E.COSY, DQ/ZQ, FIDS, quant.J)<br />

N<br />

H N<br />

Η α k<br />

C α k<br />

R<br />

C'<br />

φ ψ ω<br />

O<br />

Dihedral Restraints<br />

Sample<br />

N<br />

Ηk+1<br />

Nk+1<br />

Multi-D-NMR<br />

Structure Calculation<br />

(Simulated Annealing, Distance Geometry,<br />

Molecular Dynamics)<br />

N<br />

H N<br />

Assignment<br />

Γ c NH,CH<br />

Cross Correlated Relaxation<br />

φ<br />

H α k<br />

C α k<br />

R<br />

ω<br />

θ<br />

C'<br />

ψ ω<br />

O<br />

1) Dipole-Dipole<br />

2) Dipole-CSA<br />

3) CSA-CSA<br />

N<br />

H k+1<br />

Nk+1<br />

Projection Restraints<br />

1) Residual Dipolar Couplings<br />

2) N-H Relaxation Rates<br />

R<br />

H N<br />

N<br />

φ ψ<br />

C α k<br />

Η α k<br />

C' k+1<br />

1) Dipole-Susceptibility Tensor<br />

2) Dipole-Mass Tensor<br />

3D-Structure<br />

N<br />

H N<br />

Η α k<br />

φ<br />

C α k<br />

R<br />

C'<br />

ψ ω<br />

N<br />

Ηk+1 Nk+1<br />

Chemical Shift Restraints<br />

O<br />

3


Why do we want to use dipolar couplings in<br />

solution NMR?<br />

• all these parameters give essentially local information:<br />

distances


NMR workshop, Rosario November 2008<br />

<strong>RDC</strong>s today<br />

• Residual dipolar couplings (<strong>RDC</strong>s) can be observed in solution when a molecule<br />

is aligned with the magnetic field<br />

• When alignment can be kept sufficiently weak<br />

• NMR spectra remain simple as in isotropic solution<br />

• quantitative measurement of a wide variety of <strong>RDC</strong>s<br />

• Several dilute liquid crystalline media are now available<br />

• <strong>RDC</strong> measurements and analysis are highly efficient<br />

Residual dipolar couplings are a generally applicable tool for NMR<br />

structure determination<br />

5


NMR workshop, Rosario November 2008<br />

The dipolar coupling<br />

6


Theclassicaldipolarinteraction<br />

Nuclear spin magnetic dipole μ magnetic field<br />

NMR workshop, Rosario November 2008<br />

0 ( ) 5 ( ) ( )<br />

3<br />

μ<br />

Bμr = ⎡ − ⎤<br />

4π r<br />

⎣ μr r rr μ⎦<br />

2nd nuclear spin magnetic moment in B μ interaction energy<br />

E<br />

μ0<br />

1 ⎡ 3<br />

⎤<br />

=− B ( r12 ) μ2= 3 ⎢μ1μ2− 2 ( μ1r12 )( μ2r12 ) ⎥<br />

4π<br />

r12 ⎣ r12<br />

⎦<br />

μμ 1 2 μ1<br />

Within strong external magnetic field B 0 alignment<br />

μ r / | r | = μ cosθ<br />

1 12 12 1<br />

E<br />

μμ<br />

1 2<br />

μ<br />

1<br />

⎡<br />

⎣<br />

⎤<br />

⎦<br />

0<br />

2<br />

= μ 3 1μ2 1−3cos θ<br />

4π<br />

r12<br />

7


Theclassicaldipolarinteraction<br />

E<br />

molecular<br />

reorientation<br />

μμ<br />

1 2<br />

μ<br />

NMR workshop, Rosario November 2008<br />

1<br />

⎡ ⎤<br />

0<br />

2<br />

= μ 3 1μ2 1 3cos θ<br />

4π<br />

r ⎣ − ⎦<br />

12<br />

15 N<br />

1 H<br />

B 0<br />

isotropic<br />

π<br />

2<br />

∫ ( )<br />

0<br />

magic angle ~ 54°<br />

1− 3cos θ sinθdθ = 0<br />

8


spin I <br />

NMR workshop, Rosario November 2008<br />

Quantum mechanical picture<br />

μ = γ hI<br />

I<br />

H<br />

μ 1 ⎛ x x ⎞ γ γ hμ<br />

⎛<br />

I<br />

x x ⎞<br />

S<br />

⎝ ⎠ ⎝ ⎠<br />

3 3<br />

0 i j I S 0<br />

i j<br />

D =− 3∑μ1i⎜3 − δij⎟μ2 j =− 3<br />

3 ∑ i⎜ −δij⎟<br />

j<br />

4π r i, j= 1 r r 4πr<br />

i, j=<br />

1 r r<br />

2<br />

z<br />

IS z z :3 −1<br />

2<br />

r<br />

xz<br />

IS x z + IS z x :3 2<br />

r<br />

yz<br />

IS y z + IS z y :3 2<br />

r<br />

xy<br />

IS x y + IS y x :3 2<br />

r<br />

IS<br />

x x<br />

IS<br />

y y<br />

2<br />

x ⎫<br />

:3 −1 2<br />

r ⎪⎬⎪<br />

2<br />

y<br />

:3 −1 2<br />

r ⎪⎭<br />

2 2 2 2 2 2 2 2 2<br />

3x + 3y −2x −2y −2z − 2z + x + y ⎛3z ⎞1<br />

IS x x + IS y y :3 = − 1<br />

2 2 2<br />

2r 2r ⎜ −<br />

r<br />

⎟<br />

⎝ ⎠2<br />

9


NMR workshop, Rosario November 2008<br />

Quantum mechanical picture<br />

⎧ 2<br />

⎫<br />

⎪⎡ 1<br />

⎤⎛<br />

z ⎞<br />

IS z z − ( IS x x + IS y y)<br />

3 − 1 + ⎪<br />

⎪⎢ ⎜ 2 ⎟<br />

⎣ 2<br />

⎥<br />

⎦⎝ r ⎠<br />

⎪<br />

⎪ ⎪<br />

γγ I Shμ0⎪⎡<br />

xz yz ⎤ ⎪<br />

HD =− 3 ⎨ ( IxSz IzSx) 3 2 ( IySz IzSy) 3 2<br />

4π<br />

r ⎢<br />

+ + +<br />

r r ⎥<br />

+ ⎬<br />

⎪⎣ ⎦ ⎪<br />

⎪ 2 2<br />

⎡ xy<br />

3(<br />

x − y ) ⎤⎪<br />

⎪⎢( IS x y + IS y x) 3 + 2 ( IS x x + IS y y)<br />

⎥⎪<br />

2<br />

⎪⎢r 2r<br />

⎥⎪<br />

⎩⎣⎦⎭ spherical coordinates<br />

D<br />

x y z<br />

= sinθ cos φ; = sinθsin φ; = cosθ<br />

r r r<br />

m m −m<br />

∑( 1 ) 2 ( θφ , ) 2<br />

1<br />

H = − F T<br />

m<br />

coordinates spin operators<br />

where<br />

γγ hμ<br />

⎛24π ⎞<br />

F =− ⎜ ⎟ Y<br />

4πr⎝ 5 ⎠<br />

m I S 0<br />

2<br />

m<br />

2 3<br />

2<br />

10


NMR workshop, Rosario November 2008<br />

Spherical harmonics<br />

m<br />

component ( , )<br />

m = 0 ⎛ 5 ⎞21<br />

2<br />

⎜ ⎟ ( 3cos θ −1)<br />

⎝4π⎠ 2<br />

1<br />

m =± 1 ⎛15 ⎞2<br />

− ⎜ ⎟ sinθ cosθ exp(<br />

± iφ)<br />

⎝8π⎠ 1<br />

m =± 2 ⎛15 ⎞21<br />

2<br />

⎜ ⎟ sin θ exp( ± i2φ)<br />

⎝2π⎠ 4<br />

m<br />

Y2 θφ T2 −<br />

1<br />

⎛ 1 ⎞⎡ 1<br />

⎤<br />

⎜ ⎟⎢<br />

IS z z − ( IS x x + IS y y)<br />

6 ⎣ 2<br />

⎥<br />

⎝ ⎠<br />

⎦<br />

1<br />

± +<br />

2<br />

[ IS IS]<br />

z ± ± z<br />

1<br />

2 IS<br />

± ±<br />

+ ( x y ) = + I− = ( Ix−iIy) I I iI<br />

( )<br />

exp iφ= cosφ +<br />

isinφ<br />

11


NMR workshop, Rosario November 2008<br />

Secular approximation<br />

γγ I Shμ0<br />

2 ⎡ 1<br />

⎤<br />

H D =− 3 ( 3cos θ −1) IS z z − ( IS + − + IS − + )<br />

4πr⎢ ⎣ 4<br />

⎥<br />

⎦<br />

heteronuclear case<br />

γ γ hμ<br />

2<br />

H ( θ ) I S<br />

4π<br />

r<br />

I S 0<br />

D =− 3cos −1<br />

3 z z<br />

γ Iγ Shμ0<br />

3<br />

4π<br />

r<br />

1<br />

2<br />

( )<br />

IS + IS = IS+ IS<br />

+ − − +<br />

x x y y<br />

r = 1.04 1 D(N,H) = 21.7 kHz<br />

12


molecular tumbling/internal motion <br />

NMR workshop, Rosario November 2008<br />

PQ γ γ hμ<br />

2<br />

D =− ∫ P( β , γ) F ( θ, φ) d( cosβ)<br />

dγ<br />

P Q 0 0<br />

3<br />

4πr4π 2<br />

PQ<br />

D<br />

γ γ hμ<br />

1<br />

3cos 1<br />

4πr2 ( θ )<br />

P Q 0 2<br />

=− −<br />

3<br />

sampled orientations<br />

13


Molecular alignment and <strong>RDC</strong>s<br />

NMR workshop, Rosario November 2008<br />

14


NMR workshop, Rosario November 2008<br />

Molecular alignment and <strong>RDC</strong>s<br />

( ) ( () () () ) 2<br />

3 1<br />

P2 cosθ = cos βx t cosα x + cos βy<br />

t cosαy + cos βz<br />

t cosαz<br />

−<br />

2 2<br />

P<br />

2<br />

( ) ( )<br />

Ci t = cos βi<br />

t and<br />

ci = cosα<br />

i<br />

( cosθ<br />

)<br />

2 2<br />

2<br />

⎡ 2 2 2<br />

3 Cx() t cx + Cy() t cy + Cz() t cz<br />

+<br />

⎤<br />

1<br />

= ⎢ ⎥−<br />

2⎢2 C () () 2 () () 2 () () 2<br />

x t Cy t cxcy Cx t Cz t cxcz Cy t Cz t cyc ⎥<br />

⎣<br />

+ +<br />

z⎦<br />

B 0<br />

θ<br />

β x (t)<br />

βz (t)<br />

βy (t)<br />

P2(<br />

cosθ ) =<br />

3 T<br />

2<br />

( br 0 0)<br />

−1<br />

2<br />

⎧ ⎛<br />

⎪ ⎜<br />

3⎪ 0 0 0 ⎜<br />

= ⎨( rx , ry , rz )<br />

2 ⎜<br />

⎪ ⎜<br />

⎪ ⎜<br />

⎩ ⎝<br />

2<br />

Cx() t<br />

Cx() t Cy() t<br />

Cx() t Cz() t<br />

Cx() t Cy() t<br />

2<br />

Cy() t<br />

Cy() t Cz() t<br />

Cx() t Cz() t ⎞ ⎫<br />

0<br />

⎟⎜⎛r⎞ x ⎪<br />

⎟ 0 ⎟⎪<br />

1<br />

Cy() t Cz() t<br />

⎟⎜ry<br />

⎟⎬−<br />

0 2<br />

2 ⎟⎜r⎟⎪ z<br />

Cz() t ⎟⎝<br />

⎠⎪<br />

⎠ ⎭<br />

α x<br />

x<br />

P<br />

z<br />

α z<br />

Q<br />

α y<br />

15<br />

orientational probability distribution<br />

y


NMR workshop, Rosario November 2008<br />

Molecular alignment and <strong>RDC</strong>s<br />

( ) ( ) ( ) ( )<br />

S = 3/2 cosβ t cosβ t − 1/2δ = 3/2 C t C t −1/2δ<br />

ij i j ij i j ij<br />

2 2 2<br />

x + y + z = 1 CC i j = CjCi C C C<br />

P2( cosθ ) = ∑ Sij<br />

cosαicosα j<br />

{ }<br />

i, j= x, y, z<br />

( θPQ = αz; cz= cos θPQ; cx= sinθPQ cos φPQ; cy=<br />

sinθ PQ sinφPQ<br />

)<br />

S is real, traceless, symmetric<br />

5 independent elements<br />

principal alignment frame, i.e. diagonalization of S S d<br />

3<br />

( ) { }<br />

α , α , α = ⎡ + + ⎤−1<br />

PQ PQ<br />

2 2 2 2 2 2<br />

x y z max x x y y z z<br />

D D C c C c C c<br />

2 ⎢⎣ ⎥⎦<br />

2<br />

i 1/3 ij<br />

C A<br />

P<br />

x; S xx d<br />

φ PQ<br />

z; S zz d<br />

PQ PQ 2 2 2 2 2<br />

= + ( )<br />

θ PQ<br />

Q<br />

y; S yy d<br />

3<br />

D αx, αy, αz = D ⎡ max cos θPQAzz + sin θPQ cos φPQ Axx+ sin θPQsin φPQ<br />

A ⎤ yy<br />

2 ⎣ ⎦<br />

PQ 3 PQ ⎡ 1 2<br />

⎤<br />

D ( θPQ, φPQ) = Dmax P2( cosθPQ ) Azz sin θPQcos 2φPQ<br />

( Axx 16Ayy<br />

)<br />

2 ⎢<br />

+ −<br />

⎣ 2<br />

⎥<br />


γ PγQhμ PQ<br />

⎡ 3<br />

⎤<br />

D ( θ φ ) S<br />

⎢( θ ) R θ φ<br />

⎣<br />

⎥<br />

⎦<br />

NMR workshop, Rosario November 2008<br />

A a =3/2A zz =S zz d , Ar =(A xx -A yy )=2/3 (S xx d -Syy d )<br />

PQ PQ ⎡ 3 2<br />

⎤<br />

D ( θPQ, φPQ) = Dmax ⎢<br />

P2( cosθPQ) Aa + Arsin<br />

θPQcos2φPQ ⎣ 4<br />

⎥<br />

⎦<br />

PQ PQ ⎡ 2 3 2<br />

⎤<br />

D ( θPQ, φPQ ) = Da⎢( 3cos θPQ − 1) + Rsin<br />

θPQcos2φPQ ⎣ 2<br />

⎥<br />

⎦<br />

0 2 2<br />

PQ, PQ =− LS 3cos 1 sin cos2<br />

2 3<br />

PQ − +<br />

PQ PQ<br />

4π<br />

r<br />

2<br />

PQ<br />

D a PQ = ½ D PQ max A a : magnitude of alignment tensor (A a =10 -3 D a NH ~ 10 Hz)<br />

R = A a /A r : rhombicity of alignment tensor; R ∈ [0; 2/3]<br />

use only a very slight orientational preference ("partial alignment"), i.e.,<br />

only ca. 1 out of 1000 solute molecules<br />

Generalized degree of order (GDO):<br />

Euclidean norm ϑ = ( 2 / 3 4 /5 π ∑ i,j S ij 2 ) 1/2<br />

17


How to Get Alignment<br />

NMR workshop, Rosario November 2008<br />

18


NMR workshop, Rosario November 2008<br />

Partial Alignment<br />

• dipolar couplings are LARGE in solids (~22 kHz for 1 D HN !), but<br />

• fortunately average out for isotropically fast tumbling (solution NMR)<br />

⇒ full dipolar couplings are not desirable in high-resolution NMR<br />

Can we get orientational information WITHOUT messing up our nice NMR spectra ?<br />

YES!<br />

• use only a very slight orientational preference ("partial alignment"), i.e.,<br />

only ca. 1 out of 1000 solute molecules<br />

result: dipolar coupling from the (0.1%) non-isotropic fraction is scaled down to<br />

residual dipolar couplings (<strong>RDC</strong>s) of ± 20 Hz max.! (0.1% of ±20 kHz)<br />

19


Alignment – Anisotropic Tumbling<br />

To extract dipolar coupling data, the molecule must behave anisotropically!<br />

1) large magnetic susceptibility anisotropy<br />

• diamagnetic systems such as DNA (small anisotropy in each base)<br />

• metalloproteins with paramagnetic centers<br />

• lanthanide-binding tags<br />

2) anisotropic environment<br />

• oriented liquid-crystalline phase<br />

• anisotropically compresed gel<br />

NMR workshop, Rosario November 2008<br />

field-dependent alignment of molecules<br />

field-independent alignment<br />

20


Requirements<br />

NMR workshop, Rosario November 2008<br />

Alignment media<br />

• liquid crystalline at < 10% w/v order of biomolecules: ~ 0.002<br />

• aqueous<br />

• uniform anisotropy over the whole sample volume,<br />

• stable at different ionic strength, pH, temperature<br />

• not too strongly charged < 0.5 e/nm 2 ,<br />

• solute should not bind (significantly) to medium<br />

21


NMR workshop, Rosario November 2008<br />

Bicelles<br />

• Diskshaped particles made from DMPC and DHPC (q = 3:1)<br />

• concentration usually 5% (w/v)<br />

• degree of protein alignment can be “tuned” by adjusting the<br />

bicelle concentration<br />

• alignment is temperature dependent (liquid crystal > 37°C)<br />

• aligning with their normal perpendicular to the direction of the<br />

magnetic field<br />

• degree of alignment can be determined by measuring the 2H<br />

quadrupolar splitting in the HDO resonance.<br />

22


NMR workshop, Rosario November 2008<br />

Bicelles (2)<br />

• Isotropic bicelles (q ~ 0.5) for solubilization of integral<br />

membrane proteins solution-state NMR<br />

• Anisotropic bicelles for solid-state NMR and X-ray<br />

crystallography<br />

Disadvantages:<br />

• unstable in the presence of certain proteins<br />

• offers only a limited temperature and pH range<br />

23


• bicelles<br />

NMR workshop, Rosario November 2008<br />

Alignment media - Toolbox<br />

• alkyl poly(ethylene glycol) based media<br />

• filamentous phage (Pf1,fd; -0.47 e/nm 2 )<br />

• polyacrylamide gel (charged, uncharged)<br />

• cellulose crystallites<br />

• purple membrane fragments<br />

• cetylpyrimidinium-based media, ...<br />

24


Alignment of Membrane Proteins<br />

Acrylamide gels DNA nanotubes<br />

G-tetrad DNA<br />

NMR workshop, Rosario November 2008<br />

Douglas et al.<br />

PNAS, 2007<br />

Lorieau et al.<br />

JACS, 2008<br />

25


Modulation of alignment tensor<br />

NMR workshop, Rosario November 2008<br />

26


The problem: Orientational degeneracy<br />

NMR workshop, Rosario November 2008<br />

D PQ = D a PQ [(3 cos 2 θ –1) + 3/2 R sin 2 θ cos(2φ)]<br />

Ramirez & Bax<br />

JACS, 1998<br />

27


Strategies for Modulation of Alignment<br />

• Alignment media with different properties (steric/electrostatic)<br />

• Charged bicelles: doping with small charged amphiphiles to alter<br />

their charge<br />

Positive: CTAB / Negative: SDS<br />

•Chargedgels<br />

• variation of pH, ionic strength<br />

• mutation (introduction of charged residues)<br />

• paramagnetic alignment (different tags/lanthanides)<br />

NMR workshop, Rosario November 2008<br />

28


Attenuation of alignment strength by<br />

increasing the ionic strength<br />

450 mM NaCl<br />

20 mg/ml Pf1<br />

150 mM NaCl<br />

9.0 8.0<br />

7.0<br />

ppm<br />

NMR workshop, Rosario November 2008<br />

ubiquitin at 450 mM NaCl<br />

in 20 mg/ml Pf1<br />

29


Modulation of alignment tensor orientation<br />

by ionic strength changes<br />

NMR workshop, Rosario November 2008<br />

GB1<br />

30


NMR workshop, Rosario November 2008<br />

Liquid crystal theory<br />

31


NMR workshop, Rosario November 2008<br />

Liquid crystal theory<br />

Onsager (1949): concentration at which a solution undergoes a spontaneous first<br />

order phase transition from an isotropic to a chiral nematic phase<br />

25 Hz<br />

B 2 c p > c a<br />

B 2 = π D eff L 2 /4<br />

first-order transition coexistence region c p ∈ [c i , c a ]<br />

for semi-flexible rods<br />

c i = 0.3588 [(1-√x)B 2 ] -1 c a = 0.3588 [(x-√x)B 2 ] -1<br />

32


B 2 c p > c a<br />

B 2 = π D eff L 2 /4<br />

NMR workshop, Rosario November 2008<br />

Onsager theory<br />

effective increase in rod diameter<br />

D eff = D + κ -1 (ln ω + 0.7704)<br />

contact potential ω = 2π Z2 [βγx0 K1 (x0 )] -2 Q κ-1 exp(-2 x0 )<br />

contribution of the polyions to the ionic strength κ = 8πQ(cs + Γzpcp )<br />

33


NMR workshop, Rosario November 2008<br />

Liquid crystal theory<br />

density of most nematogens is higher than for the solvent<br />

average density of the nematic region is higher than for the isotropic region gravity<br />

causes it to occupy the bottom region of the sample<br />

Pf1 (12 mg/ml)<br />

0.5M<br />

B 2 c p > 4.19 and B 2 c p > 5.51<br />

34


NMR workshop, Rosario November 2008<br />

Paranematic phase of Pf1 phage<br />

For a fully nematic phase, the degree of alignment is independent of field<br />

strength above a typically very low threshold<br />

paranematic<br />

Q cc ( 2 H) = 0.886 c Pf1<br />

c Pf1 [mg/ml]<br />

• 600 MHz<br />

□ 800 MHz<br />

35


Measurement of <strong>RDC</strong>s<br />

NMR workshop, Rosario November 2008<br />

36


NMR workshop, Rosario November 2008<br />

NOESY HSQC<br />

37


Accuracy of measured splitting: ΔJ = LW/SN<br />

1 JHN [1]: IPAP-HSQC, DSSE-HSQC, 3D HNCO<br />

1 JC‘Cα [5]: 3D HNCO (CSA(C‘) ~ 500 MHz optimum)<br />

1 JC‘N & 2 J C‘HN [8.3]: 2D HSQC, 3D TROSY-HNCO<br />

1 JCαHα [0.5]: 2D J CH -modulated HSQC, (HA)CANH, HN(CO)CA<br />

1 JCH (side-chain): 2D J CH -mod. HSQC, CCH-COSY, SPITZE-HSQC<br />

1 H- 1 H: COSY, CT-COSY, HNHA, 3D SS-HMQC2 (long-range)<br />

NMR workshop, Rosario November 2008<br />

required accuracy < 5% * Da<br />

Bax, Kontaxis & Tjandra Method Enzymol. 339, 127-174, 2001;<br />

Chou & Bax JBNMR, 2001; Delaglio et al. JMR 2001; Wu & Bax, JACS, 2002;<br />

38


<strong>RDC</strong> measurement: J splitting ( 1 J HN)<br />

IPAP-HSQC<br />

Ottiger et al. JMR, 1998<br />

NMR workshop, Rosario November 2008<br />

39


<strong>RDC</strong> measurement: Quantitative J<br />

correlation ( 1 J C‘N)<br />

NMR workshop, Rosario November 2008<br />

Chou & Bax<br />

JBNMR, 2001<br />

40


Determination of a Molecular<br />

NMR workshop, Rosario November 2008<br />

Alignment Tensor<br />

41


1) <strong>RDC</strong> distribution analysis<br />

NMR workshop, Rosario November 2008<br />

Four Methods<br />

2) Back-calculation of alignment tensor<br />

3) Prediction of alignment from structure<br />

4) Prediction of alignment from structure and charge distribution<br />

42


Count<br />

1) Estimate for alignment tensor<br />

30<br />

20<br />

10<br />

D zz PQ = 2 Da PQ<br />

D yy PQ = –Da PQ (1 + 1.5 R)<br />

D xx PQ = –Da PQ (1 – 1.5 R)<br />

with D ii PQ = D PQ max S ii d no structure necessary !<br />

NMR workshop, Rosario November 2008<br />

0<br />

D<br />

A xx B<br />

D zz<br />

-40 -20 0 20<br />

D yy<br />

R<br />

0.2<br />

0.1<br />

0<br />

1d(NH) [Hz]<br />

-20 -15<br />

D aNH [Hz]<br />

-20 0 20<br />

log( L( d 1…n PQ | Da PQ , R)) = ∑i=1,..,N log (P(d i PQ ))<br />

43


2) Back-calculation of alignment tensor<br />

if well-defined structure available<br />

• singular value decomposition (SVD)<br />

very stable & with a minimum<br />

of five <strong>RDC</strong>s possible<br />

• iterative least squares procedure (Levenberg-Marquardt minimization)<br />

χ 2 = ∑ i=1,..,N [d i PQ (exp) – di PQ (calc)] 2 /(σi PQ ) 2<br />

fixing of alignment parameters (e.g. rhombic component zero due to<br />

three-fold or higher symmetry)<br />

NMR workshop, Rosario November 2008<br />

2 GLN HN 2 GLN N -8.170 1.000 1.00<br />

3 ILE HN 3 ILE N 8.271 1.000 1.00<br />

4 PHE HN 4 PHE N 10.489 1.000 1.00<br />

5 VAL HN 5 VAL N 9.871 1.000 1.00<br />

6 LYS HN 6 LYS N 9.152 1.000 1.00<br />

7 THR HN 7 THR N 3.700 1.000 1.00<br />

8 LEU HN 8 LEU N 6.461 1.000 1.00<br />

10 GLY HN 10 GLY N 7.634 1.000 1.00<br />

11 LYS HN 11 LYS N -7.528 1.000 1.00<br />

44


Evaluation of uncertainty in backcalculated<br />

alignment tensors (I)<br />

Can you trust a back-calculated alignment tensor?<br />

Monte-Carlo type approach (<strong>RDC</strong> noise)<br />

´<br />

repeat SVD calculation many times (~1000 times)<br />

each time add different Gaussian noise to experimental <strong>RDC</strong>s<br />

accept only those solutions for which all back-calculated <strong>RDC</strong>s are within<br />

a given margin of the original experimental dipolar couplings<br />

error in the data is dominated by the random measurement error in the dipolar couplings<br />

indirectly take into account uncertainties in the structure<br />

set the amplitude of the added noise two to three times higher than the measurement uncertainty<br />

NMR workshop, Rosario November 2008<br />

45


Evaluation of uncertainty in backcalculated<br />

alignment tensors (II)<br />

Structural noise Monte-Carlo type approach<br />

repeat SVD calculation many times (~1000 times)<br />

each time add different Gaussian noise to the original structure (match the<br />

RMSD between the experimental and back-calculated <strong>RDC</strong>s)<br />

spread in alignment parameters obtained for these noise-corrupted structures,<br />

when using the coupling constants calculated for the original structure (i.e.,<br />

yielding a perfect fit if no structural noise were added)<br />

NMR workshop, Rosario November 2008<br />

46


3) Prediction of alignment from structure<br />

NMR workshop, Rosario November 2008<br />

no <strong>RDC</strong>s necessary !<br />

47


NMR workshop, Rosario November 2008<br />

Computer experiment: PALES<br />

S ij =1/2 (i,j=x,y,z)<br />

S mol linear average over all non-excluded S matrices<br />

Periodic boundary conditions<br />

r < d/(2 V f ) (wall model), or r < d/(4V f ) 1/2 (cylinder)<br />

48


Shape prediction of magnitude and<br />

orientation of alignment<br />

1 DNH predicted [Hz]<br />

NMR workshop, Rosario November 2008<br />

1 DNH measured [Hz]<br />

Protein alignment in bicelles is sterically induced<br />

49


Weak alignment in Pf1 bacteriophage<br />

http://www.asla-biotech.com/asla-phage.htm<br />

NMR workshop, Rosario November 2008<br />

50


4) Prediction of alignment from structure<br />

and charge distribution<br />

B 0<br />

NMR workshop, Rosario November 2008<br />

p B = exp[ -ΔG el (r,Ω)/k B T]<br />

ΔG el (r,Ω) = ∑ i q i φ[r i (r,Ω)]<br />

S ij mol = ∫ Sij p B (r,Ω) dr dΩ / ∫ p B (r,Ω) dr dΩ<br />

steric<br />

p = 0 p = 1 p = 1<br />

51


How to calculate the electrostatic energy?<br />

• Continuum electrostatic theory (Debye and Hueckel 1923): protein embedded in<br />

a dielectric medium containing excess ions<br />

• non-linear Poisson-Boltzmann equation (Chapman 1913; Gouy 1910)<br />

• Further simplification: Protein = a particle in the external field of the liquid<br />

crystal many approximations !<br />

• protein = charges of their ionizable residues<br />

• static dielectric constant of water ε = 78.29<br />

• average surface charge of phages: -0.47 e/nm2 NMR workshop, Rosario November 2008<br />

52


elative G<br />

φ [kT/e]<br />

0.5<br />

0<br />

-2<br />

-4<br />

0<br />

NMR workshop, Rosario November 2008<br />

Electrostatic potential<br />

10 20<br />

distance from Pf1 [nm]<br />

B<br />

53


ubiquitin<br />

DinI<br />

GB3<br />

GB1<br />

DNA<br />

Experiment versus PALES prediction<br />

steric<br />

NMR workshop, Rosario November 2008<br />

electrostatic + steric<br />

Zweckstetter et al.,<br />

Biophys. J. 2004<br />

54


ubiquitin<br />

DinI<br />

GB3<br />

GB1<br />

DNA<br />

NMR workshop, Rosario November 2008<br />

Ionic strength dependence<br />

magnitude<br />

orientation<br />

55


10-20 nm<br />

Weak alignment in surfactant liquid<br />

crystalline phases<br />

3 nm<br />

PALES<br />

NMR workshop, Rosario November 2008<br />

+<br />

+ +<br />

+<br />

+<br />

+<br />

+<br />

B 0<br />

Lα<br />

56


Residual dipolar couplings in<br />

cetylpyridinium bromide/hexanol/sodium<br />

bromide<br />

NMR workshop, Rosario November 2008<br />

Zweckstetter,<br />

submitted<br />

steric and electrostatic interactions<br />

dominate weak alignment of biomolecules<br />

in polar liquid crystalline media<br />

57


Barrientos et al.,<br />

JMR 2001<br />

pH 7<br />

pH 3<br />

NMR workshop, Rosario November 2008<br />

Partial alignment at pH 3<br />

pH 3<br />

pH 7<br />

Zweckstetter, Eur. Biophys. J. 2005<br />

58


NMR workshop, Rosario November 2008<br />

PH dependence of alignment<br />

59


<strong>RDC</strong>s are a sensitive probe of protein<br />

electrostatics<br />

DinI (PDB code: 1GHH)<br />

Zweckstetter et al., Biophys. J. 2004<br />

NMR workshop, Rosario November 2008<br />

60


Charge/Shape prediction: applications<br />

• differentiation of monomeric and homodimeric states<br />

(Zweckstetter and Bax 2000)<br />

• conformational analysis of dynamic systems such as oligosaccharides<br />

(Azurmendi and Bush 2002)<br />

• refinement of nucleic acid structures<br />

(Warren and Moore, 2001)<br />

• determination of the relative orientation of protein domains<br />

(Bewley and Clore 2000)<br />

• validation of structures of protein complexes<br />

(Bewley 2001)<br />

• classify protein fold families on the basis of unassigned NMR data<br />

(Valafar and Prestegard 2003)<br />

• Probing surface electrostatics of proteins and nucleic acids,<br />

refinement of side chain orientations in proteins, …<br />

NMR workshop, Rosario November 2008<br />

61


<strong>RDC</strong>s in Structure Calculation<br />

NMR workshop, Rosario November 2008<br />

62


<strong>RDC</strong>-based refinement of structures<br />

PROBLEM:<br />

Potential energy surface is very rough many local/false minima <br />

convergence problem<br />

NMR workshop, Rosario November 2008<br />

<strong>RDC</strong>-based refinement of starting structures<br />

k dip force constant adjust such that dipolar RMS is equal to<br />

measurement error)<br />

63


NMR workshop, Rosario November 2008<br />

Crititical Points<br />

How to use the structural information obtained from molecular alignment<br />

1. In order to use the information one needs to know the direction and the size of the<br />

tensor (susceptibility, alignment, etc).<br />

2. Minimization of the deviation between the measured quantity and its calculated<br />

value from a given structure and set of tensor parameters.<br />

3. One has to be able to evaluate the outcome of the minimization.<br />

Minimization procedure<br />

1. Get a good estimate on the tensor parameters (magnitude and rhombicity).<br />

2. Define structural constraints with respect to the arbitrary tensor coordinate system.<br />

3. Turn on the force constant for a particular alignment potential such that the final<br />

RMS between the measured and calculated values reflect the experimental error.<br />

4. During the calculation the tensor orientation will be automatically determined<br />

through global minimization with respect to the current structure.<br />

5. Refine the initial estimate of the tensor parameters. This can be achieved through<br />

either grid search method or built into the minimization itself.<br />

64


Define axis system representing the<br />

alignment tensor<br />

NMR workshop, Rosario November 2008<br />

65


NMR workshop, Rosario November 2008<br />

From PALES to XPLOR<br />

rDC(NH) measured aligned - isotropic (PALES convention)<br />

(min(DC)=-16.2 Hz; max(DC)=12.7 Hz<br />

==> estimated Da(NH)=-8.1*(-1) as correct measurement isotropic-aligned)<br />

==> PALES gives: DATA Da -4.177638e-04<br />

==> get correct Da by multiplying -4.177638e-04*-21585.19 = 9.0 Hz<br />

(for XPLOR however use -9.0 Hz, i.e. sign of Szz/2)<br />

rDC(NH) measured isotropic - aligned (SSIA convention)<br />

(min(DC)=-12.7 Hz; max(DC)=16.2 Hz<br />

===> estimated Da(NH)=16.2/2=8.1<br />

==> PALES gives: DATA Da 4.177638e-04<br />

==> get correct Da by multiplying 4.177638e-04*21585.19 = 9.0 Hz<br />

(for XPLOR however use -9.0 Hz, i.e. (-1)*sign of Szz/2)<br />

66


How to evaluate structures produced by<br />

minimizing against alignment data<br />

1. The final dipolar RMS between measured .vs. calculated values<br />

2. Consistency between dipolar coupling data and NOE data<br />

(decrease in non-<strong>RDC</strong> energy terms)<br />

3. If one has more than one class of dipolar couplings: cross validation with<br />

quality factor<br />

4. Use programs such as Procheck to look at the overall quality of the structure<br />

(distribution in Ramchandran plot should improve)<br />

5. In most cases where one obtains a high degree of consistency one would also<br />

gain in the overall RMSD of the family of calculated structures.<br />

NMR workshop, Rosario November 2008<br />

Q =<br />

rms (D obs -D calc )<br />

rms (D obs )<br />

67


1 DNH predicted [Hz]<br />

Quality measure of calculated/simulated<br />

<strong>RDC</strong>s<br />

NMR workshop, Rosario November 2008<br />

1 DNH measured [Hz]<br />

Q =<br />

rms (D obs -D calc )<br />

rms (D obs )<br />

rms(Dobs norm 2 2 1/2<br />

)= [2 (D ) (4 + 3R )/5] a<br />

Q ~ 17% ≈ 1.8 Å X-ray<br />

O ~ 11% ≈ 1.1 Å X-ray<br />

• use only for <strong>RDC</strong>s not included in<br />

structure determination !<br />

• no translational validation<br />

68


Impact of <strong>RDC</strong> refinement<br />

a) without rdc<br />

b) with rdc<br />

NMR workshop, Rosario November 2008<br />

Zhou et al. Biopolymers (1999-2000) 52, 168.<br />

69

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!