14.07.2013 Views

Monitoring mitotic cell division in DT40 cells - Events

Monitoring mitotic cell division in DT40 cells - Events

Monitoring mitotic cell division in DT40 cells - Events

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Tubul<strong>in</strong> DNA<br />

<strong>Monitor<strong>in</strong>g</strong><br />

<strong>mitotic</strong> <strong>cell</strong><br />

<strong>division</strong> <strong>in</strong> <strong>DT40</strong><br />

<strong>cell</strong>s


Our scientific goal: To <strong>in</strong>vestigate the<br />

role of Chk1 <strong>in</strong> chromosome<br />

segregation dur<strong>in</strong>g <strong>mitotic</strong> <strong>cell</strong> <strong>division</strong><br />

• Monitor chromosome segregation dur<strong>in</strong>g <strong>mitotic</strong> <strong>cell</strong> <strong>division</strong><br />

<strong>in</strong> liv<strong>in</strong>g wild-type (wt) and Chk1-/- <strong>DT40</strong> <strong>cell</strong>s by time-lapse<br />

video microscopy<br />

• With time-lapse video microscopy we can monitor events <strong>in</strong><br />

liv<strong>in</strong>g <strong>cell</strong>s as they happen!


Time-lapse video microscopy<br />

• Cells grow <strong>in</strong> appropriate <strong>cell</strong> conta<strong>in</strong>er (e.g. 6-well plate or 30 mm petri dish)<br />

at controlled temperature and CO 2 conditions and are monitored by light<br />

microscopy (phase contrast or DIC)<br />

• If <strong>cell</strong>s express a fluorescence prote<strong>in</strong> of <strong>in</strong>terest they can also be monitored<br />

by fluorescence microscopy<br />

• Cells are monitored for periods up to several hours and a digital photo of<br />

them is taken at desired <strong>in</strong>tervals (e.g. every two m<strong>in</strong>utes, 30 sec, etc)<br />

• If desired, both a fluorescence and a phase contrast/ DIC photo can be taken<br />

at every <strong>in</strong>terval<br />

• At the end of the experiment, part or the whole series of still images can be<br />

compressed <strong>in</strong>to a movie


specimen<br />

Components of a time-lapse video<br />

microscopy system: the microscope<br />

Zeiss, Axionert 200<br />

halogen lamp<br />

mercury<br />

lamp<br />

shutter<br />

objective lenses<br />

• Inverted fluorescence microscope (for<br />

liv<strong>in</strong>g <strong>cell</strong>s)<br />

• Filters for FITC fluorescence<br />

• Objective lenses for DIC or phase<br />

contrast<br />

• Magnification of objective lenses: 4X,<br />

10X, 20X, 40X


Components of a time-lapse video<br />

microscopy system: the temperature<br />

control module<br />

Temperature control module<br />

for 30 mm dishes


Components of a time-lapse video<br />

microscopy system: the environmental<br />

chamber<br />

The environmental<br />

chamber is connected to<br />

a CO 2 source to ma<strong>in</strong>ta<strong>in</strong><br />

appropriate CO 2<br />

conditions (this is<br />

important when <strong>cell</strong>s are<br />

monitored for several<br />

hours)


Components of a time-lapse video<br />

microscopy system: digital camera,<br />

automatic shutter and light beams<br />

• The digital camera is programmed<br />

through a control unit to take photos of the<br />

specimen at predeterm<strong>in</strong>ed <strong>in</strong>tervals for<br />

the period of the experiment<br />

• The microscope shutter automatically<br />

switches from light to fluorescence images<br />

• Both mercury and halogen light beams<br />

automatically switch themselves on before<br />

photos are taken and then switch<br />

themselves off to m<strong>in</strong>imally <strong>in</strong>terfere with<br />

the specimen and avoid photobleach<strong>in</strong>g of<br />

fluorescent molecules<br />

High speed Digital<br />

CCD camera


CO 2 and<br />

temperature<br />

control unit<br />

Overall components of a time-lapse<br />

video microscopy system<br />

Environmental chamber


Generation of <strong>DT40</strong> <strong>cell</strong>s stably<br />

express<strong>in</strong>g H2B:GFP prote<strong>in</strong><br />

• To monitor chromosome segregation, we generated stable clones of wt<br />

and Chk1-/- <strong>DT40</strong> <strong>cell</strong>s express<strong>in</strong>g the chromat<strong>in</strong> marker histone 2B fused<br />

to GFP (H2B:GFP prote<strong>in</strong>)<br />

• Chromosomes <strong>in</strong> those <strong>cell</strong>s can be detected by fluorescence microscopy<br />

(green fluorescence)<br />

General Steps:<br />

1. Obta<strong>in</strong> plasmid cod<strong>in</strong>g for H2B:GFP<br />

2. Electroporate plasmid <strong>in</strong>to <strong>cell</strong>s<br />

3. Select <strong>in</strong>dividual clones express<strong>in</strong>g the plasmid (green clones!)<br />

4. Use clones <strong>in</strong> time-lapse microscopy experiments


Plasmid cod<strong>in</strong>g for H2B:GFP prote<strong>in</strong><br />

Ori<br />

CMV<br />

Promoter<br />

GFP<br />

H2B:GFP<br />

vector<br />

Neomyc<strong>in</strong><br />

Resistance<br />

H2B<br />

Poly-A<br />

Kan R


Electroporation of <strong>DT40</strong> <strong>cell</strong>s (I)<br />

If us<strong>in</strong>g the Amaxa nucleofector system, follow the manufacturer’s<br />

<strong>in</strong>structions!!<br />

Materials and apparatus<br />

• 25 μg of plasmid per 5 x 10 6 <strong>cell</strong>s. (We only l<strong>in</strong>earize plasmid for gene<br />

target<strong>in</strong>g experiments)<br />

• Optimem medium (from Gibco BRL)<br />

• 4 mm electroporation cuvettes (from Flowgen)<br />

• Biorad electroporation micropulser (or similar)


Method<br />

Electroporation of <strong>DT40</strong> <strong>cell</strong>s (II)<br />

• Use 5 x 10 6 <strong>cell</strong>s. Cells must be <strong>in</strong> the log growth phase and I always split them<br />

approx 1:4 the day before electroporation<br />

• On the day of electroporation count <strong>cell</strong>s and sp<strong>in</strong> down 5 x 10 6 <strong>cell</strong>s. Resuspend<br />

<strong>cell</strong>s <strong>in</strong> 1ml of optimem + 1% DMSO. Add plasmid DNA and put the <strong>cell</strong>s + DNA<br />

<strong>in</strong>to an electroporation cuvette<br />

• Electroporate at 300 volts, 960μF<br />

• Dilute <strong>cell</strong>s <strong>in</strong>to 20 ml <strong>DT40</strong> growth medium and <strong>in</strong>cubate O/N at 39.5 o C, 5%<br />

CO 2


Isolation of <strong>DT40</strong> clones<br />

• The next day, take the volume up to 140 ml with <strong>DT40</strong> growth medium<br />

conta<strong>in</strong><strong>in</strong>g the required selection agent (e.g. G418 at 1.5 mg/ ml) and 50 µg/ ml<br />

amphoteric<strong>in</strong> (fungicide)<br />

• Split the 140 ml between 7 x 96 well plates us<strong>in</strong>g a multi-channel pipette (200<br />

μl per well). Incubate at 39.5 o C, 5% CO 2<br />

• After approx 3 weeks exam<strong>in</strong>e the wells for small colonies (balls) of antibiotic<br />

resistant <strong>cell</strong>s. Clones express<strong>in</strong>g H2B:GFP exhibit green fluorescence and are<br />

easily identified!<br />

• Transfer a few clones <strong>in</strong>to 24 well plates and progressively expand them<br />

• Verify DNA fluorescence and that the stages of mitosis look OK by confocal<br />

microscopy. Choose the appropriate clone(s)


Sett<strong>in</strong>g up <strong>DT40</strong>s for time-lapse<br />

microscopy (I)<br />

Prepare coverslips<br />

• Coat 12 mm round coverslips with poly-L-lys<strong>in</strong>e, 10 μg/ ml <strong>in</strong> sterile PBS, O/N,<br />

at 4 o C<br />

• Wash a couple of times with PBS: coverslips are ready to use. You can keep<br />

coated coverslips <strong>in</strong> PBS at 4 o C for a few days<br />

• If <strong>in</strong> a hurry, you can also coat coverslips at 37 o C for 2 hrs and then wash <strong>in</strong><br />

PBS and use


Set up <strong>cell</strong>s<br />

Sett<strong>in</strong>g up <strong>DT40</strong>s for time-lapse<br />

microscopy (II)<br />

• On the previous day, count <strong>cell</strong>s express<strong>in</strong>g H2B:GFP, sp<strong>in</strong> them down and<br />

resuspend <strong>in</strong> fresh medium at approximately 1 x10 5 <strong>cell</strong>s/ ml<br />

• Place a poly-L-lys<strong>in</strong>e-coated coverslip <strong>in</strong>side an empty 30 mm petri dish<br />

• Drop 100 μl (i.e. 1 x 10 4 ) <strong>cell</strong>s onto the coverslip (you don’t want <strong>cell</strong>s too crowded!!)<br />

• Leave at room temperature for approximately 1h for <strong>DT40</strong>s to sit down<br />

• Carefully put 2 ml growth medium <strong>in</strong>side the 30 mm dish and return to the <strong>in</strong>cubator<br />

• Next day, monitor <strong>cell</strong>s on the time-lapse microscope and get still photos or movies!!


<strong>Monitor<strong>in</strong>g</strong> <strong>mitotic</strong> <strong>cell</strong> <strong>division</strong> by time-<br />

lapse microscopy (I)<br />

Photo 1<br />

H2B:GFP DIC<br />

Photo 2<br />

H2B:GFP DIC<br />

Photo 3<br />

H2B:GFP DIC<br />

Photo 4<br />

H2B:GFP DIC


<strong>Monitor<strong>in</strong>g</strong> <strong>mitotic</strong> <strong>cell</strong> <strong>division</strong> by time-<br />

lapse microscopy (II)<br />

H2B:GFP<br />

Photo 5<br />

Photo 6<br />

DIC<br />

H2B:GFP DIC<br />

Photo 7<br />

H2B:GFP DIC<br />

Photo 8<br />

H2B:GFP DIC


<strong>Monitor<strong>in</strong>g</strong> <strong>mitotic</strong> <strong>cell</strong> <strong>division</strong> by time-<br />

lapse video microscopy<br />

DNA DIC


metaphase<br />

anaphase<br />

Normal chromosome<br />

segregation<br />

sp<strong>in</strong>dle pole<br />

sister chromatids<br />

k<strong>in</strong>etochore<br />

metaphase<br />

anaphase<br />

Chromosome missegregation<br />

(polar<br />

chromosome)


Chk1-deficient Chk1 deficient <strong>DT40</strong> <strong>cell</strong>s exhibit high<br />

frequency of “polar polar” chromosomes<br />

wt <strong>DT40</strong> Chk1-/-<br />

Normal anaphase Anaphase with “polar” chromosome<br />

Green: DNA


Chk1-deficient Chk1 deficient <strong>DT40</strong> <strong>cell</strong>s exhibit high<br />

frequency of anaphase bridges<br />

DNA<br />

DNA<br />

Chk1-/-<br />

Chk1-/-<br />

Tubul<strong>in</strong> DNA<br />

Tubul<strong>in</strong> DNA<br />

Chk1-/-<br />

Anaphase bridge<br />

Green: DNA


Chk1-deficient Chk1 deficient <strong>DT40</strong> <strong>cell</strong>s exhibit high<br />

frequency of cytok<strong>in</strong>esis failure<br />

Chk1-/-<br />

Failed cytok<strong>in</strong>esis<br />

Green: DNA


Liv<strong>in</strong>g<br />

<strong>cell</strong><br />

Apoptotic<br />

<strong>cell</strong><br />

Mitotic failure can lead to <strong>cell</strong> death<br />

Electron microscopy<br />

Cell death after <strong>mitotic</strong> failure<br />

Time-lapse microscopy<br />

Green: DNA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!