14.07.2013 Views

What is Biofilm?

What is Biofilm?

What is Biofilm?

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Toluidine Blue-Mediated Photodynamic<br />

Effects on Staphylococcal <strong>Biofilm</strong>s<br />

Mrinalini Sharma, Livia V<strong>is</strong>ai, Francesca Bragheri, Haria Cr<strong>is</strong>tiani,<br />

Pradeep Kumar Gupta, and Pietro Speziale<br />

Antimicrobial Agents And Chemotherapy, 52(1): 299-305, 2008<br />

Speaker: I-Lun Chiang<br />

Adv<strong>is</strong>er: Ching-Tsan Huang, PhD<br />

Date: 2008.12.9<br />

1


<strong>Biofilm</strong>s are everywhere!<br />

<strong>Biofilm</strong> on rock<br />

Had you ever slipped on a rock?<br />

<strong>Biofilm</strong> on pipe<br />

<strong>Biofilm</strong> in toilet<br />

cleaned a clogged drain pipe or toilet?<br />

2


<strong>What</strong> <strong>is</strong> <strong>Biofilm</strong>?<br />

a structured community of microorgan<strong>is</strong>ms<br />

Mushroom-like conceptual model<br />

a living or nonliving surface.<br />

extracellular matrix<br />

3


How do bacterial biofilms develop?<br />

pili<br />

van der Waals forces<br />

extracellular<br />

polymeric<br />

substance<br />

(EPS)<br />

quorum sensing<br />

(By Dr. Ghigo Jean-Marc)<br />

4


Staphylococcal biofilms<br />

Staphylococcus aureus biofilm<br />

- Gram (+) bacteria<br />

Staphylococcus epidermid<strong>is</strong> biofilm<br />

- Gram (+) bacteria<br />

5


Common Sites of Staphyloccocal <strong>Biofilm</strong> Infections<br />

Catheter<br />

Infection<br />

Artificial hip implant<br />

6<br />

peridontal d<strong>is</strong>ease<br />

Mechanical heart valves<br />

Wound infection


Staphylococcus aureus<br />

?<br />

─ invade the wound after surgical procedure<br />

S. aureus<br />

?<br />

Penicillin (1940s)<br />

2 years<br />

Vancomycin-res<strong>is</strong>tant<br />

S. aureus (VRSA)<br />

Methicilin (1960)<br />

Vancomycin<br />

Penicillin-res<strong>is</strong>tant<br />

S. aureus<br />

1 year<br />

Methicillin-res<strong>is</strong>tant<br />

S. aureus (MRSA)<br />

Vancomycin-intermediate<br />

S. aureus (VISA)<br />

The d<strong>is</strong>covery of new antibiotics might not catch up with the<br />

appearance of antibiotics res<strong>is</strong>tance.<br />

7


Extracellular pulymeric substance<br />

(EPS) protect from phagocytos<strong>is</strong><br />

<strong>Biofilm</strong><br />

Antibiotics<br />

res<strong>is</strong>tance<br />

res<strong>is</strong>tant to phagocytos<strong>is</strong><br />

Antibiotics<br />

res<strong>is</strong>tance<br />

Extracellular<br />

matrix<br />

protection<br />

8


<strong>Biofilm</strong> res<strong>is</strong>tance mechan<strong>is</strong>ms<br />

9


Strategies of <strong>Biofilm</strong> Control-<br />

1. Prevention <strong>is</strong> better than cure<br />

2. Removing or Killing<br />

Traditional ways<br />

Stop growth - by antimicrobial agents<br />

Block attachment - by changing surface material<br />

Promote detachment -by surfactants<br />

Mechanical removal - by ultrasonic device<br />

Kill - by biocide, chemical agents<br />

Toxicity ?<br />

But some ways cannot be carried out in hospitalized patients…<br />

10


Besides traditional ways…<br />

• Is there any alternative way to<br />

inhibit the bacteria growth in biofilms?<br />

There <strong>is</strong> one way…<br />

11


Photodynamic Therapy (PDT)<br />

Three factors of PDT: Light , PS , Oxygen<br />

Light<br />

Photosensitizer<br />

(excited state)<br />

Excitation<br />

Fluorescence<br />

Photosensitizer<br />

(ground state)<br />

e -<br />

1 O2<br />

3 O2<br />

Type I<br />

ROS<br />

( OH. H 2 O 2 O 2 - )<br />

Type II<br />

singlet oxygen<br />

12<br />

Cellular<br />

toxicity


The difference of PDT effect between<br />

planktonic cells and biofilms<br />

S. aureus planktonic cells S. aureus biofilms<br />

20 μg/ml<br />

MC 540<br />

All-killed<br />

light dose<br />

no MC 540<br />

5 μg/ml<br />

MC 540<br />

10 μg/ml<br />

MC 540<br />

15 μg/ml<br />

MC 540<br />

Photosensitizer: Merocyanine 540 (MC540)<br />

no MC 540<br />

5 μg/ml<br />

13<br />

10 μg/ml<br />

15 μg/ml<br />

20 μg/ml<br />

All-killed<br />

light dose<br />

(Lin, H. Y. et al. 2004)


Extracellur matrix in biofilms<br />

Hindrance of the penetration of light and<br />

the uptake of photosensitizer<br />

drugs<br />

polysaccharide intercellular adhesion (PIA)<br />

extracellular polymeric substance (EPS)<br />

How to solve th<strong>is</strong> problem?<br />

14


Increase the permeability<br />

Metal chelators<br />

EDTA and tetrasodium EDTA (TEDTA)<br />

TEDTA<br />

amine group<br />

( salt form of EDTA, better solubility )<br />

carboxylate group<br />

EDTA<br />

15


How Metal Chelators d<strong>is</strong>persing the<br />

structure of a biofilm?<br />

• The sequestration of divalent cations, such as<br />

Ca 2+ and Mg 2+ , are important for maintaing the<br />

integrity of EPS in the biofilm.<br />

Mg 2+<br />

Ca 2+<br />

Mg2+ Mg2+ Ca2+ Ca2+ Ca2+ TEDTA<br />

16


The purpose of th<strong>is</strong> study<br />

1. To examine the photodynamic effects of TBO on<br />

the viability and structure of staphylococcal<br />

biofilms.<br />

2. To investigate the effect of TEDTA pretreatment<br />

on the efficacy of the photodynamic inactivation of<br />

staphylococcal biofilms.<br />

17


The framework of th<strong>is</strong> study<br />

CFU counting<br />

Survival Fraction<br />

No TEDTA<br />

pretreatment<br />

<strong>Biofilm</strong><br />

formation<br />

Confocal Laser Scanning<br />

Microscopy (CLSM)<br />

TEDTA<br />

pretreatment<br />

Photodynamic therapy with 40 μM TBO<br />

S. aureus LP<br />

S. epidermid<strong>is</strong> 1457<br />

Scanning electron<br />

Microscopy (SEM)<br />

Viability Morphology<br />

Effect of TBO with light dose Effect of TEDTA treatment<br />

18


Materials and Methods<br />

Stapylococcal biofilms<br />

S. aureus LP/ S. epidermid<strong>is</strong> 1457<br />

ROS<br />

T<strong>is</strong>sue<br />

O 2<br />

CFU count (TSA)<br />

+TEDTA<br />

( 1 hour )<br />

640 nm<br />

diode laser<br />

Survival Fraction<br />

Photosensitizer (TBO)<br />

Incubation time: 30 min<br />

CLSM images<br />

SEM images<br />

19


Results<br />

Survival fraction <br />

or<br />

No TEDTA<br />

pretreatment<br />

CFU of (S+ L + )<br />

CFU of (S + L - )<br />

CFU of (TEDTA + S + L + )<br />

CFU of (TEDTA + S - L - )<br />

S - L -<br />

S + L -<br />

S + L +<br />

TEDTA + S - L -<br />

TEDTA + S + L<br />

-<br />

TEDTA + S + L +<br />

S:sensitizer (TBO:40 μM)<br />

L: light dose (100 J/cm 2 )<br />

TEDTA: 20 mM<br />

20<br />

TEDTA<br />

pretreatment<br />

TBO itself do no harm to staphylococcal biofilms


Confocal laser scanning microscopy<br />

(CLSM)<br />

• Use Live/Dead BacLight Bacterial Viability Kits<br />

-Two fluorescent nucleic acid stains:<br />

SYTO9 : green(live)<br />

Propidium iodide(PI): red(dead)<br />

CLSM image<br />

Cross section<br />

21<br />

Cross<br />

section


22<br />

SEM<br />

images<br />

green(live)<br />

red(dead)<br />

CLSM<br />

images<br />

S. epidermid<strong>is</strong><br />

Experiment<br />

conditions<br />

S. aureus<br />

CLSM<br />

images<br />

SEM<br />

images<br />

TEDTA(-)<br />

Dark<br />

TEDTA(-)<br />

TBO(40 μM)<br />

100 J/cm 2<br />

TEDTA(-)<br />

TBO(40 μM)<br />

200 J/cm 2<br />

TEDTA(+)<br />

Dark<br />

TEDTA(+)<br />

TBO(40 μM)<br />

100 J/cm 2


Staphylococcal<br />

Antibiotics Antibiotics treatment<br />

res<strong>is</strong>tance<br />

biofilms<br />

Immune Res<strong>is</strong>tant system to<br />

Phagocytos<strong>is</strong><br />

Mg 2+<br />

Ca 2+<br />

Ca2+ Mg2+ Ca 2+<br />

Ca 2+<br />

Photodynamic inactivation<br />

No Hindrance TEDTA of penetration TEDTA<br />

pretreatment pretreatment<br />

Pretreatment of Metal<br />

chelater<br />

Mg 2+<br />

Photodynamic therapy<br />

Mg 2+<br />

?<br />

Enhance the efficacy of PDT<br />

Ca2+ Mg2+ Mg 2+<br />

Ca 2+<br />

Mg2+ Mg2+ Ca2+ Ca2+ Ca2+ Photodynamic inactivation<br />

Effect of TBO with light dose Effect of TEDTA treatment<br />

The main cause of cell death D<strong>is</strong>perse biofilm structure<br />

23


The End<br />

Thanks for your attention!!<br />

Special thanks to Prof. Huang !<br />

24


Cell-cell communication<br />

• Cells in a biofilm “talk” to each other via<br />

quorum sensing.


Metal Chelator-Tetrasodium EDTA<br />

• TEDTA <strong>is</strong> a novel central venous catheter lock<br />

solution against biofilm.<br />

(Infection Control and Hospital Epidemiology Vol.26 N0.6)<br />

27


Photodynamic therapy (PDT)<br />

S 1*<br />

S 0<br />

Photosensitizer (excited state)<br />

intersystem<br />

crossing<br />

T 1*<br />

3P<br />

Photosensitizer (ground state)<br />

triplet state<br />

singlet oxygen<br />

1 O2<br />

3 O2<br />

28<br />

http://chemgroups.ucdav<strong>is</strong>.edu/~smith/PDT_Research/PDT.html


Photosensitizers used in PDT<br />

Amphiphilic ,<br />

cationic<br />

Lipophilic ,<br />

anionic<br />

29<br />

Hydrophobic– helps penetration in<br />

cellular membrane<br />

Hydrophilic – helps diffusion.<br />

MC 540


Wavelength Absorption of<br />

Photosensitizer<br />

• Best if absorb at longer wavelengths<br />

• Longer wavelength em<strong>is</strong>sions can penetrate<br />

t<strong>is</strong>sue farther.<br />

• Decreases probability of damage to surrounding<br />

t<strong>is</strong>sue.<br />

• Must have enough energy to excite O 2<br />

30


Light source of PDT<br />

• LED (Light-emitting diode):<br />

-coherent<br />

-long useful lifetime<br />

-high photoelectric conversion efficiency<br />

• Laser<br />

-noncoherent<br />

-specific wavelength high intensity<br />

-low divergent effect<br />

31


<strong>Biofilm</strong>-associated infections<br />

32


PDT has better effect on Gram(+)<br />

bacteria due to the cell wall structure<br />

Thick peptidoglycan cell wall integrated by several<br />

lipoteichoic acid forms many holes<br />

Photosensitizers can pass through Gram positive<br />

bacterial cell wall easier.<br />

barrier<br />

33


S. aureus v.s. S. epidermid<strong>is</strong><br />

Staphylococcus aureus Staphylococcal epidermid<strong>is</strong><br />

Culture medium TSB (Tryptic soy broth) TSB (Tryptic soy broth)<br />

Gram-staining Gram(+) Gram(+)<br />

Biochemical<br />

character<strong>is</strong>tics<br />

catalase-positive<br />

coagulase-positive<br />

catalase-positive<br />

coagulase-negative<br />

habitat facultative anaerobe facultative anaerobe<br />

color golden-yellow white

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!