14.07.2013 Views

High-Elevation Prehistoric Land Use in the Central Sierra Nevada ...

High-Elevation Prehistoric Land Use in the Central Sierra Nevada ...

High-Elevation Prehistoric Land Use in the Central Sierra Nevada ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong>-<strong>Elevation</strong> <strong>Prehistoric</strong> <strong>Land</strong> <strong>Use</strong> <strong>in</strong> <strong>the</strong> <strong>Central</strong> <strong>Sierra</strong> <strong>Nevada</strong>,<br />

Yosemite National Park, California<br />

Suzanna Theresa Montague<br />

B.A., Colorado College, Colorado Spr<strong>in</strong>gs, 1982<br />

THESIS<br />

Submitted <strong>in</strong> partial satisfaction of<br />

<strong>the</strong> requirements for <strong>the</strong> degree of<br />

MASTER OF ARTS<br />

<strong>in</strong><br />

ANTHROPOLOGY<br />

at<br />

CALIFORNIA STATE UNIVERSITY, SACRAMENTO<br />

SPRING<br />

2010


Approved by:<br />

<strong>High</strong>-<strong>Elevation</strong> <strong>Prehistoric</strong> <strong>Land</strong> <strong>Use</strong> <strong>in</strong> <strong>the</strong> <strong>Central</strong> <strong>Sierra</strong> <strong>Nevada</strong>,<br />

Yosemite National Park, California<br />

A Thesis<br />

by<br />

Suzanna Theresa Montague<br />

__________________________________, Committee Chair<br />

Mark E. Basgall, Ph.D.<br />

__________________________________, Second Reader<br />

David W. Zeanah, Ph.D.<br />

____________________________<br />

Date<br />

ii


Student: Suzanna Theresa Montague<br />

I certify that this student has met <strong>the</strong> requirements for format conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> University<br />

format manual, and that this <strong>the</strong>sis is suitable for shelv<strong>in</strong>g <strong>in</strong> <strong>the</strong> Library and credit is to<br />

be awarded for <strong>the</strong> <strong>the</strong>sis.<br />

__________________________, ___________________<br />

Michael Delacorte, Ph.D, Graduate Coord<strong>in</strong>ator Date<br />

Department of Anthropology<br />

iii


Abstract<br />

of<br />

<strong>High</strong>-<strong>Elevation</strong> <strong>Prehistoric</strong> <strong>Land</strong> <strong>Use</strong> <strong>in</strong> <strong>the</strong> <strong>Central</strong> <strong>Sierra</strong> <strong>Nevada</strong>,<br />

Yosemite National Park, California<br />

by<br />

Suzanna Theresa Montague<br />

The study <strong>in</strong>vestigated pre-contact land use on <strong>the</strong> western slope of California’s<br />

central <strong>Sierra</strong> <strong>Nevada</strong>, with<strong>in</strong> <strong>the</strong> subalp<strong>in</strong>e and alp<strong>in</strong>e zones of <strong>the</strong> Tuolumne River<br />

watershed, Yosemite National Park. Rely<strong>in</strong>g on exist<strong>in</strong>g data for 373 archaeological sites<br />

and m<strong>in</strong>imal surface materials collected for this project, exam<strong>in</strong>ation of site constituents<br />

and <strong>the</strong>ir presumed functions <strong>in</strong> light of geography and chronology <strong>in</strong>dicated two<br />

dist<strong>in</strong>ctive archaeological patterns. First, limited-use sites—lithic scatters thought to<br />

represent hunt<strong>in</strong>g, travel, or obsidian procurement activities—were most prevalent <strong>in</strong> pre-<br />

1500 B.P. contexts. Second, <strong>in</strong>tensive-use sites, conta<strong>in</strong><strong>in</strong>g features and artifacts believed<br />

to represent a broader range of activities, were most prevalent <strong>in</strong> post-1500 B.P. contexts<br />

and were conf<strong>in</strong>ed to two of <strong>the</strong> trans-<strong>Sierra</strong> corridors. These f<strong>in</strong>d<strong>in</strong>gs are consistent with<br />

high-elevation archaeological patterns previously identified <strong>in</strong> <strong>the</strong> region, and with lower-<br />

elevation cultural developments of <strong>in</strong>creased population, territorial circumscription, and<br />

subsistence <strong>in</strong>tensification <strong>in</strong> <strong>the</strong> late period.<br />

_______________________, Committee Chair<br />

Mark E. Basgall, Ph.D.<br />

_______________________<br />

Date<br />

iv


ACKNOWLEDGMENTS<br />

I count myself lucky to have been a student of Yosemite and California State<br />

University, Sacramento, at <strong>the</strong> same time, a happy circumstance where <strong>the</strong> <strong>in</strong>tellectual<br />

and emotional support of many people broadened my understand<strong>in</strong>g of California<br />

archaeology and deepened my sense of place. At Sacramento, professors Mark Basgall,<br />

David Zeanah, and Michael Delacorte provided critical guidance on this project and<br />

reviewed various versions of <strong>the</strong> draft. Basgall, <strong>in</strong> particular, took <strong>the</strong> time on numerous<br />

occasions to discuss <strong>the</strong> project, comment on early stages of <strong>the</strong> draft, and generally<br />

encourage a broader consideration of regional archaeological issues.<br />

At Yosemite, <strong>the</strong> project could not have been undertaken without <strong>the</strong> support of<br />

National Park Service managers, notably Laura Kirn, Branch Chief of Anthropology and<br />

Archeology, and Dr. Niki Nicholas, Chief of Resources Management and Science. I am<br />

most grateful for Laura’s <strong>in</strong>volvement and her cont<strong>in</strong>u<strong>in</strong>g patience with this project,<br />

which certa<strong>in</strong>ly went longer than anticipated. The larger part of <strong>the</strong> project <strong>in</strong>volved<br />

compilation of data from previous <strong>in</strong>vestigations, and as such, it relied on <strong>the</strong> hard work<br />

of many current and former Yosemite archaeologists, to name a few: Scott R. Jackson,<br />

Paul DePascale, Laura Kirn, Kathleen Hull, Joe Mundy, Peter Gavette, David Curtis, and<br />

Bruce Kahl. Tony Broch<strong>in</strong>i, chairman of <strong>the</strong> American Indian Council of Mariposa<br />

County, also discussed his view of Native American use of <strong>the</strong> Yosemite high country<br />

with me.<br />

Several o<strong>the</strong>r people engaged <strong>in</strong> this endeavor <strong>in</strong> various important ways. Craig<br />

Sk<strong>in</strong>ner, of <strong>the</strong> Northwest Research Obsidian Studies Laboratory, generously carried out<br />

v


obsidian studies at a student price. Dr. Kathleen Hull, professor of anthropology at<br />

University of California, Merced, and James B. Snyder, former Yosemite<br />

Historian/Archivist, provided much appreciated <strong>in</strong>put on <strong>the</strong> project. At school, fellow<br />

student Jennifer Thomas kept me clued <strong>in</strong> to <strong>the</strong> <strong>the</strong>sis process, a th<strong>in</strong>g that is sometimes<br />

difficult to track, much less accomplish, from afar.<br />

F<strong>in</strong>ally, my husband Peter Dev<strong>in</strong>e was, as he always is, <strong>the</strong> most important person<br />

<strong>in</strong>volved <strong>in</strong> this project. He waited up for me on too many occasions to count, he let me<br />

work weekends without guilt, and he carried <strong>the</strong> heavy stuff.<br />

Although many people helped me with this effort, <strong>the</strong> mistakes are all m<strong>in</strong>e.<br />

vi


TABLE OF CONTENTS<br />

Acknowledgments............................................................................................................... v<br />

List of Tables ..................................................................................................................... xi<br />

List of Figures .................................................................................................................. xiii<br />

Chapter<br />

1. INTRODUCTION ......................................................................................................... 1<br />

Thesis Organization ....................................................................................................... 4<br />

2. NATURAL AND CULTURAL SETTING ................................................................... 5<br />

Natural Sett<strong>in</strong>g ............................................................................................................... 5<br />

Geology and Topography .......................................................................................... 5<br />

Vegetation and Fauna ................................................................................................ 8<br />

Climate and Hydrology ........................................................................................... 11<br />

Ethnography ................................................................................................................. 14<br />

Prehistory ..................................................................................................................... 21<br />

Eastern <strong>Sierra</strong> <strong>Nevada</strong> ............................................................................................. 23<br />

Western <strong>Sierra</strong> <strong>Nevada</strong> ............................................................................................ 26<br />

Summary ...................................................................................................................... 31<br />

3. ELABORATION OF THE PROBLEM ...................................................................... 34<br />

Regional <strong>High</strong>-<strong>Elevation</strong> Studies ................................................................................. 34<br />

Great Bas<strong>in</strong> .............................................................................................................. 34<br />

Sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> ........................................................................................... 40<br />

Yosemite Studies ..................................................................................................... 43<br />

vii


Summary ................................................................................................................. 45<br />

Study Problem and Theory .......................................................................................... 47<br />

4. METHODS .................................................................................................................. 51<br />

Description of Exist<strong>in</strong>g Data Sets ................................................................................ 51<br />

Surveyed Areas ....................................................................................................... 52<br />

Site and Isolate Data ................................................................................................ 55<br />

Excavations ............................................................................................................. 56<br />

Chronological Data ................................................................................................. 56<br />

Sampl<strong>in</strong>g and Field Methods ....................................................................................... 58<br />

Laboratory Methods ..................................................................................................... 61<br />

Analytical Studies ........................................................................................................ 63<br />

Conversion of Obsidian Hydration Data ................................................................. 69<br />

Limitations and Assumptions ....................................................................................... 74<br />

5. DESCRIPTION OF CULTURAL MATERIAL ......................................................... 76<br />

Thesis Collections ........................................................................................................ 76<br />

Projectile Po<strong>in</strong>ts ....................................................................................................... 76<br />

Desert Series ......................................................................................................... 78<br />

Rosegate Series ..................................................................................................... 79<br />

Elko Series ............................................................................................................ 80<br />

Contract<strong>in</strong>g Stem Series ........................................................................................ 80<br />

Concave Base Series ............................................................................................. 81<br />

P<strong>in</strong>to Series ........................................................................................................... 82<br />

viii


Unclassifiable Fragments ...................................................................................... 85<br />

Edge-modified Pieces .............................................................................................. 85<br />

Debitage .................................................................................................................. 86<br />

Thesis Observations ..................................................................................................... 86<br />

Summary and Distribution of Study Area Materials.................................................... 88<br />

Flaked Stone ............................................................................................................ 88<br />

Flaked Stone Tool Caches ....................................................................................... 93<br />

Bedrock Mortars and Pestles ................................................................................... 95<br />

Portable Ground Stone and Battered Stone ........................................................... 103<br />

Structural Rema<strong>in</strong>s ................................................................................................ 103<br />

Uncommon Features ............................................................................................. 109<br />

Uncommon Artifacts ............................................................................................. 110<br />

Faunal Rema<strong>in</strong>s ..................................................................................................... 110<br />

Summary ............................................................................................................... 110<br />

6. INTENSIVE- AND LIMITED-USE SITES ANALYSIS ......................................... 112<br />

Chronology and Function ........................................................................................... 112<br />

Spatial Patterns ........................................................................................................... 120<br />

Summary .................................................................................................................... 130<br />

7. SITE VARIABILITY AND CRITICAL ASSESSMENT ......................................... 131<br />

Variability and Model Assessment ............................................................................ 131<br />

Chronological Assessment of Bedrock Mortars ........................................................ 137<br />

Summary .................................................................................................................... 139<br />

ix


8. SUMMARY AND CONCLUSIONS ........................................................................ 141<br />

Project Summary ........................................................................................................ 141<br />

Conclusions ................................................................................................................ 146<br />

Directions for Fur<strong>the</strong>r Research ................................................................................. 150<br />

Appendix A: Data Sources.............................................................................................. 152<br />

A-1. Major Archaeological Projects with<strong>in</strong> <strong>the</strong> Study Area. ................................ 153<br />

A-2. Summary of Site Attributes. .......................................................................... 155<br />

A-3. Summary of Chronological Data by Site. ..................................................... 168<br />

A-4. Calibrated Dates for Obsidian Hydration Data. ............................................ 182<br />

A-5. Summary of Bedrock Mortar Data. ............................................................... 191<br />

Appendix B: Obsidian Studies Report ............................................................................ 193<br />

Appendix C: Artifact Catalog ......................................................................................... 220<br />

References Cited ............................................................................................................. 226<br />

x


LIST OF TABLES<br />

Table 1. Attributes of Passes Lead<strong>in</strong>g <strong>in</strong>to <strong>the</strong> Study Area. ............................................... 8<br />

Table 2. <strong>Prehistoric</strong> Cultural Chronology and Temporal Markers. .................................. 22<br />

Table 3. Survey Data by Geographic Area. ...................................................................... 54<br />

Table 4. Survey and Site Data by <strong>Elevation</strong> Zone. ........................................................... 54<br />

Table 5. Summary of Fieldwork and Collected Material. ................................................ 59<br />

Table 6. Summary of Obsidian Studies by Site. ............................................................... 64<br />

Table 7. Results of Obsidian Visual Reliability Assessment. ........................................... 67<br />

Table 8. Chronological Data Sample by Geographic Area and <strong>Use</strong> Type. ...................... 68<br />

Table 9. Effective Hydration Temperature Data for<br />

Study Area Sites (after Mundy 1993). ...................................................................... 70<br />

Table 10. Selected Projectile Po<strong>in</strong>t Obsidian Hydration Ranges by Obsidian Source. .... 73<br />

Table 11. Metric Attributes and Obsidian Studies Data for<br />

Classifiable Projectile Po<strong>in</strong>ts. ................................................................................... 77<br />

Table 12. Previously Unrecorded Cultural Material Observed at Thesis Sites. ............... 87<br />

Table 13. Frequency of Sites by Cultural Material Class, Geography, and <strong>Elevation</strong>. .... 89<br />

Table 14. Frequency of Sites by Debitage Density, Geography, and <strong>Elevation</strong>. .............. 91<br />

Table 15. Flaked Stone Tool Cache Data (after Montague 2008). ................................... 94<br />

Table 16. Bedrock Mortar and Pestle Data by Geography and <strong>Elevation</strong>. ....................... 96<br />

Table 17. Mortar Data for Selected Yosemite Areas with<strong>in</strong><br />

<strong>the</strong> Western Mono Model. ...................................................................................... 100<br />

xi


Table 18. Temporal Data for Structural Features and Proximal<br />

Surface Collection Units. ........................................................................................ 107<br />

Table 19. Obsidian Hydration Results Converted to Calendrical<br />

Dates for Thesis Sites.............................................................................................. 114<br />

Table 20. Frequency of Pre- and Post-1500 B.P. Dates for<br />

Intensive- and Limited-<strong>Use</strong> Sites ............................................................................ 115<br />

Table 21. Chronological Data for Study Area Sites. ...................................................... 117<br />

Table 22. Frequencies of Limited-and Intensive-<strong>Use</strong> Sites for<br />

Pre- and Post-1500 B.P. Materials .......................................................................... 118<br />

Table 23. Selected Temporally Sensitive Projectile Po<strong>in</strong>ts<br />

at Intensive- and Limited-<strong>Use</strong> Sites with<strong>in</strong> <strong>the</strong> Study Area .................................... 119<br />

Table 24. Survey, Site Density, and Isolate Data by Geographic Location. ................... 122<br />

Table 25. Site and Isolate Frequencies by Geographic Location and Time Period. ....... 126<br />

Table 26. Co-occurrence of Site Attributes and Chronological Data. ............................ 132<br />

Table 27. Site Types by Debitage Density, Bifacial Tool<br />

Occurrence, and Chronology. ................................................................................. 136<br />

xii


LIST OF FIGURES<br />

Figure 1. Location of study area with<strong>in</strong> Yosemite National Park. ...................................... 3<br />

Figure 2. <strong>Elevation</strong> zones and surveyed areas with<strong>in</strong> <strong>the</strong> study area. ................................. 6<br />

Figure 3. Effective hydration temperature plotted aga<strong>in</strong>st elevation ................................ 71<br />

Figure 4. Scanned images of projectile po<strong>in</strong>ts: a-c, Cottonwood Triangular; d-k, Desert<br />

Side-notched; l, small arrow po<strong>in</strong>t, Desert Side-notched or Rose Spr<strong>in</strong>g. ............... 83<br />

Figure 5. Scanned images of projectile po<strong>in</strong>ts: a, Rose Spr<strong>in</strong>g; b, Rose Spr<strong>in</strong>g Corner-<br />

notched; c-e, Elko Corner-notched; f, Elko Eared; g, <strong>Sierra</strong> Contract<strong>in</strong>g Stem; h,<br />

P<strong>in</strong>to series. ............................................................................................................... 84<br />

Figure 6. Scanned images of projectile po<strong>in</strong>ts: a, Humboldt Concave Base; b, <strong>Sierra</strong><br />

Concave Base; c-d, small, unidentifiable arrow po<strong>in</strong>t fragments. ............................ 85<br />

Figure 7. Map show<strong>in</strong>g bedrock mill<strong>in</strong>g surface distributions by site. ............................. 97<br />

Figure 8. Histogram of number of mill<strong>in</strong>g surfaces per site. ............................................ 98<br />

Figure 9. Histogram of mortar depths. ............................................................................ 100<br />

Figure 10. Sketch map of Feature 6, rock r<strong>in</strong>g, CA-TUO-3783. ................................... 105<br />

Figure 11. Converted obsidian hydration values for sampled rock r<strong>in</strong>g features. .......... 107<br />

Figure 12. Photograph of talus pit at P-55-5164, Virg<strong>in</strong>ia Canyon (DC-07M-68). ........ 109<br />

Figure 13. Frequency of calendrical dates for <strong>in</strong>tensive- and limited-use sites. ............. 115<br />

Figure 14. Map show<strong>in</strong>g distribution of <strong>in</strong>tensive- and limited-use sites. ...................... 123<br />

Figure 15. Distribution of sites with post-1500 B.P. and pre-1500 B.P. materials......... 127<br />

xiii


Chapter 1<br />

INTRODUCTION<br />

The <strong>Sierra</strong> <strong>Nevada</strong> mounta<strong>in</strong> range comprises a relatively unbroken, 400-mile-<br />

long physiographic feature, atta<strong>in</strong><strong>in</strong>g elevations over 14,000 ft and dom<strong>in</strong>at<strong>in</strong>g <strong>the</strong><br />

landscape of east-central California. The north-south trend<strong>in</strong>g range forms a dist<strong>in</strong>ct<br />

climatic and biological boundary between <strong>the</strong> Great Bas<strong>in</strong> and California. It is also<br />

considered a boundary, albeit a porous and dynamic one, between two culture areas. In<br />

<strong>the</strong> central <strong>Sierra</strong> <strong>Nevada</strong>, Paiute groups occupied lowland areas to <strong>the</strong> east at <strong>the</strong> time of<br />

Euroamerican contact, while Miwok people lived <strong>in</strong> lowlands to <strong>the</strong> west.<br />

The higher elevations of <strong>the</strong> central <strong>Sierra</strong>—<strong>the</strong> subalp<strong>in</strong>e and alp<strong>in</strong>e zones—have<br />

traditionally received little attention <strong>in</strong> past ethnographic and archaeological studies.<br />

Ethnographic records (e.g., Barrett and Gifford 1933; Steward 1933, 1938) for eastern<br />

and western groups rarely mention high-elevation land use. Archaeological conceptions<br />

have been ra<strong>the</strong>r synchronic <strong>in</strong> nature, view<strong>in</strong>g higher elevations through time as<br />

marg<strong>in</strong>al use zones, traversed seasonally by prehistoric peoples for <strong>the</strong> purposes of<br />

hunt<strong>in</strong>g, travel, and trade, which may, <strong>in</strong> fact, be <strong>the</strong> case, but it rema<strong>in</strong>s to be adequately<br />

demonstrated with empirical data.<br />

In <strong>the</strong> past few decades, hunter-ga<strong>the</strong>rer archaeological studies <strong>in</strong> <strong>the</strong><br />

Intermounta<strong>in</strong> West have <strong>in</strong>creas<strong>in</strong>gly focused on prehistoric land use <strong>in</strong> upland<br />

environments and how it relates to conditions <strong>in</strong> adjacent lowland contexts. In <strong>the</strong><br />

western Great Bas<strong>in</strong> and sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong>, substantial changes <strong>in</strong> land use through<br />

time are apparent. Research <strong>in</strong> <strong>the</strong> White Mounta<strong>in</strong>s (Bett<strong>in</strong>ger 1991) of eastern<br />

California has revealed strik<strong>in</strong>g changes <strong>in</strong> alp<strong>in</strong>e land use strategies at about 1350 B.P.,<br />

1


eflect<strong>in</strong>g <strong>the</strong> large-scale changes thought to characterize <strong>the</strong> late prehistoric western<br />

Great Bas<strong>in</strong> (Bett<strong>in</strong>ger 1999a). Bett<strong>in</strong>ger (1991) observed that high-altitude villages,<br />

<strong>in</strong>dications of longer-term residential occupation and subsistence <strong>in</strong>tensification, replaced<br />

a less <strong>in</strong>tensive previllage pattern primarily related to hunt<strong>in</strong>g. These changes, he argued,<br />

likely reflect responses to population growth and may be l<strong>in</strong>ked with <strong>the</strong> spread of<br />

Numic-speak<strong>in</strong>g peoples. Thomas (1982, 1994) documented a similar shift <strong>in</strong><br />

subsistence-settlement <strong>in</strong> <strong>the</strong> Toquima Range of central <strong>Nevada</strong>, but he argued that <strong>the</strong><br />

transition occurred earlier than <strong>in</strong> <strong>the</strong> White Mounta<strong>in</strong>s and that it is not a consequence of<br />

<strong>the</strong> Numic migration. The archaeological record of Taboose Pass <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong><br />

<strong>Nevada</strong> demonstrates this same pattern (Stevens 2002), although <strong>the</strong> shifts are not as<br />

profound as <strong>in</strong> <strong>the</strong> o<strong>the</strong>r mounta<strong>in</strong> ranges.<br />

Given <strong>the</strong> emerg<strong>in</strong>g picture of land use changes <strong>in</strong> <strong>the</strong> larger region, <strong>the</strong> current<br />

study <strong>in</strong>vestigated high-elevation land use on <strong>the</strong> western slope of <strong>the</strong> central <strong>Sierra</strong><br />

<strong>Nevada</strong>, <strong>in</strong> <strong>the</strong> high country of Yosemite National Park (Figure 1). Data generated<br />

primarily through surface surveys conducted over <strong>the</strong> past 50 years, supplemented by<br />

surface collections and chronological studies undertaken as part of <strong>the</strong> <strong>the</strong>sis, allowed for<br />

a prelim<strong>in</strong>ary, broad assessment of subalp<strong>in</strong>e and alp<strong>in</strong>e land use and possible changes<br />

through time. The study area comprised approximately 105,000 acres of <strong>the</strong> upper<br />

watershed of <strong>the</strong> Tuolumne River, <strong>in</strong> which 9800 acres had been surveyed and 373<br />

prehistoric archaeological sites had been documented. S<strong>in</strong>ce <strong>the</strong> current study relied<br />

ma<strong>in</strong>ly on data ga<strong>the</strong>red with<strong>in</strong> <strong>the</strong> historic preservation compliance framework, a second<br />

objective was to assess whe<strong>the</strong>r fur<strong>the</strong>r study along <strong>the</strong>se l<strong>in</strong>es is warranted and to<br />

provide recommendations for how that would be accomplished at Yosemite.<br />

2


Figure 1. Location of study area with<strong>in</strong> Yosemite National Park.<br />

3


THESIS ORGANIZATION<br />

The body of <strong>the</strong> <strong>the</strong>sis <strong>in</strong>cludes eight chapters, follow<strong>in</strong>g a general framework of<br />

context, methods, results, discussion, and recommendations. Chapter 2 describes <strong>the</strong><br />

study background, summariz<strong>in</strong>g <strong>the</strong> natural sett<strong>in</strong>g of <strong>the</strong> study area, ethnography, and<br />

prehistory. Chapter 3 presents additional detail on regional high-elevation archaeological<br />

studies and elaborates <strong>the</strong> problem. The study methodology, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> field,<br />

laboratory, and analytical methods used to address <strong>the</strong> problem, is outl<strong>in</strong>ed <strong>in</strong> Chapter 4.<br />

Chapter 5 describes <strong>the</strong> artifacts recovered as part of <strong>the</strong> current study and summarizes<br />

<strong>the</strong> nature and distributions of cultural material documented for <strong>the</strong> project area as a<br />

whole. The results of data analysis are presented <strong>in</strong> Chapter 6, while Chapter 7 provides a<br />

critical assessment of <strong>the</strong> study model and a key chronological assumption of <strong>the</strong> project.<br />

F<strong>in</strong>ally, Chapter 8 entails a discussion of <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs and recommendations for fur<strong>the</strong>r<br />

work. The appendices conta<strong>in</strong> data tables provid<strong>in</strong>g <strong>the</strong> bases for analysis (Appendix A),<br />

<strong>the</strong> results of specialized obsidian studies conducted by a consult<strong>in</strong>g laboratory<br />

(Appendix B), and <strong>the</strong> catalog of collected artifacts (Appendix C).<br />

4


Chapter 2<br />

NATURAL AND CULTURAL SETTING<br />

This chapter provides a framework for <strong>the</strong> present study, summariz<strong>in</strong>g relevant<br />

<strong>in</strong>formation about <strong>the</strong> natural sett<strong>in</strong>g, ethnography, and prehistory. The study area<br />

encompasses about 42,500 ha (105,000 acres) of land, between approximately 8500 ft<br />

elevation on <strong>the</strong> west and 12,000 ft near <strong>the</strong> crest of <strong>the</strong> <strong>Sierra</strong> (Figure 2). Nearly all of<br />

<strong>the</strong> study area is located with<strong>in</strong> <strong>the</strong> upper Tuolumne River watershed. The general area<br />

was selected because it is <strong>the</strong> most comprehensively studied location with<strong>in</strong> Yosemite’s<br />

higher elevations. It also represents an east-west cultural transition zone between <strong>Sierra</strong><br />

Miwok and Paiute groups <strong>in</strong> <strong>the</strong> contact era, a north-south transition between Sou<strong>the</strong>rn<br />

and <strong>Central</strong> <strong>Sierra</strong> Miwok, and a north-south boundary between predom<strong>in</strong>ant<br />

distributions of Casa Diablo and Bodie Hill obsidians <strong>in</strong> <strong>the</strong> archaeological record. By<br />

virtue of its location <strong>in</strong> <strong>the</strong> central <strong>Sierra</strong>, it is a dist<strong>in</strong>ctive biological, geological, and<br />

climatic border between <strong>the</strong> well-watered, obsidian-poor west and <strong>the</strong> relatively arid,<br />

obsidian-rich east.<br />

NATURAL SETTING<br />

Geology and Topography<br />

Granitic formations of <strong>the</strong> <strong>Sierra</strong> batholith dom<strong>in</strong>ate <strong>the</strong> regional geology,<br />

although metamorphic rocks are present <strong>in</strong> <strong>the</strong> western foothills and along <strong>the</strong> crest<br />

(Huber 1987). Volcanic rocks of late Cenozoic age occur near <strong>the</strong> project area (e.g., Little<br />

Devil’s Postpile), but <strong>the</strong>se were apparently not utilized prehistorically. Instead, obsidian<br />

from <strong>the</strong> eastern <strong>Sierra</strong> comprised <strong>the</strong> primary source material for flaked stone tools. In<br />

contrast to <strong>the</strong> absence of flaked stone source material, granitic outcrops, boulders, and<br />

5


Figure 2. <strong>Elevation</strong> zones and surveyed areas with<strong>in</strong> <strong>the</strong> study area.<br />

6


cobbles for <strong>the</strong> manufacture of mill<strong>in</strong>g equipment are locally abundant throughout <strong>the</strong><br />

study area.<br />

The modern landscape is one of rugged and steep mounta<strong>in</strong> peaks, characterized<br />

<strong>in</strong> some areas by deep, forested river canyons and <strong>in</strong> o<strong>the</strong>rs by low gradient streams and<br />

expansive, open meadow systems. Unlike climatic and biotic factors, <strong>the</strong> topography of<br />

<strong>the</strong> high country is an unchang<strong>in</strong>g variable, one that has always <strong>in</strong>fluenced human<br />

activity. The overall structure of <strong>the</strong> landscape reflects <strong>the</strong> uplift and tilt<strong>in</strong>g of <strong>the</strong> <strong>Sierra</strong>n<br />

batholith to <strong>the</strong> southwest; a long and gradual <strong>in</strong>cl<strong>in</strong>e to <strong>the</strong> crest characterizes <strong>the</strong><br />

western slope, while <strong>the</strong> eastern escarpment is short and steep. To <strong>the</strong> east, a distance of<br />

about 15 km <strong>in</strong> a straight l<strong>in</strong>e separates Tioga Pass at 10,000 ft and Mono Lake at 6400 ft<br />

elevation. To <strong>the</strong> west, a distance of about 50 km is required to reach <strong>the</strong> same elevation.<br />

Stream erosion and at least three episodes of glaciation, <strong>the</strong> last reced<strong>in</strong>g from <strong>the</strong> crest<br />

by 12,500 B.P., have fur<strong>the</strong>r sculpted <strong>the</strong> terra<strong>in</strong>, creat<strong>in</strong>g <strong>the</strong> l<strong>in</strong>ear, U-shaped canyons,<br />

lake bas<strong>in</strong>s, and glacial till deposits of <strong>the</strong> study area.<br />

The major dra<strong>in</strong>age <strong>in</strong> <strong>the</strong> study area is <strong>the</strong> Tuolumne River, formed by its ma<strong>in</strong><br />

tributaries, <strong>the</strong> Lyell and Dana forks, and many perennial streams and lakes. Several of<br />

<strong>the</strong>se streams arise at <strong>the</strong> crest, creat<strong>in</strong>g natural corridors for travel <strong>in</strong> both prehistoric and<br />

modern times. From north to south, and rang<strong>in</strong>g <strong>in</strong> elevation from 10,000 to just over<br />

11,000 ft, <strong>the</strong> passes <strong>in</strong> <strong>the</strong> study area lead from <strong>the</strong> canyons of <strong>the</strong> western slope <strong>in</strong>to<br />

Bridgeport Valley, Mono Bas<strong>in</strong>, and Long Valley on <strong>the</strong> eastern slope (Table 1). This<br />

portion of <strong>the</strong> eastern <strong>Sierra</strong> escarpment lies between 6500 and 7500 ft <strong>in</strong> elevation.<br />

Donohue Pass to <strong>the</strong> south also affords relatively easy access to <strong>the</strong> Middle Fork of <strong>the</strong><br />

San Joaqu<strong>in</strong> River, a major dra<strong>in</strong>age of <strong>the</strong> western slope. With <strong>the</strong> exception of<br />

7


Matterhorn Canyon, all of <strong>the</strong> routes provide direct access to <strong>the</strong> east side. Rafferty<br />

Creek, as well as several smaller dra<strong>in</strong>ages and most of <strong>the</strong> lakes <strong>in</strong> <strong>the</strong> study area, do not<br />

provide direct access to trans-<strong>Sierra</strong> passes.<br />

Table 1. Attributes of Passes Lead<strong>in</strong>g <strong>in</strong>to <strong>the</strong> Study Area.<br />

Pass Elev Orientation Western Approach Eastern Approach Eastern Geographic<br />

(ft)<br />

Area<br />

Mule* 10,450 E/W Slide Canyon Rob<strong>in</strong>son Creek Bridgeport Valley<br />

Unnamed 10,000 N/S Slide Canyon Little Slide Bridgeport Valley<br />

pass*<br />

Canyon<br />

Burro 10,650 N/S Matterhorn upper end of Slide Bridgeport Valley<br />

Canyon<br />

Canyon (west<br />

side)<br />

Unnamed<br />

pass<br />

10,700 N/S Spiller Canyon Horse Creek Bridgeport Valley<br />

Virg<strong>in</strong>ia 10,500 N/S Virg<strong>in</strong>ia Canyon Gl<strong>in</strong>es Canyon to<br />

W. Fork Green<br />

Creek<br />

Bridgeport Valley<br />

Summit 10,200 E/W Virg<strong>in</strong>ia Canyon W. Fork Green Bridgeport Valley or<br />

Creek or Virg<strong>in</strong>ia<br />

Creek<br />

Mono Bas<strong>in</strong><br />

Tioga 9,950 N/S Dana Fork Lee V<strong>in</strong><strong>in</strong>g Creek<br />

or Lundy Canyon<br />

Mono Bas<strong>in</strong><br />

Mono 10,600 E/W Parker Pass Creek Bloody Canyon Mono Bas<strong>in</strong><br />

Parker 11,100 E/W Parker Pass Creek Parker Creek Mono Bas<strong>in</strong><br />

Donohue 11,050 E/W Lyell Canyon Rush Creek or Mono Bas<strong>in</strong> or Long<br />

Middle Fork San Valley or San<br />

Joaqu<strong>in</strong> River Joaqu<strong>in</strong> River<br />

*Provide routes <strong>in</strong>to Matterhorn Canyon via Slide Canyon.<br />

Vegetation and Fauna<br />

Subalp<strong>in</strong>e forests, montane meadows, alp<strong>in</strong>e vegetation communities, and vast<br />

amounts of bare rock characterize <strong>the</strong> study area. Between 8000 and 10,600 ft, <strong>the</strong><br />

subalp<strong>in</strong>e zone commonly <strong>in</strong>cludes lodgepole p<strong>in</strong>e (P<strong>in</strong>us contorta), whitebark p<strong>in</strong>e<br />

(P<strong>in</strong>us albicaulis), and mounta<strong>in</strong> hemlock (Tsuga mertensiana), with locally important<br />

associations of western white p<strong>in</strong>e (P<strong>in</strong>us monticola) and <strong>Sierra</strong> juniper (Juniperus<br />

occidentalis) (Whitney 1979). Extensive meadows of grasses and sedges (Carex sp.)<br />

occur <strong>in</strong> glacially scoured canyons and bas<strong>in</strong>s <strong>in</strong> <strong>the</strong> subalp<strong>in</strong>e zone. Tuolumne Meadows<br />

8


is <strong>the</strong> largest of <strong>the</strong>se, while Dana Meadows and Lyell Canyon conta<strong>in</strong> extensive meadow<br />

systems as well. In <strong>the</strong>se meadows r<strong>in</strong>ged by subalp<strong>in</strong>e forests, low glacial mora<strong>in</strong>es or<br />

bedrock outcrops on slightly higher and drier ground are often <strong>the</strong> locations of<br />

archaeological sites. Above timberl<strong>in</strong>e at about 10,600 ft, sod-form<strong>in</strong>g sedges and grasses<br />

<strong>in</strong> meadows, along with bunchgrasses and cushions plants <strong>in</strong> alp<strong>in</strong>e rock communities,<br />

characterize <strong>the</strong> alp<strong>in</strong>e vegetation (Whitney 1979:442).<br />

Animals <strong>in</strong> <strong>the</strong>se zones most often mentioned of economic importance to pre-<br />

contact peoples are mule deer and bighorn sheep, although black bear, marmot, and a<br />

variety of small rodents reside <strong>the</strong>re. Though not known as a mammal of economic<br />

importance, it is worth mention<strong>in</strong>g that grizzly bears roamed <strong>the</strong> <strong>High</strong> <strong>Sierra</strong> as well.<br />

Gr<strong>in</strong>nell and Storer (1924:70) recounted anecdotes of grizzlies rang<strong>in</strong>g up to 8500 ft <strong>in</strong><br />

<strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> park, while Bridgeport Tom told <strong>the</strong> story of Chief Towa, a Mono<br />

Lake Paiute Indian killed by a grizzly bear en route to Yosemite Valley, <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of<br />

Tuolumne Meadows and Tenaya Lake (Hulse 1935a).<br />

In general, subsistence and resource procurement are not well understood <strong>in</strong> <strong>the</strong><br />

subalp<strong>in</strong>e and alp<strong>in</strong>e zones due to poor preservation of floral and faunal rema<strong>in</strong>s <strong>in</strong><br />

archaeological contexts and lack of detail <strong>in</strong> ethnographic accounts. Some researchers<br />

(Rosenthal 2008; Todt and Hannon 1998) have addressed subsistence on <strong>the</strong> scale of<br />

settlement systems through <strong>the</strong> <strong>in</strong>tegration of current biogeographic data sets and<br />

ethnographic <strong>in</strong>formation. These approaches identify <strong>the</strong> most highly ranked resources <strong>in</strong><br />

<strong>the</strong> ethnographic record that may have <strong>in</strong>fluenced food procurement strategies, and look<br />

to environmental data to def<strong>in</strong>e abundance and seasonality. An underly<strong>in</strong>g premise is<br />

based <strong>in</strong> optimal forag<strong>in</strong>g <strong>the</strong>ory; that is, people make decisions about food procurement<br />

9


with <strong>the</strong> objective of maximiz<strong>in</strong>g <strong>the</strong>ir caloric energetic return (Rosenthal 2008:112).<br />

Most relevant to this work is <strong>the</strong> model created by Rosenthal (2008) for <strong>the</strong> western slope<br />

of <strong>the</strong> <strong>Sierra</strong> between <strong>the</strong> Tuolumne River on <strong>the</strong> south and <strong>the</strong> Mokelumne River on <strong>the</strong><br />

north. The author considers <strong>the</strong> different subsistence pursuits of men and women, <strong>in</strong><br />

terms of animal and plant resources, respectively, rely<strong>in</strong>g on Barrett and Gifford (1933)<br />

for <strong>the</strong> identification of plant foods.<br />

In Rosenthal’s analysis, <strong>the</strong> pattern of plant food productivity suggests that <strong>the</strong><br />

Lower Montane forest (3000-7000 ft) may have been <strong>the</strong> preferred place to live <strong>in</strong> <strong>the</strong><br />

summer because it is <strong>the</strong> most productive for fruits and seeds at that time. The Upper<br />

Montane Forest and Alp<strong>in</strong>e areas would have been most productive for animal foods<br />

from late spr<strong>in</strong>g to autumn because of <strong>the</strong> presence of deer, bighorn sheep, jackrabbits,<br />

and marmots. On <strong>the</strong> western slope, resident deer herds rema<strong>in</strong> <strong>in</strong> <strong>the</strong> western foothills,<br />

while migratory herds move to <strong>the</strong> higher elevations each summer. Migratory deer reach<br />

elevations above about 6000 ft by mid to late May and return to lower elevations by mid-<br />

October (Woolfenden 1988). At <strong>the</strong> same time, bighorn sheep migrate from <strong>the</strong>ir w<strong>in</strong>ter<br />

range along <strong>the</strong> eastern escarpment to <strong>the</strong> crest. The migratory patterns of <strong>the</strong>se two<br />

large-bodied mammals suggest <strong>the</strong> high country was an exceptional draw for hunt<strong>in</strong>g<br />

compared to <strong>the</strong> animal resources available <strong>in</strong> <strong>the</strong> lower elevations dur<strong>in</strong>g that season.<br />

The two species prefer different summer habitats; meadows are important deer forage and<br />

fawn<strong>in</strong>g territories (Woolfenden 1988), while <strong>the</strong> open, steep, craggy areas provide<br />

important escape routes for bighorn sheep.<br />

The Subalp<strong>in</strong>e Forest conta<strong>in</strong>s <strong>the</strong> fewest plant foods (Rosenthal 2008:114), an<br />

area also thought to be little used for plant ga<strong>the</strong>r<strong>in</strong>g ethnographically (Anderson<br />

10


1988:77–78). The abundance of limited-use sites <strong>in</strong> <strong>the</strong> study area supports <strong>the</strong>se<br />

assertions, but <strong>the</strong> presence of late-period bedrock mortars and domestic dwell<strong>in</strong>gs with<br />

mill<strong>in</strong>g stones <strong>in</strong> <strong>the</strong> study area suggests that plant resource use should be fur<strong>the</strong>r<br />

considered <strong>in</strong> archaeological studies.<br />

Climate and Hydrology<br />

Climate varies substantially between <strong>the</strong> eastern and western slopes due to <strong>the</strong><br />

orographic precipitation pattern caused by <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong>. A moist Mediterranean<br />

climate characterizes <strong>the</strong> lower elevations of <strong>the</strong> western slope, while a more xeric<br />

Cont<strong>in</strong>ental climate prevails <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong>. The subalp<strong>in</strong>e zone has a boreal climate<br />

of short, cool, and moist summers and long, cold, wet w<strong>in</strong>ters. Snowfall is abundant <strong>in</strong><br />

w<strong>in</strong>ter months, accumulat<strong>in</strong>g 1–3 m on <strong>the</strong> ground between November and June (Botti<br />

and Sydoriak 2001:xx). Annual precipitation varies between 75 and 120 cm. The average<br />

m<strong>in</strong>imum and maximum temperatures for Tuolumne Meadows at 8600 ft elevation <strong>in</strong><br />

July are 2.6° and 21.7°C, while those <strong>in</strong> January are -13° and 5.2°C.<br />

These snowfall and temperature data, along with ethnographic accounts,<br />

emphasize <strong>the</strong> seasonal availability of <strong>the</strong> higher elevations. Seasonality imposes a<br />

dist<strong>in</strong>ct limitation on settlement <strong>in</strong> <strong>the</strong> <strong>Sierra</strong>, constra<strong>in</strong><strong>in</strong>g w<strong>in</strong>ter occupation to below<br />

about 4000 ft <strong>in</strong> elevation <strong>in</strong> <strong>the</strong> west due to heavy w<strong>in</strong>ter snows and to <strong>the</strong> bas<strong>in</strong>s along<br />

<strong>the</strong> eastern escarpment. The higher elevations would have been accessible for about four<br />

to six months of <strong>the</strong> year, generally between June and October, depend<strong>in</strong>g on wea<strong>the</strong>r.<br />

Past climate and vegetation regimes <strong>in</strong> Yosemite and <strong>the</strong> surround<strong>in</strong>g region have<br />

been documented through various pollen-stratigraphic and tree-r<strong>in</strong>g studies, summarized<br />

most recently by Spauld<strong>in</strong>g (1999). The early Holocene witnessed drier and colder<br />

11


conditions than present, with aridity persist<strong>in</strong>g <strong>in</strong>to <strong>the</strong> middle Holocene. At Tioga Pass<br />

Pond <strong>in</strong> <strong>the</strong> study area, <strong>the</strong> pollen of sagebrush, grasses, sedges, and o<strong>the</strong>r herbaceous<br />

plants are most abundant at this time. The onset of cooler and wetter conditions at higher<br />

elevations began after 6000 B.P., result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> conifers and ris<strong>in</strong>g lake levels<br />

and water tables. Between ca. 4500 and 2500 B.P., forest stands failed and meadows<br />

developed at many locations <strong>in</strong> valley bottoms. Modern subalp<strong>in</strong>e forests developed after<br />

2500 B.P. with <strong>the</strong> onset of cooler conditions.<br />

Although <strong>the</strong> overall trend <strong>in</strong> <strong>the</strong> past 5000 years has been toward cooler and<br />

wetter conditions, studies <strong>in</strong>dicate a few relatively recent and notable fluctuations <strong>in</strong> <strong>the</strong><br />

paleoenvironmental record. First, two periods of persistent drought, known as <strong>the</strong><br />

Medieval Climatic Anomaly (MCA), prevailed from A.D. 892–1112 and from A.D.<br />

1209–1350 (St<strong>in</strong>e 1994). Remnant tree stumps well below <strong>the</strong> present water level <strong>in</strong><br />

Tenaya Lake, just east of <strong>the</strong> project area, are a testament to <strong>the</strong>se episodes of drought <strong>in</strong><br />

Yosemite (St<strong>in</strong>e 1994). A second important fluctuation is <strong>the</strong> Little Ice Age, between<br />

A.D. 1450 and 1850, when temperatures were ca. 0.5°C below present levels and modern<br />

glaciers reached <strong>the</strong>ir maxima. F<strong>in</strong>ally, volcanic activity <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong> dur<strong>in</strong>g <strong>the</strong><br />

middle and late Holocene has resulted <strong>in</strong> <strong>the</strong> deposition of several tephras along <strong>the</strong><br />

western slope.<br />

Researchers have exam<strong>in</strong>ed <strong>the</strong> effects of environmental conditions on human<br />

settlement <strong>in</strong> <strong>the</strong> region (e.g., Hall 1983; Jones et al. 1999; Moratto 1999; Spauld<strong>in</strong>g<br />

1999), but what <strong>the</strong> key subsistence resources were and how <strong>the</strong>y may have been affected<br />

by environmental change rema<strong>in</strong>s uncerta<strong>in</strong>. It is clear that treel<strong>in</strong>es rose and fell <strong>in</strong><br />

elevation dur<strong>in</strong>g <strong>the</strong>se periods, but determ<strong>in</strong><strong>in</strong>g <strong>the</strong> composition and extent of past biotic<br />

12


communities, and <strong>the</strong> distribution of culturally important resources, is difficult (Morgan<br />

2006:42). In a syn<strong>the</strong>sis of <strong>Sierra</strong>n paleoenvironmental and model<strong>in</strong>g data ma<strong>in</strong>ly focused<br />

on <strong>the</strong> low and middle elevations of <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong>, Morgan (2006) proposed that<br />

water would have been a limit<strong>in</strong>g resource dur<strong>in</strong>g <strong>the</strong> MCA, but <strong>the</strong> expansion of<br />

culturally important resources such as black oak and sugar p<strong>in</strong>e would have favored<br />

human exploitation. In contrast, <strong>the</strong> Little Ice Age would have seen a contraction of black<br />

oak range and density, an expansion of subalp<strong>in</strong>e and alp<strong>in</strong>e vegetation communities, and<br />

an <strong>in</strong>crease <strong>in</strong> water availability that no longer limited human settlement.<br />

Hydrology would almost certa<strong>in</strong>ly have been a limit<strong>in</strong>g factor <strong>in</strong> human<br />

settlement of <strong>the</strong> high elevations dur<strong>in</strong>g <strong>the</strong> MCA, just as Morgan (2006) <strong>in</strong>dicated for<br />

<strong>the</strong> lower elevations. Even under present conditions, thought to be relatively warm and<br />

wet (St<strong>in</strong>e 2006), seasonal changes <strong>in</strong> stream flow are evident with<strong>in</strong> <strong>the</strong> study area.<br />

Dur<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis fieldwork <strong>in</strong> September 2007, some of <strong>the</strong> tributary streams, <strong>in</strong>clud<strong>in</strong>g<br />

Gaylor, Delaney, Rafferty, and Cold Canyon, were dry, although stagnant pools persisted<br />

<strong>in</strong> some locations. In September 2006, both Budd Creek and Unicorn Creek were dry<br />

(Cooper et al. 2006:33). The major dra<strong>in</strong>ages associated with high archaeological site<br />

density— Return Creek (Virg<strong>in</strong>ia Canyon), Tuolumne River, Dana Fork, Lyell Fork, and<br />

Parker Pass Creek—were still flow<strong>in</strong>g. In addition, <strong>the</strong> lakes <strong>in</strong> <strong>the</strong> study area, as well as<br />

<strong>the</strong> dra<strong>in</strong>ages <strong>in</strong> Spiller and Matterhorn canyons conta<strong>in</strong>ed water, but <strong>the</strong> low site<br />

densities <strong>in</strong> <strong>the</strong>se areas <strong>in</strong>dicate <strong>the</strong>y were not a focus of <strong>in</strong>tensive prehistoric activity.<br />

Interest<strong>in</strong>gly, Cooper et al. (2006:39) noted that about 30 to 40 percent of <strong>the</strong> Dana Fork<br />

is underla<strong>in</strong> by metamorphic rock, which has led to <strong>the</strong> formation of thicker soils than<br />

those of granitic orig<strong>in</strong> s<strong>in</strong>ce <strong>the</strong> last glaciation. Metamorphic soils reta<strong>in</strong> water <strong>in</strong><br />

13


subsurface reservoirs that dra<strong>in</strong> slowly and provide flow throughout <strong>the</strong> late summer and<br />

fall. The Dana Fork also conta<strong>in</strong>s several rock glaciers, which may provide late-season<br />

discharge (Millar and Westfall, cited <strong>in</strong> Cooper et al. [2006]). Thus, <strong>the</strong> Dana Fork<br />

discharge <strong>in</strong> <strong>the</strong> late season is greater than that of any o<strong>the</strong>r subbas<strong>in</strong> feed<strong>in</strong>g <strong>in</strong>to<br />

Tuolumne Meadows (Cooper et al. 2006). Metamorphic rocks also underlie <strong>the</strong> head of<br />

Virg<strong>in</strong>ia Canyon, suggest<strong>in</strong>g late season discharge for that dra<strong>in</strong>age as well.<br />

If procurement of p<strong>in</strong>yon and acorn became <strong>in</strong>creas<strong>in</strong>gly important after about<br />

1500 years ago dur<strong>in</strong>g <strong>the</strong> fall season, and surface water was even less available dur<strong>in</strong>g<br />

<strong>the</strong> MCA, it may not be surpris<strong>in</strong>g that <strong>the</strong> Mono Trail, <strong>the</strong> route over Mono Pass via <strong>the</strong><br />

Dana Fork and its tributaries, became a major travel corridor. It is unclear how prolonged<br />

drought would have affected stream flows <strong>in</strong> <strong>the</strong> o<strong>the</strong>r major tributaries. In general, drier<br />

climates would result <strong>in</strong> earlier snowmelt, which would cause earlier decl<strong>in</strong>es <strong>in</strong><br />

tributaries and meadow ground water tables (Cooper et al. 2006:3). Decl<strong>in</strong>es <strong>in</strong> lake<br />

levels dur<strong>in</strong>g <strong>the</strong> MCA would also be expected given <strong>the</strong> substantially lowered level of<br />

Tenaya Lake (see St<strong>in</strong>e 1994), one of <strong>the</strong> largest lakes <strong>in</strong> <strong>the</strong> park.<br />

ETHNOGRAPHY<br />

The ethnographic records for <strong>the</strong> eastern and western <strong>Sierra</strong> are briefly reviewed<br />

here as important considerations of how <strong>the</strong> higher elevations were used at <strong>the</strong> time of<br />

susta<strong>in</strong>ed Euroamerican contact, ca. 1850 <strong>in</strong> Yosemite, and dur<strong>in</strong>g <strong>the</strong> historical period.<br />

People <strong>in</strong>habit<strong>in</strong>g <strong>the</strong> larger region <strong>in</strong> <strong>the</strong> contact era were <strong>the</strong> Penutian-speak<strong>in</strong>g <strong>Central</strong><br />

<strong>Sierra</strong> Miwok and Sou<strong>the</strong>rn <strong>Sierra</strong> Miwok; <strong>the</strong> Bridgeport Valley Paiute and Mono Lake<br />

Paiute, speakers of <strong>the</strong> Nor<strong>the</strong>rn Paiute language; and <strong>the</strong> Mono-speak<strong>in</strong>g Owens Valley<br />

Paiute. Detailed ethnographic <strong>in</strong>formation about <strong>the</strong>se groups can be found <strong>in</strong> numerous<br />

14


primary documents (Barrett and Gifford 1933; Clark 1904; Davis 1965; Kroeber 1925;<br />

Powers 1976; Steward 1933, 1938), ethnographic syn<strong>the</strong>ses (Fowler and Liljeblad 1986;<br />

Levy 1978) and various historical accounts (e.g., Bunnell 1990; Colby 1949; Whitney<br />

1868). Two recent studies, an ethnohistory of <strong>the</strong> Yosemite high country <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of<br />

<strong>the</strong> Tuolumne River (Bates and Lee 1994) and an ethnogeography of Yosemite National<br />

Park (Bibby 2002), have particular relevance for this <strong>the</strong>sis.<br />

The ethnographic record must be considered <strong>in</strong> light of data collection<br />

methodologies and <strong>the</strong> dramatic changes <strong>in</strong> native lifeways, populations, and territorial<br />

ranges brought about by Euroamerican contact. Most documentation of <strong>Sierra</strong> Miwok<br />

lifeways was conducted between 1900 and 1920, well after <strong>the</strong> Miwok people’s culture<br />

had already changed dramatically due to <strong>in</strong>troduced diseases, an estimated population<br />

reduction of 90 percent by <strong>the</strong> 1910 census, relocated populations from elsewhere <strong>in</strong> <strong>the</strong><br />

state, and <strong>the</strong> great <strong>in</strong>flux of m<strong>in</strong>ers <strong>in</strong>to <strong>the</strong> foothills dur<strong>in</strong>g <strong>the</strong> Gold Rush (Bates 1993;<br />

Bates and Lee 1990). Thus, <strong>the</strong> exist<strong>in</strong>g record may represent a fragmentary view of an<br />

already disrupted system (Bibby 2002:59). Fur<strong>the</strong>rmore, <strong>the</strong> primary published works on<br />

Miwok life may hold some biases. For example, Edward Gifford focused ma<strong>in</strong>ly on<br />

ceremonial life, while Samuel Barrett’s fieldwork was limited to a short time period<br />

between August and October of 1906 (Bates 1993:11–12). Barrett also rema<strong>in</strong>ed <strong>in</strong> close<br />

proximity to stage l<strong>in</strong>es that ran along today’s <strong>High</strong>way 49 (Bates 1993:12), well away<br />

from <strong>the</strong> higher elevations of <strong>in</strong>terest <strong>in</strong> this study. Similarly, fieldwork conducted by<br />

Julian Steward and Emma Lou Davis among Paiute groups did not take place until <strong>the</strong><br />

1920s and late 1950s, respectively. In contrast to <strong>the</strong> population status of <strong>the</strong> Miwok,<br />

Steward (1933:237) reported relatively little decrease <strong>in</strong> population levels for <strong>the</strong> Owens<br />

15


Valley Paiute between <strong>the</strong> 1850s and 1930, around 1000 persons. Some potential biases<br />

<strong>in</strong> Steward’s ethnographic work <strong>in</strong>clude an overemphasis on <strong>the</strong> Western Shoshone and<br />

Owens Valley Paiute, to <strong>the</strong> near exclusion of <strong>the</strong> Nor<strong>the</strong>rn Paiute (Thomas 1979). Given<br />

<strong>the</strong>se factors, it seems prudent to consider <strong>the</strong> ethnographic record as a start<strong>in</strong>g po<strong>in</strong>t, or<br />

as a model, for <strong>the</strong> <strong>in</strong>vestigation of high-elevation land use.<br />

A few important po<strong>in</strong>ts emerge from <strong>the</strong> body of ethnographic, historical, and<br />

ethnohistoric literature, primarily <strong>in</strong> terms of how <strong>the</strong> high country was <strong>in</strong>corporated <strong>in</strong>to<br />

regional settlement patterns and by whom. First, fixed tribal territories may not have been<br />

well def<strong>in</strong>ed, particularly <strong>in</strong> <strong>the</strong> high-elevation, seasonal use areas, and <strong>the</strong>y potentially<br />

shifted through time, depend<strong>in</strong>g on social relationships (Bibby 2002:59; Kroeber<br />

1925:443). Early ethnographers (Barrett 1908; Kroeber 1925) documented <strong>Central</strong> and<br />

Sou<strong>the</strong>rn <strong>Sierra</strong> Miwok lands on <strong>the</strong> western slope of <strong>the</strong> <strong>Sierra</strong> <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of<br />

Yosemite, rang<strong>in</strong>g from <strong>the</strong> crest <strong>in</strong> <strong>the</strong> east to <strong>the</strong> lower foothills on <strong>the</strong> west. The<br />

“boundary” between <strong>the</strong>se groups was <strong>the</strong> watershed divide between <strong>the</strong> Tuolumne and<br />

Merced rivers. Merriam (1907), however, <strong>in</strong>dicated that <strong>the</strong> higher elevations above<br />

Yosemite Valley on <strong>the</strong> Merced River and Hetch Hetchy on <strong>the</strong> Tuolumne River were<br />

unclaimed by <strong>the</strong> Miwok, and that <strong>the</strong> Tuolumne River itself ra<strong>the</strong>r than <strong>the</strong> watershed<br />

divide formed <strong>the</strong> boundary between <strong>the</strong> <strong>Central</strong> and Sou<strong>the</strong>rn <strong>Sierra</strong> Miwok. In<br />

expla<strong>in</strong><strong>in</strong>g <strong>the</strong> dist<strong>in</strong>ctions made by Barrett and Merriam regard<strong>in</strong>g <strong>the</strong> eastern extent of<br />

Miwok territory, Kroeber (1908: 376) noted that Merriam <strong>in</strong>cluded only <strong>the</strong> permanently<br />

<strong>in</strong>habited areas, while Barrett <strong>in</strong>cluded both permanent and summer use areas <strong>in</strong> his<br />

consideration of Miwok territory. Galen Clark (1904:21–22), an early Euroamerican<br />

settler and long-time resident of Yosemite, described dist<strong>in</strong>ctions between upper and<br />

16


lower elevations <strong>in</strong> terms of Miwok territories, support<strong>in</strong>g <strong>the</strong> notion of <strong>the</strong> high country<br />

as a jo<strong>in</strong>t use area:<br />

In <strong>the</strong>ir orig<strong>in</strong>al tribal settlements, at <strong>the</strong> time <strong>the</strong> first pioneer whites came<br />

among <strong>the</strong>m, <strong>the</strong> Indians had well def<strong>in</strong>ed or understood boundary l<strong>in</strong>es,<br />

between <strong>the</strong> territories claimed by each tribe for <strong>the</strong>ir exclusive use <strong>in</strong><br />

hunt<strong>in</strong>g game and ga<strong>the</strong>r<strong>in</strong>g means of support; and any trespass<strong>in</strong>g on <strong>the</strong><br />

doma<strong>in</strong> of o<strong>the</strong>rs was likely to cause trouble. This arrangement, however,<br />

did not apply to <strong>the</strong> higher ranges of <strong>the</strong> <strong>Sierra</strong>, which were considered<br />

common hunt<strong>in</strong>g ground.<br />

The Paiute occupied lands to <strong>the</strong> east of <strong>the</strong> crest, <strong>the</strong> Nor<strong>the</strong>rn Paiute to <strong>the</strong> north<br />

of <strong>the</strong> watershed divide between Mono Lake and <strong>the</strong> Owens River, and <strong>the</strong> Owens Valley<br />

Paiute to <strong>the</strong> south (Steward 1933). Historical and ethnographic accounts of Paiute people<br />

<strong>in</strong> Yosemite are abundant, most frequently <strong>in</strong> regard to acorn ga<strong>the</strong>r<strong>in</strong>g (see Bibby<br />

2002:31−34). Whe<strong>the</strong>r this situation also applied to earlier times rema<strong>in</strong>s to be resolved.<br />

Bennyhoff (1956a:13), <strong>in</strong> particular, questioned whe<strong>the</strong>r Paiute exploitation of <strong>the</strong> middle<br />

elevations (e.g., Yosemite Valley, Hetch Hetchy) could have occurred prior to<br />

Euroamerican colonization. A suggestion of spatial dist<strong>in</strong>ctions <strong>in</strong> high country use,<br />

however, is <strong>in</strong>dicated by John Muir, writ<strong>in</strong>g <strong>in</strong> 1879. Muir (1879:644) stated that what is<br />

now called Summit Pass, at <strong>the</strong> head of Virg<strong>in</strong>ia Canyon, was “used chiefly by roam<strong>in</strong>g<br />

bands of <strong>the</strong> Pah Ute Indians and ‘sheepmen.’” This s<strong>in</strong>gle reference aside, it seems clear<br />

that, <strong>in</strong> general, <strong>the</strong> higher elevations of Yosemite were not solely <strong>the</strong> prov<strong>in</strong>ce of one<br />

ethnic group and that archaeological sites <strong>in</strong> <strong>the</strong> study area may represent use by western<br />

and/or eastern groups.<br />

Second, <strong>the</strong>re is little detailed <strong>in</strong>formation <strong>in</strong> ethnographic and historical accounts<br />

of high country use, and <strong>the</strong> few references rarely <strong>in</strong>dicate <strong>the</strong> specific reason for that use.<br />

None<strong>the</strong>less, Bates and Lee (1994) were able to ascerta<strong>in</strong> that hunt<strong>in</strong>g, travel<strong>in</strong>g to attend<br />

17


festivals, travel<strong>in</strong>g for warfare, and escap<strong>in</strong>g enemies or drought were activities that took<br />

place <strong>in</strong> <strong>the</strong> high country. In addition, trade between eastern and western groups was<br />

known to be a significant pursuit (Barrett and Gifford 1933; Davis 1961; Davis 1965;<br />

Sample 1950; Steward 1933).<br />

An important factor <strong>in</strong>fluenc<strong>in</strong>g high country use was its seasonal availability;<br />

heavy w<strong>in</strong>ter snows generally limited use above 4000 ft elevation on <strong>the</strong> western slope to<br />

summer and early fall. Barrett and Gifford (1933:134) envisioned <strong>the</strong> structure of <strong>Sierra</strong><br />

Miwok settlement <strong>in</strong> terms of three north-south parallel bands, cross-cutt<strong>in</strong>g <strong>the</strong> dialectic<br />

areas. Groups of people lived <strong>in</strong> <strong>the</strong> Lower Sonoran (below 1000 ft), Upper Sonoran<br />

(1000−3000 ft), and Transition (3000−6000 ft) zones, but <strong>the</strong>y made excursions <strong>in</strong>to<br />

adjacent areas or traded to obta<strong>in</strong> products available elsewhere. The people resid<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

Transition zone might visit <strong>the</strong> Canadian and Hudsonian zones (6000−10,000 ft) now and<br />

<strong>the</strong>n, but only summer camps were established <strong>the</strong>re. Presumably, people never used <strong>the</strong><br />

Arctic-Alp<strong>in</strong>e zone above 10,500 ft (Barrett and Gifford 1933:134), though current<br />

archaeological evidence contradicts this statement.<br />

The tribelet, conta<strong>in</strong><strong>in</strong>g between 100 and 300 residents and controll<strong>in</strong>g a def<strong>in</strong>ite<br />

territory, was <strong>the</strong> foremost political unit (Levy 1978:398, 410). L<strong>in</strong>eages with<strong>in</strong> <strong>the</strong><br />

tribelet <strong>in</strong>cluded approximately 25 people <strong>in</strong> a specific geographic locality, usually <strong>the</strong><br />

permanent settlements. Bennyhoff (1956a:6) noted that hunt<strong>in</strong>g and ga<strong>the</strong>r<strong>in</strong>g forays by<br />

<strong>the</strong> Miwok <strong>in</strong>to <strong>the</strong> higher elevations were frequent, and that women accompanied men<br />

on large trips. The “food quest” was <strong>the</strong> most important factor connect<strong>in</strong>g people to <strong>the</strong>ir<br />

environment, with shifts <strong>in</strong> altitude <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> availability of foods (Barrett and<br />

Gifford 1933:136). The most highly regarded foods were <strong>the</strong> acorn and deer, followed by<br />

18


<strong>the</strong> Western Gray Squirrel (Sciurus griseus) and <strong>the</strong> seeds of Clarkia sp., although a wide<br />

range of animals and plants were <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> diet.<br />

To <strong>the</strong> east, Steward (1938) echoed <strong>the</strong> importance of <strong>the</strong> food quest <strong>in</strong> <strong>the</strong> lives<br />

of <strong>the</strong> Paiute people. A seasonal pattern of summer fission and w<strong>in</strong>ter fusion, organized<br />

around subsistence needs, characterized <strong>the</strong> annual cycle. Egalitarian family-bands were<br />

mobile dur<strong>in</strong>g <strong>the</strong> summer months, coalesc<strong>in</strong>g <strong>in</strong>to loose, larger settlements, with little or<br />

no suprafamilial organization, dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter months. Plant foods ga<strong>the</strong>red by women,<br />

particularly p<strong>in</strong>yon p<strong>in</strong>e nuts and a variety of hard seeds, were of utmost importance,<br />

while men hunted to supplement <strong>the</strong> diet. In <strong>the</strong> Mono Lake area, <strong>the</strong> larvae of <strong>the</strong> br<strong>in</strong>e<br />

fly (Ephydra hians) was a local staple, as well as a trade item, and <strong>the</strong> people <strong>the</strong>re were<br />

thus known as <strong>the</strong> Kuzedika, or Fly-Larva-Eaters (Davis 1965:5). Here, summer base<br />

camps along <strong>the</strong> meadows at <strong>the</strong> western edges of Mono Lake were established. Trans-<br />

<strong>Sierra</strong> trade and travel commenced from <strong>the</strong>se sites, and deer and sheep were pursued <strong>in</strong><br />

<strong>the</strong>ir summer high country ranges (Davis 1965:29−30). Steward (1933:Map 1) reported a<br />

Mono Lake Paiute summer encampment as far west as Little Yosemite Valley, located at<br />

about 6000 ft elevation on <strong>the</strong> Merced River and just a few kilometers east of Yosemite<br />

Valley. In alternate summers, families moved to <strong>the</strong> Jeffrey p<strong>in</strong>e forests about 30 km<br />

south of <strong>the</strong> lake to ga<strong>the</strong>r and store <strong>the</strong> caterpillar larvae of <strong>the</strong> Pandora moth (Coloradia<br />

pandora). In <strong>the</strong> fall of good p<strong>in</strong>yon nut years, people moved to <strong>the</strong> areas east of <strong>the</strong> lake<br />

to <strong>the</strong> p<strong>in</strong>yon groves and spent <strong>the</strong> w<strong>in</strong>ter near <strong>the</strong>ir nut caches. When <strong>the</strong> p<strong>in</strong>yon nut crop<br />

was poor, Paiute people migrated to o<strong>the</strong>r areas, often w<strong>in</strong>ter<strong>in</strong>g <strong>in</strong> Yosemite and<br />

frequently marry<strong>in</strong>g Miwok (Steward 1933:257). In <strong>the</strong> spr<strong>in</strong>g, people traveled from <strong>the</strong>ir<br />

w<strong>in</strong>ter camps back to <strong>the</strong> eastern foot of <strong>the</strong> <strong>Sierra</strong>.<br />

19


To <strong>the</strong> south, more stable social groups liv<strong>in</strong>g at semi-permanent settlements<br />

characterized <strong>the</strong> Owens Valley Paiute, who specialized <strong>in</strong> lowland plants <strong>in</strong> close<br />

proximity to <strong>the</strong> settlements. Population levels were higher, among <strong>the</strong> highest <strong>in</strong> <strong>the</strong><br />

Great Bas<strong>in</strong>, and <strong>the</strong> sociopolitical structure was more complex. The nuclear family was<br />

an important social unit <strong>in</strong> <strong>the</strong> village system, but it was to some degree superseded by<br />

district organizations of a s<strong>in</strong>gle village or multiple, politically allied villages with<br />

hereditary chiefta<strong>in</strong>s. Recent research, however, suggests this district level organization<br />

may be a historic-era phenomenon, related to families consolidat<strong>in</strong>g around ranches<br />

where wage labor was available (Basgall et al. 2003; Delacorte 1999). Although <strong>the</strong><br />

territory of <strong>the</strong> Owens Valley Paiute generally lies ma<strong>in</strong>ly to <strong>the</strong> south of <strong>the</strong> study area,<br />

Steward (1933:235) reported that <strong>the</strong>y traded and <strong>in</strong>termarried with <strong>the</strong>ir Miwok<br />

neighbors.<br />

Subsistence pursuits <strong>in</strong> <strong>the</strong> high country are poorly def<strong>in</strong>ed, but hunt<strong>in</strong>g is<br />

mentioned most frequently <strong>in</strong> ethnographic and historical accounts. John Muir<br />

(1916:205) encountered Paiutes hunt<strong>in</strong>g deer <strong>in</strong> <strong>the</strong> Tuolumne Meadows area, while<br />

bighorn sheep, bear, and marmots were also pursued <strong>in</strong> <strong>the</strong> high country (Bates and Lee<br />

1994; Davis 1965:26). Davis (1965:25) stated that <strong>the</strong> subalp<strong>in</strong>e and alp<strong>in</strong>e areas were<br />

apparently used very little by <strong>the</strong> Mono Lake Paiute, except by travelers, hunters, and<br />

women collect<strong>in</strong>g a medic<strong>in</strong>al herb of <strong>the</strong> parsley family. Men hunted <strong>in</strong> <strong>the</strong> high <strong>Sierra</strong>,<br />

dry<strong>in</strong>g <strong>the</strong> meat and carry<strong>in</strong>g it home <strong>in</strong> <strong>the</strong> hide (Davis 1965:32−33).<br />

Trade and travel through <strong>the</strong> high country were important pursuits, with accounts<br />

of easterners and westerners travel<strong>in</strong>g both ways. Based on his observations at Yosemite<br />

<strong>in</strong> <strong>the</strong> second half of <strong>the</strong> n<strong>in</strong>eteenth century, Muir (1977:80) wrote that,<br />

20


The Indians of <strong>the</strong> western slope venture cautiously over <strong>the</strong> passes <strong>in</strong><br />

settled wea<strong>the</strong>r to attend dances, and obta<strong>in</strong> loads of p<strong>in</strong>e-nuts and <strong>the</strong><br />

larvae of a small fly that breeds <strong>in</strong> Mono and Owen’s lakes, which, when<br />

dried, forms an important article of food; while <strong>the</strong> Pah Utes cross over<br />

from <strong>the</strong> east to hunt <strong>the</strong> deer and obta<strong>in</strong> supplies of acorns…<br />

The locations of archaeological sites <strong>in</strong> <strong>the</strong> study area (see Chapter 6) also support<br />

historical records of travel across trans-<strong>Sierra</strong> passes for <strong>the</strong> purposes of exchange.<br />

Mentioned most frequently <strong>in</strong> <strong>the</strong> Yosemite literature, <strong>the</strong> Mono Trail followed Bloody<br />

Canyon from Walker Lake to Sard<strong>in</strong>e Lakes, reach<strong>in</strong>g <strong>the</strong> summit at Mono Pass. The trail<br />

led down <strong>the</strong> gradual western slope to Tuolumne Meadows, splitt<strong>in</strong>g <strong>the</strong>re <strong>in</strong>to two<br />

branches, one head<strong>in</strong>g to <strong>the</strong> west and <strong>the</strong> o<strong>the</strong>r to <strong>the</strong> south. Items traded to <strong>the</strong> west<br />

<strong>in</strong>cluded salt, f<strong>in</strong>ished po<strong>in</strong>ts, s<strong>in</strong>ew backed bows, p<strong>in</strong>yon nuts, br<strong>in</strong>e fly larvae, Pandora<br />

moth caterpillars, rabbitsk<strong>in</strong> blankets, buffalo robes, red and white pigments, obsidian,<br />

baskets, and basketry materials (Davis 1961:20). Goods traded to <strong>the</strong> east <strong>in</strong>cluded<br />

acorns, baskets, arrows, manzanita berries, sour berries, elderberries, pa<strong>in</strong>t fungus, and<br />

shell beads (Davis 1961:17, 38). Muir (1977:80) mentioned that Indian women carried<br />

supplies <strong>in</strong> immense loads on <strong>the</strong>ir backs over <strong>the</strong> mounta<strong>in</strong> passes, often for a distance of<br />

up to 60−70 miles.<br />

PREHISTORY<br />

Archaeological <strong>in</strong>vestigations <strong>in</strong> <strong>the</strong> region have revealed at least 10,000 years of<br />

human occupation (Table 2), a broad span of time encompass<strong>in</strong>g chang<strong>in</strong>g environments,<br />

technologies, mobility patterns, population dynamics, and exchange relationships. The<br />

foothills of <strong>the</strong> western <strong>Sierra</strong>, below <strong>the</strong> snow l<strong>in</strong>e at 4000 ft elevation, and <strong>the</strong> eastern<br />

<strong>Sierra</strong> escarpment formed <strong>the</strong> core lowland areas of regional settlement systems. Any<br />

changes or perturbations with<strong>in</strong> <strong>the</strong>se areas likely <strong>in</strong>fluenced use of <strong>the</strong> uplands as well.<br />

21


Years<br />

B.P.<br />

650–<br />

contact<br />

1350–<br />

650<br />

3500–<br />

1350<br />

7500–<br />

3500<br />

10,000–<br />

7500<br />

Table 2. <strong>Prehistoric</strong> Cultural Chronology and Temporal Markers.<br />

Eastern <strong>Sierra</strong> Western <strong>Sierra</strong><br />

Period Temporal Markers Years<br />

B.P.<br />

Period Temporal Markers<br />

Marana Desert Side-notched; 600– Late <strong>Prehistoric</strong> 3 Desert Side-notched,<br />

Cottonwood<br />

contact and Protohistoric Cottonwood<br />

Triangular, ceramics<br />

(Mariposa Triangular, bedrock<br />

Complex) mortar<br />

Haiwee Rose Spr<strong>in</strong>g, Eastgate 1300–<br />

600<br />

Newberry Elko, Humboldt,<br />

Gypsum<br />

Little<br />

Lake<br />

Lake<br />

Mohave<br />

P<strong>in</strong>to, Gatecliff Splitstem;<br />

thick Elko; Fish<br />

Slough Side-notched<br />

Great Bas<strong>in</strong> Concave<br />

and Stemmed<br />

3200–<br />

1300<br />

8000–<br />

3200<br />

11,500–<br />

8000<br />

Late <strong>Prehistoric</strong> 2<br />

(Tamarack<br />

Complex)<br />

Late <strong>Prehistoric</strong> 1<br />

(Crane Flat<br />

Complex)<br />

Intermediate<br />

<strong>Prehistoric</strong><br />

Rose Spr<strong>in</strong>g,<br />

Eastgate, bedrock<br />

mortar?<br />

Elko, Concave Base,<br />

Contract<strong>in</strong>g Stem<br />

P<strong>in</strong>to, Humboldt?<br />

Early <strong>Prehistoric</strong> Largely undef<strong>in</strong>ed<br />

B<strong>in</strong>ford’s (1980) cont<strong>in</strong>uum between foragers and collectors has consistently<br />

provided a model for subsistence-settlement mobility <strong>in</strong> western and eastern <strong>Sierra</strong><br />

regional studies and, as such, is referenced <strong>in</strong> <strong>the</strong> summary below. In brief, B<strong>in</strong>ford<br />

(1980) characterized foragers as small, mobile populations, who move residentially to<br />

resolve variation <strong>in</strong> <strong>the</strong> distribution of food resources over time and space. In this<br />

strategy, consumers move to resources and “map on” to <strong>the</strong> key resources of a locale. By<br />

contrast, <strong>the</strong> collector strategy moves resources to people. Collector populations are<br />

greater <strong>in</strong> density, more sedentary, and socially stratified, mov<strong>in</strong>g to key locations and<br />

acquir<strong>in</strong>g critical resources by logistical forays. Group mobility strategies are l<strong>in</strong>ked to<br />

<strong>the</strong> distributions of resources <strong>in</strong> <strong>the</strong> environment; homogeneous environments favor a<br />

22


esidentially mobile strategy, while patchy and seasonal resource distributions contribute<br />

to logistical work organization.<br />

Eastern <strong>Sierra</strong> <strong>Nevada</strong><br />

In <strong>the</strong> eastern <strong>Sierra</strong> <strong>Nevada</strong>, researchers have identified broad changes <strong>in</strong><br />

subsistence and settlement through <strong>the</strong> Holocene. Despite a great deal of archaeological<br />

work <strong>in</strong> that region, few and scattered sites are known from <strong>the</strong> early and middle<br />

Holocene and <strong>the</strong> lifeways of early peoples rema<strong>in</strong> poorly understood. Diverse raw<br />

material profiles <strong>in</strong>dicate that groups covered enormous distances <strong>in</strong> <strong>the</strong> annual round,<br />

and an apparent absence of mill<strong>in</strong>g equipment suggests little reliance on seed resources <strong>in</strong><br />

<strong>the</strong> early Holocene (Basgall 1989; Basgall et al. 2003; Basgall and McGuire 1988).<br />

Western Stemmed (Lake Mohave and Silver Lake) and Great Bas<strong>in</strong> Concave Base<br />

projectile po<strong>in</strong>ts are temporal markers of this time period.<br />

Limited data for middle Holocene sites <strong>in</strong>dicate that a highly mobile settlement<br />

system rema<strong>in</strong>ed <strong>in</strong> place, though <strong>the</strong> presence of ground stone artifacts po<strong>in</strong>t to<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity of plant exploitation (Basgall et al. 2003). A diverse set of dart po<strong>in</strong>ts<br />

dat<strong>in</strong>g to this period—P<strong>in</strong>to, Gatecliff Split-stem, Fish Slough Side-notched, and “thick<br />

Elko” forms— suggest a complex culture history, one that has yet to be fully explored<br />

(Basgall and Giambastiani 1995; Basgall and Hall 2000; Gilreath and Hildebrandt 1997;<br />

Thomas 1981).<br />

Logistically organized settlement systems, allow<strong>in</strong>g for <strong>the</strong> simultaneous<br />

exploitation of resources <strong>in</strong> diverse sett<strong>in</strong>gs and featur<strong>in</strong>g larger population aggregates,<br />

arose after 3500 B.P., <strong>in</strong> <strong>the</strong> late Holocene dur<strong>in</strong>g <strong>the</strong> Newberry period. A more<br />

regularized and spatially limited annual round, thought to occur along a north-south axis<br />

23


<strong>in</strong> valley corridors, characterizes <strong>the</strong> later portion (ca post-2200 B.P.) of this period<br />

(Basgall 1989; Delacorte 1999), while <strong>the</strong> early Newberry period rema<strong>in</strong>s poorly<br />

understood. <strong>High</strong>ly varied and functionally dist<strong>in</strong>ct sites po<strong>in</strong>t to a cont<strong>in</strong>ued emphasis on<br />

hunt<strong>in</strong>g but <strong>in</strong>creased exploitation of plant resources and logistical exploitation of<br />

resources from seasonally occupied base camps. Dart po<strong>in</strong>ts of <strong>the</strong> Elko, Humboldt, and<br />

Gypsum series characterize this period.<br />

A po<strong>in</strong>t of contention revolves around <strong>the</strong> nature of <strong>the</strong> settlement system dur<strong>in</strong>g<br />

this period, with some researchers (e.g., Basgall 1989; Bett<strong>in</strong>ger and Baumhoff 1982)<br />

propos<strong>in</strong>g <strong>the</strong> cont<strong>in</strong>uation of high residential mobility but more regularized and spatially<br />

limited annual rounds, and o<strong>the</strong>rs (McGuire and Hildebrandt 2005) suggest<strong>in</strong>g at least<br />

semi-sedentary occupation. The latter conception posits gender differentiation <strong>in</strong><br />

subsistence and settlement organization, <strong>the</strong> logistical mobility related to wide-rang<strong>in</strong>g<br />

male prestige hunters and residential stability to women, children, and older males<br />

(McGuire and Hildebrandt 2005:705−706; Hildebrandt and McGuire 2002). Recent<br />

studies <strong>in</strong>corporat<strong>in</strong>g obsidian source diversity and flake technological studies, however,<br />

support <strong>the</strong> notion of a highly mobile system for <strong>the</strong> Newberry period and its replacement<br />

by a more sedentary strategy later <strong>in</strong> time (Basgall et al. 2003; Eerkens et al. 2008).<br />

The two arguments have divergent implications for <strong>the</strong> issue of obsidian<br />

procurement, a topic of some importance <strong>in</strong> both western and eastern <strong>Sierra</strong> research. If<br />

Newberry populations were highly mobile and <strong>the</strong>refore did not control access to <strong>the</strong><br />

quarries, <strong>the</strong>n people liv<strong>in</strong>g along <strong>the</strong> western slope may have accessed obsidian sources<br />

directly (Bouey and Basgall 1984; Stevens 2002). The alternative, <strong>in</strong> which east-side<br />

populations were residentially stable enough to control quarry access, sees exchange and<br />

24


long-distance toolstone re-supply by hunters as key modes of procurement and<br />

distribution ra<strong>the</strong>r than direct access by people from <strong>the</strong> west. Rosenthal (2008:208)<br />

argued that <strong>the</strong> exchange of obsidian to <strong>the</strong> west was l<strong>in</strong>ked to a high-altitude settlement<br />

system geared toward <strong>the</strong> hunt<strong>in</strong>g of bighorn sheep, where obsidian exchange is seen as a<br />

“value-added” activity to hunt<strong>in</strong>g. Fur<strong>the</strong>r build<strong>in</strong>g on this argument, he proposed that<br />

east-side hunters <strong>in</strong> pursuit of bighorn sheep regularly made <strong>the</strong>ir way to <strong>the</strong> upper<br />

elevations of <strong>the</strong> western slope of <strong>the</strong> central <strong>Sierra</strong> (to roughly between 7000 and 9000 ft<br />

elevation), based on <strong>the</strong> predom<strong>in</strong>ance of obsidian over cryptocrystall<strong>in</strong>e flaked stone<br />

materials at higher-elevation western slope sites and, vice versa, <strong>the</strong> higher frequencies of<br />

cryptocrystall<strong>in</strong>e materials at middle and lower elevation sites. This pattern has yet to be<br />

substantiated at Yosemite, where obsidian material is predom<strong>in</strong>ant <strong>in</strong> flaked stone<br />

collections at most excavated sites regardless of elevation. Although researchers disagree<br />

about <strong>the</strong> mechanisms of obsidian procurement and distribution for that time period, and<br />

research on both sides of <strong>the</strong> crest is hampered by <strong>the</strong> difficulty <strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g direct<br />

access vs. exchange <strong>in</strong> <strong>the</strong> archaeological record, <strong>the</strong>re is consensus that eastern <strong>Sierra</strong><br />

obsidian production <strong>in</strong>creased at <strong>the</strong> <strong>in</strong>ception of <strong>the</strong> Newberry period (3500 B.P.) and<br />

sharply decl<strong>in</strong>ed at <strong>the</strong> end of that period, ca. 1350 B.P. (Bouey and Basgall 1984;<br />

Gilreath and Hildebrandt 1997; Ramos 2000; S<strong>in</strong>ger and Ericson 1977).<br />

Late prehistoric subsistence-settlement, particularly after 1350 B.P. (Haiwee and<br />

Marana periods), is characterized by a widen<strong>in</strong>g of diet breadth to <strong>in</strong>clude greater<br />

exploitation of high-cost resources such as seeds and small game, a rise <strong>in</strong> technological<br />

complexity, ever-<strong>in</strong>creas<strong>in</strong>g residential te<strong>the</strong>r<strong>in</strong>g brought about by greater reliance on<br />

stored resources, and greater population densities (Basgall et al. 2003; Basgall and<br />

25


McGuire 1988; Bett<strong>in</strong>ger 1999a). The <strong>in</strong>tensive procurement of p<strong>in</strong>yon nuts, small seeds,<br />

and wetland resources, along with <strong>the</strong> development of alp<strong>in</strong>e villages after ca. 1350 B.P.,<br />

best exemplifies late period subsistence <strong>in</strong>tensification <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong> by (Basgall<br />

and Giambastiani 1995; Bett<strong>in</strong>ger 1976, 1991, 1999a; Delacorte 1990, 1999). At about<br />

<strong>the</strong> same time, <strong>the</strong> bow and arrow replaced <strong>the</strong> atlatl and dart <strong>in</strong> <strong>the</strong> region, a<br />

technological <strong>in</strong>novation thought to represent greater hunt<strong>in</strong>g efficiency and one that<br />

required less toolstone for <strong>the</strong> smaller arrow projectiles. Rose Spr<strong>in</strong>g and Eastgate<br />

projectile po<strong>in</strong>ts are markers of <strong>the</strong> Haiwee period, while <strong>the</strong> Desert Side-notched and<br />

Cottonwood Triangular forms characterize <strong>the</strong> Marana period. The use of Owens Valley<br />

Brown Ware pottery also became widespread after 500 B.P. (Delacorte 1999).<br />

Although still a highly contested hypo<strong>the</strong>sis, some researchers have proposed a<br />

population replacement dur<strong>in</strong>g late prehistoric times to account for l<strong>in</strong>guistic patterns (cf.<br />

Lamb 1958). Bett<strong>in</strong>ger and Baumhoff (1982; see also Bett<strong>in</strong>ger 1999a) proposed that<br />

Numic speakers replaced Prenumic peoples <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong> at about 1000 B.P. based<br />

on changes <strong>in</strong> basketry and rock art styles (Bett<strong>in</strong>ger and Baumhoff 1982). The<br />

dim<strong>in</strong>utive Desert Side-notched projectile po<strong>in</strong>t may also be a marker of Numic ethnicity<br />

<strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong> (Delacorte 2008).<br />

Western <strong>Sierra</strong> <strong>Nevada</strong><br />

Bennyhoff (1956a) developed <strong>the</strong> region’s first culture historical sequence, based<br />

on <strong>in</strong>tuitive surveys from a variety of Yosemite locales and m<strong>in</strong>imal excavation data from<br />

four sites. In <strong>the</strong> past 50 years, large-scale studies <strong>in</strong> <strong>the</strong> nearby foothills and cont<strong>in</strong>u<strong>in</strong>g<br />

work <strong>in</strong> Yosemite have allowed for fur<strong>the</strong>r elaboration of <strong>the</strong> region’s culture history<br />

(Hull and Moratto 1999; Moratto 1972; Moratto et al. 1988; Rosenthal 2008). Follow<strong>in</strong>g<br />

26


a syn<strong>the</strong>sis of Yosemite studies and consider<strong>in</strong>g data from <strong>the</strong> surround<strong>in</strong>g region,<br />

Moratto (1999) proposed revisions to <strong>the</strong> orig<strong>in</strong>al sequence, while emphasiz<strong>in</strong>g <strong>the</strong> need<br />

for fur<strong>the</strong>r test<strong>in</strong>g of <strong>the</strong> model. The discussion to follow relies largely on Moratto’s<br />

(1999) revised construct for Yosemite, but it also <strong>in</strong>corporates data from important<br />

foothill studies.<br />

Evidence of human activity <strong>in</strong> <strong>the</strong> early Holocene is scant and limited to <strong>the</strong> El<br />

Portal area, situated at 2000 ft elevation on <strong>the</strong> lower Merced River. No early Holocene<br />

components have been documented, although Moratto (1999) po<strong>in</strong>ted out some<br />

compell<strong>in</strong>g pieces of evidence, <strong>in</strong>clud<strong>in</strong>g a handful of thick obsidian hydration rims (8.0–<br />

14.3 microns) on artifacts derived from several sites, sediment strata resembl<strong>in</strong>g<br />

anthrosols from early-period sites <strong>in</strong> <strong>the</strong> lower <strong>Sierra</strong> foothills, and large, broad-stemmed<br />

projectile po<strong>in</strong>t forms found elsewhere <strong>in</strong> <strong>the</strong> region <strong>in</strong> early contexts. Numerous<br />

stemmed projectile po<strong>in</strong>ts resembl<strong>in</strong>g Lake Mojave po<strong>in</strong>ts have been recovered from<br />

early Holocene sites at Clarks Flat on <strong>the</strong> Stanislaus River (Peak and Crew 1990) and <strong>the</strong><br />

Skyrocket site near Copperopolis (see Moratto 1999). Based on data from <strong>the</strong>se sites <strong>in</strong><br />

<strong>the</strong> surround<strong>in</strong>g regions, Moratto (1999) posited an early settlement pattern of highly<br />

mobile and sparse populations.<br />

In <strong>the</strong> middle Holocene, ca. 8000 to 3200 B.P., a few sites <strong>in</strong> <strong>the</strong> lower elevations<br />

may have susta<strong>in</strong>ed resident populations based on <strong>the</strong> presence of obsidian hydration<br />

values larger than those of Elko po<strong>in</strong>ts, several radiocarbon dates, and numerous dart<br />

po<strong>in</strong>ts, particularly of <strong>the</strong> P<strong>in</strong>to and Humboldt series. Accord<strong>in</strong>g to Moratto (1999:185),<br />

two sites with middle Holocene assemblages, not orig<strong>in</strong>ally recognized as such, occur <strong>in</strong><br />

Yosemite. Among <strong>the</strong> recognized attributes are P<strong>in</strong>to series po<strong>in</strong>ts, an array of cores,<br />

27


choppers, and flake tools, bifaces, abundant handstones and gr<strong>in</strong>d<strong>in</strong>g slabs, and a<br />

preference for non-obsidian toolstone. Moratto (1999:184) posited a pattern of “extensive<br />

ra<strong>the</strong>r than <strong>in</strong>tensive land use” dur<strong>in</strong>g this period, but <strong>the</strong> archaeological manifestations<br />

cont<strong>in</strong>ue to be very poorly understood.<br />

The Late <strong>Prehistoric</strong> 1 period (Crane Flat Complex; ca. 3200–1300 B.P.) shares<br />

strong similarities with <strong>the</strong> Chowchilla Phase at Buchanan Reservoir and <strong>the</strong> <strong>Sierra</strong> Phase<br />

at New Melones Reservoir on <strong>the</strong> Stanislaus River (Moratto 1972; Moratto et al. 1988).<br />

Projectile po<strong>in</strong>t forms of Elko, <strong>Sierra</strong> Concave Base, and Triangular Contract<strong>in</strong>g Stem are<br />

characteristic of this period, <strong>in</strong>dicat<strong>in</strong>g hunt<strong>in</strong>g with <strong>the</strong> atlatl and dart, while abundant<br />

obsidian <strong>in</strong> flaked stone collections shows a strong aff<strong>in</strong>ity with <strong>the</strong> eastern <strong>Sierra</strong>.<br />

Handstones, mill<strong>in</strong>g slabs, and portable mortars for process<strong>in</strong>g seeds are evident at<br />

Buchanan Reservoir and New Melones, while <strong>the</strong> latter are rare at Yosemite. Cemeteries<br />

with tightly- to loosely-flexed burials, some beneath stone cairns, are accompanied by a<br />

range of artifacts, <strong>in</strong>clud<strong>in</strong>g shell beads and ornaments, bone artifacts, red ochre, quartz<br />

crystals, steatite objects, and obsidian po<strong>in</strong>ts and bifaces (cf. Fitzwater 1962). The non-<br />

random distribution of artifacts with burials at El Portal and along <strong>the</strong> Chowchilla River<br />

implies non-egalitarian social organization (Moratto 1999:187). More sedentary and<br />

<strong>in</strong>tensive land use by larger populations generally characterizes this period. Residential<br />

bases were adjacent to permanent streams, with seasonal use of <strong>the</strong> uplands, probably<br />

with<strong>in</strong> a logistically organized subsistence-settlement system. Moratto (1999:188) op<strong>in</strong>ed<br />

that <strong>the</strong> similar cultural <strong>in</strong>ventories at El Portal, Buchanan Reservoir, and New Melones<br />

show a stronger aff<strong>in</strong>ity with peoples of <strong>the</strong> San Joaqu<strong>in</strong> Valley dur<strong>in</strong>g this period<br />

compared to a later shift <strong>in</strong> focus <strong>in</strong> Yosemite to <strong>the</strong> east.<br />

28


The Late <strong>Prehistoric</strong> 2 period (1300–600 B.P.; Tamarack Complex) at Yosemite<br />

is poorly understood archaeologically, and one researcher (Fitzwater 1962, 1968) rejected<br />

it as a dist<strong>in</strong>ct cultural entity. Rose Spr<strong>in</strong>g and Eastgate projectile po<strong>in</strong>ts are thought to be<br />

temporal markers of this period, reflect<strong>in</strong>g <strong>the</strong> emergence of <strong>the</strong> bow and arrow as <strong>the</strong><br />

preferred weapon system over <strong>the</strong> atlatl and dart comb<strong>in</strong>ation. The bedrock mortar may<br />

have first appeared <strong>in</strong> Yosemite at this time (Bennyhoff 1956a), although <strong>the</strong> <strong>in</strong>itial use<br />

and spread of that technology rema<strong>in</strong>s to be substantiated. In general, researchers believe<br />

<strong>the</strong> transition from portable mill<strong>in</strong>g equipment to <strong>the</strong> bedrock mortar occurred sometime<br />

between 1400–450 B.P. <strong>in</strong> <strong>the</strong> foothills (Moratto 1999:166, 2002) and ca. 1000 B.P. <strong>in</strong><br />

<strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> (Jackson 1991; Jackson and Dietz 1984). Large-scale studies<br />

<strong>in</strong> <strong>the</strong> foothills at New Melones and around <strong>the</strong> town of Sonora <strong>in</strong>dicate that bedrock<br />

mortars were <strong>in</strong> use <strong>in</strong> <strong>the</strong> foothills by about 600 years ago (Moratto 2002; Rosenthal<br />

2008). Look<strong>in</strong>g at obsidian hydration data from 40 bedrock mortar sites <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn<br />

<strong>Sierra</strong> <strong>Nevada</strong>, Stevens (2003) found that sites above 5000 ft elevation depict an <strong>in</strong>crease<br />

<strong>in</strong> occupational <strong>in</strong>tensity after ca. 1000 B.P. In contrast, sites below 5000 ft elevation<br />

show an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> percentage of dates at 2500 B.P., with a peak between 1500 and<br />

1000 B.P. Though it is tempt<strong>in</strong>g, as Stevens (2003) noted, to assume that <strong>the</strong>se dates<br />

reflect <strong>the</strong> appearance and spread of bedrock mortars, caution is warranted for numerous<br />

reasons, particularly if sites were occupied long before <strong>the</strong> bedrock mortars were used.<br />

Components of this <strong>in</strong>terval have been difficult to dist<strong>in</strong>guish archaeologically,<br />

possibly due to shift<strong>in</strong>g settlement patterns; that is, sites tend to be ephemeral and located<br />

away from well-watered areas (Hull 1989a). Compar<strong>in</strong>g data from various environmental<br />

sett<strong>in</strong>gs, Hull et al. (1995:147–148) proposed that ephemeral use of mid-elevation<br />

29


sett<strong>in</strong>gs may be related to western-slope peoples practic<strong>in</strong>g a forager subsistence-<br />

settlement strategy, while <strong>the</strong> Tamarack assemblages <strong>in</strong> high-elevation sett<strong>in</strong>gs may<br />

reflect special-use sites related to east-side collectors. Moratto (1999:119) fur<strong>the</strong>r<br />

suggested that Tamarack assemblages <strong>in</strong> Yosemite’s high country, marked by Rose<br />

Spr<strong>in</strong>g and Eastgate projectile po<strong>in</strong>ts, may represent <strong>the</strong> expansion of <strong>the</strong> Numic due, <strong>in</strong><br />

part, to unfavorable environmental conditions <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong>. Also dur<strong>in</strong>g this period,<br />

<strong>the</strong> <strong>Sierra</strong> Miwok may have first entered <strong>the</strong> region from <strong>the</strong> north (Hull 1990).<br />

The Raymond Phase (1400–450 B.P.) at Buchanan Reservoir and <strong>the</strong> Redbud<br />

Phase (1450–650 B.P.) at New Melones Reservoir reflect a similar period of apparent<br />

cultural change. Villages were abandoned, trade from <strong>the</strong> eastern <strong>Sierra</strong> and coast was<br />

m<strong>in</strong>imal, and populations were small and dispersed (Moratto 1972; Moratto et al. 1988).<br />

An absence of substantial material dat<strong>in</strong>g to about this period <strong>in</strong> <strong>the</strong> Sonora foothills<br />

locality also suggests a change <strong>in</strong> settlement and land use (Rosenthal 2008:74). Moratto<br />

(1999:119, 190) attributed this time of change to environmental stress <strong>in</strong>duced by <strong>the</strong><br />

shift to a more xeric climate, suggest<strong>in</strong>g that populations may have moved upslope to<br />

higher-elevation zones such as Yosemite Valley and Wawona. A demographic study<br />

specific to Yosemite Valley, however, showed a substantial decrease <strong>in</strong> population dur<strong>in</strong>g<br />

<strong>the</strong> 1500–600 B.P. <strong>in</strong>terval (Hull 2002a), argu<strong>in</strong>g aga<strong>in</strong>st this scenario.<br />

The Late <strong>Prehistoric</strong> 3 period (Mariposa Complex), dat<strong>in</strong>g from ca. 600 B.P. to<br />

Euroamerican contact <strong>in</strong> Yosemite, shares similarities with <strong>the</strong> Madera Phase on <strong>the</strong><br />

Chowchilla River and <strong>the</strong> Horseshoe Bend Phase <strong>in</strong> <strong>the</strong> New Melones Reservoir area. A<br />

hunt<strong>in</strong>g, ga<strong>the</strong>r<strong>in</strong>g, and fish<strong>in</strong>g economy featured an <strong>in</strong>tensive reliance on <strong>the</strong> staple food<br />

acorn. Hallmarks of this period <strong>in</strong>clude <strong>the</strong> bedrock mortar and pestle, <strong>in</strong> widespread use<br />

30


for process<strong>in</strong>g acorns and o<strong>the</strong>r foods, and Desert Side-notched and Cottonwood<br />

Triangular projectile po<strong>in</strong>ts, used for hunt<strong>in</strong>g with <strong>the</strong> bow and arrow. Large, dense<br />

populations occupied villages <strong>in</strong> streamside sett<strong>in</strong>gs at lower elevations, while special-use<br />

sites facilitated resource procurement <strong>in</strong> higher-elevation sett<strong>in</strong>gs, suggest<strong>in</strong>g a collector<br />

strategy of subsistence-settlement. At <strong>the</strong> Sonora locality, late prehistoric deposits are<br />

more spatially conf<strong>in</strong>ed compared to earlier deposits, possibly due to <strong>the</strong> use of bedrock<br />

mortars, which tend to focus activity (Rosenthal 2008:75). It is widely accepted that <strong>the</strong><br />

late prehistoric period reflects occupation by <strong>the</strong> ancestors of <strong>the</strong> <strong>Central</strong> and Sou<strong>the</strong>rn<br />

<strong>Sierra</strong> Miwok populations along <strong>the</strong> western slope, with contributions by neighbor<strong>in</strong>g<br />

peoples such as <strong>the</strong> Paiute and Western Mono (Moratto 1999, 2002).<br />

SUMMARY<br />

The archaeological records of <strong>the</strong> eastern and western <strong>Sierra</strong> show some broad<br />

parallels and a few key differences. Though <strong>the</strong> early and middle Holocene records are<br />

not well known, researchers believe <strong>the</strong> general trend over time <strong>in</strong> both regions to be one<br />

of high mobility and pursuit of high-return resources early <strong>in</strong> time and reduced mobility,<br />

<strong>in</strong>creas<strong>in</strong>g territoriality, and subsistence <strong>in</strong>tensification later <strong>in</strong> time. One key difference<br />

between eastern and western cultural sequences lies <strong>in</strong> <strong>the</strong> earlier development of large<br />

settlements <strong>in</strong> <strong>the</strong> <strong>Sierra</strong> foothills between ca. 3000 and 1500 B.P. In Yosemite, <strong>the</strong> Crane<br />

Flat Complex is said to ev<strong>in</strong>ce substantial populations and sedentism, while a mobile but<br />

regularized annual round characterized <strong>the</strong> Newberry period <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong>. Both of<br />

<strong>the</strong>se subsistence-settlement systems, however, were likely logistically organized. In<br />

addition, groups <strong>in</strong> both regions utilized <strong>the</strong> dart and atlatl comb<strong>in</strong>ation, a toolstone-<br />

<strong>in</strong>tensive technology focus<strong>in</strong>g on procurement of obsidian from eastern <strong>Sierra</strong> sources.<br />

31


A subsequent period of cultural change <strong>in</strong> both regions occurred after about 1500<br />

B.P. The bow and arrow replaced <strong>the</strong> atlatl and dart, while <strong>the</strong> florescence and<br />

subsequent decl<strong>in</strong>e <strong>in</strong> use of obsidian at <strong>the</strong> eastern <strong>Sierra</strong> quarries is mirrored by changes<br />

<strong>in</strong> obsidian debitage densities <strong>in</strong> <strong>the</strong> west. Intensive exploitation of acorn to <strong>the</strong> west and<br />

p<strong>in</strong>yon to <strong>the</strong> east transpired ca. 1500−1000 B.P., although it is clear that <strong>the</strong>se resources<br />

were also used by people earlier <strong>in</strong> time (Basgall et al. 2003; Rosenthal 2008). A period<br />

of hypo<strong>the</strong>sized settlement shift, low population density, violence, and reduced trade,<br />

possibly a result of <strong>the</strong> two extreme periods of drought of <strong>the</strong> Medieval Climatic<br />

Anomaly, is thought to characterize <strong>the</strong> western <strong>Sierra</strong> foothills between ca. 1500 and<br />

650 B.P (Moratto 1972, 1999). The impacts of drought on human settlement have yet to<br />

be clarified <strong>in</strong> <strong>the</strong> western <strong>Sierra</strong>, but data from <strong>the</strong> eastern <strong>Sierra</strong> show no evident<br />

disruptions <strong>in</strong> human occupation dur<strong>in</strong>g this period (Basgall 2008).<br />

In <strong>the</strong> contact and post-contact era, Miwok-speak<strong>in</strong>g people occupied <strong>the</strong> lowland<br />

areas of <strong>the</strong> western <strong>Sierra</strong>, while Paiute-speak<strong>in</strong>g people lived <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong>. The<br />

high country is believed to have been a jo<strong>in</strong>t use area, traversed seasonally for hunt<strong>in</strong>g,<br />

travel and trade, escap<strong>in</strong>g drought and enemies, and attend<strong>in</strong>g festivals. Very little is<br />

known of plant resource exploitation <strong>in</strong> <strong>the</strong> subalp<strong>in</strong>e and alp<strong>in</strong>e zones, while reference to<br />

hunt<strong>in</strong>g is made ma<strong>in</strong>ly <strong>in</strong> regard to deer or bighorn sheep. Based on a few anecdotes <strong>in</strong><br />

<strong>the</strong> historical record, groups of men apparently hunted us<strong>in</strong>g a logistical strategy. In <strong>the</strong><br />

project area, easterners and westerners traversed <strong>the</strong> Mono Trail (via Mono Pass, Dana<br />

Meadows, and Tuolumne Meadows), mentioned most often <strong>in</strong> <strong>the</strong> literature as an<br />

important corridor facilitat<strong>in</strong>g <strong>the</strong> extensive trade network and social contacts between<br />

groups of people.<br />

32


Although gaps are evident <strong>in</strong> <strong>the</strong> regional culture history sequences, this summary<br />

provides an <strong>in</strong>terpretive framework for <strong>the</strong> current study, <strong>in</strong> which <strong>the</strong> higher elevations<br />

are viewed as an articulat<strong>in</strong>g part of <strong>the</strong> larger subsistence-settlement systems on <strong>the</strong> east<br />

and west. Similar to what is known <strong>in</strong> <strong>the</strong> regional records, <strong>the</strong> signature of early and<br />

middle Holocene use is expected to be m<strong>in</strong>imal or difficult to detect. Logistical use of <strong>the</strong><br />

uplands should be prevalent dur<strong>in</strong>g <strong>the</strong> 3500–1500 B.P. <strong>in</strong>terval, with hunt<strong>in</strong>g and<br />

obsidian procurement related to <strong>the</strong> toolstone-consumptive biface <strong>in</strong>dustry <strong>in</strong> evidence.<br />

Late prehistoric subsistence <strong>in</strong>tensification, decreased group mobility, and <strong>in</strong>creased<br />

territorial circumscription <strong>in</strong> <strong>the</strong> lowlands should be reflected by <strong>in</strong>creased, and perhaps<br />

spatially constricted, residential use <strong>in</strong> <strong>the</strong> uplands. While trade between eastern and<br />

western groups apparently has great time depth, it may be that <strong>the</strong> emphasis shifted from<br />

obsidian prior to 1350 B.P. to o<strong>the</strong>r materials, such as foods, after that time.<br />

33


Chapter 3<br />

ELABORATION OF THE PROBLEM<br />

This chapter beg<strong>in</strong>s with an exploration of how researchers view subsistence-<br />

settlement <strong>in</strong> mounta<strong>in</strong> environments <strong>in</strong> <strong>the</strong> western Great Bas<strong>in</strong> and sou<strong>the</strong>rn <strong>Sierra</strong><br />

<strong>Nevada</strong>. Build<strong>in</strong>g on this work and what is known about regional prehistory, <strong>the</strong> second<br />

part of <strong>the</strong> chapter outl<strong>in</strong>es <strong>the</strong> current study problem, its <strong>the</strong>oretical underp<strong>in</strong>n<strong>in</strong>gs, and<br />

study expectations.<br />

REGIONAL HIGH-ELEVATION STUDIES<br />

In <strong>the</strong> past few decades, hunter-ga<strong>the</strong>rer archaeological studies <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong><br />

and <strong>Sierra</strong> <strong>Nevada</strong> have <strong>in</strong>creas<strong>in</strong>gly focused on prehistoric land use <strong>in</strong> upland<br />

environments and how it relates to conditions <strong>in</strong> <strong>the</strong> adjacent lowlands, tak<strong>in</strong>g a regional<br />

perspective <strong>in</strong> settlement pattern<strong>in</strong>g. Alp<strong>in</strong>e environments have drawn <strong>the</strong> most attention<br />

because <strong>the</strong>y have been considered resource-poor areas where patterns of land use might<br />

be more evident <strong>in</strong> <strong>the</strong> archaeological record. Areas with high resource potential were<br />

likely occupied repeatedly throughout prehistory, mak<strong>in</strong>g shifts <strong>in</strong> subsistence-settlement<br />

difficult to recognize archaeologically. In contrast, environments considered to be lower<br />

<strong>in</strong> resource potential might have been less <strong>in</strong>tensively used or used for specialized<br />

purposes, suggest<strong>in</strong>g that shifts <strong>in</strong> exploitation might be more clearly visible<br />

archaeologically (Basgall and Giambastiani 1995:5).<br />

Great Bas<strong>in</strong><br />

The most prom<strong>in</strong>ent high-elevation studies have been conducted <strong>in</strong> <strong>the</strong> Toquima<br />

Range of central <strong>Nevada</strong> and <strong>the</strong> White Mounta<strong>in</strong>s of eastern California. Surveys <strong>in</strong> <strong>the</strong><br />

alp<strong>in</strong>e zones (above 10,000 ft) and excavations at selected sites <strong>in</strong>dicate a significant shift<br />

34


<strong>in</strong> <strong>the</strong> way high elevations were used by pre-contact peoples (Bett<strong>in</strong>ger 1991; Thomas<br />

1982). Although only prelim<strong>in</strong>ary reports have been published to date, <strong>the</strong> studies are of<br />

particular <strong>in</strong>terest because of <strong>the</strong> substantial nature of <strong>the</strong> fieldwork, <strong>in</strong>clud<strong>in</strong>g both<br />

extensive surveys and <strong>in</strong>tensive excavations, and <strong>the</strong> documentation of similar shifts <strong>in</strong><br />

land use at two different mounta<strong>in</strong> ranges <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong>. Researchers generally agree<br />

on <strong>the</strong> nature of <strong>the</strong> land use, but <strong>the</strong> explanation and tim<strong>in</strong>g of <strong>the</strong> change <strong>in</strong> land use is<br />

<strong>the</strong> subject of dispute.<br />

In central <strong>Nevada</strong>, Thomas (1982) def<strong>in</strong>ed two major settlement strategies, based<br />

on <strong>the</strong> results of excavation of 18 of <strong>the</strong> 31 rock structures at Alta Toquima Village<br />

(11,000 ft elevation) and a 3500-acre survey of Mount Jefferson. The early period, dat<strong>in</strong>g<br />

to pre-950 B.P., <strong>in</strong>cluded a spatially extensive pattern characterized by logistical hunt<strong>in</strong>g<br />

of bighorn sheep by groups of men. Over 50 hunt<strong>in</strong>g bl<strong>in</strong>ds were recorded dur<strong>in</strong>g <strong>the</strong><br />

survey, <strong>in</strong> association with projectile po<strong>in</strong>ts almost exclusively of Rosegate series and<br />

older forms. After 950 B.P., settlement was restricted to <strong>the</strong> Alta Toquima Village, which<br />

shifted <strong>in</strong> function from a logistical hunt<strong>in</strong>g camp to a residential base camp used by<br />

family-based social units for hunt<strong>in</strong>g and extensive plant process<strong>in</strong>g. Most of <strong>the</strong><br />

structures, along with over 200 projectile po<strong>in</strong>ts of Desert Side-notched and Cottonwood<br />

Triangular forms, ceramics, over 50 gr<strong>in</strong>d<strong>in</strong>g stones, and a variety of beads, drill, and<br />

shaft straighteners were attributed to this post-950 B.P. occupation. Radiocarbon dates for<br />

<strong>the</strong> village features range from 1840 ± 80 B.P. to 220 ± 70 B.P., with a median date of<br />

940 B.P. (Thomas 1994:59–60).<br />

Surveys and excavation samples from 12 alp<strong>in</strong>e villages <strong>in</strong> <strong>the</strong> White Mounta<strong>in</strong>s<br />

revealed a similar shift <strong>in</strong> land use. The early component is def<strong>in</strong>ed by sparse lithic<br />

35


scatters and hunt<strong>in</strong>g bl<strong>in</strong>ds, with diagnostic projectile po<strong>in</strong>ts of <strong>the</strong> Elko and Gatecliff<br />

series. Designated <strong>the</strong> “previllage” pattern, sites are thought to represent a logistical<br />

hunt<strong>in</strong>g strategy where groups of men occupied areas for short periods of time, primarily<br />

<strong>in</strong> pursuit of bighorn sheep (Bett<strong>in</strong>ger 1991). The later pattern <strong>in</strong>cludes sites composed of<br />

multiple-course, circular stone foot<strong>in</strong>gs (house foundations), storage facilities, midden<br />

accumulation, ground and battered stone, ceramics, and a variety of flaked stone tools<br />

and manufactur<strong>in</strong>g debris (Bett<strong>in</strong>ger 1991). This “village” pattern is temporally and<br />

functionally dist<strong>in</strong>ct from <strong>the</strong> earlier one, represent<strong>in</strong>g an <strong>in</strong>tensive and longer-term<br />

residential occupation, perhaps of one to two months, by nuclear families or multiple<br />

family social units. <strong>Use</strong> centered on a broader array of resources, both plants and animals,<br />

compared to <strong>the</strong> s<strong>in</strong>gular hunt<strong>in</strong>g focus of <strong>the</strong> earlier occupation. Bett<strong>in</strong>ger (1991) placed<br />

use of <strong>the</strong> White Mounta<strong>in</strong>s villages at post-1350 B.P. based on lichen measurements,<br />

radiocarbon dates, and temporally diagnostic projectile po<strong>in</strong>ts of Rose Spr<strong>in</strong>g,<br />

Cottonwood, and Desert Side-notched types. These late prehistoric arrow po<strong>in</strong>ts are more<br />

common <strong>in</strong> village contexts, while dart po<strong>in</strong>ts, such as <strong>the</strong> Elko, Gatecliff, and Humboldt<br />

series, predom<strong>in</strong>ate <strong>in</strong> hunt<strong>in</strong>g contexts.<br />

Prompted by <strong>the</strong> work of Bett<strong>in</strong>ger and Thomas, Canaday (1997) carried out<br />

surface <strong>in</strong>vestigations <strong>in</strong> five mounta<strong>in</strong> ranges <strong>in</strong> central and western <strong>Nevada</strong>, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> Toiyabe Range, Ruby Mounta<strong>in</strong>s, Snake Range, Jarbridge Mounta<strong>in</strong>s, and Deep<br />

Creek Mounta<strong>in</strong>s. With<strong>in</strong> <strong>the</strong> 7,500 acres of land <strong>in</strong>spected above 10,000 ft elevation,<br />

Canaday (1997) documented 31 sites, <strong>the</strong> majority of which clustered <strong>in</strong> a small area of<br />

<strong>the</strong> Toiyabe Range. Most of <strong>the</strong>se sites conta<strong>in</strong>ed stacked rock features associated with<br />

hunt<strong>in</strong>g, although three isolated rock r<strong>in</strong>g dwell<strong>in</strong>gs were also recorded. Similar to <strong>the</strong><br />

36


Toquima sites, <strong>the</strong> rock r<strong>in</strong>gs are associated with late-period projectile po<strong>in</strong>ts. Canaday<br />

(1997:239) suggested that longer-term residential use occurred at least occasionally, but<br />

probably as a base for hunt<strong>in</strong>g parties ra<strong>the</strong>r than family-based groups. The artifact<br />

assemblage—<strong>the</strong> lack of ceramic artifacts, fewer artifacts <strong>in</strong> general, and <strong>the</strong> presence of<br />

only one m<strong>in</strong>imally worked piece of ground stone utilized as part of <strong>the</strong> wall—contrasts<br />

sharply with <strong>the</strong> far richer assemblage at Alta Toquima.<br />

A po<strong>in</strong>t of contention is not that a change <strong>in</strong> land use occurred, but <strong>the</strong><br />

explanation for it. Bett<strong>in</strong>ger asserted that <strong>the</strong> village pattern represents Numic occupation,<br />

part and parcel of <strong>the</strong> traveler-processor model first proposed by Bett<strong>in</strong>ger and Baumhoff<br />

(1982; see also Bett<strong>in</strong>ger 1994, 1999b) to expla<strong>in</strong> <strong>the</strong> fan-like distribution of <strong>the</strong> Numic<br />

languages across <strong>the</strong> Great Bas<strong>in</strong> about 1000 years ago (cf. Lamb 1958). The model<br />

articulates a l<strong>in</strong>k between adaptations and population distributions and density, and<br />

centers on how groups use time, space, and energy. Briefly, travelers (i.e., <strong>the</strong> Prenumic)<br />

are residentially mobile foragers rely<strong>in</strong>g on high-quality resources for <strong>the</strong>ir subsistence<br />

needs. These groups spend relatively more time travel<strong>in</strong>g between resource patches than<br />

<strong>in</strong> handl<strong>in</strong>g <strong>the</strong>se resources (e.g., procurement and process<strong>in</strong>g). Population levels and<br />

thus competition must be fairly low to accommodate <strong>the</strong> needs of travelers. As<br />

competition for resources <strong>in</strong>creases, however, distant patches may already be occupied<br />

and <strong>the</strong>y become less attractive. In this scenario, <strong>the</strong> processor strategy displaces that of<br />

<strong>the</strong> traveler. Processors (i.e., <strong>the</strong> Numic) spend less time travel<strong>in</strong>g between resource<br />

patches and more time acquir<strong>in</strong>g resources with<strong>in</strong> <strong>the</strong>m. They are logistically oriented,<br />

use a wider range of resources, <strong>in</strong>clud<strong>in</strong>g lower-quality resources, and spend more time <strong>in</strong><br />

handl<strong>in</strong>g than search<strong>in</strong>g.<br />

37


In contrast to this replacement model, Grayson (1991) proposed that <strong>the</strong><br />

development of alp<strong>in</strong>e villages represents <strong>in</strong>tensification of <strong>the</strong> previllage pattern as a<br />

result of <strong>in</strong> situ population growth. Thomas (1994) rebutted <strong>the</strong> replacement model, as<br />

well, based on <strong>the</strong> unclear tim<strong>in</strong>g of <strong>the</strong> Numic spread and <strong>the</strong> earlier median radiocarbon<br />

date for <strong>the</strong> Alta Toquima rock constructs compared to those for <strong>the</strong> White Mounta<strong>in</strong>s.<br />

Canaday’s f<strong>in</strong>d<strong>in</strong>gs of rock r<strong>in</strong>g dwell<strong>in</strong>gs overly<strong>in</strong>g previllage components <strong>in</strong> <strong>the</strong><br />

Toiyabe Range, comb<strong>in</strong>ed with a dearth of alp<strong>in</strong>e sites <strong>in</strong> <strong>the</strong> o<strong>the</strong>r four ranges he<br />

exam<strong>in</strong>ed, can be taken as support for Grayson’s argument. Zeanah and Simms<br />

(1999:129) po<strong>in</strong>ted out, however, that population pressure fails as a prime mover because<br />

alp<strong>in</strong>e villages do not consistently occur <strong>in</strong> mounta<strong>in</strong> ranges adjacent to heavily populated<br />

valleys. For example, Canaday did not f<strong>in</strong>d alp<strong>in</strong>e villages <strong>in</strong> <strong>the</strong> Ruby Mounta<strong>in</strong>s,<br />

bordered by <strong>the</strong> densely populated Lamoille, Hunt<strong>in</strong>gton, and Ruby valleys. Emphasiz<strong>in</strong>g<br />

<strong>the</strong> variability <strong>in</strong> alp<strong>in</strong>e exploitation between ranges, Zeanah and Simms (1999:130)<br />

noted that understand<strong>in</strong>g <strong>the</strong> previllage-village transition will require a <strong>the</strong>oretical<br />

perspective that takes this variability <strong>in</strong>to account.<br />

While <strong>the</strong> development of alp<strong>in</strong>e villages rema<strong>in</strong>s a source of debate, <strong>the</strong> nature of<br />

<strong>the</strong> previllage pattern is also arguable. The previllage pattern could represent a logistical<br />

hunt<strong>in</strong>g strategy, related solely to large game procurement by men, or residential<br />

encampment. Basgall and Giambastiani (1995:266) argued that <strong>the</strong> occurrence of<br />

abundant mill<strong>in</strong>g tools and battered cobbles <strong>in</strong> pre-1350 B.P. contexts <strong>in</strong>dicates at least<br />

some level of plant exploitation and thus <strong>the</strong> presence of <strong>in</strong>clusive social groups<br />

composed of men, women, and children. In this <strong>in</strong>terpretation, <strong>the</strong> previllage component<br />

38


esembles that of o<strong>the</strong>r residential encampments found throughout <strong>the</strong> region for that time<br />

period.<br />

Toward fur<strong>the</strong>r elucidation of previllage land use, Zeanah (2000) developed an<br />

economic model <strong>in</strong>corporat<strong>in</strong>g diet breadth, transport costs, and central-place forag<strong>in</strong>g<br />

<strong>the</strong>ory. Although <strong>the</strong> model specifically addresses <strong>the</strong> previllage components of <strong>the</strong><br />

White Mounta<strong>in</strong>s and resource distributions <strong>in</strong> <strong>the</strong> Owens Valley region, its pr<strong>in</strong>ciples are<br />

useful for consideration <strong>in</strong> o<strong>the</strong>r alp<strong>in</strong>e environments across <strong>the</strong> western United States.<br />

The model assumes a l<strong>in</strong>k between subsistence and mobility, specifically that diet breadth<br />

and local resource distributions impose transport costs, which <strong>in</strong> turn, determ<strong>in</strong>e <strong>the</strong><br />

mobility strategy that hunter-ga<strong>the</strong>rers choose to exploit alp<strong>in</strong>e environments (Zeanah<br />

2000:2). The model suggests that logistical use of <strong>the</strong> White Mounta<strong>in</strong>s would relate to<br />

broad diets and <strong>the</strong> need to exploit simultaneously lowland seeds and upland large game.<br />

The storage of seeds also implies more <strong>in</strong>tensive seed procurement, likely <strong>in</strong> <strong>the</strong><br />

lowlands, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> probability of <strong>the</strong> lowland residential and highland<br />

logistical use pattern (Bett<strong>in</strong>ger 2000:122). In contrast, <strong>the</strong> residentially mobile strategy<br />

would be employed when return rates are high and groups could move to <strong>the</strong> most<br />

productive resource patches. The White Mounta<strong>in</strong> alp<strong>in</strong>e villages, however, represent a<br />

dist<strong>in</strong>ctive pattern from both of <strong>the</strong>se strategies, primarily because of <strong>the</strong> longer duration<br />

of residential occupation. The alp<strong>in</strong>e village pattern is <strong>in</strong>terpreted as a consequence of<br />

regional population growth and <strong>the</strong> selection of a poor central-place location because<br />

more profitable areas were unavailable (Zeanah 2000:13).<br />

39


Sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong><br />

Studies of prehistoric land use <strong>in</strong> <strong>the</strong> alp<strong>in</strong>e zone of <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong><br />

are perhaps most relevant to <strong>the</strong> current study. Conduct<strong>in</strong>g surface <strong>in</strong>ventory and limited<br />

collections <strong>in</strong> selected locations between <strong>the</strong> San Joaqu<strong>in</strong> and Kern River dra<strong>in</strong>ages <strong>in</strong><br />

Sequoia-K<strong>in</strong>gs Canyon National Parks, Roper Wickstrom (1992, 1993) identified long-<br />

term, extensive use of <strong>the</strong> higher elevations and geographical dist<strong>in</strong>ctions <strong>in</strong> <strong>the</strong><br />

distributions of Casa Diablo, Fish Spr<strong>in</strong>gs, and Coso obsidians. F<strong>in</strong>d<strong>in</strong>g more <strong>in</strong>tensive<br />

use of restricted localities dur<strong>in</strong>g <strong>the</strong> late period, her conclusions also supported <strong>the</strong> high-<br />

elevation settlement pattern noted by Thomas and Bett<strong>in</strong>ger. That is, <strong>the</strong> few village<br />

localities represented late period deposits, and Desert series projectile po<strong>in</strong>ts were rarely<br />

seen <strong>in</strong> contexts outside of those villages.<br />

Also <strong>in</strong> Sequoia-K<strong>in</strong>gs Canyon National Parks, Stevens (2002, 2005) first<br />

<strong>in</strong>vestigated six sites <strong>in</strong> <strong>the</strong> alp<strong>in</strong>e environment of Taboose Pass, and subsequently<br />

compiled data for sites above 8000 ft elevation, between <strong>the</strong> San Joaqu<strong>in</strong> River to <strong>the</strong><br />

north and <strong>the</strong> East Fork of <strong>the</strong> Kaweah River to <strong>the</strong> south. Sites were classed as hav<strong>in</strong>g<br />

limited or <strong>in</strong>tensive use based on artifact diversity, debitage density, and <strong>the</strong> presence of<br />

features such as midden soil, rock r<strong>in</strong>gs, and bedrock mortars that po<strong>in</strong>t to longer-term<br />

habitation. Limited use, most evident dur<strong>in</strong>g <strong>the</strong> ca. 3500–1350 B.P. <strong>in</strong>terval, was<br />

characterized by dense lithic scatters related to obsidian procurement and logistical<br />

hunt<strong>in</strong>g, presumably by small groups of men. Obsidian procurement was <strong>in</strong>dicated <strong>in</strong> <strong>the</strong><br />

vic<strong>in</strong>ity of Taboose Pass, a major east-west travel route, while logistical hunt<strong>in</strong>g camps<br />

were represented <strong>in</strong> areas away from <strong>the</strong> pass. The <strong>in</strong>tensive-use pattern, <strong>in</strong>dicated by a<br />

40


wider range of artifacts and features, generally occurred after ca. 1350 B.P. This later<br />

pattern reflected extended periods of occupation, possibly by family-based social units.<br />

The transition from limited to <strong>in</strong>tensive use is consistent with regional cultural<br />

developments. First, <strong>the</strong> tim<strong>in</strong>g of <strong>the</strong> shift away from obsidian procurement at Taboose<br />

Pass sites parallels <strong>the</strong> decl<strong>in</strong>e <strong>in</strong> obsidian use documented at several eastern <strong>Sierra</strong><br />

<strong>Nevada</strong> quarries (Gilreath and Hildebrandt 1997; Hall and Basgall 1994; Ramos 2000;<br />

S<strong>in</strong>ger and Ericson 1977). Second, Stevens’ (2002, 2005) f<strong>in</strong>d<strong>in</strong>gs are broadly similar to<br />

<strong>the</strong> previllage and village patterns <strong>in</strong> <strong>the</strong> White Mounta<strong>in</strong>s and Toquima Range (Bett<strong>in</strong>ger<br />

1991; Thomas 1982) and to developments <strong>in</strong> western Great Bas<strong>in</strong> prehistory <strong>in</strong> general<br />

(Bett<strong>in</strong>ger 1999a; McGuire and Hildebrandt 2005). While Stevens <strong>in</strong>terpreted <strong>the</strong><br />

sou<strong>the</strong>rn <strong>Sierra</strong> data <strong>in</strong> support of late prehistoric resource <strong>in</strong>tensification (cf. Basgall and<br />

Giambastiani 1995; Bett<strong>in</strong>ger 1991, 1999a), he highlighted some important dist<strong>in</strong>ctions<br />

between <strong>the</strong> archaeological records of <strong>the</strong> <strong>Sierra</strong> and western Great Bas<strong>in</strong>. The artifact<br />

and feature <strong>in</strong>ventories at <strong>in</strong>tensive-use sites (Mundy 1988; Roper Wickstrom 1992;<br />

Stevens 2002) are clearly less rich than those retrieved from village deposits <strong>in</strong> <strong>the</strong> Great<br />

Bas<strong>in</strong>, which Stevens (2002) attributed to geography and differences <strong>in</strong> eastern and<br />

western slope subsistence-settlement systems. Bett<strong>in</strong>ger (1991) tied <strong>the</strong> rise of alp<strong>in</strong>e<br />

villages to regional population growth and <strong>in</strong>tensification of p<strong>in</strong>yon procurement, <strong>the</strong><br />

latter at least partially allow<strong>in</strong>g for <strong>the</strong> longer-duration occupation of alp<strong>in</strong>e villages. The<br />

major p<strong>in</strong>yon procurement areas, however, are <strong>in</strong> <strong>the</strong> White-Inyo Range, suggest<strong>in</strong>g that<br />

<strong>Sierra</strong> alp<strong>in</strong>e zones would be less important if p<strong>in</strong>yon stores were needed to support <strong>the</strong>ir<br />

use. Stevens (2005:200–201) emphasized <strong>the</strong> need to consider travel and trade <strong>in</strong> <strong>the</strong><br />

residential occupation of high-elevation <strong>Sierra</strong> passes, and how that might have<br />

41


<strong>in</strong>fluenced prolonged stays. S<strong>in</strong>ce <strong>in</strong>tensive-use sites of <strong>the</strong> alp<strong>in</strong>e sou<strong>the</strong>rn <strong>Sierra</strong> appear<br />

to be concentrated along major travel corridors, it may be that such use was only<br />

worthwhile under conditions of relatively easy access and if <strong>in</strong>teractions between eastern<br />

and western groups could result <strong>in</strong> economic or social ga<strong>in</strong>s (Stevens 2002:174).<br />

As a borderland between Great Bas<strong>in</strong> and California cultures at <strong>the</strong> time of<br />

Euroamerican contact, identify<strong>in</strong>g <strong>the</strong> cultural affiliation of groups us<strong>in</strong>g <strong>the</strong> higher<br />

elevations of <strong>the</strong> <strong>Sierra</strong> is an important one. The Taboose Pass data, though prelim<strong>in</strong>ary<br />

<strong>in</strong> nature, suggest that cultural affiliation may have varied through time (Stevens<br />

2002:162–163). Based on <strong>the</strong> higher debitage densities, greater amounts of cortical<br />

debitage, and frequencies of obsidian hydration read<strong>in</strong>gs, <strong>the</strong> limited-use sites at Taboose<br />

Pass are thought to be related to obsidian procurement. Tak<strong>in</strong>g <strong>in</strong>to account patterns at<br />

<strong>the</strong> Fish Spr<strong>in</strong>gs obsidian source and settlement systems for easterners and westerners,<br />

early use of sites at <strong>the</strong> crest may be related to direct access of <strong>the</strong> Fish Spr<strong>in</strong>gs source by<br />

western groups. The o<strong>the</strong>r limited-use sites away from <strong>the</strong> pass, however, may <strong>in</strong>dicate<br />

logistical hunt<strong>in</strong>g forays by both west- and east-side people. The later <strong>in</strong>tensive-use<br />

pattern suggests an eastern cultural aff<strong>in</strong>ity based on shared ground stone characteristics<br />

and obsidian source diversity for tools.<br />

While Stevens exam<strong>in</strong>ed change over time <strong>in</strong> a spatially limited area, Morgan’s<br />

(2006, 2009) study of hunter-ga<strong>the</strong>rer mobility and climate change encompassed a broad<br />

elevational swath of <strong>the</strong> western slope <strong>in</strong> <strong>the</strong> San Joaqu<strong>in</strong> River watershed over a limited<br />

temporal period. Morgan focused on <strong>the</strong> settlement system of <strong>the</strong> Western Mono,<br />

believed to have arrived <strong>in</strong> <strong>the</strong> area from <strong>the</strong> eastern <strong>Sierra</strong> <strong>Nevada</strong> around 600 B.P. The<br />

study syn<strong>the</strong>sized survey data from a large area of <strong>the</strong> <strong>Sierra</strong> National Forest, total<strong>in</strong>g 551<br />

42


km 2 of <strong>the</strong> 1626 km 2 study area. The relatively even distribution of survey coverage<br />

across ecotones was thought to accurately reflect bedrock mortar distribution, <strong>the</strong> primary<br />

object of analysis.<br />

Morgan recognized different site types and mobility strategies (follow<strong>in</strong>g B<strong>in</strong>ford<br />

[1980]) based on bedrock mortar counts, where sites conta<strong>in</strong><strong>in</strong>g ≥14 mortars are<br />

residential <strong>in</strong>dicators and sites with


of early <strong>in</strong>vestigations recognized some important dist<strong>in</strong>ctions <strong>in</strong> site distribution,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> prevalence of sites with bedrock mortars below about 5000–6000 ft<br />

elevation and <strong>the</strong> higher frequency of lithic scatters above that elevation (Bennyhoff<br />

1956a; Moratto 1981). O<strong>the</strong>rs have identified patterns <strong>in</strong> site location with respect to<br />

geographic features or vegetation communities (Carpenter 2004; Hull and Mundy 1985;<br />

Mundy 1992). For example, sites are more prevalent <strong>in</strong> <strong>the</strong> Yellow P<strong>in</strong>e Forest and high-<br />

elevation meadow/Lodgepole P<strong>in</strong>e Forest ecotone than <strong>in</strong> Red Fir Forest or Giant<br />

Sequoia vegetation communities. Slope and distance to water are important settlement<br />

determ<strong>in</strong>ants, with most sites present on slopes measur<strong>in</strong>g less than 20–30 percent and<br />

with<strong>in</strong> about 200 m of water. A common element of all of <strong>the</strong>se studies is <strong>the</strong>ir<br />

synchronic approach, leav<strong>in</strong>g potential changes <strong>in</strong> settlement pattern<strong>in</strong>g over time to be<br />

explored <strong>in</strong> <strong>the</strong> future.<br />

Follow<strong>in</strong>g Hull et al. (1995), more recent excavations <strong>in</strong> <strong>the</strong> study area have<br />

addressed site function and settlement patterns with<strong>in</strong> B<strong>in</strong>ford’s forager-collector<br />

cont<strong>in</strong>uum, based on assemblage diversity and abundance, and technological features of<br />

artifacts. However, <strong>the</strong> focus at a relatively small number of sites, some with very small<br />

sample sizes and mixed components, made settlement patterns a difficult issue to address.<br />

In <strong>the</strong> n<strong>in</strong>e sites tested at Dana Meadows, Montague (1996a) noted a pattern where early-<br />

period components, characterized by higher debitage densities and little or no mill<strong>in</strong>g<br />

equipment, were more prevalent with<strong>in</strong> <strong>the</strong> site sample. In contrast, fewer late-period<br />

components were evident and <strong>the</strong>se tended to conta<strong>in</strong> mill<strong>in</strong>g features and lower<br />

quantities of debitage. Montague speculated that <strong>the</strong> <strong>in</strong>tensification of acorn exploitation<br />

<strong>in</strong> <strong>the</strong> lower elevations may have contributed to shift<strong>in</strong>g high-elevation land use patterns.<br />

44


In a more detailed assessment of three Tuolumne Meadows sites, Hull et al. (1995:147)<br />

detected a more ephemeral use pattern related to Tamarack phase components, dist<strong>in</strong>ct<br />

from those of <strong>the</strong> Crane Flat and Mariposa phases, which were viewed as forager<br />

residential bases. Specifically, low tool diversity and abundance, coupled with abundant<br />

debitage, suggested a task-specific function related to lithic reduction; that is, a special-<br />

use site with<strong>in</strong> a collector strategy. Compar<strong>in</strong>g this f<strong>in</strong>d<strong>in</strong>g to patterns observed <strong>in</strong> <strong>the</strong><br />

Owens Valley and <strong>the</strong> western lowlands, Hull et al. (1995:147–148) suggested that<br />

Tamarack phase use of <strong>the</strong> uplands might be related to eastern logistical collectors, while<br />

Tamarack use of <strong>the</strong> lowlands might be related to western groups.<br />

While settlement patterns have been addressed to a po<strong>in</strong>t, studies have focused on<br />

issues of chronology and obsidian procurement. In general, sites tend to be multi-<br />

component deposits, conta<strong>in</strong><strong>in</strong>g higher frequencies of debitage, low tool diversity and<br />

abundance, and lower frequencies of mill<strong>in</strong>g equipment <strong>in</strong> comparison to lowland sites<br />

(Hull et al. 1995; Montague 1996a). Based on obsidian hydration measurements, earliest<br />

use of <strong>the</strong> high country may have transpired at around 6000 B.P., with widespread use by<br />

3000–4000 B.P. Casa Diablo obsidian predom<strong>in</strong>ates <strong>in</strong> Tuolumne and Dana meadows<br />

dur<strong>in</strong>g all time periods, while Bodie Hills is prevalent to <strong>the</strong> north and <strong>in</strong> <strong>the</strong> lower<br />

portion of <strong>the</strong> canyon. Obsidians of m<strong>in</strong>or occurrence <strong>in</strong>clude Mt. Hicks, Mono Craters,<br />

Mono Glass Mounta<strong>in</strong>, and Truman/Queen, with a few specimens of Fish Spr<strong>in</strong>gs and<br />

Sutro Spr<strong>in</strong>gs.<br />

Summary<br />

Studies <strong>in</strong> <strong>the</strong> western Great Bas<strong>in</strong> and sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> demonstrate a<br />

pattern of change <strong>in</strong> alp<strong>in</strong>e land use ca. 1350 B.P. across a relatively large geographic<br />

45


area. Researchers propose that a spatially limited occupation related to longer-term<br />

residential use for hunt<strong>in</strong>g and plant process<strong>in</strong>g replaced a spatially extensive occupation<br />

related to logistical hunt<strong>in</strong>g. While this pattern appears to be relatively consistent <strong>in</strong> <strong>the</strong><br />

White Mounta<strong>in</strong>s, Alta Toquima, and <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong>, some variability is<br />

present <strong>in</strong> <strong>the</strong> archaeological records, explanations for <strong>the</strong> change differ, and support for<br />

<strong>the</strong> arguments varies.<br />

The archaeological evidence for a shift <strong>in</strong> land use seems strongly supported by<br />

studies <strong>in</strong> <strong>the</strong> White Mounta<strong>in</strong>s and Toquima Range (Bett<strong>in</strong>ger 1991; Thomas 1982);<br />

however, <strong>the</strong> detailed reports that would allow for <strong>in</strong>dependent assessment of <strong>the</strong> data<br />

rema<strong>in</strong> to be completed. None<strong>the</strong>less, <strong>the</strong> comb<strong>in</strong>ation of extensive surveys and <strong>in</strong>tensive<br />

excavations at both locales, followed by a suite of analytical studies, allows for <strong>the</strong><br />

exam<strong>in</strong>ation of broad spatial patterns and, at <strong>the</strong> same time, <strong>the</strong> more comprehensive<br />

<strong>in</strong>ventory of cultural material and secure def<strong>in</strong>ition of components derived through<br />

excavation. In contrast, m<strong>in</strong>imal excavations and patchy survey coverage <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn<br />

<strong>Sierra</strong> <strong>Nevada</strong> provide for less rigorous archaeological evidence. Still, researchers <strong>in</strong> that<br />

region (Roper Wickstrom 1992; Stevens 2002) have demonstrated reasonable support for<br />

a similar trend <strong>in</strong> land use, one that is <strong>in</strong>fluenced by local environmental and cultural<br />

factors.<br />

In a larger regional context, alp<strong>in</strong>e studies <strong>in</strong> <strong>the</strong> western Great Bas<strong>in</strong> are also<br />

more strongly supported by studies <strong>in</strong> <strong>the</strong> lower elevations, which have provided<br />

subsistence-settlement models aga<strong>in</strong>st which <strong>the</strong> high-elevation data can be compared.<br />

Although some aspects of <strong>the</strong> model are debated, and <strong>the</strong> early prehistory rema<strong>in</strong>s to be<br />

clarified (see Chapter 2), settlement models h<strong>in</strong>ge on substantial studies by a group of<br />

46


esearchers with a cont<strong>in</strong>u<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> <strong>the</strong> region. In <strong>the</strong> western <strong>Sierra</strong> and <strong>in</strong> Yosemite<br />

<strong>in</strong> particular, regional research designs po<strong>in</strong>t out multiple avenues for research, but <strong>the</strong><br />

understand<strong>in</strong>g of prehistory has been hampered by various factors, <strong>in</strong>clud<strong>in</strong>g an<br />

overabundance of compliance- as opposed to research-driven projects, mixed components<br />

<strong>in</strong> subsurface deposits, and what is understood to be generally poor preservation of<br />

organic rema<strong>in</strong>s.<br />

Despite <strong>the</strong> similarities <strong>in</strong> <strong>the</strong> archaeological records, <strong>the</strong>re are some discrepancies<br />

that should be highlighted. First, Canaday (1997) found few archaeological sites <strong>in</strong> <strong>the</strong><br />

alp<strong>in</strong>e zones of four of <strong>the</strong> five mounta<strong>in</strong> ranges he <strong>in</strong>vestigated <strong>in</strong> <strong>Nevada</strong>, even <strong>in</strong> those<br />

ranges adjacent to densely populated valleys where <strong>the</strong> population pressure model would<br />

predict archaeological sites. In <strong>the</strong> Toiyabe Range, <strong>the</strong> s<strong>in</strong>gle mounta<strong>in</strong> range with<br />

abundant archaeological sites, <strong>in</strong>clud<strong>in</strong>g a few sites with rock r<strong>in</strong>g dwell<strong>in</strong>gs, hunt<strong>in</strong>g was<br />

thought to have persisted over time as <strong>the</strong> primary function. In <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong>, <strong>the</strong><br />

less rich artifact <strong>in</strong>ventories at Taboose Pass and concentrations of sites along travel<br />

corridors suggested that residential use <strong>in</strong> <strong>the</strong> marg<strong>in</strong>al alp<strong>in</strong>e zone was only worthwhile<br />

if access was relatively easy and economic or social ga<strong>in</strong>s could be made (Stevens 2002).<br />

In Yosemite, studies have not yet been undertaken <strong>in</strong> which change over time is<br />

exam<strong>in</strong>ed across a broad geographic spectrum. The present work aimed to at least<br />

partially address this gap and <strong>the</strong>reby contribute to <strong>the</strong> understand<strong>in</strong>g of high-elevation<br />

land use <strong>in</strong> <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong>.<br />

STUDY PROBLEM AND THEORY<br />

The underly<strong>in</strong>g <strong>the</strong>oretical orientation of this study leans toward evolutionary<br />

ecology, as opposed to approaches that view power, agency, and history as <strong>the</strong> primary<br />

47


means of culture change, although it is recognized that <strong>the</strong> latter can <strong>in</strong>fluence cultural<br />

change. Evolutionary ecology applies <strong>the</strong> framework of evolutionary biology to <strong>the</strong> study<br />

of adaptive design <strong>in</strong> behavior, life history, and morphology (Bird and O’Connell 2006;<br />

W<strong>in</strong>terhalder and Smith 2000). Behavioral ecology—a subset of evolutionary ecology—<br />

exam<strong>in</strong>es behavior <strong>in</strong> terms of Darw<strong>in</strong>ian fitness, look<strong>in</strong>g to <strong>the</strong> socio-ecological context<br />

to expla<strong>in</strong> observed patterns. The approach was orig<strong>in</strong>ally developed <strong>in</strong> <strong>the</strong> 1960s and<br />

1970s <strong>in</strong> <strong>the</strong> biological sciences and later applied <strong>in</strong> anthropological <strong>in</strong>quiry as human<br />

behavioral ecology. Archaeological research carried out under <strong>the</strong> umbrella of human<br />

behavioral ecology commonly focuses on such topics as changes <strong>in</strong> diet breadth and<br />

resource <strong>in</strong>tensification, <strong>the</strong> l<strong>in</strong>ks between technology and forag<strong>in</strong>g, <strong>the</strong> relationships<br />

between central place forag<strong>in</strong>g and resource transport, competition and colonization<br />

among foragers, and <strong>the</strong> orig<strong>in</strong>s of agriculture (Bird and O’Connell 2006). These studies<br />

typically employ <strong>the</strong> diet breadth and patch choice models of optimal forag<strong>in</strong>g <strong>the</strong>ory,<br />

which assume that maximiz<strong>in</strong>g <strong>the</strong> rate of caloric <strong>in</strong>take, or reach<strong>in</strong>g some threshold<br />

more quickly, enhances fitness (Bird and O’Connell 2006). In essence, <strong>the</strong> models are<br />

cost-benefit analyses, entail<strong>in</strong>g a consideration of goals, decision-mak<strong>in</strong>g variables, trade-<br />

offs, currencies, and constra<strong>in</strong>ts.<br />

With<strong>in</strong> this perspective, prehistoric use of <strong>the</strong> study area is viewed as a<br />

consequence of economic decisions associated with <strong>the</strong> resource potential of <strong>the</strong> area, <strong>the</strong><br />

productivity of <strong>the</strong> core lowland areas, schedul<strong>in</strong>g conflicts with o<strong>the</strong>r subsistence<br />

activities, and <strong>the</strong> cost of travel<strong>in</strong>g to <strong>the</strong> upper elevations (cf. Stevens 2002). The study<br />

also assumes that prehistoric use of <strong>the</strong> uplands was <strong>in</strong>fluenced by cultural developments<br />

<strong>in</strong> <strong>the</strong> lowlands on ei<strong>the</strong>r side of <strong>the</strong> crest, largely <strong>in</strong> terms of mobility strategies, resource<br />

48


acquisition, and population dynamics. F<strong>in</strong>ally, changes <strong>in</strong> <strong>the</strong> demand for obsidian from<br />

eastern <strong>Sierra</strong> <strong>Nevada</strong> sources and exchange between eastern and western groups, <strong>in</strong><br />

general, are assumed to have <strong>in</strong>fluenced use of <strong>the</strong> high elevations.<br />

The current study first exam<strong>in</strong>es Yosemite’s high-elevation archaeological record<br />

for subsistence-settlement change over time, and second explores any observed changes<br />

as a consequence of <strong>in</strong>tensification <strong>in</strong> <strong>the</strong> core lowlands to <strong>the</strong> east and west. Evidence of<br />

a shift <strong>in</strong> subsistence-settlement might <strong>in</strong>clude changes <strong>in</strong> site locations or site<br />

constituents after about 1350 B.P. (Roper Wickstrom 1993; Stevens 2002). Given <strong>the</strong><br />

similarities <strong>in</strong> natural environment, cultural background, and cultural material between<br />

<strong>the</strong> central and sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong>, this study follows Stevens’ (2002:125, 128)<br />

broad group<strong>in</strong>g of archaeological sites as <strong>in</strong>dicative of ei<strong>the</strong>r limited or <strong>in</strong>tensive use to<br />

<strong>in</strong>vestigate potential changes <strong>in</strong> land use over time. Archaeological expectations for sites<br />

exhibit<strong>in</strong>g limited use are low tool diversity, high frequencies of obsidian debitage,<br />

limited diversity <strong>in</strong> raw material, and an absence of ground stone and structural features.<br />

Sites with <strong>the</strong>se attributes are thought to represent short-term occupation, perhaps related<br />

to travel, hunt<strong>in</strong>g, or obsidian procurement activities. Residential sites or more <strong>in</strong>tensive-<br />

use sites may exhibit rock r<strong>in</strong>gs, structural depressions, bedrock mortars, ground stone<br />

artifacts, midden, rock art, and higher diversity <strong>in</strong> artifact forms. These sites are thought<br />

to represent extended habitation by social groups <strong>in</strong>clud<strong>in</strong>g men, women, and children,<br />

exploitation of a variety of plant and animal resources, tool manufacture and<br />

ma<strong>in</strong>tenance, and perhaps exchange with o<strong>the</strong>r groups.<br />

Changes <strong>in</strong> site constituents over time would be <strong>in</strong>dicated by two possible<br />

outcomes. First, a higher frequency of sites <strong>in</strong>dicat<strong>in</strong>g a residential focus or <strong>in</strong>tensive<br />

49


use—those with dwell<strong>in</strong>gs and mill<strong>in</strong>g equipment—should be late period sites (post-1350<br />

B.P.), as <strong>in</strong>dicated by arrow po<strong>in</strong>ts and th<strong>in</strong> hydration rims. Second, a higher frequency of<br />

sites <strong>in</strong>dicat<strong>in</strong>g limited use—those with a less diverse array of lithic material and a lack<br />

of plant process<strong>in</strong>g implements—should be early period sites (pre-1350 B.P.), as<br />

<strong>in</strong>dicated by dart po<strong>in</strong>ts and thicker hydration rims. If such temporal patterns are present,<br />

and trade and travel were primary determ<strong>in</strong>ants <strong>in</strong> structur<strong>in</strong>g residential use, <strong>the</strong> density<br />

of sites should be higher along dra<strong>in</strong>age corridors lead<strong>in</strong>g from trans-<strong>Sierra</strong> passes, and<br />

residential sites should occur more commonly <strong>in</strong> those locations. In addition, early period<br />

sites <strong>in</strong>dicat<strong>in</strong>g a logistical hunt<strong>in</strong>g focus should occur <strong>in</strong> higher frequencies over a more<br />

extensive area.<br />

50


Chapter 4<br />

METHODS<br />

This chapter describes <strong>the</strong> exist<strong>in</strong>g Yosemite data sets, methods used <strong>in</strong> field,<br />

laboratory, and analytical work, and limitations and assumptions of <strong>the</strong> study. To address<br />

<strong>the</strong> research issues, <strong>the</strong> study consolidated a sample of Yosemite’s previously collected<br />

high-elevation data to identify <strong>the</strong> range of site constituents and <strong>the</strong>ir implied functions<br />

through time, and conducted m<strong>in</strong>imal surface collections from selected sites to <strong>in</strong>crease<br />

chronological <strong>in</strong>formation for sites and features with<strong>in</strong> <strong>the</strong> study area. The study area<br />

encompasses about 42,500 ha (105,000 acres) of land, between approximately 8500 ft<br />

elevation on <strong>the</strong> west and 12,000 ft near <strong>the</strong> crest of <strong>the</strong> <strong>Sierra</strong> (see Figure 2 <strong>in</strong> Chapter<br />

2), nearly all of which is located <strong>in</strong> <strong>the</strong> upper Tuolumne River watershed. The primary<br />

advantage of <strong>the</strong> <strong>in</strong>vestigation lies <strong>in</strong> its regional approach, <strong>in</strong> which a large number of<br />

sites and isolates represent<strong>in</strong>g diverse spatial, temporal, and functional conditions are<br />

compared and contrasted. This geographically expansive approach serves to mediate <strong>the</strong><br />

drawbacks <strong>in</strong>herent <strong>in</strong> a surface study somewhat and, as noted above, such studies have<br />

not been recently undertaken <strong>in</strong> Yosemite’s higher elevations.<br />

DESCRIPTION OF EXISTING DATA SETS<br />

A major component of <strong>the</strong> study entailed exam<strong>in</strong>ation and compilation of<br />

Yosemite project, site, isolate, and artifact data sets to address <strong>the</strong> research issues. The<br />

Park’s Geographic Information System (GIS) provided <strong>the</strong> framework for <strong>the</strong> project,<br />

with its numerous natural and cultural resource data layers. Three of <strong>the</strong> archaeological<br />

data layers—surveyed areas, site locations, and isolate locations—provided spatial data<br />

51


and <strong>the</strong> requisite <strong>in</strong>formation for l<strong>in</strong>k<strong>in</strong>g to <strong>the</strong> more detailed site records, project reports,<br />

artifact catalogs, and analytical data.<br />

Surveyed Areas<br />

Archaeological work <strong>in</strong> <strong>the</strong> study area dates to <strong>the</strong> early 1950s, when James<br />

Bennyhoff of <strong>the</strong> University of California Archaeological Survey conducted <strong>the</strong> first<br />

systematic <strong>in</strong>vestigation <strong>in</strong> <strong>the</strong> park. Through a park-wide survey sample and limited test<br />

excavations at four sites, Bennyhoff (1956a) prepared <strong>the</strong> region’s first archaeological<br />

syn<strong>the</strong>sis, <strong>in</strong> addition to very brief site records. It wasn’t until <strong>the</strong> 1970s that <strong>the</strong> next<br />

major archaeological <strong>in</strong>vestigation, a survey of <strong>the</strong> park’s developed areas, took place<br />

(Napton and Greathouse 1976). Beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> <strong>the</strong> early 1980s, archaeological work has<br />

been undertaken <strong>in</strong> a fairly consistent manner, guided by <strong>the</strong> park-wide research designs<br />

(Hull and Moratto 1999; Moratto 1981) and driven largely by compliance with historic<br />

preservation law.<br />

Much of <strong>the</strong> recent archaeological work <strong>in</strong> Yosemite’s high country has entailed<br />

small- to medium-scale surveys of areas susta<strong>in</strong><strong>in</strong>g heavy visitor use, focus<strong>in</strong>g on canyon<br />

bottoms, lake bas<strong>in</strong>s, trail corridors, and developed zones. Table A-1 (Appendix A) lists<br />

<strong>the</strong> specific projects of <strong>in</strong>terest to <strong>the</strong> <strong>the</strong>sis and <strong>the</strong>ir respective references. Site records<br />

and short, descriptive reports summarize each project. In general, this work has also<br />

attempted to resolve data gaps <strong>in</strong> <strong>the</strong> earlier archaeological surveys through re-survey, re-<br />

record<strong>in</strong>g sites, or updat<strong>in</strong>g site records to current standards. Diagnostic or at-risk<br />

artifacts were collected dur<strong>in</strong>g most survey efforts, but only two of <strong>the</strong> larger projects<br />

with<strong>in</strong> <strong>the</strong> study area—<strong>the</strong> Tioga Road and Virg<strong>in</strong>ia Canyon surveys—<strong>in</strong>volved fur<strong>the</strong>r<br />

52


geochemical and obsidian hydration analyses of <strong>the</strong> recovered material (Laird 1988;<br />

Mundy 1992).<br />

The GIS layer depicts <strong>the</strong> boundaries of surveys conducted s<strong>in</strong>ce <strong>the</strong> mid-1970s,<br />

those projects considered of sufficient reliability for identification and documentation of<br />

prehistoric sites. Taken toge<strong>the</strong>r, this body of work encompasses approximately 9800<br />

acres, provid<strong>in</strong>g a nonrandom sample of <strong>the</strong> high-elevation zone between 8500 and<br />

nearly 12,000 ft west of <strong>the</strong> crest of <strong>the</strong> <strong>Sierra</strong>. The survey sample is biased<br />

geographically and by elevation zone. In terms of geography, approximately 71 percent<br />

of <strong>the</strong> sample (n=6988 acres) is represented by locations lead<strong>in</strong>g to trans-<strong>Sierra</strong> passes<br />

(Table 3). Virg<strong>in</strong>ia Canyon, Tuolumne Meadows, and Lyell Canyon have received <strong>the</strong><br />

most extensive survey coverage with<strong>in</strong> this group, total<strong>in</strong>g about 5360 acres or 55 percent<br />

of <strong>the</strong> overall surveyed area. Conversely, locations outside of direct trans-<strong>Sierra</strong> routes,<br />

though numerous, <strong>in</strong>clude only about 2816 surveyed acres, or 29 percent of <strong>the</strong> sample.<br />

In regard to elevation, <strong>the</strong> subalp<strong>in</strong>e zone, encompass<strong>in</strong>g <strong>the</strong> lower elevations of<br />

<strong>the</strong> study area, is over-represented <strong>in</strong> <strong>the</strong> survey sample (Table 4). Over 8100 acres of<br />

surveyed terra<strong>in</strong>, or 83 percent of <strong>the</strong> sample, is below 10,000 ft <strong>in</strong> elevation. In contrast,<br />

only 1700 acres (17%) have been surveyed <strong>in</strong> areas over 10,000 ft <strong>in</strong> elevation. This<br />

uneven survey coverage implies that site distributions by geographic and elevational<br />

zones should be exam<strong>in</strong>ed as a percentage of survey acreage (e.g., site density) ra<strong>the</strong>r<br />

than as simple frequency measures. Accord<strong>in</strong>gly, patterns of site distribution are<br />

considered <strong>in</strong> Chapter 6 as number of sites per 100 acres surveyed.<br />

53


Geographic Location<br />

(North to South)<br />

Expected Trans-<strong>Sierra</strong> Corridors<br />

Table 3. Survey Data by Geographic Area.<br />

<strong>Elevation</strong> Range of<br />

Surveyed Area (ft)<br />

Acres<br />

Surveyed<br />

Percent<br />

of Total<br />

Matterhorn Canyon 8400-9600 390 4%<br />

Spiller Canyon 8800-9500 279 3%<br />

Virg<strong>in</strong>ia Canyon, Summit and Virg<strong>in</strong>ia passes 8300-10300 1728 18%<br />

Tuolumne Meadows 8400-8900 2635 27%<br />

Dana Fork, Dana Meadows, Tioga Pass 8800-9950 456 5%<br />

Parker Pass, Mono Pass, Parker Pass Creek 9600-11,100 500 5%<br />

Lyell Canyon 8700-11,100 1000 10%<br />

Subtotal 6988 71%<br />

Expected Non-Corridor Contexts<br />

Nor<strong>the</strong>rn Lakes* 9300-10,700 379 4%<br />

Cold Canyon, Conness Creek 8000-9100 470 5%<br />

Tuolumne to Young Lakes trail corridors 8700-9900 200 2%<br />

Dog Lake 9200 30 12,000 - - - -<br />

Total 9830 100% 373<br />

54


Site and Isolate Data<br />

Two GIS layers conta<strong>in</strong> <strong>the</strong> site and isolate data. The isolate layer <strong>in</strong>cludes a brief<br />

description of <strong>the</strong> cultural material and accession <strong>in</strong>formation for collected artifacts. In<br />

total, 172 prehistoric isolates have been documented <strong>in</strong> <strong>the</strong> study area, <strong>in</strong>clud<strong>in</strong>g debitage<br />

scatters of less than five pieces and isolated flaked stone tools. A review of <strong>the</strong> GIS layer<br />

and accompany<strong>in</strong>g project reports confirmed that 29 projectile po<strong>in</strong>ts were temporally<br />

diagnostic, and <strong>the</strong>se were <strong>in</strong>cluded with<strong>in</strong> <strong>the</strong> overall chronological data set for <strong>the</strong><br />

current study.<br />

The archaeological sites GIS layer depicts site boundaries and designation<br />

(tr<strong>in</strong>omial, primary number, or temporary number) for each of <strong>the</strong> 373 prehistoric sites<br />

with<strong>in</strong> <strong>the</strong> study area. The paper site records at <strong>the</strong> Yosemite Archeology Office, along<br />

with <strong>the</strong> <strong>in</strong>dividual project reports and notes, provided detailed site <strong>in</strong>formation. Site<br />

attributes were compiled <strong>in</strong> Excel spreadsheets, as follows: site designation, elevation,<br />

feature types and counts, artifact types and counts, estimated amount of debitage for <strong>the</strong><br />

site as a whole (when available), maximum flake density per square meter (when<br />

available), and flaked stone material types. Bedrock mortar features were fur<strong>the</strong>r detailed<br />

by numbers of features, mortars, and slicks, and measurements of <strong>in</strong>dividual mill<strong>in</strong>g<br />

surfaces. Appendix A provides summary tables for site and bedrock mortar attributes.<br />

The Yosemite data sets have been generated through relatively consistent survey<br />

and site documentation procedures over <strong>the</strong> past three decades. For example, survey<br />

transects have measured 15–20 m <strong>in</strong> width, while sites have been def<strong>in</strong>ed as five or more<br />

items with<strong>in</strong> a 500-m 2 area or a cultural feature such as a bedrock mortar or rock<br />

construct. Materials not meet<strong>in</strong>g <strong>the</strong> criteria for sites have been documented as isolates. A<br />

55


gap of 30 m between materials has been considered sufficient for <strong>the</strong> identification of site<br />

boundaries. However, some of <strong>the</strong> records, particularly those created <strong>in</strong> <strong>the</strong> 1950s,<br />

conta<strong>in</strong> very little <strong>in</strong>formation by today’s standards. Twenty-eight sites with<strong>in</strong> <strong>the</strong> study<br />

area have not been re-documented s<strong>in</strong>ce that era. As such, <strong>the</strong>ir utility relates ma<strong>in</strong>ly to<br />

<strong>the</strong>ir presence with<strong>in</strong> a particular geographic area or elevational zone.<br />

Excavations<br />

Limited excavations have been previously conducted at seven sites <strong>in</strong> Tuolumne<br />

Meadows and n<strong>in</strong>e sites at Dana Meadows (Table A-1; Bennyhoff 1956b; Hull et al.<br />

1995; Montague 1996a, 1996b; Vittands 1994), ma<strong>in</strong>ly <strong>in</strong> support of various construction<br />

undertak<strong>in</strong>gs. At a m<strong>in</strong>imum, all of <strong>the</strong>se projects <strong>in</strong>cluded obsidian hydration and<br />

geochemical and/or visual sourc<strong>in</strong>g studies, while radiocarbon dates are relatively few <strong>in</strong><br />

number. In addition to <strong>the</strong> excavations, obsidian studies data are available for five flaked<br />

stone tool caches <strong>in</strong> <strong>the</strong> study vic<strong>in</strong>ity, three recovered from Tuolumne Meadows, one<br />

from Parker Pass Creek, and one near Glen Aul<strong>in</strong>. The latter is located several miles<br />

downstream of Tuolumne Meadows and just outside of <strong>the</strong> study area. F<strong>in</strong>al reports<br />

rema<strong>in</strong> to be completed for several of <strong>the</strong>se projects, although <strong>the</strong> analytical data are<br />

<strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> present study.<br />

Chronological Data<br />

Chronological <strong>in</strong>formation was derived from temporally diagnostic materials,<br />

obsidian hydration measurements, and radiocarbon dates reported <strong>in</strong> site records, project<br />

reports, artifact catalog databases, and <strong>the</strong> park’s obsidian studies database (Appendix A).<br />

Obsidian hydration and source data are limited to survey collections from Virg<strong>in</strong>ia<br />

Canyon, Tuolumne Meadows, and Dana Meadows, a few flaked stone tool caches, and<br />

56


<strong>the</strong> excavated sites <strong>in</strong> Tuolumne and Dana meadows. Thus, <strong>the</strong> primary chronological<br />

<strong>in</strong>formation for <strong>the</strong> study area as a whole relied on temporally diagnostic projectile po<strong>in</strong>ts<br />

and <strong>the</strong> obsidian studies conducted as part of <strong>the</strong> <strong>the</strong>sis.<br />

Classification of Yosemite’s projectile po<strong>in</strong>ts has been most comprehensively<br />

outl<strong>in</strong>ed by Hull (1989b, 1991), follow<strong>in</strong>g work <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong> (e.g., Baumhoff and<br />

Byrne 1959; Bett<strong>in</strong>ger and Taylor 1974; Lann<strong>in</strong>g 1963; Thomas 1981) and <strong>the</strong> lower<br />

<strong>Sierra</strong>n foothills (Moratto 1972). Projectile po<strong>in</strong>ts of <strong>the</strong> Desert, Rose Spr<strong>in</strong>g, and Elko<br />

series are most abundant, with fewer specimens of Concave Base (Humboldt and <strong>Sierra</strong>),<br />

Contract<strong>in</strong>g Stem (<strong>Sierra</strong> and Triangular), P<strong>in</strong>to, and Western Great Bas<strong>in</strong> Stemmed.<br />

Untypable, fragmented, or reworked pieces were classified as arrow or dart forms <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>terest of obta<strong>in</strong><strong>in</strong>g a general period of use, dat<strong>in</strong>g before or after ca. 1500 B.P.<br />

A timeframe for <strong>the</strong> <strong>in</strong>troduction and spread of <strong>the</strong> bedrock mortar has been<br />

suggested for <strong>the</strong> foothills and <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong>, but dates have not yet been<br />

derived <strong>in</strong>dependently for Yosemite. It rema<strong>in</strong>s possible that bedrock mortar production<br />

<strong>in</strong> <strong>the</strong> higher elevations could be dist<strong>in</strong>ct from <strong>the</strong> pattern observed <strong>in</strong> <strong>the</strong> lower<br />

elevations (cf. Stevens 2002, 2003). Recent work at a site <strong>in</strong> Yosemite Valley, where<br />

numerous pestles, handstones, and mill<strong>in</strong>gstones were documented <strong>in</strong> subsurface context,<br />

suggests an earlier <strong>in</strong>ception for <strong>the</strong> bedrock mortar, but <strong>the</strong> analysis is still prelim<strong>in</strong>ary <strong>in</strong><br />

nature and has not yet been fully reported (Jackson and Buettner 2009). The present study<br />

relies on data from <strong>the</strong> larger region, where researchers posit a transition from portable<br />

groundstone to <strong>the</strong> bedrock mortar with<strong>in</strong> <strong>the</strong> past 1500 years and widespread use by<br />

about 650 B.P. (Jackson 1991; Jackson and Dietz 1984; Moratto 1999, 2002; Rosenthal<br />

2008).<br />

57


SAMPLING AND FIELD METHODS<br />

The <strong>the</strong>sis fieldwork, designated Yosemite project YOSE 2007 M, was carried out<br />

between July 28 and September 30, 2007. A small sample of obsidian debitage and<br />

artifacts from surface contexts of 45 sites, represent<strong>in</strong>g 12 percent of <strong>the</strong> sites <strong>in</strong> <strong>the</strong> study<br />

area, was recovered to supplement <strong>the</strong> exist<strong>in</strong>g chronological data. Site selection was<br />

based on geographic sett<strong>in</strong>g and site constituents, <strong>the</strong> goal to achieve a 10 percent sample<br />

of <strong>in</strong>tensive and limited use sites <strong>in</strong> diverse geographic locations. New f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> <strong>the</strong><br />

field, however, resulted <strong>in</strong> reclassification of several sites and, thus, changes <strong>in</strong> <strong>the</strong><br />

sample. Several sites orig<strong>in</strong>ally documented as lithic scatters were found to conta<strong>in</strong><br />

materials such as bedrock mortars and pestles, portable groundstone, or a rock r<strong>in</strong>g,<br />

<strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> <strong>in</strong>tensive-use sample. Two features previously recorded as<br />

pictographs <strong>in</strong> Lyell Canyon were identified as natural phenomena. CA-TUO-3846,<br />

documented as a s<strong>in</strong>gle pictograph panel, was removed from <strong>the</strong> study, reduc<strong>in</strong>g <strong>the</strong> total<br />

number of sites to 373.<br />

As an objective of <strong>the</strong> study was to <strong>in</strong>crease <strong>the</strong> number of sites with<br />

chronological data, locations with diagnostic materials or obsidian data were generally<br />

not <strong>in</strong>cluded. In addition, sites conta<strong>in</strong><strong>in</strong>g less than approximately 20 flakes were avoided<br />

dur<strong>in</strong>g sampl<strong>in</strong>g <strong>in</strong> order to preserve surface manifestations of <strong>the</strong>se resources. Table 5<br />

summarizes <strong>the</strong> fieldwork conducted and <strong>the</strong> materials collected; <strong>in</strong> all, surface<br />

collections were made at 36 limited-use and n<strong>in</strong>e <strong>in</strong>tensive-use sites.<br />

As key <strong>in</strong>dicators of longer-term or residential use <strong>in</strong> high country sett<strong>in</strong>gs, rock<br />

r<strong>in</strong>g features and depressions <strong>in</strong>terpreted as dwell<strong>in</strong>gs were one focus of sampl<strong>in</strong>g among<br />

<strong>the</strong> <strong>in</strong>tensive-use sites. Sites with depressions, rock r<strong>in</strong>gs, or unidentified rock alignments<br />

58


Table 5. Summary of Fieldwork and Collected Material.<br />

Site Location Type #<br />

SCUs<br />

# FEA<br />

Sampled<br />

# DEB<br />

Collected<br />

# EMPs<br />

Collected<br />

# PP<br />

Collected<br />

TUO-0046/H Lyell Canyon L 3 - 15 - -<br />

TUO-0113 Tuolumne L 3 - 15 - -<br />

TUO-0128/<br />

129/130/504<br />

Tuolumne I 6 - 29 1 -<br />

TUO-0131 Tuolumne L 3 - 16 - -<br />

TUO-0159 Upper Evelyn L 3 - 15 - 1<br />

TUO--164 Elizabeth L 2 - 14 - -<br />

TUO-0172 Delaney Ck L 3 - 15 - -<br />

TUO-0187 Parker Pass I 3 - 15 - 2<br />

TUO-0245 Ireland Lake L 2 - 15 - 1<br />

TUO-0494 Tuolumne L 2 - 14 - -<br />

TUO-0751 Virg<strong>in</strong>ia I 2 1 19 1 3<br />

TUO-0755 Gaylor Lakes L 2 - 15 - 1<br />

TUO-3765 Virg<strong>in</strong>ia I 1 2 24 - -<br />

TUO-3769 Virg<strong>in</strong>ia L 1 - 10 - -<br />

TUO-3777 Virg<strong>in</strong>ia L 3 - 14 - -<br />

TUO-3783 Virg<strong>in</strong>ia I 1 3 30 - 3<br />

TUO-3789 Virg<strong>in</strong>ia L 3 - 15 - -<br />

TUO-3793 Virg<strong>in</strong>ia L 2 - 8 - -<br />

TUO-3803 Virg<strong>in</strong>ia L 3 - 15 - -<br />

TUO-3805 Virg<strong>in</strong>ia L 2 - 13 - -<br />

TUO-3811 Virg<strong>in</strong>ia I 2 1 20 - 4<br />

TUO-3834 Lyell Canyon L 1 - 15 - -<br />

TUO-3841 Lyell Canyon L 5 - 13 1 -<br />

TUO-3850 Lyell Canyon L 3 - 15 - -<br />

TUO-3943 Tuolumne L 3 - 15 - -<br />

TUO-4230 Evelyn Lake L 3 - 15 - -<br />

TUO-4440 Tuolumne L 1 - 8 - -<br />

TUO-4490 Lyell Canyon L 3 - 15 - -<br />

TUO-4635 Spiller I 3 - 13 - 1<br />

TUO-4637 Lyell Canyon L 2 - 14 1 -<br />

TUO-4639 Lyell Canyon I 5 - 13 2 3<br />

TUO-4641 Cold Canyon L 2 - 15 - -<br />

TUO-4660 Rafferty Ck L 1 - 10 - -<br />

TUO-4665 Lyell Canyon I 1 2 14 1 3<br />

TUO-4851 Lyell Canyon L 2 - 14 - -<br />

TUO-4857 Lyell Canyon L 3 - 15 - -<br />

TUO-4859 Lyell Canyon L 3 - 15 1 -<br />

TUO-4907 Tuolumne L 3 - 15 - -<br />

TUO-4972 Virg<strong>in</strong>ia L 3 - 15 - -<br />

P-55-6558 Parker Pass L 3 - 15 - -<br />

P-55-6561 Parker Pass L 2 - 15 - 1<br />

P-55-6564 Parker Pass L 1 - 15 - 1<br />

P-55-6775 Spiller L 3 - 15 - 1<br />

59


Site Location Type #<br />

SCUs<br />

# FEA<br />

Sampled<br />

# DEB<br />

Collected<br />

# EMPs<br />

Collected<br />

# PP<br />

Collected<br />

P-55-6776 Spiller L 1 - 7 - -<br />

P-55-6782 Gaylor Lakes L 3 - 14 1 -<br />

Total 112 9 676 9 25<br />

Key: SCU=surface collection unit; FEA=feature; DEB=debitage; EMP=edge-modified piece; PP=projectile<br />

po<strong>in</strong>t; I=<strong>in</strong>tensive-use site; L=limited-use site.<br />

were visited to confirm <strong>the</strong> identification of <strong>the</strong> features and determ<strong>in</strong>e whe<strong>the</strong>r sufficient<br />

material was available <strong>in</strong> surface contexts for dat<strong>in</strong>g. At Yosemite sites, rock r<strong>in</strong>gs may<br />

have functioned variously as hunt<strong>in</strong>g bl<strong>in</strong>ds, dwell<strong>in</strong>gs, storage caches, or <strong>in</strong> ceremonial<br />

contexts, and <strong>the</strong>se are differentiated ma<strong>in</strong>ly by size, association with o<strong>the</strong>r cultural<br />

material, and environmental context. Five sites were selected for sampl<strong>in</strong>g.<br />

Surface collections <strong>in</strong>cluded temporally diagnostic artifacts judged to be at risk of<br />

illegal collection and a sample of debitage from <strong>the</strong> 45 sites. A maximum of between 15<br />

and 30 pieces of debitage was recovered from sites, depend<strong>in</strong>g on whe<strong>the</strong>r rock r<strong>in</strong>g<br />

features were present or not. At <strong>the</strong> five sites conta<strong>in</strong><strong>in</strong>g rock r<strong>in</strong>gs, samples were<br />

recovered from areas with<strong>in</strong> or immediately adjacent to <strong>the</strong> features <strong>in</strong> order to <strong>in</strong>crease<br />

<strong>the</strong> probability of association. An additional sample of flakes was recovered from surface<br />

collection units (SCUs) established <strong>in</strong> o<strong>the</strong>r areas of <strong>the</strong>se sites to identify whe<strong>the</strong>r<br />

multiple occupations were present.<br />

At sites lack<strong>in</strong>g rock r<strong>in</strong>gs, SCUs measur<strong>in</strong>g 5-x-5-m <strong>in</strong> size were established<br />

accord<strong>in</strong>g to <strong>the</strong> debitage distributions at each site. Due to <strong>the</strong> tendency of materials to<br />

move upward <strong>in</strong> sediment columns (Jackson 1990), debitage concentrations were<br />

assumed to represent <strong>the</strong> greatest temporal span at any given site and were thus <strong>the</strong> focus<br />

of collection. The size of SCUs was <strong>in</strong>creased from <strong>the</strong> orig<strong>in</strong>al proposal to account for<br />

60


generally sparse distributions of debitage and <strong>the</strong> relatively high frequencies of materials<br />

with pat<strong>in</strong>a, <strong>the</strong> latter thought to adversely affect hydration rims. In <strong>the</strong> sou<strong>the</strong>rn study<br />

area, where Casa Diablo obsidian predom<strong>in</strong>ates, efforts were made to select pieces with<br />

<strong>the</strong> visual characteristics of that source. Similarly, Bodie Hills obsidian was selected from<br />

sites <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn study area. Depend<strong>in</strong>g on <strong>the</strong> surface distributions of material and<br />

<strong>the</strong> size of <strong>the</strong> site, between one and six SCUs were established per location. These were<br />

oriented to true north, and plotted on <strong>the</strong> exist<strong>in</strong>g site maps by distance and bear<strong>in</strong>g from<br />

<strong>the</strong> site datum to <strong>the</strong> southwestern unit corner.<br />

A project-specific site record update, detail<strong>in</strong>g sampl<strong>in</strong>g procedures, collected<br />

material, museum accession and catalog numbers, and photographic <strong>in</strong>formation, was<br />

completed for each site. Materials observed but not collected <strong>in</strong> <strong>the</strong> field were recorded <strong>in</strong><br />

<strong>the</strong> site record update and subsequently added to <strong>the</strong> tallies of artifacts and features<br />

present at <strong>in</strong>dividual locations. The locations of SCUs, collected projectile po<strong>in</strong>ts, and<br />

additional observed artifacts and features were plotted on exist<strong>in</strong>g site or feature maps,<br />

and all collected materials were assigned temporary field specimen numbers <strong>in</strong> <strong>the</strong> field.<br />

Digital photographs, designated “roll” DC-07M, were taken of previously unrecorded<br />

features and diagnostic artifacts left <strong>in</strong> place, and tracked on a photographic log. The<br />

update form, maps, and photographs are filed <strong>in</strong> <strong>the</strong> site record forms at <strong>the</strong> Yosemite<br />

Archeology Office and <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> archive for <strong>the</strong> project.<br />

LABORATORY METHODS<br />

All recovered artifacts were processed follow<strong>in</strong>g <strong>the</strong> laboratory standards outl<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> Yosemite Survey Manual for catalog<strong>in</strong>g and analysis. Debitage and artifacts were<br />

generally cleaned by dry brush<strong>in</strong>g and, <strong>in</strong> some cases, wash<strong>in</strong>g. Debitage was also<br />

61


exam<strong>in</strong>ed to determ<strong>in</strong>e if tools were <strong>in</strong>advertently <strong>in</strong>cluded <strong>in</strong> debitage collections <strong>in</strong> <strong>the</strong><br />

field. N<strong>in</strong>e flakes with edge modification and one very small projectile po<strong>in</strong>t midsection,<br />

were removed and cataloged separately. The Yosemite Museum Registrar issued a<br />

permanent catalog number for each lot (e.g., debitage from an SCU) and <strong>in</strong>dividual<br />

artifact, and a s<strong>in</strong>gle accession number (YOSE-6945) for <strong>the</strong> project archive. These<br />

numbers track <strong>the</strong> artifacts upon arrival from <strong>the</strong> field through report<strong>in</strong>g and transfer of<br />

materials to <strong>the</strong> Yosemite Museum. All materials were cataloged us<strong>in</strong>g <strong>the</strong> Yosemite<br />

catalog, an Excel spreadsheet document<strong>in</strong>g catalog and accession numbers, artifact type,<br />

description, material, dimensions, site, provenience, recorder, and date. Artifact tags with<br />

a subset of <strong>the</strong>se data fields were pr<strong>in</strong>ted on archival paper and placed <strong>in</strong> plastic bags with<br />

<strong>the</strong> artifacts for museum storage.<br />

As depicted <strong>in</strong> Table 5 above, a total of 676 pieces of debitage, n<strong>in</strong>e edge-<br />

modified pieces and 25 projectile po<strong>in</strong>ts were collected. All pieces of debitage were<br />

counted and weighed by SCU lot. Pieces submitted for obsidian hydration analysis were<br />

fur<strong>the</strong>r described by size class (3-6 mm, 6-12 mm, 12-20 mm, and >20 mm), general<br />

reduction technique (biface or core), presence of cortex (primary, secondary, or absent),<br />

and presence of platform (denoted as flake or flake fragment). Flakes submitted for<br />

obsidian studies are <strong>in</strong>dicated by a letter designation follow<strong>in</strong>g <strong>the</strong> catalog number. These<br />

pieces are ma<strong>in</strong>ta<strong>in</strong>ed separately with<strong>in</strong> <strong>the</strong>ir SCU lots so that sourc<strong>in</strong>g and hydration<br />

results can be l<strong>in</strong>ked to <strong>in</strong>dividual pieces.<br />

Edge-modified pieces were measured and cataloged <strong>in</strong>dividually, and described<br />

morphologically follow<strong>in</strong>g Yosemite standards. For each artifact, <strong>the</strong> number of modified<br />

edges was identified macroscopically, and each edge was characterized <strong>in</strong> terms of flake<br />

62


surface (ventral or dorsal), location of modification (proximal end, lateral edges, distal<br />

end, or a comb<strong>in</strong>ation <strong>the</strong>reof), extent of modification along <strong>the</strong> edge (partial [50%]), extent of modification from <strong>the</strong> edge (marg<strong>in</strong>al,<br />

sub<strong>in</strong>vasive, or <strong>in</strong>vasive), and outl<strong>in</strong>e (straight, irregular, cusped, concave, or a<br />

comb<strong>in</strong>ation <strong>the</strong>reof).<br />

Projectile po<strong>in</strong>ts were classified follow<strong>in</strong>g Yosemite, <strong>Sierra</strong> <strong>Nevada</strong> foothill, and<br />

Great Bas<strong>in</strong> classifications (Baumhoff and Byrne 1959; Bett<strong>in</strong>ger and Taylor 1974; Hull<br />

1989b, 1991; Lann<strong>in</strong>g 1963; Moratto 1972; Thomas 1981). Each piece was measured and<br />

weighed, and described <strong>in</strong> terms of type, condition, and flak<strong>in</strong>g patterns. Diagnostic<br />

artifacts were scanned to scale on both faces, and metric attributes follow<strong>in</strong>g Thomas<br />

(1981) were recorded and added to <strong>the</strong> park’s projectile po<strong>in</strong>t database, along with <strong>the</strong><br />

obsidian studies results.<br />

All written documentation, artifacts, photographs, and selected digital data were<br />

transferred to <strong>the</strong> Yosemite Collections under Accession No. YOSE-6945. Copies of site<br />

record updates, digital files, and <strong>the</strong> f<strong>in</strong>al <strong>the</strong>sis document are ma<strong>in</strong>ta<strong>in</strong>ed at <strong>the</strong> Yosemite<br />

Archeology Office.<br />

ANALYTICAL STUDIES<br />

Of <strong>the</strong> 45 sites sampled <strong>in</strong> <strong>the</strong> field, 38 sites were selected for fur<strong>the</strong>r obsidian<br />

studies based on confidence level <strong>in</strong> visual sourc<strong>in</strong>g, sample size, and condition of <strong>the</strong><br />

debitage (i.e., relative absence of pat<strong>in</strong>a). Table 6 summarizes <strong>the</strong> obsidian studies for <strong>the</strong><br />

present study by site and context of collection. The goal was to maximize <strong>the</strong> obsidian<br />

hydration sample to add to <strong>the</strong> pool of chronological <strong>in</strong>formation. Written approval for<br />

<strong>the</strong> partially destructive analysis (e.g., obsidian hydration) was obta<strong>in</strong>ed prior to <strong>the</strong><br />

63


Table 6. Summary of Obsidian Studies by Site.<br />

Site Feature Debitage Po<strong>in</strong>ts SCU Debitage* Total<br />

XRF, OH OH XRF, OH OH<br />

CA-TUO-0046/H - - - 10 10<br />

CA-TUO-0113 - - - 10 10<br />

CA-TUO-0128/129/130/504 - - - 20 20<br />

CA-TUO-0131 - - - 10 10<br />

CA-TUO-0159 - - 1 10 11<br />

CA-TUO-0172 - - - 10 10<br />

CA-TUO-0187 - - 2 10 12<br />

CA-TUO-0245 - - 1 10 11<br />

CA-TUO-0494 - - - 10 10<br />

CA-TUO-0751 3 - 2 10 15<br />

CA-TUO-0755 - - 1 10 11<br />

CA-TUO-3765 5 6 - 5 16<br />

CA-TUO-3769 - - - 10 10<br />

CA-TUO-3777 - - - 10 10<br />

CA-TUO-3783 4 7 1 5 17<br />

CA-TUO-3789 - - - 10 10<br />

CA-TUO-3803 - - - 9 9<br />

CA-TUO-3805 - - - 10 10<br />

CA-TUO-3811 3 1 4 8 16<br />

CA-TUO-3841 - - - 10 10<br />

CA-TUO-4230 - - - 10 10<br />

CA-TUO-4490 - - - 10 10<br />

CA-TUO-4635 - - 1 10 11<br />

CA-TUO-4637 - - - 10 10<br />

CA-TUO-4639 - - 3 10 13<br />

CA-TUO-4641 - - - 10 10<br />

CA-TUO-4660 - - - 10 10<br />

CA-TUO-4665 4 3 3 3 13<br />

CA-TUO-4851 - - - 10 10<br />

CA-TUO-4857 - - - 10 10<br />

CA-TUO-4859 - - - 10 10<br />

CA-TUO-4907 - - - 10 10<br />

CA-TUO-4972 - - - 10 10<br />

P-55-006561 - - 1 10 11<br />

P-55-006564 - - 1 10 11<br />

P-55-006775 - - - 10 10<br />

P-55-006776 - - - 7 7<br />

P-55-006782 - - - 10 10<br />

Total 19 17 21 367 424<br />

Key: SCU=surface collection unit; XRF=x-ray fluorescence; OH=obsidian hydration. *See Table 7 for<br />

random sample debitage submitted for XRF.<br />

64


analysis from <strong>the</strong> Yosemite Super<strong>in</strong>tendent, through <strong>the</strong> Supervisory Archeologist and<br />

Chief of Resources Management and Science. The Northwest Research Obsidian Studies<br />

Laboratory conducted <strong>the</strong> obsidian studies, <strong>in</strong>cluded here as Appendix B.<br />

To control for <strong>the</strong> possible effects of obsidian source on <strong>the</strong> rate of hydration,<br />

debitage visually identified as Casa Diablo or Bodie Hills obsidian was selected for<br />

obsidian hydration analysis. Based on previous studies <strong>in</strong> this area of <strong>the</strong> park, obsidian<br />

from <strong>the</strong>se two sources was expected to predom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> surface collections, with<br />

fewer specimens of Mt. Hicks, Mono Craters, Mono Glass Mounta<strong>in</strong>, and<br />

Truman/Queen. Although it was considered ideal to source each specimen by<br />

geochemical means, x-ray fluorescence analysis is quite costly and fund<strong>in</strong>g was limited<br />

for this work. Visual sourc<strong>in</strong>g of materials followed standards previously established <strong>in</strong><br />

<strong>the</strong> region (Bett<strong>in</strong>ger et al. 1984; Hull and Mundy 1985). To <strong>in</strong>crease <strong>the</strong> reliability of<br />

visual sourc<strong>in</strong>g, park collections previously sourced by geochemical means were<br />

reviewed, along with a small type collection of obsidian previously collected from Casa<br />

Diablo and Bodie Hills.<br />

Obsidian studies were conducted <strong>in</strong> two stages, beg<strong>in</strong>n<strong>in</strong>g with three subsamples<br />

for x-ray fluorescence analysis. All specimens were larger than about 1 cm <strong>in</strong> diameter,<br />

<strong>the</strong> standard m<strong>in</strong>imum size necessary for reliable results. The first subsample <strong>in</strong>cluded 21<br />

projectile po<strong>in</strong>ts, subjected to both geochemical sourc<strong>in</strong>g and hydration analysis,<br />

follow<strong>in</strong>g previous Yosemite studies. The results contributed to assessments of <strong>in</strong>dividual<br />

feature and site chronologies and to <strong>the</strong> development of high-elevation, source-specific<br />

projectile po<strong>in</strong>t hydration ranges.<br />

65


The second subsample <strong>in</strong>cluded random samples of visually sourced Bodie Hills<br />

and Casa Diablo debitage recovered from <strong>the</strong> SCUs to assess <strong>the</strong> reliability of visual<br />

sourc<strong>in</strong>g (Table 7). Twenty pieces visually ascribed to Bodie Hills and 25 pieces<br />

identified as Casa Diablo obsidian, compris<strong>in</strong>g about 15 and 10 percent of each sample,<br />

respectively, were subjected to geochemical analysis. Results of <strong>the</strong> sourc<strong>in</strong>g study<br />

<strong>in</strong>dicated that all of <strong>the</strong> Casa Diablo flakes were correctly identified, while 18 (90%) of<br />

<strong>the</strong> Bodie Hills sample were correctly identified. The two pieces misidentified were both<br />

Mt. Hicks obsidian. All <strong>in</strong> all, <strong>the</strong> results suggested a high level of confidence <strong>in</strong> <strong>the</strong><br />

visual selection of Bodie Hills and Casa Diablo debitage for <strong>the</strong> project.<br />

The third x-ray fluorescence subsample <strong>in</strong>cluded 19 flakes recovered from <strong>the</strong><br />

rock r<strong>in</strong>g features. An <strong>in</strong>itial visual assessment <strong>in</strong>dicated greater source diversity <strong>in</strong> this<br />

group than anticipated, while Hull (2002b) has also suggested that use of Mono Craters<br />

obsidian <strong>in</strong>creased <strong>in</strong> <strong>the</strong> late prehistoric period, <strong>the</strong> time frame thought to represent at<br />

least some of <strong>the</strong> features.<br />

The obsidian hydration sample consisted of <strong>the</strong> 21 projectile po<strong>in</strong>ts noted above<br />

and 403 pieces of debitage (Table 6). Most of <strong>the</strong> debitage (n=367) was collected from<br />

<strong>the</strong> SCUs, a sample that <strong>in</strong>cluded <strong>the</strong> 45 geochemically sourced pieces. N<strong>in</strong>eteen<br />

geochemically sourced flakes collected from <strong>the</strong> rock r<strong>in</strong>gs, <strong>in</strong> addition to 17 visually<br />

sourced flakes too small for x-ray fluorescence analysis, made up <strong>the</strong> rema<strong>in</strong>der of <strong>the</strong><br />

debitage sample. The sample <strong>in</strong>cluded a maximum of 20 pieces per site, although most<br />

sites were represented by only 10 pieces of debitage.<br />

The overall sample of sites with relatively substantial chronological data, ei<strong>the</strong>r<br />

obta<strong>in</strong>ed through previous <strong>in</strong>vestigations or <strong>the</strong> present study, is listed <strong>in</strong> Table 8 by<br />

66


Table 7. Results of Obsidian Visual Reliability Assessment.<br />

Sample Type Catalog No. Site Unit Source (XRF)<br />

Random BH YOSE 218641a CA-TUO-0751 SCU 2 MH<br />

YOSE 218647c CA-TUO-3765 SCU 1 BH<br />

YOSE 218650c CA-TUO-3769 SCU 1 BH<br />

YOSE 218652a CA-TUO-3777 SCU 2 BH<br />

YOSE 218657b CA-TUO-3783 SCU 1 BH<br />

YOSE 218661b CA-TUO-3789 SCU 1 BH<br />

YOSE 218661d CA-TUO-3789 SCU 1 BH<br />

YOSE 218666a CA-TUO-3803 SCU 1 MH<br />

YOSE 218667a CA-TUO-3803 SCU 2 BH<br />

YOSE 218668b CA-TUO-3803 SCU 3 BH<br />

YOSE 218669b CA-TUO-3805 SCU 1 BH<br />

YOSE 218670c CA-TUO-3805 SCU 2 BH<br />

YOSE 218672a CA-TUO-3811 SCU 1 BH<br />

YOSE 218673a CA-TUO-3811 SCU 2 BH<br />

YOSE 218699a CA-TUO-4635 SCU 2 BH<br />

YOSE 218716b CA-TUO-4641 SCU 2 BH<br />

YOSE 218739d CA-TUO-4972 SCU 2 BH<br />

YOSE 218750b P-55-6775 SCU 2 BH<br />

YOSE 218751c P-55-6775 SCU 3 BH<br />

YOSE 218753a P-55-6776 SCU 1 BH<br />

Random CD YOSE 218604a CA-TUO-0046/H SCU 1 CD-LM<br />

YOSE 218607b CA-TUO-0113 SCU 1 CD-LM<br />

YOSE 218612b CA-TUO-0128/129/130/504 SCU 3 CD-LM<br />

YOSE 218614b CA-TUO-0128/129/130/504 SCU 5 CD-LM<br />

YOSE 218619b CA-TUO-0131 SCU 3 CD-LM<br />

YOSE 218621a CA-TUO-0159 SCU 2 CD-LM<br />

YOSE 218626a CA-TUO-0172 SCU 1 CD-LM<br />

YOSE 218629a CA-TUO-0187 SCU 1 CD-LM<br />

YOSE 218630a CA-TUO-0187 SCU 2 CD-LM<br />

YOSE 218635c CA-TUO-0245 SCU 2 CD-LM<br />

YOSE 218637c CA-TUO-0494 SCU 1 CD-LM<br />

YOSE 218644b CA-TUO-0755 SCU 1 CD-LM<br />

YOSE 218683a CA-TUO-3841 SCU 5 CD-LM<br />

YOSE 218691c CA-TUO-4230 SCU 1 CD-LM<br />

YOSE 218695a CA-TUO-4490 SCU 1 CD-LM<br />

YOSE 218707b CA-TUO-4639 SCU 3 CD-LM<br />

YOSE 218717a CA-TUO-4660 SCU 1 CD-LM<br />

YOSE 218727a CA-TUO-4851 SCU 2 CD-SR<br />

YOSE 218729b CA-TUO-4857 SCU 2 CD-LM<br />

YOSE 218730b CA-TUO-4857 SCU 3 CD-SR<br />

YOSE 218733b CA-TUO-4859 SCU 3 CD-LM<br />

YOSE 218736a CA-TUO-4907 SCU 2 CD-LM<br />

YOSE 218745f P-55-6561 SCU 2 CD-LM<br />

YOSE 218747e P-55-6564 SCU 1 CD-LM<br />

YOSE 218755a P-55-6782 SCU 2 CD-LM<br />

Key: BH=Bodie Hills; CD=Casa Diabo; LM=Lookout Mounta<strong>in</strong>; SR=Sawmill Ridge; MH=Mt. Hicks.<br />

67


geographic area and site type. In all, temporal <strong>in</strong>formation is available for 17 (28%) of<br />

<strong>in</strong>tensive-use sites and 39 (13%) of limited-use sites, for a total of 56 sites or 15 percent<br />

of <strong>the</strong> total sites <strong>in</strong> <strong>the</strong> study area. The unevenness of <strong>the</strong> sample <strong>in</strong>dicates that <strong>the</strong><br />

limited- and <strong>in</strong>tensive-use data aren’t comparable to one ano<strong>the</strong>r, and that patterns of use<br />

over time should be exam<strong>in</strong>ed with<strong>in</strong> ra<strong>the</strong>r than between data sets.<br />

Table 8. Chronological Data Sample by Geographic Area and <strong>Use</strong> Type.<br />

Location Total<br />

Sites<br />

I-U<br />

Sites<br />

I-U<br />

Sample<br />

L-U<br />

Sites<br />

L-U<br />

Sample<br />

Expected Trans-<strong>Sierra</strong> Corridor<br />

Matterhorn Canyon 4 - - 4 -<br />

Spiller Canyon 6 2 1 4 2<br />

Virg<strong>in</strong>ia Canyon/Summit<br />

65 17 4 48 6<br />

&Virg<strong>in</strong>ia<br />

Tuolumne Meadows/lower river 85 16 5 69 8<br />

Dana Fork/Tioga 47 17 4 30 5<br />

Parker Pass Creek/Mono & Parker 29 2 1 27 3<br />

Lyell Canyon/Donohue 67 4 2 63 7<br />

Total 303 58 17<br />

(29%)<br />

245 31<br />

(13%)<br />

Expected Non-Corridor Contexts<br />

Nor<strong>the</strong>rn lakes* 9 - - 9 -<br />

Cold Canyon, Conness Creek 9 2 - 7 1<br />

Tuolumne to Young Lakes trail<br />

corridors<br />

1 - - 1 -<br />

Dog Lake 3 - - 3 -<br />

Delaney Creek 8 - - 8 1<br />

Gaylor Lake, Granite Lake, Gaylor 4 - - 4 2<br />

Creek<br />

Mt. Dana slope 2 - - 2 -<br />

Elizabeth Lake and trails 3 - - 3 -<br />

Rafferty Creek 13 - - 13 1<br />

Vogelsang area to Ireland Lake 18 - - 18 3<br />

Total 70 2 - 68 8<br />

(12%)<br />

Study Area Total 373 60 17 313 39<br />

(28%)<br />

(13%)<br />

Key: I-U=<strong>in</strong>tensive-use sites; L-U=limited-use sites. Sample <strong>in</strong>cludes sites sampled for <strong>the</strong> <strong>the</strong>sis and<br />

previously excavated sites. *Miller, Spiller, Soldier, Return, Onion, McCabe, and Young lakes.<br />

68


Conversion of Obsidian Hydration Data<br />

An important consideration was <strong>the</strong> conversion of <strong>the</strong> raw obsidian hydration data<br />

to estimated calendrical dates so that comparisons could be made between sites across <strong>the</strong><br />

study area. The rate of obsidian hydration may be <strong>in</strong>fluenced by several variables,<br />

<strong>in</strong>clud<strong>in</strong>g temperature, relative humidity, obsidian source variability, <strong>in</strong>tr<strong>in</strong>sic water of<br />

<strong>in</strong>dividual specimens, and soil chemistry. With <strong>the</strong> time depth of regional archaeological<br />

sites, paleoenvironmental change must also be regarded as a potential variable, although<br />

<strong>the</strong> range of temperature variability is presently unclear. Given <strong>the</strong> complexity of <strong>the</strong><br />

hydration process, obsidian hydration measurements were considered as a coarse-gra<strong>in</strong>ed<br />

measure of time <strong>in</strong> this study.<br />

Hull’s (2001) rate equation for Casa Diablo obsidian <strong>in</strong> Yosemite contexts<br />

constitutes <strong>the</strong> primary means of convert<strong>in</strong>g relative hydration rim measurements to<br />

calendrical dates:<br />

t=x 2 /[2.9822.10 16 e −10356.9(1/T ]<br />

In this equation, t=time <strong>in</strong> thousands of years, x=hydration <strong>in</strong> microns, e=base of natural<br />

logarithm (2.718), T=temperature <strong>in</strong> °K (effective hydration temperature [EHT] <strong>in</strong> °C<br />

+273.16). The formula is based on <strong>the</strong> diffusion model, calibrated radiocarbon dates from<br />

feature contexts and associated obsidian hydration rim measurements, and provenience-<br />

specific temperature estimates. The equation does not dist<strong>in</strong>guish between <strong>the</strong> Casa<br />

Diablo subsources, but most Yosemite artifacts geochemically sourced s<strong>in</strong>ce Hughes’<br />

(1994) <strong>in</strong>tra-source study have been identified as Lookout Mounta<strong>in</strong> obsidian, a pattern<br />

confirmed by <strong>the</strong> <strong>the</strong>sis x-ray fluorescence data. Prelim<strong>in</strong>ary results from <strong>in</strong>duced<br />

69


hydration studies also suggest that <strong>the</strong> Lookout Mounta<strong>in</strong> and Sawmill Ridge subsources<br />

hydrate at similar rates (Loyd et al. 1998).<br />

With a widely used and reasonably effective rate equation for Casa Diablo<br />

obsidian already <strong>in</strong> place, Mundy’s (1993) diffusion cell study provided estimates for<br />

effective hydration temperature. Mundy emplaced Ambrose diffusion cells <strong>in</strong> surface and<br />

subsurface contexts for one year at 35 archaeological sites throughout Yosemite’s<br />

elevational range. Six of <strong>the</strong> sites are with<strong>in</strong> <strong>the</strong> study area and represent its elevational<br />

extent, though none were specifically sampled for <strong>the</strong> <strong>the</strong>sis (Table 9). Given <strong>the</strong> surface<br />

context of <strong>the</strong> artifacts and <strong>the</strong> substantial difference <strong>in</strong> surface and subsurface<br />

temperatures, Mundy’s surface data were employed to estimate effective hydration<br />

temperature. Five of <strong>the</strong> six temperature read<strong>in</strong>gs vary between 9.14 and 12.55˚C,<br />

depend<strong>in</strong>g on elevation, while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g value, 7.31˚C at Tioga Pass, is anomalous.<br />

Whe<strong>the</strong>r this low temperature read<strong>in</strong>g represents a data error or a microclimatic<br />

difference rema<strong>in</strong>s unclear. Plotted aga<strong>in</strong>st elevation, <strong>the</strong> five read<strong>in</strong>gs yield a R 2 of 0.88,<br />

show<strong>in</strong>g a high degree of correlation (Figure 3).<br />

Table 9. Effective Hydration Temperature Data for Study Area Sites (after Mundy 1993).<br />

Location Site Elev. (ft) Annual Mean Temperature by Depth (˚C)<br />

CA-TUO- 0 cm 25 cm 50 cm 75 cm<br />

Hang<strong>in</strong>g Basket Unrecorded 10800 9.39 6.51 --- ---<br />

Mono Pass 759 10635 9.14 8.02 --- ---<br />

Tioga Pass 927 9920 7.31 5.23 4.89 ---<br />

Dana Meadows 2835 9440 10.95 7.88 --- ---<br />

Gaylor Creek 754 9290 10.36 8.52 8.04 ---<br />

Tuolumne Meadows 166 8580 12.55 7.47 6.78 6.60<br />

Key: --- = data not collected.<br />

70


EHT (degrees C)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

y = -0.0014x + 23.731<br />

R 2 = 0.8774<br />

8,000 8,500 9,000 9,500<br />

<strong>Elevation</strong> (ft)<br />

10,000 10,500 11,000<br />

Figure 3. Effective hydration temperature plotted aga<strong>in</strong>st elevation (after Mundy 1993).<br />

The regression equation, rounded to <strong>the</strong> nearest whole number, was used to estimate<br />

effective hydration temperature for <strong>the</strong> <strong>the</strong>sis sites. Sites were grouped <strong>in</strong>to elevation<br />

ranges and assigned effective hydration temperature values, as follows: 8400-8800 ft,<br />

12˚C; 8800-9500 ft, 11˚C; 9500-10,200, 10˚C; and 10,200-10,600 ft, 9˚C. Table A-4 <strong>in</strong><br />

Appendix A presents calibrated dates for <strong>the</strong> raw obsidian hydration read<strong>in</strong>gs.<br />

Researchers have criticized <strong>the</strong> diffusion cell method, <strong>in</strong> general, due to <strong>the</strong> short-<br />

term nature of cell emplacement and <strong>the</strong> disparate activation energies of <strong>the</strong> temperature<br />

cells compared with those of obsidian (e.g., Rid<strong>in</strong>gs 1996; Rogers 2007). There are also<br />

specific problems related to <strong>the</strong> Yosemite formula. First, obsidian hydration dat<strong>in</strong>g<br />

should be considered with caution <strong>in</strong> dat<strong>in</strong>g early deposits s<strong>in</strong>ce paired obsidian hydration<br />

and radiocarbon dates are not yet available for older material (Hull 2001). Second,<br />

similar paired data are not yet available or abundant for <strong>the</strong> higher elevations of <strong>the</strong> Park,<br />

particularly above 9500 ft, suggest<strong>in</strong>g additional caution <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis results.<br />

71


Third, while Hull’s formula controls for temperature and obsidian source, variation <strong>in</strong><br />

obsidian hydration seems to <strong>in</strong>crease over time, even <strong>in</strong> contexts where those variables<br />

are held constant. For example, obsidian artifact caches, which presumably represent very<br />

short-term manufactur<strong>in</strong>g and depositional events, tend to demonstrate <strong>in</strong>creased<br />

variability <strong>in</strong> obsidian hydration measurements over time. Two biface caches <strong>in</strong> Yosemite<br />

with relatively th<strong>in</strong> rims, <strong>the</strong> Pate Valley and Glen Aul<strong>in</strong> caches, varied only slightly<br />

from 1.7 to 1.8 microns (Humphreys 1994). In contrast, two biface caches with thicker<br />

rims, one <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong> and one at Yosemite, varied from 3.1−3.7 microns and<br />

3.4−3.9 microns, respectively (Goldberg et al. 1990:176; Hull and Mundy 1985).<br />

With <strong>the</strong>se concerns <strong>in</strong> m<strong>in</strong>d, <strong>the</strong> present study employed Hull’s rate equation and<br />

Mundy’s temperature data to estimate calendrical dates. These dates were subsequently<br />

grouped <strong>in</strong>to 500-year <strong>in</strong>tervals for analysis. This approach helps to overcome some of<br />

<strong>the</strong> concerns about <strong>the</strong> hydration and data conversion processes, while also allow<strong>in</strong>g for<br />

assessment of broad trends <strong>in</strong> settlement over time.<br />

A f<strong>in</strong>al issue of concern revolved around <strong>the</strong> Bodie Hills materials prevalent <strong>in</strong><br />

<strong>the</strong> nor<strong>the</strong>rn part of <strong>the</strong> study area, and whe<strong>the</strong>r or not Hull’s formula could be applied to<br />

hydration measurements for this source. Accelerated hydration experiments <strong>in</strong>dicate that<br />

Casa Diablo and Bodie Hills obsidians hydrate at similar rates (Trema<strong>in</strong>e 1991), but more<br />

recent results of <strong>in</strong>duced hydration studies, though prelim<strong>in</strong>ary <strong>in</strong> nature, have suggested<br />

that various Bodie Hills subsources hydrate at different rates (Loyd et al. 1998). These<br />

subsources, however, cannot yet be dist<strong>in</strong>guished by geochemical sourc<strong>in</strong>g studies. To<br />

address this issue, temporally diagnostic projectile po<strong>in</strong>t hydration ranges for <strong>the</strong> study<br />

72


area were considered as a coarse-gra<strong>in</strong>ed means of compar<strong>in</strong>g <strong>the</strong> rates of hydration for<br />

Casa Diablo and Bodie Hills obsidians.<br />

In general, data for common projectile po<strong>in</strong>t forms <strong>in</strong> <strong>the</strong> study area show <strong>the</strong><br />

expected <strong>in</strong>crease <strong>in</strong> mean obsidian hydration values (Table 10), support<strong>in</strong>g <strong>the</strong> regional<br />

chronology and <strong>the</strong> use of obsidian hydration for order<strong>in</strong>g materials <strong>in</strong> time. Mean<br />

obsidian hydration values for all sources are comparable with<strong>in</strong> <strong>the</strong> Desert series, while<br />

values tend to diverge as rims <strong>in</strong>crease <strong>in</strong> thickness. Thus, it may be more important to<br />

Table 10. Selected Projectile Po<strong>in</strong>t Obsidian Hydration Ranges by Obsidian Source.<br />

Po<strong>in</strong>t series Source Count Range Mean SD<br />

Desert BH 8 1.0-2.3 1.4 0.4<br />

CD 11 0.6-2.9 1.6 0.67<br />

MC 2 1.2-1.6 1.4 0.28<br />

MH 2 1.1-1.1 1.1 0<br />

All sources 23 0.6-2.9 1.4 0.5<br />

Rosegate BH 9 1.2-3.7 2.2 0.71<br />

CD 7 1.0-2.5 1.8 0.60<br />

MC/MGM 5 0.9-4.4 2.8 1.38<br />

MH 2 1.4-3.8 2.6 1.71<br />

Q 1 4.2 4.2 na<br />

All sources 24 0.9-4.4 2.3 1.01<br />

Elko/Contract<strong>in</strong>g<br />

stem BH 17 1.9-5.8 3.1 1.1<br />

CD 11 1.3-5.5 3.1 1.4<br />

MH 6 2.0-3.2 2.7 0.4<br />

All sources 34 1.3-5.8 3.0 1.1<br />

Concave base BH 5 1.4-4.3 2.5 1.3<br />

CD 6 2.6-5.9 4.2 1.4<br />

MGM 1 1.9 1.9 na<br />

MH 3 2.5-4.2 3.1 0.9<br />

Q 3 2.2-5.0 3.2 1.5<br />

All sources 18 1.4-5.9 3.3 1.3<br />

Key: BH=Bodie Hills; CD=Casa Diablo; MC=Mono Craters; MGM=Mono Glass Mounta<strong>in</strong>; MH=Mt.<br />

Hicks; Q=Queen; SD=standard deviation. *Does not <strong>in</strong>clude six specimens with NVH read<strong>in</strong>gs.<br />

73


consider obsidian source as a factor <strong>in</strong> hydration rate variability <strong>in</strong> regard to older<br />

materials. Bodie Hills and Casa Diablo obsidians, however, appear to be relatively<br />

consistent, at least <strong>in</strong> regard to <strong>the</strong> Desert, Rosegate, and <strong>the</strong> comb<strong>in</strong>ed Contract<strong>in</strong>g<br />

Stem/Elko series, suggest<strong>in</strong>g it may be appropriate to employ Hull’s formula for<br />

convert<strong>in</strong>g obsidian hydration measurements to estimated calendrical dates. The obsidian<br />

hydration means for <strong>the</strong> Concave Base po<strong>in</strong>ts do not compare well, possibly because of<br />

small sample size. Alternatively, people may have used <strong>the</strong>m for a longer period of time<br />

than previously thought.<br />

In <strong>the</strong> ensu<strong>in</strong>g chapters, descriptive artifact data are presented as raw hydration<br />

measurements, while data summaries and analyses utilize estimated dates derived by<br />

Hull’s (2001) rate equation. The appendices provide fur<strong>the</strong>r detail per specimen,<br />

Appendix B <strong>the</strong> raw obsidian hydration data and Appendix A <strong>the</strong> converted dates.<br />

LIMITATIONS AND ASSUMPTIONS<br />

A few limitations and assumptions are <strong>in</strong>herent <strong>in</strong> this study. As noted above, <strong>the</strong><br />

data have been generated ma<strong>in</strong>ly through compliance-related <strong>in</strong>vestigations and <strong>the</strong><br />

surveyed areas were not randomly selected. It is, <strong>the</strong>refore, conceivable that aspects of<br />

<strong>the</strong> high-elevation settlement system have not yet been documented. This potential bias<br />

may be addressed through reference to archaeological <strong>in</strong>vestigations <strong>in</strong> adjacent high-<br />

elevation areas (cf. Jackson and Morgan 1999; Reynolds and Kerw<strong>in</strong> 2006; Roper<br />

Wickstrom 1992; Stevens 2002; Van Bueren 1988), which do not differ substantially<br />

from Yosemite <strong>in</strong> terms of documented cultural material. An exception is a recently<br />

discovered complex of rock walls, bl<strong>in</strong>ds, and projectile po<strong>in</strong>ts thought to represent a<br />

bighorn sheep drive (Scott 2007). This site is of particular <strong>in</strong>terest because of its location<br />

74


on Monument Ridge, to <strong>the</strong> east of Virg<strong>in</strong>ia Canyon above Green Creek. Although<br />

hunt<strong>in</strong>g bl<strong>in</strong>ds have been recorded <strong>in</strong> Yosemite, a complex similar to that of <strong>the</strong><br />

Monument Ridge site is currently unknown. In general, however, <strong>the</strong> high-elevation data<br />

from <strong>the</strong> central and sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> demonstrate a similar range of<br />

archaeological phenomena, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> non-random nature of <strong>the</strong> survey data is<br />

unlikely to constitute a problem <strong>in</strong> this study.<br />

With respect to chronology, temporal <strong>in</strong>formation is absent from a large<br />

proportion of <strong>the</strong> sites. While <strong>the</strong> surface collections made as part of <strong>the</strong> <strong>the</strong>sis help to<br />

address this issue to a limited extent, small hydration samples and time-diagnostic<br />

materials are likely not effective <strong>in</strong> measur<strong>in</strong>g very <strong>in</strong>cidental use episodes. Broad<br />

occupational trends, however, are almost certa<strong>in</strong>ly captured by this approach.<br />

Assessments of both chronology and function for almost all sites are based solely<br />

on surface materials, while functions may have changed through time and even with<strong>in</strong> <strong>the</strong><br />

boundaries of a given site. This problem is at least partially mitigated through <strong>the</strong><br />

generally slow rates of deposition <strong>in</strong> <strong>the</strong> higher elevations and <strong>the</strong> tendency of materials<br />

to be moved upward <strong>in</strong> sediment columns by various disturbance processes. Thus,<br />

materials from multi-component sites may be evident <strong>in</strong> surface contexts. At <strong>the</strong> same<br />

time, this movement of materials may obfuscate associations between obsidian artifacts<br />

and objects to be dated. It is difficult, for example, to date rock r<strong>in</strong>gs based on surface<br />

evidence alone if multiple components are evident. Conf<strong>in</strong><strong>in</strong>g collections to feature<br />

contexts alleviates that problem to some extent, but confidently ascerta<strong>in</strong><strong>in</strong>g associations<br />

may require excavation samples, a level of work not proposed for this <strong>the</strong>sis.<br />

75


Chapter 5<br />

DESCRIPTION OF CULTURAL MATERIAL<br />

This chapter first describes <strong>the</strong> cultural material collected or left <strong>in</strong> place dur<strong>in</strong>g<br />

<strong>the</strong> <strong>the</strong>sis fieldwork, and subsequently summarizes classes of material and <strong>the</strong>ir<br />

distributions by geography and elevation <strong>in</strong> <strong>the</strong> study area as a whole. Detailed<br />

discussions of previously recorded collections and surface materials are provided <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>dividual project notes, site records, reports, and databases, on file at <strong>the</strong> Yosemite<br />

Archeology Office. All <strong>the</strong>sis materials are archived under Accession YOSE-6945 <strong>in</strong> <strong>the</strong><br />

Yosemite Museum, with copies of documentation on file at <strong>the</strong> Yosemite Archeology<br />

Office.<br />

THESIS COLLECTIONS<br />

In all, 676 pieces of debitage, 25 projectile po<strong>in</strong>ts, and n<strong>in</strong>e edge-modified pieces<br />

were collected. The artifact catalog, attached as Appendix C, presents catalog number,<br />

provenience <strong>in</strong>formation, descriptions, and relevant measurements for each lot or<br />

<strong>in</strong>dividual artifact. Detailed metric measurements and summary obsidian studies data for<br />

<strong>the</strong> temporally diagnostic projectile po<strong>in</strong>ts are presented <strong>in</strong> Table 11, with scanned<br />

images of <strong>the</strong>se artifacts provided <strong>in</strong> Figures 4 through 6. The obsidian studies data for<br />

selected time-sensitive po<strong>in</strong>t series are summarized along with those for <strong>the</strong> study area as<br />

a whole <strong>in</strong> Table 10 (Chapter 4).<br />

Projectile Po<strong>in</strong>ts<br />

Twenty-one of <strong>the</strong> 25 projectile po<strong>in</strong>ts were classified as follows: eight Desert<br />

Side-notched, three Cottonwood Triangular, two Rose Spr<strong>in</strong>g, four Elko, one Contract<strong>in</strong>g<br />

Stem, two Concave Base, and one P<strong>in</strong>to. One arrow po<strong>in</strong>t that may be a Rose Spr<strong>in</strong>g or<br />

76


Table 11. Metric Attributes and Obsidian Studies Data for Classifiable Projectile Po<strong>in</strong>ts.<br />

77<br />

Cat. Site Artifact LT LA LM WM WB WN Th Wt DSA PSA NO BIR WB/ Material/<br />

No.<br />

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (g) ° ° ° WM OH rim<br />

218674 TUO-3811 CT 23.45 23.45 0 12.36 12.36 na 3.55 0.83 na na na 1.00 1.00 BH/0<br />

218724 TUO-4665 CT 23.80 22.68 0 13.66 13.70 na 4.09 0.97 na na na 0.95 1.00 BH/2.3<br />

218660 TUO-3783 CT --- --- 0 19.96 19.96 na 3.90 1.16 na na na 1.00 1.00 chert<br />

218746 P-55-6561 DSN --- --- --- --- --- 6.15 3.39 0.55 205 --- --- --- --- LM/1.6<br />

218623 TUO-0159 DSN-G --- --- --- --- --- 7.16 3.10 0.52 203 160 43 --- --- LM/2.2<br />

218658 TUO-3783 DSN-G --- --- 0 12.50 12.50 7.21 2.64 0.39 223 177 46 --- 1.00 BH/1.5/4.9<br />

218675 TUO-3811 DSN-G 18.17 17.44 0 11.91 11.91 9.6 2.14 0.40 205 180 25 0.96 1.00 BH/1.3<br />

218676 TUO-3811 DSN-G 21.71 20.72 3.56 10.89 10.74 9.11 3.16 0.59 213 135 78 0.95 0.99 BH/1.3<br />

218642 TUO-0751 DSN-S 29.50 25.87 --- --- --- 6.96 3.27 0.83 204 193 11 0.88 --- MC/1.6<br />

218643 TUO-0751 DSN-S 22.72 18.20 0 11.26 11.26 6.88 3.50 0.52 218 148 70 0.80 1.00 BH/1.5<br />

218712 TUO-4639 DSN-S 24.73 19.64 8.48 12.43 12.38 6.51 2.55 0.59 190 180 10 0.79 1.00 LM/2.9<br />

218725 TUO-4665 RS/DSN 18.33 18.33 3.90 10.15 --- 6.03 2.33 0.34 187 --- --- 1.00 --- LM/UNR<br />

218633 TUO-0187 RSCN --- --- 5.66 --- 11.00 8.01 3.44 1.21 163 120 43 1.00 --- LM/1.1<br />

218632 TUO-0187 RS --- --- --- 13.98 --- 9.49 3.56 1.20 175 --- --- --- --- LM/2.3<br />

218713 TUO-4639 ECN --- --- 7.76 --- 19.96 13.96 5.48 3.33 175 143 32 1.00 --- SR/3.8<br />

218714 TUO-4639 ECN --- --- 12.65 32.79 24.07 20.68 5.76 4.33 195 113 82 1.00 0.73 BH/2.3<br />

218752 P-55-6775 ECN 34.82 34.49 --- 21.43 --- 15.64 7.02 4.72 205 116 89 0.99 --- chert<br />

218701 TUO-4635 EE --- --- 12.74 22.74 18.61 13.86 7.45 4.72 233 126 107 --- 0.82 SR/UNR<br />

218748 P-55-6564 SCS --- --- 9.84 --- 8.01 11.97 7.00 4.39 152 60 92 1.00 --- BH/4.5<br />

218636 TUO-0245 HCB --- --- --- --- 13.45 na 8.37 2.73 na na na --- --- LM/5.1<br />

218646 TUO-0755 SCB --- --- --- --- --- na 5.14 1.96 na na na --- --- Q/2.5<br />

218677 TUO-3811 P<strong>in</strong>to --- --- 13.84 24.44 15.81 15.15 5.57 4.60 200 95 105 --- 0.65 LM/UNR<br />

218723 TUO-4665 small cb --- --- --- 17.05 13.70 na 2.34 0.55 na na na na --- SR/2.2<br />

Key: LT =total length; LA=axial length; LM=length to maximum; WM=maximum width; WB=basal width; WN=neck width; Th=thick; Wt=weight;<br />

DSA=distal shoulder angle; PSA=proximal shoulder angle; NO=notch open<strong>in</strong>g; BIR=basal <strong>in</strong>dentation ratio; CT=Cottonwood Triangular; DSN=Desert<br />

Side-notched (G, S: General or <strong>Sierra</strong> subtype); RS=Rose Spr<strong>in</strong>g; RSCN=Rose Spr<strong>in</strong>g Corner-notched; ECN=Elko Corner-notched; EE=Elko Eared;<br />

HCB=Humboldt Concave Base; SCB=<strong>Sierra</strong> Concave Base; SCS=<strong>Sierra</strong> Contract<strong>in</strong>g Stem; CB=concave base; PPF=projectile po<strong>in</strong>t fragment; na=not<br />

applicable; ---not measurable; BH=Bodie Hills; LM, SR=Casa Diablo, Lookout Mounta<strong>in</strong> or Sawmill Ridge; MC=Mono Craters; Q=Queen;<br />

UNR=unreadable rim.


Desert Side-notched po<strong>in</strong>t and three <strong>in</strong>determ<strong>in</strong>ate specimens were also recovered. All of<br />

<strong>the</strong> po<strong>in</strong>ts are made of obsidian with two exceptions fashioned of chert.<br />

Desert Series<br />

Both Cottonwood and Desert Side-notched po<strong>in</strong>ts were orig<strong>in</strong>ally def<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

Great Bas<strong>in</strong> (Baumhoff and Byrne 1959; Lann<strong>in</strong>g 1963; Riddell 1951), where <strong>the</strong>y are<br />

late prehistoric temporal markers, thought to post-date 650 B.P. (Thomas 1981). Both<br />

types are small, th<strong>in</strong>, and triangular <strong>in</strong> outl<strong>in</strong>e, reflect<strong>in</strong>g use with <strong>the</strong> bow and arrow.<br />

Cottonwood Triangular po<strong>in</strong>ts are unnotched, while Desert Side-notched projectile po<strong>in</strong>ts<br />

are notched high on <strong>the</strong> lateral edges. Two subtypes of <strong>the</strong> latter, based on dist<strong>in</strong>ctive<br />

basal configurations, are prevalent <strong>in</strong> Park collections: <strong>the</strong> General subtype has a straight<br />

to slightly concave base, while a basal notch characterizes <strong>the</strong> <strong>Sierra</strong> subtype.<br />

Three Cottonwood Triangular and eight Desert Side-notched po<strong>in</strong>ts were<br />

collected dur<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis fieldwork, <strong>the</strong> latter <strong>in</strong>clud<strong>in</strong>g four of <strong>the</strong> General subtype,<br />

three <strong>Sierra</strong> subtype, and one unclassifiable as to subtype (Figure 4). One Cottonwood<br />

po<strong>in</strong>t is made of chert, while <strong>the</strong> o<strong>the</strong>r 10 Cottonwood and Desert Side-notched<br />

specimens are obsidian: Bodie Hills (n=6) is <strong>the</strong> most commonly occurr<strong>in</strong>g obsidian<br />

source, followed by Casa Diablo-Lookout Mounta<strong>in</strong> (n=3), and Mono Craters (n=1).<br />

Obsidian hydration measurements vary between no visible hydration and 2.9 microns,<br />

although most rims (n=8) measure between 1.3 and 2.3 microns, consistent with regional<br />

hydration ranges. The 2.9-micron rim measured on Cat. No. 218712, however, is<br />

anomalous, and cannot be accounted for by technological factors.<br />

Cat. No. 218725 (Figure 4l) is miss<strong>in</strong>g most of its proximal end and may be a<br />

Desert Side notched or Rose Spr<strong>in</strong>g series po<strong>in</strong>t, although <strong>the</strong> small size suggests <strong>the</strong><br />

78


former. Made of Casa Diablo-Lookout Mounta<strong>in</strong> obsidian, <strong>the</strong> hydration rim is<br />

unreadable and <strong>the</strong>refore does not aid <strong>in</strong> projectile po<strong>in</strong>t classification.<br />

Rosegate Series<br />

Thomas (1981) comb<strong>in</strong>ed Rose Spr<strong>in</strong>g and Eastgate types <strong>in</strong>to <strong>the</strong> Rosegate series<br />

due to <strong>the</strong>ir temporal and morphological similarities. These po<strong>in</strong>ts mark <strong>the</strong> <strong>in</strong>troduction<br />

of <strong>the</strong> bow and arrow <strong>in</strong> <strong>the</strong> region ca. 1500 B.P. and are believed to have been <strong>in</strong><br />

common use though 650 B.P. and possibly <strong>in</strong>to <strong>the</strong> historic period (Yohe 1992). Rose<br />

Spr<strong>in</strong>g Corner-notched, Rose Spr<strong>in</strong>g Contract<strong>in</strong>g Stem, Eastgate Split Stem, and Eastgate<br />

Expandng Stem are recognized with<strong>in</strong> <strong>the</strong> study area collections. The pr<strong>in</strong>cipal dist<strong>in</strong>ction<br />

between Rose Spr<strong>in</strong>g and Eastgate po<strong>in</strong>ts is <strong>the</strong> triangular outl<strong>in</strong>e of <strong>the</strong> latter, long barbs,<br />

and notches that extend upwards from <strong>the</strong> base. Follow<strong>in</strong>g Thomas (1981), basal widths<br />

of ≤1.0 cm generally dist<strong>in</strong>guish Rosegate from Elko series po<strong>in</strong>ts, although some<br />

Rosegate po<strong>in</strong>ts <strong>in</strong> Yosemite and eastern California exceed that measurement (Bett<strong>in</strong>ger<br />

and Eerkens 1999; Hull 1989b).<br />

The two Rose Spr<strong>in</strong>g po<strong>in</strong>ts recovered dur<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis fieldwork, one a corner-<br />

notched piece (Cat. No. 218633; Figure 5b) and <strong>the</strong> o<strong>the</strong>r difficult to identify beyond <strong>the</strong><br />

general Rose Spr<strong>in</strong>g group (Cat. No. 218632; Figure 5a), are manufactured of Casa<br />

Diablo-Lookout Mounta<strong>in</strong> obsidian. Hydration rims measure 1.1 and 2.3 microns,<br />

respectively. The th<strong>in</strong> rim comports with measurements for Desert series po<strong>in</strong>ts,<br />

suggest<strong>in</strong>g a later period of use for this specimen, while <strong>the</strong> thicker measurement is<br />

consistent with <strong>the</strong> hydration range for Rose Spr<strong>in</strong>g po<strong>in</strong>ts.<br />

79


Elko Series<br />

Elko Corner-notched and Elko Eared po<strong>in</strong>ts are large, thick dart po<strong>in</strong>ts,<br />

conventionally dated between 3500 and 1350 B.P. <strong>in</strong> <strong>the</strong> western Great Bas<strong>in</strong> (Bett<strong>in</strong>ger<br />

and Taylor 1974; Heizer and Hester 1978; Thomas 1981). Bevill et al. (2005:228)<br />

suggested an age range of 5100 to 2200 B.P. <strong>in</strong> Yosemite based on obsidian hydration<br />

read<strong>in</strong>gs for Casa Diablo specimens from a wide variety of sett<strong>in</strong>gs. This <strong>in</strong>itial use <strong>in</strong><br />

Yosemite is substantially earlier than that of Great Bas<strong>in</strong> specimens, and rema<strong>in</strong>s to be<br />

confirmed by radiocarbon dates.<br />

A basal concavity or notch, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> appearance of ears, separates <strong>the</strong> two<br />

Elko types (Hull 1989b), while a basal width greater than 1.0 cm dist<strong>in</strong>guishes <strong>the</strong> Elko<br />

and Rosegate series. Four specimens with<strong>in</strong> <strong>the</strong> Elko series, three Elko Corner-notched<br />

and one Elko Eared, were recovered dur<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis fieldwork. The Elko Eared po<strong>in</strong>t<br />

(Figure 5f), fashioned of Casa Diablo-Sawmill Ridge obsidian, yielded an unreadable<br />

hydration band. One of <strong>the</strong> corner-notched specimens is made of a yellowish-brown chert<br />

(Figure 5e). A second Elko Corner-notched specimen (Figure 5c) made of Casa Diablo-<br />

Sawmill Ridge obsidian reta<strong>in</strong>s a hydration rim of 3.8, consistent with <strong>the</strong> regional<br />

hydration range. The third Elko Corner-notched po<strong>in</strong>t (Figure 5d) yielded a relatively th<strong>in</strong><br />

rim of 2.3 microns on Bodie Hills obsidian.<br />

Contract<strong>in</strong>g Stem Series<br />

In <strong>the</strong> western Great Bas<strong>in</strong>, an additional Elko variant, Elko Contract<strong>in</strong>g-stem, is<br />

thought to be coeval with <strong>the</strong> Eared and Corner-notched forms (Basgall and Giambastiani<br />

1995). In <strong>the</strong> western <strong>Sierra</strong>, <strong>the</strong>se are morphologically similar to <strong>the</strong> <strong>Sierra</strong> Contract<strong>in</strong>g<br />

Stem and Triangular Contract<strong>in</strong>g Stem po<strong>in</strong>ts orig<strong>in</strong>ally def<strong>in</strong>ed by Moratto (1972). The<br />

80


western <strong>Sierra</strong> term<strong>in</strong>ology is ma<strong>in</strong>ta<strong>in</strong>ed here, but <strong>the</strong>se specimens are considered to be<br />

dart po<strong>in</strong>ts temporally congruent with <strong>the</strong> Elko series. The s<strong>in</strong>gle <strong>Sierra</strong> Contract<strong>in</strong>g Stem<br />

po<strong>in</strong>t (Figure 5g) recovered was made of Bodie Hills obsidian. The hydration rim of 4.5<br />

microns is consistent with <strong>the</strong> regional hydration range for this series.<br />

Concave Base Series<br />

Concave Base po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> western <strong>Sierra</strong> constitute a confus<strong>in</strong>g array of types of<br />

uncerta<strong>in</strong> temporal aff<strong>in</strong>ity. Heizer and Clewlow (1968) orig<strong>in</strong>ally identified three<br />

Humboldt Concave-base types through work <strong>in</strong> <strong>Nevada</strong>, two of which are recognized <strong>in</strong><br />

<strong>the</strong> western <strong>Sierra</strong>. Humboldt Basal-notched forms are long, triangular po<strong>in</strong>ts with a<br />

broad basal notch, termed <strong>Sierra</strong> Concave Base <strong>in</strong> <strong>the</strong> western <strong>Sierra</strong>. Humboldt<br />

Concave-base A and B po<strong>in</strong>ts are leaf shaped and of variable size, with a basal width less<br />

than <strong>the</strong> maximum width and a relatively small basal <strong>in</strong>dentation. These have been<br />

designated as Humboldt Concave Base forms <strong>in</strong> Yosemite. F<strong>in</strong>ally, an additional form,<br />

termed Eared Concave Base <strong>in</strong> <strong>the</strong> western <strong>Sierra</strong>, is a long heavy po<strong>in</strong>t with a notched<br />

base and basal ears project<strong>in</strong>g on each side of <strong>the</strong> basal concavity. This po<strong>in</strong>t is similar <strong>in</strong><br />

form to <strong>the</strong> <strong>Sierra</strong> Concave Base, and may represent reworked specimens of that type<br />

(Hull 1989b).<br />

The utility of <strong>the</strong>se po<strong>in</strong>ts as time markers rema<strong>in</strong>s an open question. Thomas<br />

(1981) lumped <strong>the</strong>m <strong>in</strong>to one group <strong>in</strong> Monitor Valley, spann<strong>in</strong>g a long period of time<br />

from 4950 to 1250 B.P. Research <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong> <strong>in</strong>dicates <strong>the</strong>y are generally coeval<br />

with Elko po<strong>in</strong>ts, or markers of <strong>the</strong> Newberry period (Basgall and Giambastiani 1995;<br />

Jackson 1985), though <strong>the</strong> basal-notched form may persist <strong>in</strong>to <strong>the</strong> early portion of <strong>the</strong><br />

Haiwee period and <strong>the</strong> concave base form <strong>in</strong>itially appeared well before <strong>the</strong> Elko series<br />

81


(Basgall et al. 2003). In <strong>the</strong> western <strong>Sierra</strong>, Moratto (1972) orig<strong>in</strong>ally assigned <strong>the</strong> <strong>Sierra</strong><br />

Concave Base to <strong>the</strong> Chowchilla phase (ca. 800 B.C.–A.D. 550). Obsidian hydration data<br />

for Yosemite po<strong>in</strong>ts support this time frame, but also suggest a somewhat longer span of<br />

use, overlapp<strong>in</strong>g with Rose Spr<strong>in</strong>g po<strong>in</strong>ts (Bevill et al. 2005:231).<br />

Two concave base po<strong>in</strong>ts were collected dur<strong>in</strong>g <strong>the</strong> current fieldwork. The<br />

Humboldt Concave Base specimen (Figure 6a), made of Casa Diablo-Lookout Mounta<strong>in</strong><br />

obsidian, reta<strong>in</strong>s a hydration rim of 5.1 microns, commensurate with early Elko read<strong>in</strong>gs.<br />

The <strong>Sierra</strong> Concave Base fragment (Figure 6b) is fashioned of Queen obsidian, with a<br />

comparatively th<strong>in</strong> rim of 2.5 microns.<br />

P<strong>in</strong>to Series<br />

Large, bifurcate-stemmed dart po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong> have been most recently<br />

dist<strong>in</strong>guished temporally and morphologically as <strong>the</strong> younger (ca. 5,000 to 3,000 B.P.),<br />

gracile Gatecliff series and <strong>the</strong> earlier (ca. 7,500 to 4,000 B.P.), more robust P<strong>in</strong>to series<br />

(Basgall and Hall 2000). In Yosemite, <strong>the</strong>se po<strong>in</strong>t forms have been classified variously<br />

as P<strong>in</strong>to, Gatecliff, and Indented-base Stemmed (cf. Hull 1989b; Hull et al. 1995). Few<br />

specimens have been documented to date, but obsidian hydration data for those pieces are<br />

similar to ranges for Elko po<strong>in</strong>ts (Hull 1989b).<br />

The s<strong>in</strong>gle specimen recovered (Figure 5h) has an unreadable hydration band, and<br />

is manufactured of Casa Diablo-Lookout Mounta<strong>in</strong> obsidian. The metric measurements<br />

for this piece (Table 11) fall between those proposed by Basgall and Hall (2000) to<br />

dist<strong>in</strong>guish Gatecliff and P<strong>in</strong>to po<strong>in</strong>ts. However, <strong>the</strong> overall morphology of <strong>the</strong><br />

specimen—<strong>the</strong> relatively long stem and <strong>the</strong> distal shoulder angle of 200°—suggests it is<br />

most appropriately classified as a P<strong>in</strong>to series po<strong>in</strong>t.<br />

82


a. 218660, TUO-3783 b. 218674, TUO-3811, BH-<br />

NVH<br />

c. 218724, TUO-4665, BH-2.3<br />

d. 218623, TUO-159, LM-2.2 e. 218642, TUO-751, MC-1.6 f. 218643, TUO-751, BH-1.5<br />

g. 218658, TUO-3783, BH-1.5/4.9 h. 218675, TUO-3811, BH-1.3 i. 218676, TUO-3811, BH-1.3<br />

j. 218712, TUO-4639, LM-2.9 k. 218746, P-55-6561, LM-1.6 l. 218725, TUO-4665, LM-<br />

UNR<br />

cm<br />

Figure 4. Scanned images of projectile po<strong>in</strong>ts: a-c, Cottonwood Triangular; d-k, Desert<br />

Side-notched; l, small arrow po<strong>in</strong>t, Desert Side-notched or Rose Spr<strong>in</strong>g.<br />

83


a. 218632, TUO-187, LM-2.3 b. 218633, TUO-187, LM-1.1<br />

c. 218713, TUO-4639, SR-3.8 d. 218714, TUO-4639, BH-2.3<br />

e. 218752, P-55-6775 f. 218701, TUO-4635, SR-UNR<br />

g. 218748, P-55-6564, BH-4.5 h. 218677, TUO-3811, LM-UNR<br />

cm<br />

Figure 5. Scanned images of projectile po<strong>in</strong>ts: a, Rose Spr<strong>in</strong>g; b, Rose Spr<strong>in</strong>g Cornernotched;<br />

c-e, Elko Corner-notched; f, Elko Eared; g, <strong>Sierra</strong> Contract<strong>in</strong>g Stem; h, P<strong>in</strong>to<br />

series.<br />

84


a. 218636, TUO-245, LM-5.1 b. 218646, TUO-755, Q-2.5<br />

c. 218659, TUO-3783 d. 218723, TUO-4665, SR-2.2<br />

cm<br />

Figure 6. Scanned images of projectile po<strong>in</strong>ts: a, Humboldt Concave Base; b, <strong>Sierra</strong><br />

Concave Base; c-d, small, unidentifiable arrow po<strong>in</strong>t fragments.<br />

Unclassifiable Fragments<br />

Three projectile po<strong>in</strong>t fragments, all fashioned of obsidian, were too small for<br />

reliable identification. Catalog No. 218723 (Figure 6d), a small, th<strong>in</strong> fragment with a<br />

slightly concave base, was <strong>the</strong> only specimen of <strong>the</strong> three submitted for obsidian studies.<br />

The obsidian source was identified as Lookout Mounta<strong>in</strong>-Sawmill Ridge, and <strong>the</strong><br />

hydration rim measured 2.2 microns. Catalog No. 218659 (Figure 6c) is a basal fragment,<br />

while Cat. No. 218828 (not pictured) is a very small midsection, likely of an arrow po<strong>in</strong>t.<br />

Edge-modified Pieces<br />

N<strong>in</strong>e edge-modified pieces, all of obsidian, were orig<strong>in</strong>ally collected as debitage<br />

from <strong>the</strong> SCUs. Edge modification was observed upon closer exam<strong>in</strong>ation <strong>in</strong> <strong>the</strong><br />

laboratory, and <strong>the</strong>se pieces were cataloged accord<strong>in</strong>gly as tools. The pieces exhibit<br />

85


etween one and three modified edges, most of which show marg<strong>in</strong>al flak<strong>in</strong>g, mean<strong>in</strong>g<br />

very little of <strong>the</strong> modification penetrates to <strong>the</strong> <strong>in</strong>terior of <strong>the</strong> piece. Presumably, this<br />

marg<strong>in</strong>al modification is due to utilization but it is also possible that it represents non-<br />

cultural edge damage. A few pieces with <strong>in</strong>vasive flak<strong>in</strong>g likely represent <strong>in</strong>tentional<br />

retouch. None of <strong>the</strong>se <strong>in</strong>formal tools were selected for obsidian studies.<br />

Debitage<br />

Of <strong>the</strong> 676 pieces of debitage, 403 were submitted for obsidian hydration analysis.<br />

Prior to hydration analysis, debitage was ei<strong>the</strong>r visually or geochemically sourced as<br />

follows: Bodie Hills visually sourced (n=113), Bodie Hills geochemically sourced<br />

(n=28); Casa Diablo visually sourced (n=223); Casa Diablo geochemically sourced<br />

(n=27); Mono Craters geochemically sourced (n=7); Mt. Hicks geochemically sourced<br />

(n=2); and non-Casa Diablo visually sourced (n=3). Because hydration analysis is a<br />

partially destructive process, all of <strong>the</strong> pieces were fur<strong>the</strong>r described by size class,<br />

technology, presence/absence of cortex, and presence/absence of platforms. Briefly, 218<br />

reta<strong>in</strong> at least a portion of <strong>the</strong>ir platforms, while 185 are fragmentary, or lack platforms.<br />

Size class distribution varies as follow: 3-6 mm (n=10); 6-12 mm (n=164); 12-20 mm<br />

(n=176); and >20 (n=53). Most pieces (n=369) are <strong>in</strong>terior flakes lack<strong>in</strong>g cortex, but 32<br />

are secondary and two are primary cortical flakes. Of <strong>the</strong> pieces reta<strong>in</strong><strong>in</strong>g attributes that<br />

allowed for technological classification, 257 are biface th<strong>in</strong>n<strong>in</strong>g or pressure flakes, and 16<br />

are core reduction debris.<br />

THESIS OBSERVATIONS<br />

In addition to <strong>the</strong> recovered objects described above, previously unrecorded<br />

cultural materials at <strong>the</strong> <strong>the</strong>sis sites were documented and left <strong>in</strong> place. These materials<br />

86


are fur<strong>the</strong>r described <strong>in</strong> <strong>the</strong> field forms, which are filed <strong>in</strong> <strong>the</strong> archaeological site records<br />

at <strong>the</strong> Yosemite Archeology Office, and <strong>the</strong> data are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> overall <strong>in</strong>ventory of<br />

cultural material with<strong>in</strong> <strong>the</strong> study area. As summarized <strong>in</strong> Table 12, additional artifacts<br />

and features were noted at 16 of <strong>the</strong> sites visited dur<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis fieldwork. The classes<br />

of material are consistent with those previously documented <strong>in</strong> <strong>the</strong> area, <strong>in</strong>clud<strong>in</strong>g various<br />

flaked stone tools, bedrock mortars and pestles, a s<strong>in</strong>gle rock r<strong>in</strong>g, and portable ground<br />

stone artifacts. Conversely, two features previously documented as pictographs <strong>in</strong> Lyell<br />

Canyon were identified as natural phenomena as part of <strong>the</strong> <strong>the</strong>sis fieldwork. As such,<br />

CA-TUO-3846, recorded as a s<strong>in</strong>gle pictograph lack<strong>in</strong>g o<strong>the</strong>r cultural materials, was<br />

removed from consideration <strong>in</strong> <strong>the</strong> study, and CA-TUO-3840, was reta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> study<br />

as a lithic scatter.<br />

Table 12. Previously Unrecorded Cultural Material Observed at Thesis Sites.<br />

Site PP BF DR EMP RR BRM PE HS MS<br />

CA-TUO-<br />

0128/129/130/504<br />

- 1 - - - 1(2) 4 - -<br />

CA-TUO-0159 1 (DSN/RS) - - - - - - - -<br />

CA-TUO-0172 - 1 - - - - - - -<br />

CA-TUO-0187 1 - - - - - - - -<br />

CA-TUO-0751 - - - 1 1 - - - 1<br />

CA-TUO-0755 - 1 - - - - - - -<br />

CA-TUO-3765 1 1 - - - - - - -<br />

CA-TUO-3783 - - - - - - - - 1<br />

CA-TUO-3789 - 1 - - - - - - -<br />

CA-TUO-3811 - - 1 - - - 2 - -<br />

CA-TUO-3850 - - 1 - - - - - -<br />

CA-TUO-4635 - - - - - 1(1) 1 - -<br />

CA-TUO-4639 3 - - - - 1(2) 2 2 1<br />

CA-TUO-4665 2 (DSN, SCB) 1 1 - - - - - -<br />

CA-TUO-4907 - - - - - - - 1 -<br />

P-55-006775 - 2 - - - - - - -<br />

Key: PP=projectile po<strong>in</strong>t; BF=biface; DR=drill; EMP=edge-modified piece; RR=rock r<strong>in</strong>g; BRM=bedrock<br />

mortar: #features(#mortars); PE=pestle; HS=handstone; MS=mill<strong>in</strong>gstone; DSN=Desert Side-notched;<br />

RS=Rose Spr<strong>in</strong>g; SCB=<strong>Sierra</strong> Concave Base.<br />

87


SUMMARY AND DISTRIBUTION OF STUDY AREA MATERIALS<br />

The discussion to follow briefly describes <strong>the</strong> classes of material present <strong>in</strong> <strong>the</strong><br />

study area, identifies <strong>the</strong>ir relative abundance, and details <strong>the</strong>ir distribution by geographic<br />

location and elevation. The <strong>the</strong>sis collections and observations, as well as previously<br />

documented material, comprise <strong>the</strong> data here<strong>in</strong>. Table 13 shows <strong>the</strong> frequency of sites<br />

conta<strong>in</strong><strong>in</strong>g a given cultural constituent by geographic location and elevation range.<br />

Comparison of <strong>the</strong> various collections is acknowledged as a problem here because<br />

assemblage diversity tends to <strong>in</strong>crease with repeated site visits and excavations. Although<br />

a detailed historical overview of site <strong>in</strong>vestigations was not conducted as part of this<br />

<strong>the</strong>sis, <strong>the</strong> most <strong>in</strong>tensively studied sites are <strong>in</strong> Dana Meadows and Tuolumne Meadows,<br />

where limited excavations have been carried out, and <strong>the</strong> least studied areas are Parker<br />

Pass Creek and Delaney Creek, where numerous sites have not been visited s<strong>in</strong>ce <strong>the</strong><br />

1950s.<br />

Flaked Stone<br />

Debitage is by far <strong>the</strong> most common site constituent, occurr<strong>in</strong>g at 365 (98%) of<br />

<strong>the</strong> 373 sites across <strong>the</strong> study area and at all elevation <strong>in</strong>tervals <strong>in</strong> which sites have been<br />

recorded. Debitage density varies substantially between sites, however, with estimates<br />

rang<strong>in</strong>g from five to several thousand flakes per site. This variability could reflect<br />

differential use over time, where certa<strong>in</strong> places were occupied repeatedly or for longer<br />

periods of time; dist<strong>in</strong>ctions <strong>in</strong> function, where some sites were related to acquisition of<br />

obsidian; or site formation processes, where deposits may be substantially buried and few<br />

materials are evident on <strong>the</strong> surface. While <strong>the</strong> precise mean<strong>in</strong>g of variable-density<br />

deposits is unclear at <strong>the</strong> level of this study, <strong>in</strong> a general sense higher-density<br />

88


Table 13. Frequency of Sites by Cultural Material Class, Geography, and <strong>Elevation</strong>.<br />

Location BRM/ AF MID HS/ BST/ RA P RS HB H C MISC FAU DEB PP BF DR FT Total<br />

PE<br />

MS CH<br />

Sites<br />

GEOGRAPHIC LOCATION<br />

Trans-<strong>Sierra</strong> Corridors<br />

Matterhorn Canyon - - - - - - - - - - - - - 4 1 1 - - 4<br />

Spiller Canyon 2 - - - - - - 1 - - - - - 5 3 1 - - 6<br />

Virg<strong>in</strong>ia Canyon 15 6 3 6 3 2 1 2 2 - - 1 1 63 29 22 2 29 65<br />

Tuolumne Meadows 14 - 1 3 2 - - 2 4 3 3 3 3 85 37 18 1 21 85<br />

Dana Fork 14 2 1 7 3 - - - 1 3 - 2 4 45 24 17 1 29 47<br />

Parker Pass/Mono 2 - - - - - - - - - 1 - - 28 6 5 2 3 29<br />

Lyell Canyon 2 1 2 2 1 4 - 1 - - - 2 - 67 21 18 4 20 67<br />

Non-Corridor Contexts<br />

Nor<strong>the</strong>rn lakes - - - - - - - - - - - - - 9 4 2 1 - 9<br />

Cold Canyon 2 - - - - - - 1 - - - - - 9 3 1 - - 9<br />

Young Lakes trail - - - - - - - - - - - 1 - - - - - 1 1<br />

Dog Lake - - - - - - - - - - - - - 3 - - - 1 3<br />

Delaney Creek - - - - - - - - - - - - - 8 3 3 - - 8<br />

Gaylor Bas<strong>in</strong> - - - - - - - - - - - - - 4 1 - 2 4<br />

Mt. Dana slope - - - - - - - - - - - - - 2 1 - 1 2<br />

Elizabeth Lake - - - - - - - - - - - - - 3 2 - 1 3<br />

Rafferty Creek - - - - - - - - - - - 1 - 13 4 3 - 2 13<br />

Vogelsang-Ireland - - - - - - - - - - - 1 1 17 8 8 - 5 18<br />

ELEVATION RANGE (ft)<br />

< 9000 31 3 5 8 5 5 1 6 6 3 3 5 3 185 75 45 4 49 188<br />

9000-10,000 19 5 2 9 4 1 1 1 3 1 5 5 131 54 40 5 54 135<br />

10,000-11,000 1 1 - 1 - - - - - - - 1 1 48 16 15 2 12 49<br />

11,000-12,000 - - - - - - - - - - - - - 1 1 - - - 1<br />

Total 51 9 7 18 9 6 1 7 7 6 4 11 9 365 146 100 11 115 373<br />

Key: BRM/PE=bedrock mortar/pestle; AF=architectural feature; MID=midden; HS/MS=handstone/mill<strong>in</strong>gstone; BST/CH=battered stone/chopper;<br />

RA=rock alignment; P=petroglyph; RS=rockshelter; HB=hunt<strong>in</strong>g bl<strong>in</strong>d; H=hearth; C=flaked stone tool cache; MISC=miscellaneous; FAU=faunal<br />

rema<strong>in</strong>s; DEB=debitage; PP=projectile po<strong>in</strong>t; BF=biface; DR=drill; FT=flake tool.<br />

89


concentrations signal an <strong>in</strong>creased level of activity related to flaked stone tool production,<br />

ei<strong>the</strong>r temporally or functionally, compared to low-density deposits. The substantial<br />

variation <strong>in</strong> debitage densities and <strong>the</strong> prevalence of this material class throughout <strong>the</strong><br />

study area suggest that fur<strong>the</strong>r exam<strong>in</strong>ation is warranted.<br />

Characterization of debitage density for this study as low, moderate, or high relied<br />

on <strong>the</strong> maximum debitage density per square meter and <strong>the</strong> overall estimated count per<br />

site. While both attributes have not been consistently documented for all sites, most site<br />

records reta<strong>in</strong> data for at least one. Sites not visited s<strong>in</strong>ce <strong>the</strong> 1950s are excluded from<br />

consideration due to difficulties <strong>in</strong> reconcil<strong>in</strong>g <strong>the</strong> earlier notes with <strong>the</strong> later, more<br />

detailed data collection procedures. Low density scatters conta<strong>in</strong> ≤9/m 2 or ≤100 flakes on<br />

<strong>the</strong> surface; moderate scatters have 10−19/m 2 or 100−200 flakes; and high-density<br />

scatters are def<strong>in</strong>ed by ≥20/m 2 or more than 200 flakes on <strong>the</strong> surface. When <strong>the</strong> two<br />

attributes for a given site did not both fall with<strong>in</strong> <strong>the</strong>se categories (e.g., a maximum flake<br />

density of 25 and an estimated site count of 150), <strong>the</strong> site count was used for<br />

classification purposes.<br />

Most of <strong>the</strong> sites with density <strong>in</strong>formation (n=333) are light lithic scatters (71%),<br />

fewer are of moderate density (18%), and high-density scatters (11%) are relatively<br />

uncommon (Table 14). Low- and moderate-density debitage scatters are most common <strong>in</strong><br />

all geographic locations and with<strong>in</strong> all elevation <strong>in</strong>tervals. <strong>High</strong>-density scatters,<br />

however, are more common <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong> corridors, while low-density scatters are<br />

more common <strong>in</strong> non-corridor contexts. The spatial distribution of high-density scatters<br />

parallels that for <strong>the</strong> general distribution of materials noted above—32 of <strong>the</strong> 35 sites<br />

with high-density debitage scatters are <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong> corridors of Virg<strong>in</strong>ia Canyon,<br />

90


Table 14. Frequency of Sites by Debitage Density, Geography, and <strong>Elevation</strong>.<br />

Estimated Debitage Density Total<br />

Low % Moderate % <strong>High</strong> %<br />

GEOGRAPHIC LOCATION<br />

Trans-<strong>Sierra</strong> Corridor<br />

Matterhorn Canyon 4 100% - - - - 4<br />

Spiller Canyon 4 80% 1 20% - - 5<br />

Virg<strong>in</strong>ia Canyon 53 84% 7 11% 3 5% 63<br />

Tuolumne Meadows 61 72% 11 13% 13 15% 85<br />

Dana Fork 29 69% 5 12% 8 19% 42<br />

Parker Pass Creek/Mono Pass 6 46% 4 31% 3 23% 13<br />

Lyell Canyon 37 58% 22 34% 5 8% 64<br />

Subtotal 194 70% 50 18% 32 12% 276<br />

Non-Corridor Context<br />

Nor<strong>the</strong>rn lakes* 9 100% - - - - 9<br />

Cold Canyon, Conness Creek 6 67% 3 33% - - 9<br />

Dog Lake 3 100% - - - - 3<br />

Delaney Creek 2 100% - - - - 2<br />

Gaylor Bas<strong>in</strong> 3 75% - - 1 25% 4<br />

Mt. Dana slope 1 50% 1 50% - - 2<br />

Elizabeth Lake 2 67% 1 33% - - 3<br />

Rafferty Creek 7 64% 2 18% 2 18% 11<br />

Vogelsang - Ireland Lake 11 79% 3 21% - - 14<br />

Subtotal 44 77% 10 18% 3 5% 57<br />

ELEVATION RANGE (ft)<br />

< 9000 129 70% 34 19% 20 11% 183<br />

9000-10,000 83 76% 15 14% 11 10% 109<br />

10,000-11,000 26 65% 10 25% 4 10% 40<br />

11,000-12,000 - - 1 100% - - 1<br />

Total 238 71% 59 18% 35 11% 333<br />

*Many sites <strong>in</strong> this area have not been recorded to current standards and are excluded from analysis.<br />

Lyell Canyon, Dana Fork, Parker Pass, Tuolumne Meadows, and Lyell Canyon. In<br />

contrast, none of <strong>the</strong> sites <strong>in</strong> Spiller and Matterhorn canyons can be characterized as high<br />

density. Of <strong>the</strong> former, Virg<strong>in</strong>ia and Lyell canyons have <strong>the</strong> lowest proportions of high-<br />

density scatters (5% and 8%, respectively), while <strong>the</strong> three o<strong>the</strong>r areas have <strong>the</strong> highest<br />

proportions (15%, 19%, and 23%, respectively). The figure for Parker Pass Creek,<br />

however, is mislead<strong>in</strong>g because of <strong>the</strong> lack of <strong>in</strong>formation for many of <strong>the</strong> sites <strong>in</strong> that<br />

91


area, and should be considered as prelim<strong>in</strong>ary until fur<strong>the</strong>r work is carried out. The<br />

highest debitage densities <strong>in</strong> <strong>the</strong> study area, with maximum flake densities per square<br />

meter rang<strong>in</strong>g from 180 to 500 pieces, occur at several sites <strong>in</strong> Dana Meadows, Tuolumne<br />

Meadows, and <strong>the</strong> lower portion of Lyell Canyon, suggest<strong>in</strong>g <strong>the</strong>se areas were important<br />

places, occupied repeatedly or related to obsidian procurement.<br />

Sites with flaked stone tools, <strong>in</strong>clud<strong>in</strong>g projectile po<strong>in</strong>ts, bifaces, and flake tools<br />

are relatively common, occurr<strong>in</strong>g throughout <strong>the</strong> study area (Table 13). In contrast, sites<br />

with drills are rare and limited to <strong>the</strong> trans-<strong>Sierra</strong> corridors, suggest<strong>in</strong>g additional<br />

assemblage diversity <strong>in</strong> those locations. Beyond <strong>the</strong>ir presence at many sites, not much<br />

can be said about flake tools and bifaces, while <strong>the</strong> temporal parameters of some<br />

projectile po<strong>in</strong>ts allows for fur<strong>the</strong>r discussion <strong>in</strong> Chapter 6. It should be mentioned,<br />

however, that flake tools are likely an underrepresented class s<strong>in</strong>ce surface<br />

documentation has typically focused on projectile po<strong>in</strong>ts and identification of flake tools<br />

is more difficult <strong>in</strong> survey contexts.<br />

It is worth not<strong>in</strong>g that flaked stone material is composed almost entirely of<br />

obsidian, with few examples of chert, basalt, quartz, or metamorphic materials.<br />

Excavation data show that, <strong>in</strong> general, obsidian comprises about 98 percent of high-<br />

elevation debitage collections (Hull et al. 1995; Montague 1996a), and all site records<br />

document obsidian as <strong>the</strong> primary surface constituent. Concentrations of non-obsidian<br />

flaked stone, however, have been noted at a few sites; CA-TUO-754/H <strong>in</strong> Dana Meadows<br />

and TUO-3841 <strong>in</strong> lower Lyell Canyon exhibit concentrations of metamorphic toolstone,<br />

while <strong>the</strong> site record for TUO-3829, also <strong>in</strong> lower Lyell Canyon, <strong>in</strong>dicates that basalt<br />

makes up a substantial portion of <strong>the</strong> surface materials at that site.<br />

92


Flaked Stone Tool Caches<br />

Of <strong>the</strong> eight flaked stone tool caches documented <strong>in</strong> <strong>the</strong> Park, four were located<br />

with<strong>in</strong> <strong>the</strong> study area and one just outside of its boundaries (Table 15). These obsidian<br />

caches, composed of flake blanks, bifaces, cobbles/cores, and <strong>in</strong> one case a comb<strong>in</strong>ation<br />

of flakes and bifaces, are thought to represent material for local use or transport far<strong>the</strong>r to<br />

<strong>the</strong> west. All of <strong>the</strong> caches except <strong>the</strong> Tamarack Flat bifaces were located <strong>in</strong> <strong>the</strong><br />

Tuolumne River watershed, underscor<strong>in</strong>g <strong>the</strong> importance of that dra<strong>in</strong>age and its<br />

tributaries as a travel corridor and a place that people returned to on a regular basis as<br />

part of <strong>the</strong> annual subsistence-settlement round. The highest density debitage scatters <strong>in</strong><br />

<strong>the</strong> study area are also located <strong>in</strong> Tuolumne and Dana meadows, perhaps an additional<br />

<strong>in</strong>dicator that <strong>the</strong> Mono Trail was a key route for obsidian transport.<br />

The caches vary <strong>in</strong> age, technological composition, and obsidian source, allow<strong>in</strong>g<br />

for some comparisons over time. Although <strong>the</strong> sample is very small, a pattern of<br />

<strong>in</strong>creas<strong>in</strong>g source diversity through time is apparent. Casa Diablo obsidian occurs<br />

throughout <strong>the</strong> temporal sequence, while <strong>the</strong> Bodie Hills, Mono Craters, and Mono Glass<br />

Mounta<strong>in</strong> sources are more recent, dat<strong>in</strong>g to with<strong>in</strong> <strong>the</strong> past 500 years or so. To some<br />

extent, this pattern reflects <strong>the</strong> underly<strong>in</strong>g geographic distribution of obsidian sources, but<br />

<strong>the</strong> presence of two caches of Mono Craters and Mono Glass Mounta<strong>in</strong> obsidians <strong>in</strong> late<br />

period contexts <strong>in</strong> an area o<strong>the</strong>rwise dom<strong>in</strong>ated by Casa Diablo glass suggests <strong>the</strong><br />

possibility of chang<strong>in</strong>g obsidian use patterns late <strong>in</strong> prehistory (Montague 2008). In this<br />

case, shift<strong>in</strong>g obsidian procurement patterns might reflect reduced group mobility <strong>in</strong> <strong>the</strong><br />

eastern <strong>Sierra</strong>.<br />

93


Site No. Location Elev<br />

(ft)<br />

Table 15. Flaked Stone Tool Cache Data (after Montague 2008).<br />

WITHIN AND NEAR STUDY AREA<br />

TUO-<br />

134<br />

TUO-<br />

4973<br />

TUO-<br />

4436<br />

TUO-<br />

500<br />

TUO-<br />

4509<br />

Tuolumne<br />

Meadows<br />

Glen<br />

Aul<strong>in</strong>,<br />

Tuolumne<br />

River<br />

Tuolumne<br />

Meadows<br />

Tuolumne<br />

Meadows<br />

Parker<br />

Pass Creek<br />

OUTSIDE OF STUDY AREA<br />

MRP-94 Tamarack<br />

Flat<br />

none Pate<br />

Valley,<br />

Tuolumne<br />

River<br />

TUO-<br />

4647<br />

unnamed<br />

tributary,<br />

Tuolumne<br />

River<br />

Description of Cache OH<br />

Sample<br />

(n=)<br />

8570 136 fragmentary<br />

bifaces, flake blanks,<br />

and debitage <strong>in</strong><br />

dist<strong>in</strong>ctive rock crevice<br />

on dome<br />

7900 88 bifaces at base of<br />

tree, on and below<br />

surface<br />

8550 28 large cobbles and<br />

flakes;


<strong>Sierra</strong> exchange system, at least early <strong>in</strong> time, if such a system entailed consistency <strong>in</strong> <strong>the</strong><br />

production of artifact forms. However, caches of pre-1500 B.P. age exhibit greater<br />

diversity <strong>in</strong> artifact form—large flake blanks, cobbles and cores, and bifaces—than<br />

caches post-dat<strong>in</strong>g 1500 B.P., which are ei<strong>the</strong>r flake blanks or bifaces, suggest<strong>in</strong>g <strong>the</strong><br />

latter period may have seen more regularized production of artifact forms, possibly for<br />

exchange. The mean weight of artifacts decreased over time, <strong>in</strong>dicat<strong>in</strong>g larger pieces<br />

were <strong>the</strong> preferred means of transport prior to 1500 B.P., whe<strong>the</strong>r <strong>the</strong>y were flakes,<br />

bifaces, or cobbles/cores (Montague 2008). This decrease <strong>in</strong> artifact mass likely speaks to<br />

<strong>the</strong> shift <strong>in</strong> technology from dart to arrow projectiles about 1500 B.P., and <strong>the</strong> result<strong>in</strong>g<br />

reduction <strong>in</strong> <strong>the</strong> need for large pieces of toolstone after that time.<br />

Bedrock Mortars and Pestles<br />

Bedrock mortars, sometimes with associated pestles, are by far <strong>the</strong> most common<br />

feature <strong>in</strong> <strong>the</strong> study area. In all, 60 mill<strong>in</strong>g features have been documented at 50 sites,<br />

compris<strong>in</strong>g 14 percent of <strong>the</strong> study area sites (Table 16). One site <strong>in</strong> Virg<strong>in</strong>ia Canyon also<br />

conta<strong>in</strong>s a pestle, but no apparent mortar. Mill<strong>in</strong>g implements <strong>in</strong>clude a total of 202<br />

mortars, 18 mill<strong>in</strong>g slicks, and 94 pestles. The vast majority of sites with mill<strong>in</strong>g surfaces<br />

occur <strong>in</strong> <strong>the</strong> geographic areas of Tuolumne Meadows, Dana Meadows, and Virg<strong>in</strong>ia<br />

Canyon (Table 16, Figure 7). Two sites each <strong>in</strong> Cold Canyon, Parker Pass Creek and<br />

Mono Pass, lower Spiller Canyon, and lower Lyell Canyon also conta<strong>in</strong> bedrock mortars<br />

and pestles.<br />

Similar to o<strong>the</strong>r classes of material <strong>in</strong> <strong>the</strong> study area, most bedrock mortars and<br />

pestles occur below 10,000 ft elevation. Curiously, only eight pestles have been<br />

documented <strong>in</strong> Tuolumne Meadows, a low number compared to frequencies <strong>in</strong> Virg<strong>in</strong>ia<br />

95


Table 16. Bedrock Mortar and Pestle Data by Geography and <strong>Elevation</strong>.<br />

# Sites<br />

with<br />

BRM<br />

% of<br />

Total<br />

Total<br />

Sites<br />

#<br />

Features<br />

#<br />

Mortars<br />

#<br />

Slicks<br />

Total<br />

Mill<strong>in</strong>g<br />

Surfaces<br />

#<br />

Pestles<br />

GEOGRAPHIC<br />

LOCATION<br />

Spiller Canyon 2 33% 6 2 4 - 4 1<br />

Virg<strong>in</strong>ia Canyon 15 23% 65 17 48 7 55 29<br />

Cold Canyon 2 22% 9 2 7 - 7 -<br />

Tuolumne Meadows 14 16% 85 16 70 1 71 8<br />

Dana Meadows 14 30% 47 19 55 7 62 43<br />

Parker Pass/Mono 2 7% 29 2 16 2 18 10<br />

Lyell Canyon 2 3% 67 2 2 1 3 3<br />

ELEVATION<br />

RANGE (ft)<br />


mode of 1.0. Most sites (n=33) exhibit between one and four mill<strong>in</strong>g surfaces, 14 sites<br />

conta<strong>in</strong> between five and 13, two sites have 15, and one site has 25 mill<strong>in</strong>g surfaces.<br />

Figure 7. Map show<strong>in</strong>g bedrock mill<strong>in</strong>g surface distributions by site.<br />

Mill<strong>in</strong>g feature data have not been exam<strong>in</strong>ed recently by elevation and biotic<br />

community <strong>in</strong> a comprehensive park-wide study, but it is clear that high-elevation sites<br />

<strong>in</strong>clude far fewer mortars than low- and middle-elevation sites. For example, 76 sites<br />

97


(77%) of <strong>the</strong> prehistoric sites <strong>in</strong> Yosemite Valley at 4000 ft <strong>in</strong> elevation conta<strong>in</strong> mill<strong>in</strong>g<br />

features (Hull and Kelly 1995). In total, 1423 mill<strong>in</strong>g surfaces, with a mean of 18.7 per<br />

site, have been documented at those features.<br />

Frequency<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

5 10 15 20 25<br />

No. Mill<strong>in</strong>g Surfaces Per Site<br />

Figure 8. Histogram of number of mill<strong>in</strong>g surfaces per site.<br />

Identify<strong>in</strong>g <strong>the</strong> specific functions of mill<strong>in</strong>g equipment will be an important step<br />

<strong>in</strong> elucidat<strong>in</strong>g land use <strong>in</strong> <strong>the</strong> higher elevations, particularly concern<strong>in</strong>g whe<strong>the</strong>r<br />

subsistence focused on local plants, transported resources from <strong>the</strong> lower and middle<br />

elevations such as acorn, or both. The issue of resource process<strong>in</strong>g <strong>in</strong> bedrock mortars has<br />

been considered <strong>in</strong> Yosemite and regional studies through various functional<br />

ethnographic models, most commonly <strong>the</strong> Western Mono model (Haney 1992; Hull and<br />

Moratto 1999; Morgan 2006; Mundy 1992). Western <strong>Sierra</strong> ethnographic studies <strong>in</strong>dicate<br />

98


that <strong>the</strong> mortar and pestle were used for process<strong>in</strong>g <strong>the</strong> staple food acorn by women, but<br />

this technology was also used for prepar<strong>in</strong>g seeds, fish, berries, meat, and medic<strong>in</strong>es<br />

(Barrett and Gifford 1933). Similarly, acorns and a variety of o<strong>the</strong>r resources were<br />

processed <strong>in</strong> bedrock mortars <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong> (see Haney 1992:95). The Western<br />

Mono model, developed <strong>in</strong> a study with contemporary Western Mono people south of<br />

Yosemite, states that mill<strong>in</strong>g surfaces were created for specific functional purposes<br />

(McCarthy et al. 1985). Accord<strong>in</strong>g to <strong>the</strong> model, mortars less than or equal to 5.5 cm <strong>in</strong><br />

depth reflect <strong>in</strong>itial acorn process<strong>in</strong>g, those between 5.51 and 9.5 cm were used for f<strong>in</strong>al<br />

process<strong>in</strong>g of acorns, and mortars greater than 9.5 cm, as well as slicks, were used to<br />

crush seeds and berries (McCarthy et al. 1985).<br />

For <strong>the</strong> 47 sites <strong>in</strong> <strong>the</strong> study area with detailed mill<strong>in</strong>g surface data (n= 212), 194<br />

(92%) are mortars and 18 (8%) are slicks. Most of <strong>the</strong> mortars (n=179, 92%) are ≤5.5 cm<br />

<strong>in</strong> depth, 10 mortars (5%) measure between 6 and 9.5 cm, and only five (3%) atta<strong>in</strong><br />

depths between 10 and 13 cm (Figure 9). Mortars >5.5 cm <strong>in</strong> depth also tend to occur at<br />

sites which have greater total numbers of mill<strong>in</strong>g surfaces, <strong>in</strong>clud<strong>in</strong>g three sites <strong>in</strong><br />

Tuolumne Meadows (CA-TUO-111, -166, and -125/126/H) and three sites <strong>in</strong> Virg<strong>in</strong>ia<br />

Canyon (CA-TUO-3783, -3786, and -3811). Slicks number between one and five per site,<br />

and are present at 10 sites, with all specimens except one at CA-TUO-3838 <strong>in</strong> lower<br />

Lyell Canyon co-occurr<strong>in</strong>g with mortars.<br />

Compar<strong>in</strong>g mortar depths by elevation range provides a frame of reference for<br />

<strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> study area data. In <strong>the</strong> absence of a comprehensive park-wide study for<br />

comparison, accessible project-specific mortar data are provided <strong>in</strong> Table 17 by<br />

elevation, represent<strong>in</strong>g a small sample of mortar attributes collected for <strong>the</strong> Park as a<br />

99


Frequency<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Mortar depth (cm)<br />

Figure 9. Histogram of mortar depths.<br />

Table 17. Mortar Data for Selected Yosemite Areas with<strong>in</strong> <strong>the</strong> Western Mono Model.<br />

Location <strong>Elevation</strong> (ft) Mortar type Total<br />

Starter F<strong>in</strong>ish<strong>in</strong>g Seed<br />

≤5.5 cm 5.51-9.5 cm >9.5 cm<br />

Study area 8500-10,600 179 (92%) 10 (05%) 5 (03%) 194<br />

Tioga Road &<br />

Harden Lake 1<br />

Ackerson Fire<br />

area 2<br />

Yosemite Valley 3<br />

7000-8500 245 (85%) 36 (13%) 7 (02%) 288<br />

4000-7000 735 (71%) 171 (17%) 122 (12%) 1028<br />

4000 1061 (80%) 144 (11%) 116 (09%) 1321<br />

El Portal 4 2000 464 (70%) 100 (15%) 101 (15%) 665<br />

1<br />

Keefe et al. (1999) and Mundy (1992)<br />

2<br />

Keefe et al. (1999), The Ackerson Fire area is <strong>in</strong> <strong>the</strong> northwestern area of <strong>the</strong> Park <strong>in</strong> <strong>the</strong> Tuolumne River<br />

watershed.<br />

3<br />

Hull and Kelly (1995)<br />

4<br />

Data compiled from site records on file at <strong>the</strong> Yosemite Archeology Office.<br />

100


whole. Features <strong>in</strong> all elevation ranges demonstrate a high prevalence of starter mortars,<br />

but sites above 7000 ft, where oaks are absent, have a higher percentage of shallow<br />

mortars, 85–92 percent compared to 70–80 percent below that elevation. Seed mortars<br />

above 7000 ft are also few <strong>in</strong> number and shallower <strong>in</strong> depth than those <strong>in</strong> <strong>the</strong> lower<br />

elevations. The deepest mortars above 7000 ft do not exceed 13 cm <strong>in</strong> depth, while those<br />

<strong>in</strong> <strong>the</strong> lower elevations atta<strong>in</strong> depths between 20 and 23 cm.<br />

With<strong>in</strong> <strong>the</strong> Western Mono functional framework, <strong>the</strong> mortar depth distribution <strong>in</strong><br />

<strong>the</strong> study area suggests acorn was <strong>the</strong> primary, but not <strong>the</strong> only, plant resource processed<br />

<strong>in</strong> <strong>the</strong> bedrock mortars, and <strong>the</strong> absence of oaks implies acorns were transported from<br />

lower elevations to <strong>the</strong> west. Acorn is viewed as a staple food item <strong>in</strong> western <strong>Sierra</strong><br />

subsistence, while <strong>the</strong> role of acorn <strong>in</strong> eastern <strong>Sierra</strong> <strong>Nevada</strong> subsistence systems has<br />

been proposed as an augmentation to <strong>the</strong> p<strong>in</strong>yon nut as a w<strong>in</strong>ter staple, a factor <strong>in</strong> <strong>the</strong><br />

ma<strong>in</strong>tenance of social relations between eastern and western groups, and a reflection of<br />

<strong>in</strong>tensification processes operat<strong>in</strong>g at <strong>the</strong> regional level (Haney 1992; see also Basgall<br />

1987). P<strong>in</strong>yon nut crops are only abundant three out of seven years (Lanner 1981); thus,<br />

acorn may have provided a w<strong>in</strong>ter supplement <strong>in</strong> years of poor crops. Given <strong>the</strong> diversity<br />

and abundance of oaks <strong>in</strong> <strong>the</strong> middle and lower elevations of <strong>the</strong> western <strong>Sierra</strong>, acorn<br />

was almost certa<strong>in</strong>ly a more reliable food source than <strong>the</strong> p<strong>in</strong>yon nut.<br />

The prevalence of shallow mortars across disparate vegetation communities,<br />

however, suggests that a model based on contemporary Western Mono practices may not<br />

be germane to Yosemite (Hull and Kelly 1995). Instead, some researchers (Hull and<br />

Moratto 1999) advocate a return to earlier perspectives (e.g., Barrett and Gifford 1933),<br />

where mortar depth equates to duration of use, <strong>in</strong> addition to cont<strong>in</strong>u<strong>in</strong>g exam<strong>in</strong>ation of<br />

101


<strong>the</strong> geographic distribution of mill<strong>in</strong>g surface attributes. The study area data comport well<br />

with <strong>the</strong> duration of use hypo<strong>the</strong>sis; that is, <strong>the</strong> high proportion of shallow mortars and<br />

comparatively low frequencies appear to be consistent measures of m<strong>in</strong>imal use. In this<br />

view, <strong>the</strong> shallow mortars prevalent <strong>in</strong> <strong>the</strong> study area are multifunctional tools used for<br />

process<strong>in</strong>g a variety of resources. The co-occurrence of mortars and slicks, and <strong>the</strong><br />

presence of portable groundstone at some sites, however, suggests that some functional<br />

dist<strong>in</strong>ctions <strong>in</strong> mill<strong>in</strong>g surfaces may yet be evident.<br />

The spatial distribution of bedrock mortars <strong>in</strong> <strong>the</strong> study area, primarily with<strong>in</strong> two<br />

of <strong>the</strong> trans-<strong>Sierra</strong> corridors, could be taken as support for <strong>the</strong> acorn transport hypo<strong>the</strong>sis.<br />

Although ethnographic accounts <strong>in</strong>dicate that acorn was transported to <strong>the</strong> eastern <strong>Sierra</strong><br />

(Bibby 2002), it is difficult to envision <strong>the</strong> fall-ripen<strong>in</strong>g acorn as <strong>the</strong> primary plant<br />

resource susta<strong>in</strong><strong>in</strong>g people dur<strong>in</strong>g <strong>the</strong> summer months <strong>in</strong> <strong>the</strong> high country. In this<br />

scenario, stored acorn would have been <strong>the</strong> primary resource transported to <strong>the</strong> high<br />

country for most of <strong>the</strong> summer, a less likely proposition compared to local resource<br />

exploitation. O<strong>the</strong>rwise, acorn would not have been available until September or October,<br />

a time when <strong>the</strong> higher elevations became less desirable for longer stays because of<br />

wea<strong>the</strong>r conditions and a time when people focused <strong>the</strong>ir activities on procurement of<br />

staple foods <strong>in</strong> <strong>the</strong> lower elevations, acorn to <strong>the</strong> west and p<strong>in</strong>yon to <strong>the</strong> east.<br />

If ethnographic models are not germane to Yosemite, <strong>the</strong> function of bedrock<br />

mortars <strong>in</strong> <strong>the</strong> high country rema<strong>in</strong>s problematic and may not be resolved without<br />

specialized residue and macrofloral analyses at specific sites. Based on <strong>the</strong> current data, it<br />

seems likely that <strong>the</strong> prevalence of shallow mortars and <strong>the</strong>ir relatively low overall<br />

frequencies suggest <strong>the</strong>y were multifunctional tools <strong>in</strong> an area used only dur<strong>in</strong>g <strong>the</strong><br />

102


warmer months by small groups of people. Plant resource process<strong>in</strong>g was apparently<br />

geared toward daily or short-term subsistence needs, <strong>in</strong> comparison to <strong>the</strong> lower<br />

elevations of <strong>the</strong> western slope where acorn ga<strong>the</strong>r<strong>in</strong>g and process<strong>in</strong>g for storage played<br />

an important role <strong>in</strong> susta<strong>in</strong><strong>in</strong>g larger population aggregates <strong>in</strong> w<strong>in</strong>ter villages.<br />

At first glance, <strong>the</strong> m<strong>in</strong>imal use implied by <strong>the</strong> comparison of upper and lower<br />

elevation data does not appear to support <strong>the</strong> hypo<strong>the</strong>sis of regional subsistence<br />

<strong>in</strong>tensification. However, if a change <strong>in</strong> land use with<strong>in</strong> <strong>the</strong> high elevation areas<br />

transpired over time, as hypo<strong>the</strong>sized <strong>in</strong> this <strong>the</strong>sis, <strong>the</strong>n subsistence <strong>in</strong>tensification is<br />

supported. To <strong>the</strong> extent that high-elevation mill<strong>in</strong>g features are l<strong>in</strong>ked with plant<br />

process<strong>in</strong>g and date to <strong>the</strong> late prehistoric period, <strong>the</strong>ir geographic distribution <strong>in</strong> <strong>the</strong><br />

study area—almost entirely with<strong>in</strong> two of <strong>the</strong> trans-<strong>Sierra</strong> travel corridors—provides<br />

support for <strong>the</strong> importance and <strong>in</strong>tensification of plant resources <strong>in</strong> <strong>the</strong> larger region.<br />

Portable Ground Stone and Battered Stone<br />

In comparison to bedrock mortars and pestles, portable ground stone tools are<br />

uncommon <strong>in</strong> <strong>the</strong> study area. In total, seven m<strong>in</strong>imally used mill<strong>in</strong>gstones and 21<br />

handstones have been documented at 18 sites <strong>in</strong> Virg<strong>in</strong>ia Canyon, Tuolumne Meadows,<br />

Dana Meadows, and lower Lyell Canyon. Most of <strong>the</strong>se sites (n=14) also conta<strong>in</strong> o<strong>the</strong>r<br />

cultural constituents <strong>in</strong>dicative of <strong>in</strong>tensive use, such as rock r<strong>in</strong>gs and bedrock mortars.<br />

In addition, eight battered stone tools and two choppers have been documented at n<strong>in</strong>e<br />

sites, all <strong>in</strong> trans-<strong>Sierra</strong> corridor contexts.<br />

Structural Rema<strong>in</strong>s<br />

Thirty-five structural features thought to represent prehistoric dwell<strong>in</strong>gs, hunt<strong>in</strong>g<br />

bl<strong>in</strong>ds, storage, and unknown functions have been recorded at 20 of <strong>the</strong> study area sites,<br />

103


all located <strong>in</strong> Dana Meadows, Tuolumne Meadows, Virg<strong>in</strong>ia Canyon, and lower Lyell<br />

Canyon (Table 13). Fourteen of <strong>the</strong>se, documented at eight sites, are domestic structures,<br />

identified by rock r<strong>in</strong>gs or partial rock r<strong>in</strong>gs encircl<strong>in</strong>g slight depressions, or circular<br />

features with <strong>the</strong>ir centers cleared of rocks (Figure 10). An additional depression,<br />

recorded <strong>in</strong> 1988 at CA-TUO-3778/H, could not be relocated <strong>in</strong> 2007 due to stock<br />

trampl<strong>in</strong>g. All of <strong>the</strong> structures exhibit soil substrates, and <strong>the</strong>y often encompass naturally<br />

occurr<strong>in</strong>g boulders <strong>in</strong> <strong>the</strong>ir alignments. Measur<strong>in</strong>g between 2.8 and 4.5 m <strong>in</strong> maximum<br />

diameter, dwell<strong>in</strong>gs are generally larger than rock constructs <strong>in</strong>terpreted as hunt<strong>in</strong>g<br />

bl<strong>in</strong>ds. Most dwell<strong>in</strong>gs conta<strong>in</strong> some comb<strong>in</strong>ation of debitage, flaked stone tools,<br />

mill<strong>in</strong>gstones, small unidentifiable bone fragments, and midden, while artifactual<br />

materials are less common <strong>in</strong> association with hunt<strong>in</strong>g bl<strong>in</strong>ds. Three m<strong>in</strong>imally used<br />

mill<strong>in</strong>gstones occur <strong>in</strong> <strong>the</strong> walls of three <strong>in</strong>dividual rock r<strong>in</strong>gs, and one is <strong>in</strong> <strong>the</strong> center of<br />

a feature. Between one and three structures occur at each site, suggest<strong>in</strong>g small groups of<br />

people, perhaps a few families, lived toge<strong>the</strong>r <strong>in</strong> <strong>the</strong>se locations if <strong>the</strong>y were occupied<br />

contemporaneously. Dwell<strong>in</strong>gs tend to be clustered <strong>in</strong> close proximity to one ano<strong>the</strong>r, and<br />

at CA-TUO-749 and -3783 <strong>in</strong> Virg<strong>in</strong>ia Canyon, two rock r<strong>in</strong>gs share cobble alignments<br />

along one edge.<br />

The prevalence of multi-component sites <strong>in</strong>dicates <strong>the</strong> importance of associat<strong>in</strong>g<br />

temporally diagnostic materials with features represent<strong>in</strong>g <strong>in</strong>tensive use. Structural<br />

features were deemed of particular importance <strong>in</strong> this regard and, as such, were a focus of<br />

sampl<strong>in</strong>g with<strong>in</strong> <strong>the</strong> <strong>in</strong>tensive-use group. M<strong>in</strong>imal surface collections were made from<br />

n<strong>in</strong>e features, seven at Virg<strong>in</strong>ia Canyon/Summit Pass and two at Lyell Canyon (Table<br />

17). All are rock r<strong>in</strong>gs except one l<strong>in</strong>ear alignment at CA-TUO-4665 <strong>in</strong> Lyell Canyon,<br />

104


which may have functioned as a shelter or bl<strong>in</strong>d. When possible, SCUs were also<br />

established <strong>in</strong> close proximity to <strong>the</strong> features <strong>in</strong> an attempt to fur<strong>the</strong>r def<strong>in</strong>e periods of use<br />

for those locations.<br />

Figure 10. Sketch map of Feature 6, rock r<strong>in</strong>g, CA-TUO-3783.<br />

105


In all, 39 obsidian artifacts from n<strong>in</strong>e feature contexts and 14 from three proximal<br />

SCUs yielded readable hydration rims. The comb<strong>in</strong>ed temporal <strong>in</strong>formation—obsidian<br />

hydration results, estimated calendrical dates, and projectile po<strong>in</strong>ts of <strong>the</strong> Desert or<br />

<strong>in</strong>determ<strong>in</strong>ate Desert/Rose Spr<strong>in</strong>g series (Table 18, Figure 11)—provides evidence of use<br />

for all features after ca. 1500 B.P. The presence of thicker obsidian hydration values<br />

converted to pre-1500 B.P. dates at several features, however, suggests <strong>the</strong> possibility of<br />

earlier <strong>in</strong>itial use of <strong>the</strong> features, an underly<strong>in</strong>g older component unrelated to <strong>the</strong><br />

construction of <strong>the</strong> features, or recycl<strong>in</strong>g of obsidian materials by later <strong>in</strong>habitants. The<br />

pre-1500 B.P. dates are most clearly associated with <strong>the</strong> two features at CA-TUO-3765,<br />

<strong>the</strong> structures that are also <strong>the</strong> most difficult to discern on <strong>the</strong> surface. It may be that <strong>the</strong>y<br />

are, <strong>in</strong>deed, older structures and difficult to identify because of depositional processes,<br />

but it is possible that <strong>the</strong>y are not structures at all and <strong>the</strong> thick rims may simply represent<br />

<strong>the</strong> older component clearly present at that site.<br />

Two structural features have been partially sampled through small-scale test<br />

excavations, both at Dana Meadows (Montague 1996a). At CA-TUO-2833, a surface<br />

rock alignment <strong>in</strong>corporates several granite boulders to form a circular enclosure.<br />

Multiple components are present at <strong>the</strong> site, but <strong>the</strong> structure is thought to represent late<br />

prehistoric use based on radiocarbon and obsidian hydration analyses. <strong>High</strong> densities of<br />

obsidian debitage—ma<strong>in</strong>ly small pressure flakes—few flaked stone tools, and a couple of<br />

unidentifiable faunal rema<strong>in</strong>s characterize <strong>the</strong> deposit with<strong>in</strong> <strong>the</strong> feature. A central hearth,<br />

conta<strong>in</strong><strong>in</strong>g an unmodified granite slab at its center, yielded two radiocarbon dates, cal<br />

1300–1060 B.P. (Beta-73050) above <strong>the</strong> slab and cal 1990–1610 B.P. (Beta-67238)<br />

below <strong>the</strong> slab. Obsidian hydration measurements, vary<strong>in</strong>g between 0.8 and 3.2 microns,<br />

106


Table 18. Temporal Data for Structural Features and Proximal Surface Collection Units.<br />

Site, Feature<br />

Designation<br />

Source: OH Values Associated Diagnostic Artifacts<br />

TUO-0751, F1 BH: 1.5, 2.9<br />

CD: 2.8<br />

MC: 1.1<br />

DSN*<br />

TUO-3765, RR1 BH: 1.8, 2.5, 3.6, 3.8, 4.0, 5.4 -<br />

TUO-3765, RR2 BH: 2.5<br />

-<br />

MC: 3.3, 3.8, 4.4<br />

TUO-3783, F3 BH: 0, 1.7, 2.4, 5.1 -<br />

TUO-3783, F4 BH: 1.5, 2.2 -<br />

TUO-3783, F6 BH: 1.4, 1.4, 2.1, 2.7, 2.7 -<br />

TUO-3783, SCU1 BH: 1.5, 1.6, 1.7, 1.9, 2.0, 2.1 DSN*<br />

TUO-3811, F3 BH: 0, 0, 0, 1.3, 1.3, 2.8<br />

MC: 2.3<br />

2 DSN*, 1 CT*<br />

TUO-3811, SCU1 BH: 1.4, 1.8, 2.5, 2.9 -<br />

TUO-4665, F1 Non-CD: 2.2, 2.8, 2.9 DSN<br />

TUO-4665, F2 BH: 2.3, 2.4<br />

MC: 3.1<br />

CT*, CT, DSN, DSN/RS<br />

CD: 6.0<br />

TUO-4665, SCU1 CD: 2.2, 2.5, 2.5, 2.9 arrow po<strong>in</strong>t*, DSN, DSN/RS<br />

Key: BH=Bodie Hills; CD=Casa Diablo; MC=Mono Craters; DSN=Desert Side-notched; CT=Cottonwood<br />

Triangular; RS=Rose Spr<strong>in</strong>g; F=feature; RR=rock r<strong>in</strong>g; SCU=surface collection unit; OH=obsidian<br />

hydration. *Also reflected <strong>in</strong> obsidian hydration values.<br />

Feature<br />

Estimated Years B.P.<br />

0 1500 3000 4500 6000 7500<br />

751, F1<br />

3765, RR1<br />

3765, RR2<br />

3783, F4<br />

3783, F3<br />

3783, F6<br />

3811, F3<br />

4665, F1<br />

4665, F2<br />

Figure 11. Converted obsidian hydration values for sampled rock r<strong>in</strong>g features.<br />

107


show multiple periods of use, as well. Temporal data for <strong>the</strong> upper excavation levels, a<br />

suite of th<strong>in</strong> hydration rims (no visible hydration and 0.8 to 1.3 microns) and a Desert<br />

series po<strong>in</strong>t, <strong>in</strong>dicate most recent use of <strong>the</strong> feature dur<strong>in</strong>g <strong>the</strong> late prehistoric period.<br />

A subsurface feature at nearby CA-TUO-2834, also only partially exposed, was<br />

composed of a rock alignment and charcoal-rich soils, along with a more varied <strong>in</strong>ventory<br />

of cultural material. Flaked stone material <strong>in</strong>cluded very high debitage densities and<br />

abundant flaked stone tools, ma<strong>in</strong>ly projectile po<strong>in</strong>ts and biface fragments, though edge-<br />

modified pieces were present as well. One handstone, two pieces of pigment, a quartz<br />

crystal, and a fragmentary steatite ornament complete <strong>the</strong> collection. Abundant and<br />

highly fragmented, burned faunal rema<strong>in</strong>s were identified ma<strong>in</strong>ly as large mammal, likely<br />

deer or bighorn sheep. Although multiple components are present at <strong>the</strong> site, a suite of<br />

radiocarbon dates and several Elko series po<strong>in</strong>ts <strong>in</strong>dicate <strong>the</strong> feature dates to cal 2430–<br />

1900 B.P.<br />

Ten features documented at seven sites are identified as hunt<strong>in</strong>g bl<strong>in</strong>ds. These are<br />

composed of small (generally less than 3 m diameter), circular, semi-circular, or stacked<br />

rock features, with little or no associated cultural material. While most sites conta<strong>in</strong> only<br />

one such feature, four are present at CA-TUO-2813. Two talus pit features on a glacial<br />

knoll <strong>in</strong> lower Virg<strong>in</strong>ia Canyon may also represent hunt<strong>in</strong>g bl<strong>in</strong>ds, but it is possible that<br />

<strong>the</strong>y functioned as storage pits (Figure 12).<br />

A s<strong>in</strong>gle feature at CA-TUO-3845 <strong>in</strong> lower Lyell Canyon, thought to have<br />

functioned for storage, consists of stacked rock at <strong>the</strong> edge of a granite outcrop, form<strong>in</strong>g a<br />

50-cm-deep enclosure. Two arrow-sized projectile po<strong>in</strong>t fragments were documented<br />

with<strong>in</strong> <strong>the</strong> enclosure. The rema<strong>in</strong><strong>in</strong>g seven features are various l<strong>in</strong>ear cobble alignments<br />

108


of unknown function. It is of <strong>in</strong>terest, however, that five of <strong>the</strong>se occur with o<strong>the</strong>r<br />

structural features at sites <strong>in</strong> Lyell and Virg<strong>in</strong>ia canyons.<br />

Figure 12. Photograph of talus pit at P-55-5164, Virg<strong>in</strong>ia Canyon (DC-07M-68).<br />

Uncommon Features<br />

Rockshelters, midden sediments, hearths, and rock art are relatively uncommon <strong>in</strong><br />

<strong>the</strong> study area, occurr<strong>in</strong>g at only a handful of sites <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong> corridor contexts.<br />

Rockshelters, generally slight overhangs on <strong>the</strong> faces of large granite boulders, have been<br />

recorded at seven sites, while hearths have been recorded <strong>in</strong> subsurface contexts at six<br />

sites. Similarly, midden sediments, generally taken as an <strong>in</strong>dicator of long-term use, have<br />

been observed at just seven sites. A s<strong>in</strong>gle petroglyph panel, composed of 16 small,<br />

shallow cupules <strong>in</strong> a semi-circular arc, is present <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn portion of Virg<strong>in</strong>ia<br />

Canyon.<br />

109


Uncommon Artifacts<br />

Ornamental artifacts are rare, <strong>in</strong>clud<strong>in</strong>g seven quartz crystals, one steatite object,<br />

and two pieces of pigment. Glass beads were documented at two sites, 10 opaque blue<br />

beads at a prehistoric and historical component site <strong>in</strong> Tuolumne Meadows, and a s<strong>in</strong>gle<br />

large, black/amethyst bead at a lithic scatter at Vogelsang Lake. Bates (1998) surmised<br />

that <strong>the</strong> black bead represents use of that area by Mono Lake Paiute people between 1875<br />

and 1930 based on comparisons with objects <strong>in</strong> <strong>the</strong> Yosemite Museum and similarities<br />

with eastern <strong>Sierra</strong> archaeological and ethnographic collections. F<strong>in</strong>ally, one object made<br />

of pumice is likely a fragment of a shaft straightener.<br />

Faunal Rema<strong>in</strong>s<br />

Faunal rema<strong>in</strong>s are present at n<strong>in</strong>e sites, each conta<strong>in</strong><strong>in</strong>g few, very small pieces of<br />

unidentifiable bone. As noted above, an exception is CA-TUO-2834, where abundant<br />

burned large mammal fragments were excavated <strong>in</strong> a feature context. A second exception<br />

is a piece of culturally unmodified mussel collected from CA-MRP-1438 at Vogelsang<br />

Lake.<br />

Summary<br />

Despite <strong>the</strong> disproportionate geographic focus of <strong>the</strong> previous archaeological<br />

work, some similarities and differences <strong>in</strong> <strong>the</strong> distributions of classes of material are<br />

apparent across <strong>the</strong> study area. First, sites with debitage and flaked stone tools occur<br />

throughout <strong>the</strong> study area, and <strong>the</strong>se are <strong>the</strong> most common site constituents. Low- to<br />

moderate-density debitage deposits are prevalent <strong>in</strong> all areas, but high-density debitage<br />

deposits occur most frequently <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong> corridors. Second, features, midden<br />

sediments, and o<strong>the</strong>r types of tools are uncommon at study area sites and are, for <strong>the</strong> most<br />

110


part, conf<strong>in</strong>ed to <strong>the</strong> dra<strong>in</strong>ages lead<strong>in</strong>g to <strong>the</strong> trans-<strong>Sierra</strong> passes and below 10,000 ft <strong>in</strong><br />

elevation, where site density is highest. With<strong>in</strong> <strong>the</strong> feature classes, sites with bedrock<br />

mortars are most abundant, while rock r<strong>in</strong>gs taken as hunt<strong>in</strong>g bl<strong>in</strong>ds or dwell<strong>in</strong>gs, rock<br />

alignments, rockshelters, rock art, flaked stone tool caches, midden sediments, and<br />

subsurface hearths are uncommon constituents. Likewise, sites with portable ground<br />

stone, choppers, ornaments, and faunal rema<strong>in</strong>s are relatively rare.<br />

Previous and current studies relat<strong>in</strong>g to bedrock mortars, rock r<strong>in</strong>gs, and flaked<br />

stone caches, allowed for more detailed assessment of some temporal and functional<br />

parameters. Rock r<strong>in</strong>gs and bedrock mortars are thought to be prevalent after ca. 1500<br />

B.P., and <strong>the</strong> low frequencies of both types of features per site suggests occupation by<br />

small groups of people. In comparison with a sample of low- and middle-elevation<br />

Yosemite data, <strong>the</strong> low frequencies and shallow depths of bedrock mortars <strong>in</strong> <strong>the</strong> study<br />

area <strong>in</strong>dicate that plant resource process<strong>in</strong>g was a less important activity <strong>in</strong> <strong>the</strong> high<br />

elevations. The shallow mortars prevalent <strong>in</strong> <strong>the</strong> study area may also reflect<br />

multifunctional use, ra<strong>the</strong>r than acorn process<strong>in</strong>g implied by <strong>the</strong> Western Mono<br />

functional model (McCarthy et al. 1985). The obsidian cache data emphasize <strong>the</strong><br />

importance of <strong>the</strong> study area <strong>in</strong> <strong>the</strong> acquisition and transport of obsidian and as places<br />

people <strong>in</strong>tended to return to as part of <strong>the</strong> annual settlement round. Beyond this general<br />

level of description and recogniz<strong>in</strong>g that <strong>the</strong> sample is very small, patterns of source<br />

diversity and artifact form over time may support notions of territorial circumscription <strong>in</strong><br />

<strong>the</strong> eastern <strong>Sierra</strong> and exchange as a medium of obsidian procurement after 1500 B.P.<br />

111


Chapter 6<br />

INTENSIVE- AND LIMITED-USE SITES ANALYSIS<br />

This chapter exam<strong>in</strong>es <strong>the</strong> data <strong>in</strong> terms of space, time, and function to determ<strong>in</strong>e<br />

whe<strong>the</strong>r a spatially limited, residential-related land use strategy followed an earlier,<br />

widespread hunt<strong>in</strong>g pattern. As outl<strong>in</strong>ed <strong>in</strong> Chapter 3, archaeological expectations <strong>in</strong>clude<br />

a higher frequency of <strong>in</strong>tensive-use sites with th<strong>in</strong> hydration rims and arrow po<strong>in</strong>ts and a<br />

higher frequency of limited-use sites with thicker hydration rims and dart po<strong>in</strong>ts. The<br />

density of sites should be higher along dra<strong>in</strong>age corridors lead<strong>in</strong>g from trans-<strong>Sierra</strong><br />

passes if trade and travel structured <strong>the</strong> archaeological record, and residential sites should<br />

occur more commonly <strong>in</strong> those locations. In addition, early period sites and isolates<br />

<strong>in</strong>dicat<strong>in</strong>g a logistical hunt<strong>in</strong>g focus should occur <strong>in</strong> higher frequencies over a more<br />

extensive area. The discussion to follow addresses chronology and function, first to<br />

determ<strong>in</strong>e if <strong>the</strong> hypo<strong>the</strong>sized patterns are evident, and second to identify relevant spatial<br />

distributions.<br />

CHRONOLOGY AND FUNCTION<br />

This section <strong>in</strong>tegrates <strong>the</strong> chronological and functional data, <strong>in</strong>itially through<br />

exam<strong>in</strong>ation of <strong>the</strong> surface materials recovered as part of <strong>the</strong> <strong>the</strong>sis, and subsequently<br />

through <strong>in</strong>corporation of results from previous <strong>in</strong>vestigations. F<strong>in</strong>ally, temporally<br />

sensitive projectile po<strong>in</strong>t data are compiled and analyzed aga<strong>in</strong>st site type as an<br />

<strong>in</strong>dependent means of assess<strong>in</strong>g change over time.<br />

The <strong>the</strong>sis analysis <strong>in</strong>cluded 424 specimens submitted for obsidian hydration<br />

analysis, of which 31 returned unreadable rims and six had no visible hydration. The<br />

latter are reta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> analysis s<strong>in</strong>ce <strong>the</strong>y may represent relatively recent use. Virtually<br />

112


all of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g pieces (n=385) yielded hydration bands measur<strong>in</strong>g between 1.1 and<br />

6.6 microns, with two additional rims of 7.2 and 8.2 microns. Table 19 displays <strong>the</strong><br />

frequency of hydration measurements converted to estimated dates <strong>in</strong> 500-year<br />

<strong>in</strong>crements by site, while Figure 13 consolidates <strong>the</strong> same data for all of <strong>the</strong> <strong>the</strong>sis sites.<br />

In each case, <strong>the</strong> data are sorted by functional designation. These data demonstrate a long<br />

span of Native American occupation <strong>in</strong> <strong>the</strong> study area, beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> <strong>the</strong> early Holocene<br />

and cont<strong>in</strong>u<strong>in</strong>g through <strong>the</strong> late prehistoric period. Based on historical records, it is also<br />

clear that Native people cont<strong>in</strong>ued to frequent <strong>the</strong> high country for various purposes <strong>in</strong><br />

<strong>the</strong> historic period. Given <strong>the</strong> caveats noted above for convert<strong>in</strong>g obsidian hydration<br />

values to calendrical dates, <strong>in</strong>itial occupation should be considered with caution until<br />

radiocarbon dates are available for early-period materials. It would not be <strong>in</strong>consistent<br />

with <strong>the</strong> regional archaeological record, however, to f<strong>in</strong>d evidence of <strong>the</strong> early Holocene<br />

at high elevations <strong>in</strong> <strong>the</strong> Park.<br />

In terms of functional patterns, <strong>the</strong> chronologies for both limited- and <strong>in</strong>tensive-<br />

use sites span <strong>the</strong> range of occupation. Limited-use sites, however, demonstrate a greater<br />

abundance of early dates dur<strong>in</strong>g <strong>the</strong> middle Holocene epoch. Relatively greater<br />

frequencies of late Holocene materials are apparent at <strong>in</strong>tensive-use sites, more or less<br />

co<strong>in</strong>cident with a decrease <strong>in</strong> <strong>the</strong> frequency of limited-use dates. Dist<strong>in</strong>guish<strong>in</strong>g between<br />

<strong>the</strong> pre- and post-1500 B.P. temporal periods (Table 20) shows a clear change <strong>in</strong> <strong>the</strong><br />

frequency of dates through time, where 66 percent occur at <strong>in</strong>tensive-use sites later <strong>in</strong><br />

time and only 25 percent earlier <strong>in</strong> time. In contrast, limited-use sites display 34 percent<br />

of <strong>the</strong> post-1500 B.P. dates and 75 percent of <strong>the</strong> pre-1500 B.P. dates. In a broad sense,<br />

this pattern supports <strong>the</strong> temporal expectations of <strong>the</strong> <strong>the</strong>sis, <strong>in</strong> which <strong>in</strong>tensive-use sites<br />

113


Table 19. Obsidian Hydration Results Converted to Calendrical Dates for Thesis Sites.<br />

Site*<br />

0–<br />

500<br />

501–<br />

1000<br />

1001<br />

–<br />

1500<br />

1501<br />

–<br />

2000<br />

2001<br />

–<br />

2500<br />

2501<br />

–<br />

3000<br />

3001<br />

–<br />

3500<br />

3501<br />

–<br />

4000<br />

4001<br />

–<br />

4500<br />

4501<br />

–<br />

5000<br />

5001<br />

–<br />

5500<br />

5501<br />

–<br />

6000<br />

128/ - - - 2 3 2 2 - 1 2 - 1 6<br />

187 1 1 2 1 5 1 1 - - - - - -<br />

751 1 2 - 1 3 1 6 - - - - - -<br />

3765 - 1 2 - 1 3 1 1 - - - 1 5<br />

3783 5 7 2 2 - - - - - - - 1 -<br />

3811 6 1 2 2 1 1 - 2 - - - - -<br />

4635 - 1 - - - - 2 - - - 1 - 5<br />

4639 - - 2 2 - 1 2 2 - 1 - - 1<br />

4665 - - 6 3 1 - - - - - - - 1<br />

46/H 1 2 1 2 1 2 - - 1 - - - -<br />

113 - 2 4 1 2 - - - - - - - -<br />

131 - - - - - - - 1 1 1 4 1 1<br />

159 - - 2 - 3 1 2 - 1 - - - -<br />

172 - - - - - 2 1 2 2 - 1 - 2<br />

245 - - - - - - - - 2 1 1 3 3<br />

494 - - - - - - - 1 - 4 2 1 -<br />

755 - - - 1 - - 2 - 4 1 1 1 1<br />

3769 - - - - 1 1 - - 4 2 - 2 -<br />

3777 - 1 - 3 - - 4 1 - 1 - - -<br />

3789 - - - - - 1 - 1 - 2 2 - 3<br />

3803 - - - 2 - 3 1 - 1 1 - - 1<br />

3805 - 1 2 1 1 1 2 2 - - - - -<br />

3841 - - - 2 - 2 - 2 2 - - - 1<br />

4230 - - - - - - - 1 1 - - 2 4<br />

4490 - - - - - - - - 1 2 1 - 4<br />

4637 - 1 - - - 1 - 1 1 2 1 2 1<br />

4641 - - - - - - 4 - 1 1 1 1 1<br />

4660 - - - - 1 2 1 1 2 - 1 - 1<br />

4851 - - - - - 2 - 2 1 2 - 1 2<br />

4857 - - - - - - - - - - - 3 6<br />

4859 - - - - - 1 - - - 1 3 3 2<br />

4907 - - 1 - 1 - 1 1 1 2 1 1 -<br />

4972 - - - - 1 - 2 1 2 1 3 - -<br />

6561 - 1 - - - - - - - - - 1 8<br />

6564 - - - 1 3 1 2 2 - - - 1 1<br />

6775 - 1 - - - 1 - - 2 1 - - 3<br />

6776 1 - 1 - - 2 - - - 1 - - 2<br />

6782 - - - - - 1 - - 1 4 - - 3<br />

>6000<br />

Total<br />

I-U<br />

13 13 16 13 14 9 14 5 1 3 1 3 18<br />

Total<br />

L-U<br />

2 9 11 13 14 24 22 19 31 30 22 23 50<br />

Total 15 22 27 26 28 33 36 24 32 33 23 26 68<br />

*Sites highlighted <strong>in</strong> bold text are <strong>in</strong>tensive-use sites (I-U); unbolded text denotes limited-use sites (L-U).<br />

114


Frequency<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Intensive use<br />

Limited use<br />

500 1500 2500 3500 4500 5500 6500 7500 8500 9500<br />

Estimated Years B.P.<br />

Figure 13. Frequency of calendrical dates for <strong>in</strong>tensive- and limited-use sites.<br />

Table 20. Frequency of Pre- and Post-1500 B.P. Dates for<br />

Intensive- and Limited-<strong>Use</strong> Sites.<br />

Post-1500 B.P. % Pre-1500 B.P. %<br />

Intensive use 42 66 81 25<br />

Limited use 22 34 248 75<br />

Total 64 100 329 100<br />

tend to reflect late-period occupation and, conversely, limited-use sites tend to reflect<br />

early-period use. Evidence of <strong>in</strong>tensive-use across both temporal categories is not an<br />

anticipated outcome, however, and may be expla<strong>in</strong>ed by <strong>the</strong> presence of multi-component<br />

deposits <strong>in</strong> which later <strong>in</strong>tensive-use cannot be dist<strong>in</strong>guished from earlier limited-use<br />

based on <strong>the</strong> limited surface collections, or <strong>the</strong> <strong>in</strong>itiation of at least some level of<br />

<strong>in</strong>tensive-use prior to 1500 B.P. The presence of late-period materials at both <strong>in</strong>tensive<br />

and limited-use sites, by contrast, suggests greater diversity <strong>in</strong> site types later <strong>in</strong> time.<br />

115


Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> chronological data from previous <strong>in</strong>vestigations with <strong>the</strong> <strong>the</strong>sis<br />

results encompasses a greater sample of sites with<strong>in</strong> <strong>the</strong> study area, allow<strong>in</strong>g for a<br />

broader consideration of change through time. Fifty-six sites, represent<strong>in</strong>g 15 percent of<br />

<strong>the</strong> study area sites, have some level of chronological data beyond a few surface tools, 18<br />

through previous test, data recovery, or tool cache <strong>in</strong>vestigations and 38 through <strong>the</strong><br />

<strong>the</strong>sis surface collections (Table 21). S<strong>in</strong>ce this analysis comb<strong>in</strong>es <strong>the</strong> results of surface<br />

and subsurface <strong>in</strong>vestigations, diagnostic chronological attributes are simply tabulated as<br />

present or absent by prehistoric period.<br />

Seventeen sites are designated as <strong>in</strong>tensive-use sites, while 39 are classified as<br />

limited-use sites. In this analysis, <strong>the</strong> chronological <strong>in</strong>dicators <strong>in</strong>clude obsidian hydration<br />

values converted to calendrical dates, time-sensitive projectile po<strong>in</strong>ts, bedrock mortars,<br />

and <strong>in</strong> a few cases, radiocarbon dates. Given <strong>the</strong> relatively wide span of use for some<br />

materials (e.g., bedrock mortars), chronology was considered broadly as ei<strong>the</strong>r pre- or<br />

post-1500 years B.P. As illustrated <strong>in</strong> Table 21, <strong>the</strong> most apparent pattern is <strong>the</strong> presence<br />

of early-period material at all of <strong>the</strong> sites except CA-TUO-4509, a late prehistoric tool<br />

cache. With<strong>in</strong> <strong>the</strong> <strong>in</strong>tensive-use sample, all 17 sites conta<strong>in</strong> material spann<strong>in</strong>g <strong>the</strong> entire<br />

chronological range. With<strong>in</strong> <strong>the</strong> limited-use sample, 18 sites ev<strong>in</strong>ce late-period use, while<br />

38 exhibit evidence of pre-1500 B.P. use. A chi-square value of 2.84 (df=1, p=0.09)<br />

demonstrates some support for a pattern of chang<strong>in</strong>g land use through time (Table 22). In<br />

particular, <strong>the</strong> late period is characterized by <strong>in</strong>creased residential use demonstrated by<br />

mill<strong>in</strong>g features and rock r<strong>in</strong>gs, although logistical use cont<strong>in</strong>ues to be evident. The early<br />

period is more clearly <strong>in</strong>dicated by logistical use likely related to hunt<strong>in</strong>g and/or obsidian<br />

procurement. The multi-component nature of most sites, however, po<strong>in</strong>ts out that<br />

116


Table 21. Chronological Data for Study Area Sites.<br />

Site Type Post-1500 B.P. Pre-1500 B.P.<br />

Desert OH BRM RG CB Elko OH Dart<br />

CA-TUO-0124 I - - x - x - x -<br />

CA-TUO-0128/ I - - x - - - x -<br />

CA-TUO-0134 I - x - - - - x -<br />

CA-TUO-0166 I x x x x - x x x<br />

CA-TUO-0179/ I x x x - - x x x<br />

CA-TUO-0187 I - x x x - - x -<br />

CA-TUO-0500 I x x - - x x x -<br />

CA-TUO-0751 I x x - - x x x x<br />

CA-TUO-0754/H I - x - - x x x x<br />

CA-TUO-2833 I x x x - - - x -<br />

CA-TUO-2834 I - x - x - x x x<br />

CA-TUO-3765 I - x x x x - x x<br />

CA-TUO-3783 I x x x - - - x -<br />

CA-TUO-3811 I x x x - - - x x<br />

CA-TUO-4635 I - x x - - x x -<br />

CA-TUO-4639 I x x x x - x x -<br />

CA-TUO-4665 I x x - x x - x -<br />

CA-TUO-0046/H L - x - - - - x -<br />

CA-TUO-0113 L - x - - - - x -<br />

CA-TUO-0120 L - x - - - - x -<br />

CA-TUO-0131 L - - - - - - x x<br />

CA-TUO-0159 L x x - - - - x -<br />

CA-TUO-0172 L - - - - x - x -<br />

CA-TUO-0245 L - - - - x - x -<br />

CA-TUO-0494 L - - - - - - x -<br />

CA-TUO-0755 L - - - - x - x -<br />

CA-TUO-2811 L x x - x - - x -<br />

CA-TUO-2825 L - x - x - - x -<br />

CA-TUO-2828 L - x - x - x x -<br />

CA-TUO-2830 L - - - - - - x -<br />

CA-TUO-2831 L - - - x - - x -<br />

CA-TUO-2841 L - x - - - - x -<br />

CA-TUO-3561 L - x - - x - x -<br />

CA-TUO-3769 L - - - - - - x -<br />

CA-TUO-3777 L - x - - - - x -<br />

CA-TUO-3789 L - - - - - - x -<br />

CA-TUO-3803 L - - - - - - x -<br />

CA-TUO-3805 L - x - - - - x x<br />

CA-TUO-3841 L - - - - - x x -<br />

CA-TUO-4230 L - - - - - - x -<br />

CA-TUO-4436 L - - - - - - x -<br />

CA-TUO-4490 L - - - - - - x -<br />

CA-TUO-4509 L - x - - - - - -<br />

CA-TUO-4637 L - x - - - - x -<br />

117


Site Type Post-1500 B.P. Pre-1500 B.P.<br />

Desert OH BRM RG CB Elko OH Dart<br />

CA-TUO-4641 L - - - - - - x -<br />

CA-TUO-4660 L - - - - - - x -<br />

CA-TUO-4851 L - - - - - - x -<br />

CA-TUO-4857 L - - - - - - x -<br />

CA-TUO-4859 L - - - - - - x -<br />

CA-TUO-4907 L - x - - - - x -<br />

CA-TUO-4972 L - - - - - - x -<br />

P-55-006561 L x - - - - - x -<br />

P-55-006564 L - - - - - - x x<br />

P-55-006775 L - x - - - x x -<br />

P-55-006776 L - x - - - - x -<br />

P-55-006782 L - - - - - - x -<br />

Key: Bold site numbers = previously <strong>in</strong>vestigated sites; I = <strong>in</strong>tensive use; L = limited use; BRM= bedrock<br />

mortar; OH = obsidian hydration values converted to calendrical dates; RG = Rosegate po<strong>in</strong>ts; CB =<br />

concave base po<strong>in</strong>ts; x = attribute present; - = attribute absent..<br />

Table 22. Frequencies of Limited-and Intensive-<strong>Use</strong> Sites<br />

for Pre- and Post-1500 B.P. Materials.<br />

Post-1500 B.P. Pre-1500 B.P. Total<br />

Intensive use 17 17 34<br />

Limited use 18 38 56<br />

Total 35 55 90<br />

additional work—sort<strong>in</strong>g function by site component—will be an important next step <strong>in</strong><br />

<strong>in</strong>vestigat<strong>in</strong>g this research issue.<br />

An additional means of exam<strong>in</strong><strong>in</strong>g <strong>the</strong> relationship between function and time<br />

<strong>in</strong>volves compar<strong>in</strong>g <strong>the</strong> relative frequency of temporally sensitive projectile po<strong>in</strong>ts<br />

aga<strong>in</strong>st site type. If <strong>in</strong>tensive-use sites were primarily a late-period phenomenon, <strong>the</strong>n<br />

arrow po<strong>in</strong>ts should be relatively more abundant at those sites. The <strong>in</strong>verse should also<br />

hold true; that is, dart po<strong>in</strong>ts should be relatively more common at limited-use sites. This<br />

analysis encompasses all projectile po<strong>in</strong>t data from sites with<strong>in</strong> <strong>the</strong> study area, <strong>in</strong> contrast<br />

to <strong>the</strong> sample represented above.<br />

118


Focus<strong>in</strong>g on <strong>the</strong> Desert, Rosegate, and Elko series as <strong>the</strong> most abundant time<br />

markers <strong>in</strong> <strong>the</strong> study area, Table 23 tallies 220 specimens by site type, po<strong>in</strong>t type<br />

frequency, and <strong>the</strong> number of sites at which <strong>the</strong> various types of po<strong>in</strong>ts occur. Overall,<br />

109 po<strong>in</strong>ts have been documented at <strong>the</strong> 60 <strong>in</strong>tensive-use sites and 111 po<strong>in</strong>ts have been<br />

recorded at <strong>the</strong> 313 limited-use sites. In general, po<strong>in</strong>ts of <strong>the</strong>se three series occur at<br />

relatively few sites of ei<strong>the</strong>r <strong>in</strong>tensive or limited use, though proportionately <strong>the</strong>y are far<br />

more common at <strong>in</strong>tensive-use sites. Desert series po<strong>in</strong>ts are most abundant overall,<br />

followed by Rosegate and Elko po<strong>in</strong>ts, respectively. Sixty-one percent of <strong>the</strong> Desert<br />

series specimens were documented at 19 of <strong>the</strong> <strong>in</strong>tensive-use sites, suggest<strong>in</strong>g a robust<br />

late-period presence at <strong>in</strong>tensive-use sites. Rosegate and Elko po<strong>in</strong>ts display a similar<br />

pattern to one ano<strong>the</strong>r, where most po<strong>in</strong>ts occur at limited-use sites. A chi-square value of<br />

9.57 (df=2, p=0.008) demonstrates a statistically significant association between <strong>the</strong> two<br />

variables. Desert and Elko series po<strong>in</strong>ts meet <strong>the</strong> expected pattern, but <strong>the</strong> Rosegate series<br />

is less similar to <strong>the</strong> Desert series and more similar to <strong>the</strong> Elko series than anticipated.<br />

Table 23. Selected Temporally Sensitive Projectile Po<strong>in</strong>ts at<br />

Intensive- and Limited-<strong>Use</strong> Sites with<strong>in</strong> <strong>the</strong> Study Area.<br />

Po<strong>in</strong>t type Intensive-use Sites Limited-use Sites Total<br />

# Po<strong>in</strong>ts # Sites # Po<strong>in</strong>ts # Sites # Po<strong>in</strong>ts<br />

Desert 62 (61%) 19 (32%) 40 (39%) 27 (09%) 102<br />

Rosegate 29 (40%) 16 (27%) 44 (60%) 31 (10%) 73<br />

Elko 18 (40%) 12 (20%) 27 (60%) 23 (07%) 45<br />

Total 109 60 111 313 220<br />

The numbers of sites with later po<strong>in</strong>t types are also proportionately greater at <strong>in</strong>tensive-<br />

use sites, support<strong>in</strong>g <strong>the</strong> pattern of late-period use at those sites, but <strong>the</strong>re may be too few<br />

limited-use sites with po<strong>in</strong>ts to provide a mean<strong>in</strong>gful measure. Alternately, some limited-<br />

119


use sites may have been occupied consistently across <strong>the</strong> entire occupational span, a<br />

hypo<strong>the</strong>sis supported by <strong>the</strong> comb<strong>in</strong>ed chronological data <strong>in</strong> Table 21.<br />

These data may suggest a shift <strong>in</strong> high country use from a hunt<strong>in</strong>g focus to a more<br />

<strong>in</strong>tensive-use pattern later <strong>in</strong> time, when Desert series po<strong>in</strong>ts became prevalent, ca. post-<br />

A.D. 1300. However, this type of analysis should be considered less robust for a few<br />

reasons. First, late-period po<strong>in</strong>ts should be more abundant on <strong>the</strong> surface than early-<br />

period po<strong>in</strong>ts given <strong>the</strong> pr<strong>in</strong>ciple of superposition<strong>in</strong>g. Second, Yosemite experiences very<br />

high frequencies of visitor use, and some of those visitors (and employees) illegally<br />

collect artifacts, <strong>in</strong> particular projectile po<strong>in</strong>ts. S<strong>in</strong>ce large dart po<strong>in</strong>ts tend to be more<br />

visible than <strong>the</strong> dim<strong>in</strong>utive Desert series po<strong>in</strong>ts, it may be that <strong>the</strong> former are collected<br />

more frequently. F<strong>in</strong>ally, recycl<strong>in</strong>g of obsidian material may have been a common<br />

occurrence on <strong>the</strong> western slope, <strong>in</strong> which case later <strong>in</strong>habitants would have selected<br />

material from early-period deposits. All of <strong>the</strong>se actions would result <strong>in</strong> a biased surface<br />

archaeological record, where late-period po<strong>in</strong>ts are more abundant than early-period<br />

po<strong>in</strong>ts.<br />

SPATIAL PATTERNS<br />

Spatial patterns are considered <strong>in</strong> terms of overall site density, distribution of<br />

<strong>in</strong>tensive- vs. limited-use sites, and to a lesser degree, isolate form and distribution. If <strong>the</strong><br />

Yosemite pattern follows those described for <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong>, <strong>in</strong>tensive-use sites<br />

should be more common <strong>in</strong> areas lead<strong>in</strong>g directly from trans-<strong>Sierra</strong> passes, reflect<strong>in</strong>g a<br />

more restricted land use pattern. In contrast, early-period sites and isolates <strong>in</strong>dicat<strong>in</strong>g a<br />

logistical hunt<strong>in</strong>g focus should occur <strong>in</strong> higher frequencies over a more spatially<br />

extensive area.<br />

120


Table 24 summarizes <strong>the</strong> study area survey acreage and <strong>the</strong> frequencies of sites<br />

and isolates. The number of sites per 100 acres surveyed is provided as a rough measure<br />

of site density for comparative purposes, although small-scale and nonrandom surveys, as<br />

well as issues with sites not visited s<strong>in</strong>ce <strong>the</strong> 1950s, tend to underm<strong>in</strong>e this approach to<br />

geographic comparisons. For example, <strong>the</strong> anomalous figures of 10 sites per 100 acres<br />

reported for Dog Lake and Dana Meadows are likely due to <strong>the</strong> limited survey conducted<br />

<strong>in</strong> those locations. In areas with numerous sites not re-<strong>in</strong>spected s<strong>in</strong>ce <strong>the</strong> 1950s, such as<br />

Rafferty and Parker Pass creeks, site frequencies are likely lower than portrayed.<br />

Never<strong>the</strong>less, a few spatial patterns are evident <strong>in</strong> terms of site densities, <strong>the</strong> locations of<br />

<strong>in</strong>tensive- and limited-use sites, and isolate distributions.<br />

A broad overview of site distribution shows <strong>the</strong> highest frequencies along<br />

dra<strong>in</strong>ages lead<strong>in</strong>g to <strong>the</strong> trans-<strong>Sierra</strong> passes of Virg<strong>in</strong>ia/Summit, Tioga, Parker/Mono, and<br />

Donohue (Figure 14). Most of <strong>the</strong> documented sites (n=293, 79%) are located with<strong>in</strong><br />

<strong>the</strong>se areas, along with virtually all of <strong>the</strong> <strong>in</strong>tensive-use sites (n=56, 93%). There are,<br />

however, some clear dist<strong>in</strong>ctions <strong>in</strong> <strong>the</strong> distributions of <strong>in</strong>tensive-use sites. Along <strong>the</strong><br />

Tuolumne River and its two ma<strong>in</strong> forks, <strong>the</strong> Lyell and Dana, most <strong>in</strong>tensive-use sites<br />

occur <strong>in</strong> a relatively limited zone with<strong>in</strong> <strong>the</strong> Dana and Tuolumne subalp<strong>in</strong>e meadow<br />

systems. The four <strong>in</strong>tensive-use sites <strong>in</strong> Lyell Canyon are <strong>in</strong> <strong>the</strong> lower portion of <strong>the</strong><br />

canyon, <strong>in</strong> close proximity to <strong>the</strong>se meadows, while only limited-use sites are present <strong>in</strong><br />

<strong>the</strong> middle and upper reaches of <strong>the</strong> canyon.<br />

To <strong>the</strong> north, Virg<strong>in</strong>ia Canyon conta<strong>in</strong>s most of <strong>the</strong> <strong>in</strong>tensive-use sites, although<br />

two each occur <strong>in</strong> Cold Canyon and <strong>the</strong> lower portion of Spiller Canyon. With<strong>in</strong> Virg<strong>in</strong>ia<br />

Canyon itself are two ma<strong>in</strong> clusters of <strong>in</strong>tensive-use sites, <strong>the</strong> first <strong>in</strong> <strong>the</strong> lower portion of<br />

121


Table 24. Survey, Site Density, and Isolate Data by Geographic Location.<br />

Location Acres Total Sites per Intensive Limited Total Isolate Isolate<br />

Surveyed Sites 100 Acres <strong>Use</strong> Sites <strong>Use</strong> Sites Isolates Debitage Tools<br />

TRANS-SIERRA CORRIDOR, HIGH SITE DENSITY<br />

Virg<strong>in</strong>ia Canyon/Summit &Virg<strong>in</strong>ia 1728 65 3.76 17 48 29 18 11<br />

Tuolumne Meadows/lower river corridor 2635 85 3.23 16 69 26 15 11<br />

Dana Fork/Tioga 456 47 10.31 17 30 22 17 5<br />

Parker Pass Creek/Mono & Parker 500 29 5.80 2 27 7 2 5<br />

Lyell Canyon/Donohue 1000 67 6.70 4 63 37 24 13<br />

Total 6319 293 4.64 56 237 121 76 45<br />

TRANS-SIERRA CORRIDOR, LOW SITE DENSITY<br />

Matterhorn Canyon 390 4 1.03 - 4 4 3 1<br />

Spiller Canyon 279 6 2.15 2 4 5 5 -<br />

Total 669 10 1.49 2 8 9 8 1<br />

NON-CORRIDOR CONTEXT, HIGH SITE DENSITY<br />

Rafferty Creek 314 13 4.14 - 13 8 7 1<br />

Vogelsang area to Ireland Lake 300 18 6.00 - 18 - - -<br />

Total 614 31 5.05 - 31 8 7 1<br />

122<br />

NON-CORRIDOR CONTEXT, LOW SITE DENSITY<br />

Nor<strong>the</strong>rn lakes* 379 9 2.37 - 9 12 1 11<br />

Cold Canyon, Conness Creek 470 9 1.91 2 7 5 3 2<br />

Tuolumne to Young Lakes trail corridors 200 1 0.50 - 1 - - -<br />

Dog Lake 30 3 10.00 - 3 - - -<br />

Delaney Creek ** 8 na - 8 - - -<br />

Gaylor Lake, Granite Lake, Gaylor Creek 400 4 1.00 - 4 20 - 20<br />

Mt. Dana slope 613 2 0.33 - 2 5 4 1<br />

Elizabeth Lake and trails 110 3 2.73 - 3 - - -<br />

Total 2202 39 1.77 2 37 42 8 34<br />

*Miller, Spiller, Soldier, Return, Onion, McCabe, and Young lakes. **not surveyed to current standards.


Figure 14. Map show<strong>in</strong>g distribution of <strong>in</strong>tensive- and limited-use sites.<br />

123


<strong>the</strong> canyon around <strong>the</strong> confluences of two tributary creeks, McCabe and Spiller, and a<br />

contemporary trail junction. From this location, trails head nor<strong>the</strong>asterly up Virg<strong>in</strong>ia<br />

Canyon, south towards Cold Canyon and <strong>the</strong> Tuolumne River, and to <strong>the</strong> west. The<br />

second cluster of <strong>in</strong>tensive-use sites occurs at <strong>the</strong> base of <strong>the</strong> short approach to Summit<br />

Pass, an easy ascent to <strong>the</strong> crest. These clusters occur at entrance/exit po<strong>in</strong>ts <strong>in</strong> <strong>the</strong><br />

canyon, suggest<strong>in</strong>g <strong>the</strong>ir locations are partly related to travel considerations.<br />

In contrast to <strong>the</strong> high frequencies of sites at most trans-<strong>Sierra</strong> pass locations,<br />

survey results for Matterhorn and Spiller canyons show relatively low site frequencies<br />

(Table 24). Ease of access may have been a consideration for travelers <strong>in</strong> both of those<br />

locations. To reach <strong>the</strong> head of Matterhorn Canyon from <strong>the</strong> eastern slope requires<br />

travers<strong>in</strong>g two passes, Mule Pass at about 10,500 ft and Burro Pass at 10,600 ft elevation,<br />

perhaps <strong>in</strong>volv<strong>in</strong>g significant extra effort that would be expended only occasionally. The<br />

four sites documented to date <strong>in</strong> Matterhorn Canyon are small, sparse lithic scatters,<br />

suggest<strong>in</strong>g very light and <strong>in</strong>frequent use. Only one pass at <strong>the</strong> head of Spiller Canyon<br />

breaches <strong>the</strong> crest, but this unnamed, north-fac<strong>in</strong>g pass at 10,700 ft elevation may have<br />

been more difficult to access given <strong>the</strong> substantial snowfields and extensive talus on <strong>the</strong><br />

nor<strong>the</strong>rn slope (K. Warner, personal communication 2009). It may be significant, too,<br />

that <strong>the</strong>re is not a formal trail constructed through Spiller Canyon, if today’s trail system<br />

is patterned largely on Native American routes.<br />

In locales that do not lead directly to trans-<strong>Sierra</strong> passes—lake bas<strong>in</strong>s or tributary<br />

dra<strong>in</strong>ages—site densities are generally low and few <strong>in</strong>tensive-use sites are apparent<br />

(Table 24). The higher site densities at Rafferty Creek and <strong>the</strong> Vogelsang-Ireland area are<br />

dist<strong>in</strong>ct, however, perhaps because <strong>the</strong>y were also travel routes between <strong>the</strong> Tuolumne<br />

124


and Merced River watersheds. Relatively easy routes up Rafferty Creek from Tuolumne<br />

Meadows and across <strong>the</strong> Lyell-Rafferty divide from Lyell Canyon allowed for access <strong>in</strong>to<br />

<strong>the</strong> Merced River dra<strong>in</strong>age.<br />

Isolate distributions tend to track site distributions, where most have been<br />

recorded <strong>in</strong> trans-<strong>Sierra</strong> contexts (Table 24). In addition, isolate debitage occurs more<br />

frequently than isolate tools <strong>in</strong> <strong>the</strong>se areas. Notable exceptions to <strong>the</strong> overall pattern<br />

<strong>in</strong>clude <strong>the</strong> nor<strong>the</strong>rn lakes and Gaylor bas<strong>in</strong>, where tools are more abundant than<br />

debitage. The prevalence of isolate tools and <strong>the</strong> presence of few limited-use sites suggest<br />

hunt<strong>in</strong>g was an important activity <strong>in</strong> <strong>the</strong>se areas.<br />

Exam<strong>in</strong><strong>in</strong>g <strong>the</strong> distribution of sites by temporal component allows for an <strong>in</strong>itial<br />

assessment of spatial dist<strong>in</strong>ctions <strong>in</strong> land use through time. Table 25 presents a<br />

comparison of site and isolate distributions based on pooled chronological data from <strong>the</strong><br />

<strong>the</strong>sis and previous studies with<strong>in</strong> <strong>the</strong> study area, while Figure 15 depicts <strong>the</strong> site data<br />

geographically. In total, 115 sites and 14 isolates <strong>in</strong>dicate use prior to 1500 B.P., and 124<br />

sites and 11 isolates show some evidence of use post-1500 B.P. Although many sites<br />

with<strong>in</strong> <strong>the</strong> study area reta<strong>in</strong> chronological markers, it should be noted aga<strong>in</strong> that samples<br />

per site are relatively small, limited for <strong>the</strong> most part to <strong>the</strong> m<strong>in</strong>imal collections made for<br />

<strong>the</strong> <strong>the</strong>sis and surface artifacts and features documented dur<strong>in</strong>g previous surveys. It is<br />

likely that early-period components are severely under-represented here given <strong>the</strong><br />

abundance of debitage pre-dat<strong>in</strong>g 1500 B.P. identified dur<strong>in</strong>g <strong>the</strong> <strong>the</strong>sis analysis at<br />

virtually all sites (see Table 18 above). As such, <strong>the</strong> primary objective of this analysis is<br />

to compare <strong>the</strong> spatial extent of human activity through time and identify potential<br />

patterns that might provide fruitful avenues of <strong>in</strong>vestigation <strong>in</strong> future studies.<br />

125


Table 25. Site and Isolate Frequencies by Geographic Location and Time Period.<br />

Location # Sites with<br />

Post-1500<br />

B.P. Materials<br />

# Sites with<br />

Pre-1500 B.P.<br />

Materials<br />

# Isolates<br />

Post-1500<br />

B.P.<br />

# Isolates<br />

Pre-1500<br />

B.P.<br />

TRANS-SIERRA CORRIDOR,<br />

HIGH SITE DENSITY<br />

Virg<strong>in</strong>ia<br />

Canyon/Summit&Virg<strong>in</strong>ia 27 28 2 3<br />

Tuolumne Meadow/river<br />

corridor 35 25 4 1<br />

Dana Fork/Tioga 23 18 1 -<br />

Parker Pass<br />

Creek/Mono&Parker 4 3 1 -<br />

Lyell Canyon/Donohue 14 15 1 3<br />

Total 103 89 9 7<br />

TRANS-SIERRA CORRIDOR,<br />

LOW SITE DENSITY<br />

Matterhorn Canyon - 1 - 1<br />

Spiller Canyon 4 3 - -<br />

Total 4 4 - 1<br />

NON-CORRIDOR CONTEXT,<br />

HIGH SITE DENSITY<br />

Rafferty Creek 3 5 - -<br />

Vogelsang area to Ireland Lake 6 8 - -<br />

Total 9 13 - -<br />

NON-CORRIDOR CONTEXT,<br />

LOW SITE DENSITY<br />

Nor<strong>the</strong>rn lakes* 2 3 1 4<br />

Cold Canyon, Conness Creek<br />

Tuolumne to Young Lakes trail<br />

3 1 - -<br />

corridors - - - -<br />

Dog Lake - - - -<br />

Delaney Creek 1 2 - -<br />

Gaylor Lake, Granite Lake,<br />

Gaylor Creek<br />

- 2 1 2<br />

Mt. Dana slope - - - -<br />

Elizabeth Lake and trails 2 1 - -<br />

Total 8 9 2 6<br />

*Miller, Spiller, Soldier, Return, Onion, McCabe, and Young lakes.<br />

126


127<br />

Figure 15. Distribution of sites with post-1500 B.P. (left) and pre-1500 B.P. (right) materials.


That said, two patterns are most apparent <strong>in</strong> <strong>the</strong> spatial data (Table 25, Figure 15).<br />

First, <strong>the</strong> distribution of sites and <strong>the</strong> abundance of both early- and late-period materials<br />

illustrate that <strong>the</strong> trans-<strong>Sierra</strong> travel corridors were <strong>the</strong> most densely used locations<br />

through time, a pattern most clearly tied to <strong>the</strong> topography of <strong>the</strong> study area. Second, <strong>the</strong><br />

spatial extent of sites across <strong>the</strong> study area is roughly similar through time, call<strong>in</strong>g <strong>in</strong>to<br />

question <strong>the</strong> hypo<strong>the</strong>sis of a more spatially extensive, early-period land use pattern.<br />

However, it may be notable that late-period materials are more apparent at Tuolumne and<br />

Dana meadows <strong>in</strong> trans-<strong>Sierra</strong> corridors, while early-period sites are slightly more<br />

widespread geographically. A closer exam<strong>in</strong>ation of <strong>the</strong> sites and isolates <strong>in</strong> Matterhorn<br />

Canyon, <strong>the</strong> nor<strong>the</strong>rn lakes, Gaylor Lakes Bas<strong>in</strong>, and <strong>the</strong> Ireland Lake area suggest this<br />

might yet be <strong>the</strong> case.<br />

Four limited-use sites and 20 isolates have been documented <strong>in</strong> <strong>the</strong> Gaylor Lakes<br />

Bas<strong>in</strong>. All of <strong>the</strong> isolates are bifaces, projectile po<strong>in</strong>ts, or fragments <strong>the</strong>reof (Hanchett<br />

2004), suggest<strong>in</strong>g a hunt<strong>in</strong>g focus for that locale. The identifiable projectile po<strong>in</strong>ts<br />

<strong>in</strong>clude one Elko Corner-notched, one probable Elko Corner-notched, and one Rose<br />

Spr<strong>in</strong>g Corner-notched specimen. The rema<strong>in</strong><strong>in</strong>g specimens are large pieces, suggestive<br />

of dart po<strong>in</strong>ts, while one very large white chert biface is also present. In addition, an<br />

Eared Concave Base projectile po<strong>in</strong>t was collected by a Park employee from <strong>the</strong> bas<strong>in</strong>.<br />

Chronological data for <strong>the</strong> sites are limited to CA-TUO-755 and P-55-6782, both<br />

conta<strong>in</strong><strong>in</strong>g early-period debitage and <strong>the</strong> former a <strong>Sierra</strong> Concave Base po<strong>in</strong>t fragment.<br />

All <strong>in</strong> all, <strong>the</strong>se data suggest a hunt<strong>in</strong>g focus ma<strong>in</strong>ly prior to 1500 B.P.<br />

The nor<strong>the</strong>rn lakes (Onion, Spiller, Soldier, Miller, McCabe, and Return) and<br />

Matterhorn Canyon show a similar distribution of few limited-use sites, isolates, and<br />

128


projectile po<strong>in</strong>t types. Temporal data for <strong>the</strong> 10 sites <strong>in</strong> those locales are limited to two<br />

Elko Corner-notched, one <strong>Sierra</strong> Concave Base, and one Rose Spr<strong>in</strong>g Corner-notched<br />

po<strong>in</strong>t. Of <strong>the</strong> 16 documented isolates, 12 are tools, ei<strong>the</strong>r biface or projectile po<strong>in</strong>t<br />

fragments. The temporally diagnostic specimens <strong>in</strong>clude one Elko Corner-notched, two<br />

<strong>Sierra</strong> Concave Base, one Rose Spr<strong>in</strong>g Corner-notched, and one Desert Side-notched<br />

projectile po<strong>in</strong>t. The types of sites and artifacts suggest a hunt<strong>in</strong>g focus, while <strong>the</strong> time<br />

sensitive artifacts <strong>in</strong>dicate activity both before and after 1500 B.P., though with an<br />

emphasis dur<strong>in</strong>g <strong>the</strong> Late <strong>Prehistoric</strong> 1 and 2 periods (3200–600 B.P.).<br />

At <strong>the</strong> time of <strong>the</strong> <strong>the</strong>sis work, <strong>the</strong> Ireland Lake area had been m<strong>in</strong>imally surveyed<br />

and <strong>the</strong> four documented limited-use sites <strong>in</strong>dicated a hunt<strong>in</strong>g focus. A recent survey <strong>in</strong><br />

<strong>the</strong> Ireland Lake bas<strong>in</strong> (Curtis 2007) has resulted <strong>in</strong> recordation of seven additional<br />

archaeological sites s<strong>in</strong>ce <strong>the</strong> <strong>the</strong>sis work was completed, all lithic scatters of vary<strong>in</strong>g<br />

debitage density. The greater density of sites contrasts with <strong>the</strong> few sites <strong>in</strong> o<strong>the</strong>r lake<br />

bas<strong>in</strong>s <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn portion of <strong>the</strong> study area, perhaps because Ireland Lake is adjacent<br />

to, or on, a travel route. The topography of <strong>the</strong> bas<strong>in</strong>, an expansive, gently slop<strong>in</strong>g terra<strong>in</strong><br />

which would have allowed for widespread settlement, also contrasts sharply with <strong>the</strong><br />

steeper-walled glacial cirques of o<strong>the</strong>r lake bas<strong>in</strong>s. None<strong>the</strong>less, <strong>the</strong> current chronological<br />

data, though m<strong>in</strong>imal, suggest Late <strong>Prehistoric</strong> 1 and 2 period (3200–600 B.P.) use. The<br />

chronological <strong>in</strong>formation for <strong>the</strong> Ireland Lake area <strong>in</strong>clude debitage from CA-TUO-245<br />

dat<strong>in</strong>g to pre-1500 B.P, one Humboldt Concave Base, one <strong>Sierra</strong> Concave Base, two Elko<br />

Eared, one Elko Corner-notched, one possible Elko, one large dart po<strong>in</strong>t, one Rose Spr<strong>in</strong>g<br />

or Elko Corner-notched, and two Rose Spr<strong>in</strong>g Corner-notched po<strong>in</strong>ts.<br />

129


Although <strong>the</strong> data are scant, it seems possible that <strong>the</strong>se outly<strong>in</strong>g areas were used<br />

primarily earlier <strong>in</strong> time. It may be, however, that such use cont<strong>in</strong>ued <strong>in</strong>to <strong>the</strong> Late<br />

<strong>Prehistoric</strong> 2 period (1300–600 B.P.) when Rose Spr<strong>in</strong>g po<strong>in</strong>ts were prevalent. The<br />

dearth of Desert series po<strong>in</strong>ts and <strong>the</strong> relative abundance of early-period artifacts suggest<br />

that fur<strong>the</strong>r research <strong>in</strong> non-corridor contexts would be worthwhile <strong>in</strong> address<strong>in</strong>g this<br />

issue.<br />

SUMMARY<br />

The results of data analysis with<strong>in</strong> <strong>the</strong> limited/<strong>in</strong>tensive use model <strong>in</strong>dicate spatial<br />

and temporal variability with<strong>in</strong> <strong>the</strong> study area, <strong>the</strong> first related to <strong>the</strong> differential<br />

distribution of sites and site types and <strong>the</strong> second signified by a shift toward more<br />

<strong>in</strong>tensive use <strong>in</strong> <strong>the</strong> late period. More specifically, overall site densities are high <strong>in</strong> <strong>the</strong><br />

trans-<strong>Sierra</strong> pass locations of Virg<strong>in</strong>ia Canyon, <strong>the</strong> Mono Trail corridor (Tuolumne and<br />

Dana meadows, Parker Pass Creek) and Lyell Canyon, and <strong>the</strong> non-corridor areas of<br />

Rafferty Creek and <strong>the</strong> corridor between Vogelsang and Ireland Lake. Conversely, site<br />

densities are relatively low <strong>in</strong> Matterhorn and Spiller canyons, and around most of <strong>the</strong><br />

lake bas<strong>in</strong>s. Intensive-use sites, more clearly associated with use dur<strong>in</strong>g <strong>the</strong> past 1500<br />

years, occur <strong>in</strong> highest frequencies <strong>in</strong> Virg<strong>in</strong>ia Canyon, along <strong>the</strong> Mono Trail corridor,<br />

and <strong>in</strong> <strong>the</strong> lower Lyell Canyon.<br />

130


Chapter 7<br />

SITE VARIABILITY AND CRITICAL ASSESSMENT<br />

Up to this po<strong>in</strong>t, sites have been considered with<strong>in</strong> <strong>the</strong> limited/<strong>in</strong>tensive use<br />

construct, a simple classificatory system that may mask important variability <strong>in</strong> site<br />

constituents and comb<strong>in</strong>ations of material. This chapter exam<strong>in</strong>es <strong>the</strong> data <strong>in</strong> greater<br />

detail, focus<strong>in</strong>g on <strong>the</strong> co-occurrences of site constituents and potential chronological<br />

implications. Also addressed here is <strong>the</strong> issue of whe<strong>the</strong>r or not <strong>the</strong> limited/<strong>in</strong>tensive use<br />

construct is sufficient to conceptualize land use <strong>in</strong> Yosemite at <strong>the</strong> level of surface<br />

studies. F<strong>in</strong>ally, an important assumption <strong>in</strong> <strong>the</strong> <strong>the</strong>sis—<strong>the</strong> <strong>in</strong>itial use and spread of<br />

bedrock mortars after 1500 B.P.—is critically assessed, us<strong>in</strong>g chronological data derived<br />

from <strong>the</strong> study area.<br />

VARIABILITY AND MODEL ASSESSMENT<br />

A land use model <strong>in</strong>corporat<strong>in</strong>g only two categories almost certa<strong>in</strong>ly obscures<br />

variability <strong>in</strong> <strong>the</strong> archaeological record to some degree. To fur<strong>the</strong>r exam<strong>in</strong>e <strong>the</strong> range of<br />

variability <strong>in</strong> cultural constituents with<strong>in</strong> <strong>the</strong> study area and identify comb<strong>in</strong>ations of<br />

cultural materials with potential chronological implications, sites were classed with<strong>in</strong> 12<br />

types based on <strong>the</strong> presence of flaked-stone material, bedrock mortars, portable ground<br />

stone, rock r<strong>in</strong>gs, and various o<strong>the</strong>r less abundant site constituents. Table 26 summarizes<br />

<strong>the</strong> comb<strong>in</strong>ations of materials for each type and <strong>the</strong>ir frequencies, <strong>the</strong> number of sites<br />

conta<strong>in</strong><strong>in</strong>g each constituent and pooled chronological data from temporally diagnostic<br />

projectile po<strong>in</strong>ts, obsidian hydration values, and radiocarbon dates for all sites.<br />

Most notably, nearly 80 percent (n=298) of <strong>the</strong> sites are flaked-stone lithic<br />

scatters. Portable ground stone, bedrock mortars, rock r<strong>in</strong>gs and o<strong>the</strong>r types of features<br />

131


Table 26. Co-occurrence of Site Attributes and Chronological Data.<br />

Type Primary Secondary # % of LS RS HB H C BRM/ GS RR RA Mid P Post- Pre-<br />

Constituents Constituents Sites Total<br />

PE<br />

1500 1500<br />

Sites<br />

B.P. B.P.<br />

1 LS - 298 79.9 298 - - - - - - - - - - 57 79<br />

2 LS HB, RS, H, 11 2.9 11 5 4 2 2 - - - - - - 5 6<br />

or C<br />

3 LS RA or<br />

3 0.8 3 - - 1 1 - - - 2 2 - 3 1<br />

Mid+H or C<br />

4 S<strong>in</strong>gle feature - 5 1.3 - - 1? - 1 3 - - - - - 1 0<br />

5 BRM+LS - 30 8.0 30 - - - - 30 - - - - - 13 13<br />

6 BRM+LS HB, Mid, H, 4 1.1 4 2 1 - - 4 - - 1 1 - 2 2<br />

RA, or RS<br />

7 BRM+LS+GS H, Mid, or 9 2.4 9 - - 1 - 9 9 - 1 1 - 6 4<br />

RA<br />

8 GS+LS - 4 1.1 4 - 1 - - - 4 - - - - 3 4<br />

9 RR+BRM+LS Mid or H 3 0.8 3 - - 1 - 3 - 3 - 1 - 3 2<br />

10 RR+BRM+GS H, P, Mid, or 2 0.5 2 - - - - 2 2 2 1 1 1 2 2<br />

+LS<br />

RA<br />

11 RR+GS+LS Mid or H 3 0.8 3 - - 1 - - 3 3 - 1 - 2 2<br />

12 RR+LS+RA - 1 0.3 1 - - - - - - 1 1 - - 1 1<br />

Total 373 100 368 7 7 6 4 51 18 9 6 7 1<br />

Key: - =attribute is absent; LS=lithic scatter; BRM/PE=bedrock mortar and/or pestle; GS=portable groundstone (handstone and/or mill<strong>in</strong>gstone);<br />

RR=rock r<strong>in</strong>g; HB=hunt<strong>in</strong>g bl<strong>in</strong>d; RS=rockshelter; RA=rock alignment; H=hearth; Mid=midden; C=cache; P=petroglyph.<br />

132


are present at 75 sites (20%). With<strong>in</strong> this latter group of sites, bedrock mortars and/or<br />

pestles are most abundant, recorded at 51 (14%) of all sites. Thirty of <strong>the</strong>se sites are<br />

composed solely of lithic scatters and bedrock mortars and three are isolated bedrock<br />

mortars. Thus, lithic scatters and/or bedrock mortars account for 331 (89%) of <strong>the</strong> total<br />

sites, suggest<strong>in</strong>g low variability with<strong>in</strong> <strong>the</strong> study area and general support for a simple<br />

model <strong>in</strong> conceptualiz<strong>in</strong>g land use at this stage of analysis.<br />

Although variability is low, numerous sites conta<strong>in</strong> complex deposits worthy of<br />

fur<strong>the</strong>r consideration <strong>in</strong> regard to <strong>the</strong> co-occurrences of cultural materials and result<strong>in</strong>g<br />

chronological implications. These k<strong>in</strong>ds of associations are necessarily prelim<strong>in</strong>ary and<br />

broad <strong>in</strong> scope, given <strong>the</strong> limited samples of many classes of material and <strong>the</strong> ubiquity<br />

and abundance of early-period lithic materials across <strong>the</strong> study area. Portable ground<br />

stone and midden deposits are of particular <strong>in</strong>terest because such materials may signal<br />

early-period residential use. Handstones and mill<strong>in</strong>gstones are relatively uncommon <strong>in</strong><br />

<strong>the</strong> study area, present at just 18 sites (5%) <strong>in</strong> limited quantities (generally one to two<br />

specimens per site). With<strong>in</strong> this small sample, portable ground stone occurs with bedrock<br />

mortars and/or rock r<strong>in</strong>gs at 14 (78%) of <strong>the</strong> sites, suggest<strong>in</strong>g a strong aff<strong>in</strong>ity with<br />

materials thought to be prevalent after 1500 B.P. Three handstones and one mill<strong>in</strong>gstone,<br />

however, have been documented <strong>in</strong> early-period, subsurface contexts at three sites, CA-<br />

TUO-120, -166, and -2834 (Hull et al. 1995; Montague 1996a, 1996b). The comb<strong>in</strong>ed<br />

subsurface and surface data suggest that use of portable ground stone spans a wide range<br />

of time <strong>in</strong> <strong>the</strong> high elevations, while <strong>the</strong> surface data alone support <strong>in</strong>creas<strong>in</strong>g late-period<br />

use.<br />

133


Midden deposits have been recorded at only seven sites <strong>in</strong> <strong>the</strong> study area, a<br />

sample that is too small for assess<strong>in</strong>g patterns. Similar to <strong>the</strong> portable ground stone<br />

locations, however, patches of midden co-occur with ei<strong>the</strong>r bedrock mortars and rock<br />

r<strong>in</strong>gs at five of <strong>the</strong> seven sites, aga<strong>in</strong> suggest<strong>in</strong>g a late-period emphasis. Midden dat<strong>in</strong>g to<br />

an early-period context, however, is present at one site (CA-TUO-2834), and <strong>in</strong>dicators<br />

of early-period use occur at several of <strong>the</strong> sites. Clearly, fur<strong>the</strong>r work and larger samples<br />

are necessary to fur<strong>the</strong>r identify any temporal trends <strong>in</strong> midden development.<br />

Sites with rock r<strong>in</strong>gs tend to demonstrate <strong>the</strong> greatest diversity <strong>in</strong> site constituents,<br />

with eight of <strong>the</strong> n<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g bedrock mortars or portable ground stone, three<br />

exhibit<strong>in</strong>g midden, and one <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> study area’s only example of rock art (Table<br />

26). Comb<strong>in</strong>ations of materials are dist<strong>in</strong>ctive even with<strong>in</strong> this small sample, suggest<strong>in</strong>g<br />

some temporal and/or functional variability. As discussed <strong>in</strong> Chapter 5, most of <strong>the</strong> rock<br />

r<strong>in</strong>gs with chronological data ev<strong>in</strong>ce late period use, but <strong>the</strong>y do not appear to be entirely<br />

late-period phenomena. Functional variability may also be apparent among rock r<strong>in</strong>g sites<br />

that <strong>in</strong>clude bedrock mortars, compared to those with portable ground stone alone and <strong>the</strong><br />

s<strong>in</strong>gle site with no evidence of mill<strong>in</strong>g equipment. M<strong>in</strong>imal or no mill<strong>in</strong>g equipment,<br />

comb<strong>in</strong>ed with <strong>the</strong> presence of moderate or abundant lithic materials, may <strong>in</strong>dicate that<br />

<strong>the</strong> function of some of <strong>the</strong>se sites was geared primarily toward hunt<strong>in</strong>g ra<strong>the</strong>r than as<br />

residential occupation by family groups. CA-TUO-749 <strong>in</strong> Virg<strong>in</strong>ia Canyon is an<br />

exception <strong>in</strong> that it has three rock r<strong>in</strong>gs, a s<strong>in</strong>gle mill<strong>in</strong>gstone <strong>in</strong> <strong>the</strong> center of one feature,<br />

and limited surface debitage. The two-model construct clearly obscures variability <strong>in</strong> <strong>the</strong><br />

case of rock r<strong>in</strong>g sites, but <strong>the</strong> focus on surface constituents and <strong>the</strong> <strong>in</strong>ability to<br />

134


dist<strong>in</strong>guish components at this level of analysis also does not allow for <strong>the</strong> development<br />

of clear chronologies and <strong>in</strong>ventories of material by component.<br />

Flaked stone debitage and tools are <strong>the</strong> predom<strong>in</strong>ant material with<strong>in</strong> <strong>the</strong> study<br />

area, occurr<strong>in</strong>g at all sites except for four composed of s<strong>in</strong>gle features (Type 4 <strong>in</strong> Table<br />

26). As <strong>in</strong>dicated <strong>in</strong> Chapter 5, debitage density varies substantially among sites and <strong>the</strong>re<br />

are clear spatial dist<strong>in</strong>ctions <strong>in</strong> <strong>the</strong> distributions of <strong>the</strong> variable-density deposits. That is,<br />

<strong>the</strong> majority of <strong>the</strong> high-density debitage scatters are located <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong> corridors,<br />

particularly <strong>in</strong> Dana Meadows, Tuolumne Meadows, and <strong>the</strong> lower portion of Lyell<br />

Canyon. Mov<strong>in</strong>g beyond spatial distributions toward <strong>the</strong> exam<strong>in</strong>ation of functional and<br />

chronological variability <strong>in</strong> lithic materials, Table 27 presents debitage density, bifacial<br />

tool frequencies, and chronological data for <strong>the</strong> site types described above. These surface<br />

attributes have been collected reliably for most sites (n=333). Types 1-2 sites display low<br />

variability <strong>in</strong> cultural materials and are thought to represent limited activities, while<br />

Types 3/5-12 exhibit greater variability and cultural materials suggest<strong>in</strong>g more substantial<br />

use. These comb<strong>in</strong>ed categories are essentially <strong>the</strong> same as <strong>the</strong> limited- and <strong>in</strong>tensive-use<br />

categories. In general, low-density debitage deposits and sites lack<strong>in</strong>g bifacial tools are<br />

taken as locations that reflect less <strong>in</strong>tensive activity ei<strong>the</strong>r temporally or functionally,<br />

while higher-density concentrations signal an <strong>in</strong>creased level of activity related to flaked<br />

stone tool production.<br />

Most sites <strong>in</strong> both categories are low-density debitage deposits, total<strong>in</strong>g 238 of<br />

333 sites (72%). Comparison of site frequencies between <strong>the</strong> site type categories,<br />

however, suggests some broad patterns <strong>in</strong> function and chronology. The proportion of<br />

low-density deposits is greater among <strong>the</strong> Type 1-2 sites (69.8% vs. 51.7%), and<br />

135


Table 27. Site Types by Debitage Density, Bifacial Tool Occurrence, and Chronology.<br />

Debitage<br />

Density<br />

#<br />

Sites<br />

% of<br />

Total<br />

Sites<br />

# Sites<br />

with PP or<br />

BF<br />

% of<br />

Total<br />

Sites<br />

Post-<br />

1500<br />

B.P.<br />

% of<br />

Total<br />

Sites<br />

Pre-<br />

1500<br />

B.P.<br />

% of<br />

Total<br />

Sites<br />

TYPE 1-2 SITES<br />

Low Density 208 69.8 94 45.2 41 19.7 51 24.5<br />

Mod. Density 48 16.1 30 62.5 15 31.3 21 43.8<br />

<strong>High</strong> Density 19 6.4 13 68.4 5 26.3 10 52.6<br />

Total 275 137 49.8 61 22.2 82 29.8<br />

TYPE 3, 5-12 SITES*<br />

Low Density 30 51.7 19 63.3 15 50.0 14 46.7<br />

Mod. Density 12 20.7 10 83.3 10 83.3 7 58.3<br />

<strong>High</strong> Density 16 27.6 11 68.8 10 62.5 10 62.5<br />

Total 58 40 69.0 35 60.3 31 53.4<br />

Key: PP=projectile po<strong>in</strong>t; BF=biface. *Type 4 sites do not conta<strong>in</strong> debitage scatters and are <strong>the</strong>refore not<br />

represented <strong>in</strong> this table.<br />

conversely, high-density debitage deposits are more common among <strong>the</strong> Type 3/5-12<br />

sites (27. 6% vs. 6.4%). Bifacial tools are also present at more complex sites compared to<br />

<strong>the</strong> Type 1-2 sites (69% vs. 49.8%). Sites with bifacial tools (n=94, 45.2%) are<br />

proportionately least common at low-density Type 1-2 sites. Among <strong>the</strong> Type 1-2 sites,<br />

sites with pre-1500 B.P. temporal data are slightly more prevalent than those with post-<br />

1500 B.P. data (29.8% vs. 22.2%), but most high density sites <strong>in</strong> that category exhibit<br />

early- ra<strong>the</strong>r than late-period materials (52.6% vs. 26.3%). In contrast, a slightly higher<br />

percentage of late-period materials are present at Type 3/5-12 sites (60.3% vs. 53.4%).<br />

The comb<strong>in</strong>ation of sites with higher-density debitage deposits, bifacial tools, and<br />

features suggests <strong>the</strong>se were preferred locations for a variety of activities and that such<br />

activities were more prevalent after 1500 B.P., consistent with <strong>the</strong> <strong>in</strong>tensive- and limited-<br />

use analysis results <strong>in</strong> Chapter 6.<br />

136


CHRONOLOGICAL ASSESSMENT OF BEDROCK MORTARS<br />

Bedrock mortars have been considered as temporal markers of <strong>the</strong> post-1500 B.P.<br />

period <strong>in</strong> <strong>the</strong> current study based on <strong>the</strong> results of archaeological research conducted <strong>in</strong><br />

<strong>the</strong> surround<strong>in</strong>g region. The data assembled for <strong>the</strong> <strong>the</strong>sis also allow for an <strong>in</strong>dependent,<br />

albeit imperfect, assessment of <strong>the</strong> temporal framework for bedrock mortars. These<br />

features were <strong>in</strong> widespread use <strong>in</strong> <strong>the</strong> contact era, but <strong>the</strong>ir <strong>in</strong>itial use and florescence is<br />

a more difficult issue to address. Ideally, a large sample of s<strong>in</strong>gle-component sites with<br />

reliable chronological data <strong>in</strong> clear association with bedrock mortars would demonstrate<br />

<strong>the</strong> <strong>in</strong>itial use and spread of this technology. Two factors militate aga<strong>in</strong>st this outcome <strong>in</strong><br />

regard to <strong>the</strong> current study—multi-component sites predom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong><br />

corridors where mill<strong>in</strong>g features are almost exclusively located, and early-period lithic<br />

materials are ubiquitous across <strong>the</strong> landscape. Aga<strong>in</strong>st this backdrop, only broad trends<br />

are expected to emerge which may support early- or late-period <strong>in</strong>ception of bedrock<br />

mortar use.<br />

If bedrock mortars are <strong>in</strong>deed late-period phenomena, <strong>the</strong>n evidence of post-1500<br />

B.P. use should be consistently detected at sites with <strong>the</strong>se features except <strong>in</strong> a few cases<br />

where bedrock mortars occur as isolated features. In addition, sites lack<strong>in</strong>g bedrock<br />

mortars and dat<strong>in</strong>g to pre-1500 B.P. should occur with greater frequency than those<br />

dat<strong>in</strong>g to post-1500 B.P. F<strong>in</strong>ally, bedrock mortars should not be present at early-period,<br />

s<strong>in</strong>gle-component deposits except <strong>in</strong> <strong>the</strong> few cases of isolated features.<br />

Consider<strong>in</strong>g only sites which have ei<strong>the</strong>r undergone excavations or sampl<strong>in</strong>g for<br />

<strong>the</strong> current work provides <strong>the</strong> best possible chronological sample with<strong>in</strong> <strong>the</strong> study area at<br />

this time. Of <strong>the</strong> 11 sites with bedrock mortars (Table 21 above), n<strong>in</strong>e conta<strong>in</strong> evidence of<br />

137


post-1500 B.P. activity and all 11 exhibit early-period dates. One of <strong>the</strong> two sites lack<strong>in</strong>g<br />

late-period dates, CA-TUO-124, has been largely destroyed by modern construction and<br />

<strong>the</strong> area near <strong>the</strong> feature was not sampled (Vittands 1994); thus, it is not suitable for<br />

<strong>in</strong>clusion with<strong>in</strong> <strong>the</strong> sample. In <strong>the</strong> revised sample, late-period temporal data are present<br />

at n<strong>in</strong>e of 10 sites, or 90 percent of <strong>the</strong> total. In contrast, 24 (53%) of <strong>the</strong> 45 sites lack<strong>in</strong>g<br />

bedrock mortars show late-period use, while 44 (98%) ev<strong>in</strong>ce early-period use. The only<br />

clear s<strong>in</strong>gle-component, late-period site is an isolated obsidian artifact cache (CA-TUO-<br />

4509), suggest<strong>in</strong>g it may be very difficult, even <strong>in</strong> high-elevation contexts, to identify<br />

s<strong>in</strong>gle components dat<strong>in</strong>g to that time period at <strong>the</strong> analytical unit of <strong>the</strong> site. In contrast,<br />

22 sites appear to be early-period deposits alone, and only one of <strong>the</strong>se, a large, very<br />

dense lithic scatter (CA-TUO-128/), conta<strong>in</strong>s a bedrock mortar.<br />

All <strong>in</strong> all, <strong>the</strong> presence of late-period temporal <strong>in</strong>dicators at nearly all of <strong>the</strong> sites<br />

<strong>in</strong> <strong>the</strong> sample with bedrock mortars comb<strong>in</strong>ed with <strong>the</strong> absence of bedrock mortars at<br />

early-period lithic scatters suggests a late-period trend <strong>in</strong> bedrock mortar use. It is<br />

difficult, however, to determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> absence of bedrock mortars at many early-<br />

period sites reflects functional versus temporal pattern<strong>in</strong>g. More conv<strong>in</strong>c<strong>in</strong>g evidence<br />

must be mounted through fur<strong>the</strong>r analysis <strong>in</strong>corporat<strong>in</strong>g larger excavation samples. At<br />

multi-component sites with relatively <strong>in</strong>tact stratigraphy, pestles <strong>in</strong> secure association<br />

with early-period materials would also <strong>in</strong>dicate early-period <strong>in</strong>ception of <strong>the</strong><br />

mortar/pestle technology.<br />

The distribution of temporally diagnostic projectile po<strong>in</strong>ts also supports a late-<br />

period trend <strong>in</strong> bedrock mortar use. Of <strong>the</strong> 25 sites with temporally diagnostic projectile<br />

po<strong>in</strong>ts and bedrock mortars, Desert and Rosegate series po<strong>in</strong>ts are present at 14 sites and<br />

138


13 sites, respectively. Taken toge<strong>the</strong>r as post-1500 B.P. <strong>in</strong>dicators, ei<strong>the</strong>r Desert or<br />

Rosegate po<strong>in</strong>ts are evident at 22 (88%) of <strong>the</strong> 25 sites. Elko series po<strong>in</strong>ts are present at<br />

only eight sites, but Elkos comb<strong>in</strong>ed with o<strong>the</strong>r dart po<strong>in</strong>ts have been documented at 17<br />

(68%) of <strong>the</strong> 25 sites.<br />

SUMMARY<br />

In this section, two important underly<strong>in</strong>g assumptions of <strong>the</strong> <strong>the</strong>sis were critically<br />

addressed: <strong>the</strong> characterization of high-elevation land use with<strong>in</strong> <strong>the</strong> <strong>in</strong>tensive/limited use<br />

model and <strong>the</strong> post-1500 B.P. <strong>in</strong>ception of bedrock mortar/pestle technology. The two-<br />

part model has allowed for a broad-brush exam<strong>in</strong>ation of patterns <strong>in</strong> time and space, but<br />

whe<strong>the</strong>r it adequately characterizes land use <strong>in</strong> Yosemite is an important issue. Given <strong>the</strong><br />

limited variability of surface constituents <strong>in</strong> <strong>the</strong> study area, where 80 percent (n=298) of<br />

<strong>the</strong> sites are flaked-stone scatters and 89 percent (n=331) <strong>in</strong>clude only two classes of<br />

material—flaked-stone and bedrock mortars—<strong>the</strong> simple land use model provides an<br />

acceptable framework for <strong>in</strong>terpret<strong>in</strong>g surface rema<strong>in</strong>s. Never<strong>the</strong>less, <strong>the</strong> model surely<br />

obscures variability <strong>in</strong> <strong>the</strong> range and co-occurrence of constituents.<br />

The two variables fur<strong>the</strong>r exam<strong>in</strong>ed at flaked-stone scatters, debitage density and<br />

presence of bifacial tools, suggested some broad, albeit tentative, trends <strong>in</strong> chronology<br />

and function. While most sites with data (n=238, 72%) conta<strong>in</strong> low-density deposits, <strong>the</strong><br />

proportion of low-density deposits is greater at sites without o<strong>the</strong>r features that suggest<br />

residential use. Conversely, high-density scatters are more common at sites with<br />

residential features <strong>in</strong> <strong>the</strong> trans-<strong>Sierra</strong> corridors. The presence of bifacial tools mirrors<br />

this pattern. Although temporal patterns are weak, sites with pre-1500 B.P. temporal data<br />

139


are slightly more prevalent among sites without residential features, while a slightly<br />

higher percentage of late-period materials are present at sites with residential features.<br />

Many of <strong>the</strong> less common cultural materials occur <strong>in</strong> such low quantities that<br />

patterns are difficult to assess. It is of <strong>in</strong>terest, however, to identify how materials such as<br />

midden, portable ground stone, bedrock mortars, rock r<strong>in</strong>gs, and o<strong>the</strong>r features are<br />

distributed across <strong>the</strong> landscape and any temporal and functional implications <strong>the</strong>reof.<br />

For example, all sites with rock r<strong>in</strong>gs are treated with<strong>in</strong> <strong>the</strong> <strong>in</strong>tensive-use category of <strong>the</strong><br />

model, but <strong>the</strong> co-occurrence of rock r<strong>in</strong>gs with o<strong>the</strong>r materials varies substantially<br />

between sites, suggest<strong>in</strong>g functional dist<strong>in</strong>ctions. In summary, <strong>the</strong> <strong>in</strong>tensive/limited use<br />

model provides an acceptable model of land use at <strong>the</strong> most general level, but <strong>the</strong>re may<br />

be more to be ga<strong>in</strong>ed from a detailed assessment of <strong>the</strong> co-occurrence, chronology, and<br />

spatial distribution of specific site attributes.<br />

Dat<strong>in</strong>g bedrock mortars <strong>in</strong> <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong> has long posed a problem because of<br />

<strong>the</strong> difficulty <strong>in</strong> associat<strong>in</strong>g temporally diagnostic materials with features and an <strong>in</strong>ability<br />

to date <strong>the</strong> mortars <strong>the</strong>mselves. The widespread nature and abundance of early-period<br />

materials hampers <strong>in</strong>dependent efforts to date bedrock mortars <strong>in</strong> <strong>the</strong> present study. The<br />

presence of late-period materials at 90 percent of <strong>the</strong> sampled sites comb<strong>in</strong>ed with <strong>the</strong><br />

dearth of bedrock mortars at lithic scatters and <strong>the</strong>ir near absence at s<strong>in</strong>gle-component<br />

early-period lithic scatters broadly supports a late prehistoric age for <strong>the</strong>se features. In<br />

addition, <strong>the</strong> prevalence of late-period temporally diagnostic projectile po<strong>in</strong>ts at sites with<br />

bedrock mortars supports this hypo<strong>the</strong>sis. While some study area data were brought to<br />

bear on this topic, def<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>itial use and spread of bedrock mortars rema<strong>in</strong>s an<br />

important research issue <strong>in</strong> <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong>.<br />

140


Chapter 8<br />

SUMMARY AND CONCLUSIONS<br />

This study explored high-elevation land use on <strong>the</strong> western slope of <strong>the</strong> central<br />

<strong>Sierra</strong> <strong>Nevada</strong> by compil<strong>in</strong>g exist<strong>in</strong>g data ma<strong>in</strong>ta<strong>in</strong>ed by Yosemite National Park and<br />

m<strong>in</strong>imal surface collections conducted as part of <strong>the</strong> <strong>the</strong>sis. Build<strong>in</strong>g on previous research<br />

<strong>in</strong> <strong>the</strong> White Mounta<strong>in</strong>s and <strong>the</strong> sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> (Bett<strong>in</strong>ger 1991; Roper<br />

Wickstrom 1992; Stevens 2002), <strong>the</strong> study <strong>in</strong>vestigated whe<strong>the</strong>r an early, widespread<br />

hunt<strong>in</strong>g pattern was followed by a later, spatially limited residential strategy <strong>in</strong> response<br />

to regional resource <strong>in</strong>tensification. This chapter summarizes <strong>the</strong> study results and<br />

explores potential explanations for <strong>the</strong>se patterns, <strong>in</strong> terms of <strong>the</strong> constra<strong>in</strong>ts and<br />

opportunities created by environmental factors and how chang<strong>in</strong>g social, technological,<br />

and economic systems <strong>in</strong> <strong>the</strong> lowlands may have <strong>in</strong>fluenced use of <strong>the</strong> higher elevations.<br />

F<strong>in</strong>ally, a few recommendations are offered <strong>in</strong> <strong>the</strong> <strong>in</strong>terest of cont<strong>in</strong>u<strong>in</strong>g research along<br />

<strong>the</strong>se l<strong>in</strong>es.<br />

PROJECT SUMMARY<br />

Encompass<strong>in</strong>g an area of roughly 105,000 acres of <strong>the</strong> upper Tuolumne River<br />

watershed between approximately 8500 and 12,000 ft elevation, <strong>the</strong> study area <strong>in</strong>cluded<br />

373 previously recorded archaeological sites with<strong>in</strong> approximately 9800 surveyed acres.<br />

The exist<strong>in</strong>g Yosemite survey, site, isolate, and artifact data were supplemented by<br />

surface collections from documented sites and obsidian hydration analysis undertaken as<br />

part of <strong>the</strong> present study. This produced a 15 percent (n=56) sample of sites with at least a<br />

m<strong>in</strong>imal level of chronological data. Although <strong>the</strong> sample is small, and <strong>the</strong> survey area is<br />

biased geographically and by elevation toward <strong>the</strong> trans-<strong>Sierra</strong> corridors and below<br />

141


10,000 ft elevation, <strong>the</strong> <strong>the</strong>sis allows for a prelim<strong>in</strong>ary and necessarily broad assessment<br />

of subalp<strong>in</strong>e and alp<strong>in</strong>e land use.<br />

The primary goal of <strong>the</strong> <strong>the</strong>sis was to determ<strong>in</strong>e whe<strong>the</strong>r sites represent<strong>in</strong>g<br />

particular activities, designated as limited- or <strong>in</strong>tensive-use (follow<strong>in</strong>g Stevens [2002]),<br />

varied <strong>in</strong> time and space. Limited-use sites (n=313) were def<strong>in</strong>ed as lithic scatters,<br />

represent<strong>in</strong>g short-term activities related to travel, hunt<strong>in</strong>g, and exchange. Intensive-use<br />

sites (n=60) were <strong>in</strong>dicated by <strong>the</strong> presence of bedrock mortars, residential structures,<br />

ground stone artifacts, midden sediments, and/or a greater diversity of artifacts, and were<br />

thought to represent longer-term residential use by family social groups. This simple<br />

model allowed for a broad exam<strong>in</strong>ation of patterns <strong>in</strong> time and space <strong>in</strong> an area where<br />

surface constituents are limited <strong>in</strong> variability; sites composed solely of flaked-stone<br />

scatters account for 80 percent (n=298) of <strong>the</strong> total sites, while 89 percent (n=331) of <strong>the</strong><br />

locations <strong>in</strong>clude only two classes of material, flaked-stone material and bedrock mortars.<br />

Given this limited variability and <strong>the</strong> low frequencies of o<strong>the</strong>r classes of documented<br />

cultural material, <strong>the</strong> model is believed to be an acceptable construct for conceptualiz<strong>in</strong>g<br />

land use <strong>in</strong> Yosemite at this prelim<strong>in</strong>ary, surface level of study. However, a more detailed<br />

exam<strong>in</strong>ation of <strong>the</strong> comb<strong>in</strong>ations of materials occurr<strong>in</strong>g at specific locations <strong>in</strong> future<br />

studies will allow for fur<strong>the</strong>r assessment of variability <strong>in</strong> prehistoric use of <strong>the</strong> high<br />

country.<br />

Analysis of <strong>the</strong> spatial and chronological data with<strong>in</strong> <strong>the</strong> <strong>in</strong>tensive/limited-use<br />

construct resulted <strong>in</strong> <strong>the</strong> identification of broad patterns that persisted through time, as<br />

well as a shift <strong>in</strong> land use that provides some level of support for <strong>the</strong> <strong>the</strong>sis hypo<strong>the</strong>sis.<br />

Beg<strong>in</strong>n<strong>in</strong>g with <strong>the</strong> most general of observations, <strong>the</strong> study area is characterized by an<br />

142


uneven distribution of sites, with <strong>the</strong> highest site frequencies (n=293, 79%) present along<br />

dra<strong>in</strong>ages lead<strong>in</strong>g to <strong>the</strong> trans-<strong>Sierra</strong> passes of Virg<strong>in</strong>ia, Summit, Tioga, Parker, Mono,<br />

and Donohue. Chronological data for sites and isolates along <strong>the</strong> dra<strong>in</strong>ages lead<strong>in</strong>g from<br />

<strong>the</strong>se passes <strong>in</strong>dicate that <strong>the</strong>y functioned as dest<strong>in</strong>ations and travel thoroughfares<br />

through time. Based on <strong>the</strong> preponderance of limited-use sites <strong>in</strong> all of <strong>the</strong>se areas,<br />

hunt<strong>in</strong>g, travel, and exchange were important activities conducted seasonally by Native<br />

people <strong>in</strong> <strong>the</strong> high country, aga<strong>in</strong>, throughout prehistory.<br />

Limited-use sites occurred throughout <strong>the</strong> study area and temporal sequence.<br />

Materials pre-dat<strong>in</strong>g 1500 B.P., however, are more clearly associated with this type of<br />

site. In addition, early-period hunt<strong>in</strong>g may have occurred more commonly <strong>in</strong> areas<br />

outside of <strong>the</strong> trans-<strong>Sierra</strong> corridors, suggest<strong>in</strong>g a more spatially extensive pattern of use,<br />

though additional research is necessary to fur<strong>the</strong>r address this issue. These patterns<br />

suggest that short, logistical trips, likely comb<strong>in</strong><strong>in</strong>g activities of hunt<strong>in</strong>g and exchange,<br />

constituted <strong>the</strong> primary mode of land use <strong>in</strong> <strong>the</strong> higher elevations.<br />

Materials post-dat<strong>in</strong>g 1500 B.P. are more clearly associated with <strong>in</strong>tensive-use<br />

sites. However, all of <strong>the</strong> <strong>in</strong>tensive-use sites also conta<strong>in</strong> early-period materials,<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> presence of multiple components, a common occurrence at Yosemite<br />

deposits and a complicat<strong>in</strong>g factor <strong>in</strong> dat<strong>in</strong>g features. A small sample of obsidian material<br />

was collected from rock r<strong>in</strong>g contexts <strong>in</strong> an attempt to more securely date <strong>the</strong> features,<br />

while two features were previously <strong>in</strong>vestigated through test excavations. Th<strong>in</strong> obsidian<br />

hydration values and arrow po<strong>in</strong>ts (ma<strong>in</strong>ly Desert series) reflect<strong>in</strong>g post-1500 B.P. use<br />

are most prevalent, occurr<strong>in</strong>g at all of <strong>the</strong> features except one dat<strong>in</strong>g to 2200 B.P. Three<br />

features conta<strong>in</strong> several obsidian hydration values represent<strong>in</strong>g pre-1500 B.P. activity <strong>in</strong><br />

143


addition to <strong>the</strong> more recent dates, mak<strong>in</strong>g it difficult to assess <strong>the</strong> <strong>in</strong>itial occupation of<br />

those features on surface evidence alone. All <strong>in</strong> all, rock r<strong>in</strong>g constructs appear to be<br />

more common post-1500 B.P., but <strong>the</strong>y are not entirely a late-period phenomenon.<br />

Intensive-use sites tend to be limited <strong>in</strong> spatial extent to <strong>the</strong> trans-<strong>Sierra</strong> corridors<br />

of Virg<strong>in</strong>ia Canyon and along <strong>the</strong> Mono Trail, travers<strong>in</strong>g Dana Meadows, Tuolumne<br />

Meadows, and Parker Pass Creek. Lyell Canyon is <strong>the</strong> sole exception, where only a few<br />

<strong>in</strong>tensive-use sites have been recorded at <strong>the</strong> lower end of <strong>the</strong> canyon <strong>in</strong> close proximity<br />

to <strong>the</strong> Mono Trail. It may be that this cluster of sites was situated on a spur of <strong>the</strong> Mono<br />

Trail, a dist<strong>in</strong>ct possibility given <strong>the</strong> local geography (P. DePascale, personal<br />

communication 2007), although an expansive m<strong>in</strong>eral spr<strong>in</strong>g located nearby is also<br />

currently an attraction for mule deer and may have been a settlement consideration <strong>in</strong> <strong>the</strong><br />

past. If <strong>in</strong>tensive-use sites tend to conta<strong>in</strong> late-period components, <strong>the</strong>n <strong>the</strong> trans-<strong>Sierra</strong><br />

corridors (except Lyell Canyon) functioned as <strong>the</strong> primary locations of high-elevation,<br />

seasonal residential camps. Desert series projectile po<strong>in</strong>ts and o<strong>the</strong>r flaked stone material<br />

at sites outside of base camps appear to represent logistical hunt<strong>in</strong>g and/or travel.<br />

144<br />

The simplest and most likely explanation for <strong>the</strong> spatial pattern <strong>in</strong> <strong>the</strong> study area is<br />

ease of access <strong>in</strong> <strong>the</strong> mounta<strong>in</strong>ous terra<strong>in</strong>; that is, <strong>the</strong> passes provided <strong>the</strong> most<br />

convenient, least-cost routes between <strong>the</strong> east and west. As noted by John Muir<br />

(1879:645) over a century ago, “<strong>the</strong> trails of white men, Indians, bears, deer, wild sheep,<br />

etc.” will converge on <strong>the</strong> best passes <strong>in</strong> rugged and <strong>in</strong>accessible terra<strong>in</strong>. The dra<strong>in</strong>ages<br />

lead<strong>in</strong>g from <strong>the</strong> Summit/Virg<strong>in</strong>ia, Tioga/Mono/Parker, and Donohue passes conta<strong>in</strong> <strong>the</strong><br />

greatest site densities, suggest<strong>in</strong>g <strong>the</strong>se were <strong>the</strong> primary thoroughfares for trans-<strong>Sierra</strong><br />

travel. Of <strong>the</strong>se routes, <strong>the</strong> Mono Trail, through Bloody Canyon, Mono Pass, and


Tuolumne Meadows, was known historically to Indian people as <strong>the</strong> shortest route<br />

between Yosemite Valley and Mono Lake (Hulse 1935b). The low site densities <strong>in</strong><br />

Matterhorn and Spiller canyons <strong>in</strong>dicate limited use of those areas, perhaps because<br />

travel was difficult or less direct <strong>in</strong> comparison to o<strong>the</strong>r routes. The former required<br />

travel over two passes from <strong>the</strong> east and <strong>the</strong> latter reta<strong>in</strong>s extensive snowfields and talus<br />

slopes on its nor<strong>the</strong>rn face.<br />

Exchange or acquisition of a variety of nonlocal resources from <strong>the</strong> lower<br />

elevations of <strong>the</strong> western slope and <strong>the</strong> eastern escarpment was an important reason for<br />

trans-<strong>Sierra</strong> travel. Most relevant to <strong>the</strong> <strong>Sierra</strong> are <strong>the</strong> staple food items <strong>in</strong> <strong>the</strong> east and<br />

west, p<strong>in</strong>yon nuts and acorn, respectively, while obsidian obta<strong>in</strong>ed from sources <strong>in</strong> <strong>the</strong><br />

eastern <strong>Sierra</strong> was <strong>the</strong> primary material utilized for flaked stone tool manufacture. Given<br />

<strong>the</strong> absence of <strong>the</strong>se materials <strong>in</strong> <strong>the</strong> high country, <strong>the</strong> costs <strong>in</strong>curred from transport<strong>in</strong>g<br />

items from <strong>the</strong> lower elevations should not have outweighed <strong>the</strong> caloric benefits of <strong>the</strong><br />

foods <strong>the</strong>mselves. Bett<strong>in</strong>ger et al. (1997:895) suggest that <strong>the</strong> one-way travel threshold<br />

for foragers carry<strong>in</strong>g a 36 kg load of unprocessed black oak acorn at 3 miles per hour is<br />

77 miles, while Jones and Madsen (1989) calculate <strong>the</strong> round-trip, maximum transport<br />

distance for <strong>the</strong> high-calorie p<strong>in</strong>yon nut at about 500 miles. Approximately 40 miles via<br />

contemporary trails covers <strong>the</strong> distance between <strong>the</strong> base of <strong>the</strong> eastern escarpment and<br />

important middle-elevation locations such as Yosemite Valley, <strong>in</strong>dicat<strong>in</strong>g a clear benefit<br />

for transport<strong>in</strong>g both p<strong>in</strong>yon nuts and acorn. Based on <strong>the</strong> presence of bedrock mortars<br />

and o<strong>the</strong>r <strong>in</strong>dicators of <strong>in</strong>tensive use <strong>in</strong> Virg<strong>in</strong>ia Canyon and along <strong>the</strong> Mono Trail, <strong>the</strong>se<br />

corridors appear to be <strong>the</strong> primary late-period trans-<strong>Sierra</strong> routes. The absence of a<br />

similar pattern <strong>in</strong> Lyell Canyon—an area of high site density but lack<strong>in</strong>g <strong>in</strong>tensive-use<br />

145


sites <strong>in</strong> its middle and upper reaches—may be due to <strong>in</strong>creased access costs relative to <strong>the</strong><br />

o<strong>the</strong>r routes. Donohue Pass is higher <strong>in</strong> elevation than <strong>the</strong> passes to <strong>the</strong> north and <strong>the</strong><br />

distance from <strong>the</strong> pass to important locations such as Tuolumne Meadows and Yosemite<br />

Valley is greater. It seems more likely that Mammoth Pass, <strong>the</strong> lowest elevation pass<br />

(9200 ft) <strong>in</strong> <strong>the</strong> central <strong>Sierra</strong> and just south of Donohue Pass, would have functioned as<br />

<strong>the</strong> ma<strong>in</strong> route from Long Valley to <strong>the</strong> western <strong>Sierra</strong> via <strong>the</strong> San Joaqu<strong>in</strong> River. If that<br />

is <strong>the</strong> case, <strong>the</strong>n Donohue Pass, at 11,000 ft elevation, may have been used primarily for<br />

hunt<strong>in</strong>g and possibly obsidian transport <strong>in</strong> <strong>the</strong> late period, as it was early <strong>in</strong> time. The<br />

relatively high elevation of Donohue Pass may have made it a more suitable platform for<br />

<strong>the</strong> pursuit of bighorn sheep. The locations of numerous archaeological sites <strong>in</strong> <strong>the</strong> upper<br />

Lyell bas<strong>in</strong>, noted by former long-time Yosemite employee Jack Knieriemen (1997) but<br />

not yet formally <strong>in</strong>vestigated, suggest bighorn sheep were a target <strong>in</strong> <strong>the</strong> early period.<br />

The high density of sites along <strong>the</strong> dra<strong>in</strong>ages lead<strong>in</strong>g to passes <strong>in</strong>dicates <strong>the</strong><br />

importance of <strong>the</strong>se areas for a range of activities over time, whe<strong>the</strong>r it was for reasons of<br />

hunt<strong>in</strong>g, trade, or broader residential activities. Trade clearly conditions settlement <strong>in</strong><br />

<strong>the</strong>se areas, but <strong>the</strong>y also are good locations for hunt<strong>in</strong>g and more generalized resource<br />

acquisition because access is relatively easy. This makes settlement strategies<br />

<strong>in</strong>tr<strong>in</strong>sically difficult to differentiate, which <strong>in</strong> turn, makes trends <strong>in</strong> <strong>the</strong> data presented<br />

here more significant than <strong>the</strong>y might o<strong>the</strong>rwise seem.<br />

CONCLUSIONS<br />

This study viewed <strong>the</strong> high elevations of <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong> <strong>in</strong> terms of<br />

opportunities and constra<strong>in</strong>ts for people occupy<strong>in</strong>g dist<strong>in</strong>ctive biogeographic zones <strong>in</strong> <strong>the</strong><br />

lower elevations of <strong>the</strong> eastern and western slopes. Heavy snow cover functioned as a<br />

146


primary constra<strong>in</strong>t, limit<strong>in</strong>g access to <strong>the</strong> warmer months between late spr<strong>in</strong>g and early<br />

fall, depend<strong>in</strong>g on annual wea<strong>the</strong>r conditions. The summer months, however, allowed for<br />

a range of opportunities, <strong>in</strong>clud<strong>in</strong>g access to resources <strong>in</strong> <strong>the</strong> high country, particularly<br />

large mammals, social <strong>in</strong>teractions, and exchange of, or direct access to, resources<br />

present only <strong>in</strong> <strong>the</strong> core lowlands on ei<strong>the</strong>r side of <strong>the</strong> range. The study exam<strong>in</strong>ed <strong>the</strong><br />

spatial distribution of cultural material, implied functions, and available chronological<br />

data to assess land use over time. The results of this analysis, viewed <strong>in</strong> <strong>the</strong> contexts of<br />

environment and regional subsistence-settlement systems, <strong>in</strong>dicate both persistence and<br />

change <strong>in</strong> high-elevation land use, generally support<strong>in</strong>g regional models of cultural<br />

development.<br />

Prior to ca. 1500 B.P., groups from both sides of <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong> made<br />

logistical trips to <strong>the</strong> high country from lower elevations for hunt<strong>in</strong>g and transport of<br />

nonlocal resources. The focus on hunt<strong>in</strong>g high-return resources comb<strong>in</strong>ed with <strong>the</strong><br />

dart/atlatl technology prevalent <strong>in</strong> <strong>the</strong> region necessitated large quantities of obsidian <strong>in</strong><br />

both hunt<strong>in</strong>g and obsidian procurement contexts, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> ubiquitous early-period<br />

lithic scatter. However, <strong>the</strong> trans-<strong>Sierra</strong> passes funneled most human activity dur<strong>in</strong>g that<br />

time <strong>in</strong>to <strong>the</strong> western-slope dra<strong>in</strong>ages lead<strong>in</strong>g from <strong>the</strong> passes. The presence of vast<br />

amounts of obsidian on <strong>the</strong> western slope and <strong>the</strong> abundance of early-period deposits <strong>in</strong><br />

<strong>the</strong> trans-<strong>Sierra</strong> corridors po<strong>in</strong>ts out <strong>the</strong> importance of obsidian transport and travel <strong>in</strong> <strong>the</strong><br />

study area. The specific mechanisms of obsidian acquisition are still unclear, with some<br />

researchers hypo<strong>the</strong>siz<strong>in</strong>g direct access by western groups (e.g., Bouey and Basgall 1984)<br />

and o<strong>the</strong>rs propos<strong>in</strong>g exchange as a value-added activity to <strong>the</strong> hunt<strong>in</strong>g of bighorn sheep<br />

by eastern groups (Rosenthal 2008). The obsidian cache data from <strong>the</strong> Park, comb<strong>in</strong>ed<br />

147


with <strong>the</strong> highly mobile settlement system thought to be <strong>in</strong> place <strong>in</strong> <strong>the</strong> eastern <strong>Sierra</strong><br />

dur<strong>in</strong>g <strong>the</strong> Newberry period, suggest that a formal exchange network was not <strong>in</strong> existence<br />

at that time.<br />

After 1500 B.P. <strong>the</strong> trans-<strong>Sierra</strong> corridors cont<strong>in</strong>ued to be <strong>the</strong> focus of settlement,<br />

although hunt<strong>in</strong>g occurred <strong>in</strong> non-corridor contexts as well. The presence of bedrock<br />

mortars, rock r<strong>in</strong>gs, and o<strong>the</strong>r features dat<strong>in</strong>g to this period imply <strong>in</strong>creased residential<br />

use and longer stays by groups of people <strong>in</strong> comparison to <strong>the</strong> earlier occupations. The<br />

conf<strong>in</strong>ement of <strong>in</strong>tensive-use sites to only a few of <strong>the</strong> trans-<strong>Sierra</strong> corridors suggests a<br />

more spatially constra<strong>in</strong>ed pattern of land use, consistent with developments <strong>in</strong> <strong>the</strong><br />

lowlands where <strong>in</strong>creased population densities, subsistence <strong>in</strong>tensification, and greater<br />

territorial circumscription are thought to have transpired. Lack<strong>in</strong>g <strong>in</strong>tensive-use sites <strong>in</strong><br />

its middle and upper reaches, Lyell Canyon and Donohue Pass likely cont<strong>in</strong>ued to be an<br />

important location for hunt<strong>in</strong>g and travel, but most <strong>in</strong>tensive use occurred <strong>in</strong> Virg<strong>in</strong>ia<br />

Canyon and <strong>in</strong> Dana and Tuolumne meadows along <strong>the</strong> Mono Trail. The presence of<br />

bedrock mortars, assumed to date to this period, implies an <strong>in</strong>creased reliance on plant<br />

resources relative to <strong>the</strong> preced<strong>in</strong>g period, consistent with regional developments <strong>in</strong> <strong>the</strong><br />

lowlands. The limited quantities of features and mortars, as well as <strong>the</strong> shallow depths of<br />

most mortars, however, <strong>in</strong>dicates that plant resource process<strong>in</strong>g was still a less important<br />

activity <strong>in</strong> <strong>the</strong> high elevations than <strong>in</strong> <strong>the</strong> middle and lower elevations of <strong>the</strong> western<br />

slope, where oak trees are abundant. Whe<strong>the</strong>r subsistence <strong>in</strong> <strong>the</strong> high country <strong>in</strong>volved<br />

<strong>the</strong> procurement of local resources and/or transported plant foods rema<strong>in</strong>s an issue for<br />

fur<strong>the</strong>r <strong>in</strong>quiry. Some seasonal dist<strong>in</strong>ctions <strong>in</strong> high country use may be suggested by <strong>the</strong><br />

availability of key mammal species <strong>in</strong> <strong>the</strong> high elevations and o<strong>the</strong>r food resources at<br />

148


lower elevations such as acorns and p<strong>in</strong>yon nuts. Deer, bighorn sheep, and o<strong>the</strong>r mammal<br />

species would have been available dur<strong>in</strong>g <strong>the</strong> summer <strong>in</strong> <strong>the</strong> high country, while <strong>the</strong><br />

p<strong>in</strong>yon nut and acorn harvests would have taken place <strong>in</strong> September and October <strong>in</strong> <strong>the</strong><br />

middle and lower elevations. Exchange or direct acquisition of <strong>the</strong>se resources may have<br />

<strong>in</strong>tensified <strong>in</strong> <strong>the</strong> fall, particularly if crops were unproductive <strong>in</strong> a given area.<br />

The shift <strong>in</strong> weapon technology to <strong>the</strong> bow and arrow resulted <strong>in</strong> a decreased<br />

demand for obsidian, yet trans-<strong>Sierra</strong> transport of obsidian cont<strong>in</strong>ued, some to meet local,<br />

seasonal needs and o<strong>the</strong>rs for transport far<strong>the</strong>r to <strong>the</strong> west. Late-period caches of bifaces<br />

and smaller flake blanks are less technologically diverse than those dat<strong>in</strong>g to earlier<br />

times, imply<strong>in</strong>g <strong>in</strong>creased consistency <strong>in</strong> <strong>the</strong> manufacture of obsidian products. At <strong>the</strong><br />

same time, Mono Bas<strong>in</strong> quarries may have become more important for obsidian<br />

acquisition than <strong>the</strong>y were <strong>in</strong> earlier times. These factors, <strong>in</strong> light of <strong>the</strong> subsistence<br />

<strong>in</strong>tensification <strong>in</strong> <strong>the</strong> lowlands and <strong>the</strong> spatial te<strong>the</strong>r<strong>in</strong>g <strong>in</strong> both low- and high-elevation<br />

contexts, suggest that trade of commodities became more important after about 1500 B.P.<br />

Based on previous studies and <strong>the</strong> current work, it is clear that <strong>the</strong> higher<br />

elevations of <strong>the</strong> <strong>Sierra</strong> were important elements of regional subsistence-settlement<br />

systems and key conduits for social <strong>in</strong>teractions between people liv<strong>in</strong>g <strong>in</strong> <strong>the</strong> lowlands of<br />

<strong>the</strong> eastern and western slopes. The high density of sites <strong>in</strong> <strong>the</strong> canyon bottoms is<br />

consistent with ease of access <strong>in</strong> a mounta<strong>in</strong>ous terra<strong>in</strong> and <strong>the</strong> predom<strong>in</strong>ance of lithic<br />

scatters attests to <strong>the</strong> importance of hunt<strong>in</strong>g over time. However, <strong>the</strong> prevalence of<br />

<strong>in</strong>tensive-use sites <strong>in</strong> <strong>the</strong> late period along major travel routes signaled a shift <strong>in</strong> use of<br />

<strong>the</strong> higher elevations from a pattern focused on logistical hunt<strong>in</strong>g and obsidian<br />

procurement to a more residential pattern along a few key travel routes. This shift is<br />

149


consistent with <strong>the</strong> regional pattern of <strong>in</strong>creased population densities, <strong>in</strong>creased trade, and<br />

plant resource <strong>in</strong>tensification, as well as f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> <strong>the</strong> subalp<strong>in</strong>e and alp<strong>in</strong>e zones of <strong>the</strong><br />

sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> (Morgan 2006; Stevens 2002), where sites with bedrock mortars<br />

and o<strong>the</strong>r <strong>in</strong>dicators of <strong>in</strong>tensive use clustered <strong>in</strong> travel corridors suggest greater<br />

residential mobility and a focus on trans-<strong>Sierra</strong> travel <strong>in</strong> <strong>the</strong> late period.<br />

DIRECTIONS FOR FURTHER RESEARCH<br />

The current project was <strong>in</strong>itiated as a pilot study of high-elevation land use,<br />

<strong>in</strong>corporat<strong>in</strong>g previously collected data for a segment of Yosemite’s high country and<br />

rely<strong>in</strong>g on m<strong>in</strong>imal surface collections to supplement <strong>the</strong> exist<strong>in</strong>g chronological data sets.<br />

The analysis revealed several avenues for fur<strong>the</strong>r research on high-elevation land use.<br />

The pr<strong>in</strong>cipal recommendations are to <strong>in</strong>crease survey coverage with<strong>in</strong> <strong>the</strong> Park<br />

boundaries, ensure that site and isolate data are collected consistently and to current<br />

standards, and to cont<strong>in</strong>ue a program of m<strong>in</strong>imal surface sampl<strong>in</strong>g to supplement<br />

temporally diagnostic projectile po<strong>in</strong>t f<strong>in</strong>d<strong>in</strong>gs. Additional survey and site documentation<br />

<strong>in</strong> contexts outside of direct trans-<strong>Sierra</strong> corridors would aid <strong>in</strong> clarify<strong>in</strong>g <strong>the</strong> spatial<br />

distributions and comb<strong>in</strong>ations of cultural materials for <strong>the</strong> region. With<strong>in</strong> <strong>the</strong> study area,<br />

this work could <strong>in</strong>clude a multitude of locations, <strong>in</strong>clud<strong>in</strong>g Delaney Creek, D<strong>in</strong>gley<br />

Creek, Conness Creek, Alkali Creek, Kuna Crest, upper Lyell and McClure bas<strong>in</strong>s, and<br />

<strong>the</strong> lake bas<strong>in</strong>s. Resurvey of Parker Pass Creek and re-documentation of sites not visited<br />

s<strong>in</strong>ce <strong>the</strong> 1980s would also help <strong>in</strong> securely identify<strong>in</strong>g site constituents and densities <strong>in</strong><br />

that trans-<strong>Sierra</strong> corridor.<br />

Outside of <strong>the</strong> study area, very little survey has been conducted <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

part of <strong>the</strong> Park, <strong>in</strong>clud<strong>in</strong>g Slide, Thompson, Stubblefield, and Jack Ma<strong>in</strong> canyons. In<br />

150


addition to canyon bottom <strong>in</strong>vestigations, an objective of future research should be to<br />

<strong>in</strong>crease survey coverage above 10,000 ft so that prehistoric use of alp<strong>in</strong>e environments<br />

can be more fully explored. At <strong>the</strong> same time, fur<strong>the</strong>r research regard<strong>in</strong>g bedrock mortar<br />

chronology, plant resource exploitation, and obsidian source distributions will be<br />

important to understand<strong>in</strong>g high-elevation land use. At a methodical level, developments<br />

<strong>in</strong> projectile po<strong>in</strong>t taxonomy and <strong>the</strong> use of obsidian hydration dat<strong>in</strong>g for estimat<strong>in</strong>g<br />

calendrical dates will greatly contribute to future studies <strong>in</strong> <strong>the</strong> area. F<strong>in</strong>ally, as surveyed<br />

areas are <strong>in</strong>creased, tak<strong>in</strong>g a larger perspective that syn<strong>the</strong>sizes site data from Yosemite’s<br />

wide elevational range would be an important step <strong>in</strong> settlement research.<br />

151


APPENDIX A<br />

Data Sources<br />

152


Yosemite<br />

Project<br />

1952 A/<br />

1953 A<br />

Table A-1. Major Archaeological Projects with<strong>in</strong> <strong>the</strong> Study Area.<br />

Project Type Location with<strong>in</strong> Study<br />

Area<br />

Survey Tuolumne<br />

Dana Meadows<br />

Parker Pass Creek<br />

Rafferty Creek<br />

Delaney Creek<br />

Ireland-Vogelsang<br />

Dog Lake<br />

Elizabeth Lake<br />

Lyell Canyon<br />

1956 A Pothole Dome<br />

study, test<br />

1976 B Survey Tuolumne<br />

Dana Meadows<br />

Parker Pass Creek<br />

Mono Pass<br />

Rafferty Creek<br />

Delaney Creek<br />

Virg<strong>in</strong>ia Canyon<br />

Cold Canyon<br />

Ireland-Vogelsang<br />

Dog Lake<br />

Elizabeth Lake<br />

Lyell Canyon<br />

Young Lakes<br />

1985 E Survey Tuolumne<br />

Dana Meadows<br />

Collections Special Studies Reference*<br />

x - Bennyhoff (1956a)<br />

Tuolumne: TUO-134 x XRF, OH Bennyhoff (1956b);<br />

Montague (2008)<br />

x - Napton and<br />

Greathouse (1976)<br />

x XRF, OH Mundy (1992)<br />

1987 P Survey Tuolumne x Hull (1987)<br />

1988 D/<br />

1989 M<br />

Survey Virg<strong>in</strong>ia Canyon x XRF, OH Laird (1988, 1989)<br />

1989 L Survey Lyell Canyon x - Gavette (2007)<br />

1992 C Test Dana Meadows:<br />

TUO-754/H, 2825,<br />

2828, 2829, 2830,<br />

2831, 2833, 2834,<br />

2841<br />

x XRF, OH,<br />

C-14, faunal<br />

Montague (1996a)<br />

1992 E Survey Dana Meadows x - Jackson (1992)<br />

1992<br />

I,J,K,L<br />

Survey, cache<br />

study<br />

Tuolumne<br />

Young Lakes<br />

Vogelsang area<br />

TUO-4436 (cache)<br />

x XRF, OH Gavette (2002)<br />

1993 B Test Tuolumne: TUO-124,<br />

500<br />

x XRF, OH, C-14 Vittands (1994)<br />

1994 H Survey Lyell Canyon x - DePascale and<br />

Curtis (2006)<br />

1994 M Test, data<br />

recovery<br />

Tuolumne: TUO-166,<br />

501, 2810, 2811, 3561<br />

x XRF, OH,<br />

tephra<br />

Hull et al. (1995)<br />

153


Yosemite<br />

Project<br />

Project Type Location with<strong>in</strong> Study<br />

Area<br />

Collections Special Studies Reference*<br />

1995 C Test Tuolumne: TUO-120 x XRF, OH, C-14 Montague (1996b)<br />

1996 G Subsurface<br />

survey<br />

Tuolumne: TUO-121,<br />

167, 3937/H, 3938,<br />

3940, 3941, 3944,<br />

3945/H<br />

x - Kahl (1999)<br />

1996 I Survey Tuolumne<br />

Matterhorn Canyon<br />

Virg<strong>in</strong>ia Canyon<br />

McCabe Lakes<br />

Ireland-Vogelsang<br />

x - Jackson (1996)<br />

1998 P Survey Vogelsang area x - Kahl (2001a)<br />

1998 II Cache study Tuolumne:<br />

TUO-500 cache<br />

1999 X Survey Lyell Canyon<br />

Elizabeth Lake<br />

x XRF, OH Vittands (1998)<br />

x - Kahl (2001b)<br />

2000 C Survey Lyell Canyon x - Gavette (2000)<br />

2001 D Survey Matterhorn Canyon<br />

Miller and Hook lakes<br />

Virg<strong>in</strong>ia Canyon<br />

2001 H/<br />

2002 I<br />

Survey Lyell Canyon<br />

Elizabeth Lake<br />

- - DePascale (2002)<br />

x - Gavette (2003)<br />

2001 U Survey Lyell Canyon x - Jackson (2002)<br />

2002 H Survey Ireland-Vogelsang<br />

Lyell Canyon<br />

2002 R Survey Dana Meadows<br />

Parker Pass Creek<br />

2003 A Survey Lyell Canyon<br />

Rafferty Creek<br />

Virg<strong>in</strong>ia Canyon<br />

2003 H Survey Cold Canyon<br />

Conness Creek<br />

Lyell Canyon<br />

Onion, Spiller,<br />

&Soldier lakes<br />

Spiller Canyon<br />

Virg<strong>in</strong>ia Canyon<br />

x - Jackson and Hagen<br />

(2007)<br />

- - Norum et al. (2002)<br />

x - DePascale (2004)<br />

x - Gavette (2004)<br />

2003 R Survey Gaylor Creek x - Hanchett (2004)<br />

2004 X Survey Matterhorn Canyon<br />

Miller Lake<br />

Rafferty Creek<br />

x - Gavette (2005)<br />

2004 MM Cache study Parker Pass: TUO-<br />

4509<br />

x XRF, OH, C-14 Bevill (2009)<br />

2006 C Survey Tuolumne<br />

Dana Meadows<br />

Lyell Canyon<br />

x - Shive (2007)<br />

Key: x=collections present; XRF=x-ray fluorescence analysis; OH=obsidian hydration analysis; *see References Cited.<br />

154


Table A-2. Summary of Site Attributes.<br />

I-L Sub-<br />

Elev BRM<br />

Site<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-4638 L 1 Alkali Creek 8042 x<br />

CA-MRP-0156 L 1 Boo<strong>the</strong> Lake 9880 x x x<br />

CA-TUO-0741 L 2 Cold Canyon 8690 RS x x<br />

CA-TUO-0742 L 1 Cold Canyon 8710 x<br />

CA-TUO-4641 L 1 Cold Canyon 8700 x<br />

CA-TUO-4642 L 1 Cold Canyon 8680 x x x<br />

CA-TUO-4643 L 1 Cold Canyon 8570 x<br />

CA-TUO-4644 I 5 Cold Canyon 8725 x x x<br />

CA-TUO-4645 L 1 Cold Canyon 8700 x<br />

CA-TUO-4646 I 5 Cold Canyon 8700 x x<br />

P-55-006554 L 1 Dana slope 10800 x x x<br />

P-55-006555 L 1 Dana slope 10440 x<br />

CA-TUO-0171 L 1 Delaney Creek 9400 x<br />

CA-TUO-0172 L 1 Delaney Creek 9410 x x x<br />

CA-TUO-0173 L 1 Delaney Creek 9400 x x<br />

CA-TUO-0174 L 1 Delaney Creek 9560 x<br />

CA-TUO-0175 L 1 Delaney Creek 9600 x<br />

CA-TUO-0176 L 1 Delaney Creek 9640 x<br />

CA-TUO-0177 L 1 Delaney Creek 9680 x x<br />

CA-TUO-0178 L 1 Delaney Creek 9760 x x x<br />

CA-TUO-0047 L 1 Dana Fork 9900 x<br />

CA-TUO-0179/2829 I 5 Dana Fork 9400 x x x x x x BST<br />

CA-TUO-0180/2837 I 8 Dana Fork 9450 x x x x x<br />

CA-TUO-0181 L 1 Dana Fork 9480 x<br />

CA-TUO-0182 L 1 Dana Fork 9520 x<br />

CA-TUO-0183 L 1 Dana Fork 9480 x x<br />

155<br />

CA-TUO-0201 L 1 Dana Fork 9910 x<br />

CA-TUO-0202 L 1 Dana Fork 9840 x


I-L Sub-<br />

Elev BRM<br />

Site<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/<br />

156<br />

O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-0203 L 1 Dana Fork 9800 x<br />

CA-TUO-0754/H I 8 Dana Fork 9280 x x x x x BST<br />

CA-TUO-0758 L 1 Dana Fork 9600 x x<br />

CA-TUO-0927 L 1 Dana Fork 9935 x x x x<br />

CA-TUO-0928/3933 L 1 Dana Fork 8800 x x<br />

CA-TUO-2814/H L 1 Dana Fork 9085 x x x<br />

CA-TUO-2815/H I 5 Dana Fork 9040 x x x x x<br />

CA-TUO-2816 I 5 Dana Fork 9210 x x<br />

CA-TUO-2817 L 1 Dana Fork 9250 x x x<br />

CA-TUO-2818 L 1 Dana Fork 9250 x x<br />

CA-TUO-2819 L 1 Dana Fork 9270 x x x x<br />

CA-TUO-2820 L 1 Dana Fork 9315 x x<br />

CA-TUO-2821/H I 5 Dana Fork 9290 x x x x<br />

CA-TUO-2822 I 7 Dana Fork 9360 x x x x<br />

CA-TUO-2823 I 5 Dana Fork 9330 x x<br />

CA-TUO-2824 I 5 Dana Fork 9370 x x x x x<br />

CA-TUO-2825 L 1 Dana Fork 9360 x x x x<br />

CA-TUO-2826 I 5 Dana Fork 9380 x x x x<br />

CA-TUO-2827 L 1 Dana Fork 9380 x<br />

CA-TUO-2828 L 1 Dana Fork 9370 x x x x<br />

CA-TUO-2830 L 2 Dana Fork 9415 H x x x<br />

CA-TUO-2831 L 1 Dana Fork 9440 x x x x<br />

CA-TUO-2832 L 1 Dana Fork 9480 x x<br />

CA-TUO-2833 I 9 Dana Fork 9450 x x H x x x x x x<br />

Steatite,<br />

CA-TUO-2834 I 11 Dana Fork 9450 x x x H x x x x x Crystal,<br />

Ochre<br />

CA-TUO-2835 I 7 Dana Fork 9440 x x x x x x Chopper<br />

CA-TUO-2836 L 1 Dana Fork 9460 x x x<br />

CA-TUO-2838 I 7 Dana Fork 9470 x x x<br />

CA-TUO-2839 I 5 Dana Fork 9450 x x x x


FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

MS FEA<br />

CA-TUO-2840 L 1 Dana Fork 9540 x x<br />

CA-TUO-2841 L 1 Dana Fork 9920 x x x x Core<br />

CA-TUO-4905 L 1 Dana Fork 9840 x<br />

CA-TUO-4906 L 1 Dana Fork 9600 x x x<br />

Site<br />

P-55-006556 L 1 Dana Fork 9600 x<br />

YOSE 1992 E-01 L 8 Dana Fork 9938 x HB x x x x<br />

YOSE 1994 C-01 I 5 Dana Fork 9320 x x<br />

YOSE 1994 C-02 I 4 Dana Fork 9300 x<br />

YOSE 1994 C-03 L 1 Dana Fork 9390 x<br />

YOSE 1994 C-05 L 1 Dana Fork 9630 x x<br />

CA-TUO-0168 L 1 Dog Lake 9170 x<br />

CA-TUO-0169 L 1 Dog Lake 9170 x<br />

CA-TUO-0170 L 1 Dog Lake 9185 x x<br />

CA-TUO-0163 L 1 Elizabeth Lake 9520 x x<br />

CA-TUO-0164 L 1 Elizabeth Lake 9520 x<br />

CA-TUO-0165 L 1 Elizabeth Lake 9508 x x x<br />

CA-TUO-0099 L 1 Evelyn 10340 x<br />

CA-TUO-0156 L 1 Evelyn 10350 x<br />

CA-TUO-0157 L 1 Evelyn 10334 x x<br />

CA-TUO-4230 L 1 Evelyn 10334 x x<br />

CA-MRP-0157 L 1 Fletcher 10160 x x x<br />

CA-TUO-0755 L 1 Gaylor 10050 x x<br />

CA-TUO-0756 L 1 Gaylor 10340 x<br />

CA-TUO-0757 L 1 Gaylor 10400 x x<br />

P-55-006782 L 1 Gaylor 10000 x x<br />

CA-TUO-0161 L 1 Ireland area 10500 x<br />

CA-TUO-0241 L 1 Ireland area 10600 x x x<br />

CA-TUO-0245 L 1 Ireland area 10760 x x<br />

CA-TUO-0246 L 1 Ireland area 10550 x<br />

CA-TUO-4521 L 1 Ireland area 10480 x<br />

157<br />

CA-TUO-4522 L 1 Ireland area 10660 x x x


FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

MS FEA<br />

CA-TUO-0045/4311 L 1 Lyell Fork 10200 x<br />

CA-TUO-0046/H L 1 Lyell Fork 9680 x x<br />

Site<br />

CA-TUO-0135 L 1 Lyell Fork 8690 x<br />

CA-TUO-0136 L 1 Lyell Fork 8700 x<br />

CA-TUO-0145 L 1 Lyell Fork 8880 x x<br />

CA-TUO-0147 L 1 Lyell Fork 8880 x x<br />

CA-TUO-0149 L 1 Lyell Fork 8840 x x x<br />

CA-TUO-0150 L 1 Lyell Fork 8820 x x<br />

CA-TUO-0151 L 1 Lyell Fork 8800 x<br />

CA-TUO-0162 L 1 Lyell Fork 9800 x<br />

CA-TUO-3823 L 2 Lyell Fork 8750 RS x x x<br />

CA-TUO-3828 L 1 Lyell Fork 8710 x x<br />

CA-TUO-3829 L 1 Lyell Fork 8720 x<br />

CA-TUO-3830 L 1 Lyell Fork 8760 x<br />

CA-TUO-3831 L 1 Lyell Fork 8750 x x x x<br />

CA-TUO-3832 L 1 Lyell Fork 8705 x<br />

CA-TUO-3833 L 1 Lyell Fork 8735 x<br />

CA-TUO-3834 L 1 Lyell Fork 8745 x<br />

CA-TUO-3835 L 1 Lyell Fork 8740 x x<br />

CA-TUO-3836 L 1 Lyell Fork 8735 x x x<br />

CA-TUO-3837 L 1 Lyell Fork 8750 x x<br />

Core, BST,<br />

SS<br />

CA-TUO-3838 I 7 Lyell Fork 8770 x x RA x x x x x<br />

CA-TUO-3839 L 1 Lyell Fork 8740 x<br />

CA-TUO-3840 L 1 Lyell Fork 8760 x x<br />

CA-TUO-3841 L 1 Lyell Fork 8780 x x x x<br />

CA-TUO-3842 L 1 Lyell Fork 8780 x<br />

158<br />

CA-TUO-3843 L 1 Lyell Fork 8800 x<br />

CA-TUO-3844 L 1 Lyell Fork 8750 x


FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

O<strong>the</strong>r<br />

FEA<br />

AF MID HS/<br />

MS<br />

BRM<br />

/PE<br />

Elev<br />

(ft)<br />

Area<br />

Subtype<br />

I-L<br />

Type<br />

Site<br />

CA-TUO-3845 I 3 Lyell Fork 8760 x RA x x x x x<br />

CA-TUO-3847 L 1 Lyell Fork 8780 x x<br />

CA-TUO-3848 L 3 Lyell Fork 8800 RA x x<br />

CA-TUO-3849 L 1 Lyell Fork 8790 x x<br />

CA-TUO-3850 L 1 Lyell Fork 8790 x x<br />

CA-TUO-4056 L 1 Lyell Fork 8888 x x x<br />

CA-TUO-4264 L 1 Lyell Fork 8995 x x<br />

CA-TUO-4265 L 1 Lyell Fork 8919 x x<br />

CA-TUO-4266 L 1 Lyell Fork 8904 x x<br />

CA-TUO-4488 L 1 Lyell Fork 8900 x x<br />

CA-TUO-4489 L 1 Lyell Fork 8950 x x<br />

CA-TUO-4490 L 1 Lyell Fork 8840 x<br />

CA-TUO-4491 L 1 Lyell Fork 8920 x<br />

CA-TUO-4492 L 1 Lyell Fork 8920 x x<br />

CA-TUO-4510 L 1 Lyell Fork 8800 x x x<br />

CA-TUO-4511 L 1 Lyell Fork 8884 x x<br />

CA-TUO-4636 L 1 Lyell Fork 8728 x x<br />

CA-TUO-4637 L 1 Lyell Fork 8775 x x<br />

CA-TUO-4639 I 7 Lyell Fork 8815 x x x x x x x x<br />

CA-TUO-4640 L 1 Lyell Fork 8855 x<br />

CA-TUO-4662 L 1 Lyell Fork 8845 x<br />

CA-TUO-4663 L 1 Lyell Fork 8860 x<br />

CA-TUO-4664 L 1 Lyell Fork 8610 x<br />

CA-TUO-4665 I 12 Lyell Fork 9045 x RA x x x x x Core<br />

CA-TUO-4849 L 1 Lyell Fork 9520 x x<br />

CA-TUO-4850 L 1 Lyell Fork 9570 x x<br />

159<br />

CA-TUO-4851 L 1 Lyell Fork 9540 x x


I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-4852 L 1 Lyell Fork 11056 x x<br />

CA-TUO-4854 L 1 Lyell Fork 10850 x<br />

CA-TUO-4855 L 1 Lyell Fork 10820 x<br />

CA-TUO-4856 L 1 Lyell Fork 10700 x x<br />

CA-TUO-4857 L 1 Lyell Fork 10620 x x<br />

CA-TUO-4858 L 1 Lyell Fork 10560 x x<br />

CA-TUO-4859 L 1 Lyell Fork 10400 x x<br />

CA-TUO-4860 L 1 Lyell Fork 8960 x<br />

Site<br />

CA-TUO-4869 L 1 Lyell Fork 8977 x<br />

CA-TUO-4895 L 1 Lyell Fork 9680 x x<br />

CA-TUO-4896 L 1 Lyell Fork 9620 x x<br />

P-55-006568 L 1 Lyell Fork 8720 x x<br />

CA-TUO-4227 L 1 Matterhorn<br />

8640 x<br />

Canyon<br />

CA-TUO-4228 L 1 Matterhorn<br />

8640 x<br />

Canyon<br />

CA-TUO-4731 L 1 Matterhorn<br />

9600 x<br />

Canyon<br />

CA-TUO-4732 L 1 Matterhorn<br />

9600 x x x<br />

Canyon<br />

CA-TUO-4497 L 1 McCabe Creek 9245 x<br />

CA-TUO-4224 L 1 McCabe Lake 9820 x<br />

CA-TUO-4225 L 1 McCabe Lake 10460 x x<br />

P-55-005161 L 1 McCabe Lake 9800 x<br />

CA-TUO-4721 L 1 Miller Lake 9515 x x<br />

CA-TUO-0759/H I 5 Mono Pass 10604 x x<br />

CA-TUO-0752 L 1 D<strong>in</strong>gley Creek 9880 x Crystal<br />

CA-TUO-0184 L 1 Parker Pass 9530 x x<br />

CA-TUO-0185 L 1 Parker Pass 9520 x x x<br />

CA-TUO-0186 L 1 Parker Pass 9500 x<br />

CA-TUO-0187 I 5 Parker Pass 9500 x x x<br />

CA-TUO-0188 L 1 Parker Pass 9700 x<br />

160<br />

CA-TUO-0189 L 1 Parker Pass 9700 x


I-L Sub-<br />

Elev BRM<br />

Site<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-0190 L 1 Parker Pass 9700 x<br />

CA-TUO-0191 L 1 Parker Pass 9750 x<br />

CA-TUO-0192 L 1 Parker Pass 9900 x<br />

CA-TUO-0193 L 1 Parker Pass 9900 x<br />

CA-TUO-0194 L 1 Parker Pass 9900 x<br />

CA-TUO-0195 L 1 Parker Pass 9900 x<br />

CA-TUO-0196 L 1 Parker Pass 9900 x<br />

CA-TUO-0197 L 1 Parker Pass 10100 x<br />

CA-TUO-0198 L 1 Parker Pass 10400 x<br />

CA-TUO-0199 L 1 Parker Pass 10400 x<br />

CA-TUO-0200 L 1 Parker Pass 10500 x<br />

CA-TUO-0204 L 1 Parker Pass 10700 x<br />

CA-TUO-4509 L 4 Parker Pass 9990 C<br />

P-55-006557 L 1 Parker Pass 10100 x x<br />

P-55-006558 L 1 Parker Pass 10000 x x<br />

P-55-006559 L 1 Parker Pass 10240 x<br />

P-55-006560 L 1 Parker Pass 10320 x x x<br />

P-55-006561 L 1 Parker Pass 10450 x x x x<br />

P-55-006562 L 1 Parker Pass 10800 x<br />

P-55-006563 L 1 Parker Pass 10760 x x x x<br />

P-55-006564 L 1 Parker Pass 10600 x x<br />

P-55-006565 L 1 Parker Pass 10520 x x<br />

CA-TUO-0152 L 1 Rafferty Creek 9640 x<br />

CA-TUO-0153 L 1 Rafferty Creek 9640 x x<br />

CA-TUO-0155 L 1 Rafferty Creek 9992 x x x x<br />

CA-TUO-0760 L 1 Rafferty Creek 9160 x x<br />

CA-TUO-0761 L 1 Rafferty Creek 9220 x<br />

CA-TUO-0762 L 1 Rafferty Creek 9400 x x<br />

CA-TUO-4055 L 1 Rafferty Creek 9870 x x x Crystal<br />

CA-TUO-4659 L 1 Rafferty Creek 9320 x<br />

161<br />

CA-TUO-4660 L 1 Rafferty Creek 9915 x


FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

MS FEA<br />

CA-TUO-4661 L 1 Rafferty Creek 9160 x<br />

CA-TUO-4722 L 1 Rafferty Creek 9990 x<br />

CA-TUO-4756/H L 1 Rafferty Creek 9550 x x<br />

CA-TUO-0154 L 1 Rafferty Creek 9640 x<br />

YOSE 1989 M-05 L 1 Return Lake 10250 x<br />

CA-TUO-4229 I 4 Spiller Canyon 8760 x<br />

CA-TUO-4635 I 6 Spiller canyon 8910 x RS x x<br />

P-55-006775 L 1 Spiller Canyon 9300 x x x<br />

Site<br />

P-55-006776 L 1 Spiller Canyon 9450 x<br />

P-55-006777 L 1 Spiller Canyon 9500 x<br />

P-55-006778 L 1 Spiller Canyon 9200 x x<br />

P-55-006779 L 1 Spiller Lake 10680 x x<br />

CA-TUO-0108 L 1 Tuolumne 8565 x x<br />

L 1 Tuolumne 8569 x x x<br />

CA-TUO-<br />

0109/110/509/510/511<br />

/H<br />

CA-TUO-0111 I 5 Tuolumne 8565 x x<br />

CA-TUO-0112 L 1 Tuolumne 8570 x x<br />

CA-TUO-0113 L 1 Tuolumne 8565 x x<br />

CA-TUO-0114 L 1 Tuolumne 8569 x<br />

CA-TUO-0115 L 1 Tuolumne 8570 x<br />

CA-TUO-0116 L 1 Tuolumne 8575 x<br />

CA-TUO-0117 L 1 Tuolumne 8575 x Core<br />

CA-TUO-0118 I 5 Tuolumne 8575 x x<br />

CA-TUO-0119 L 1 Tuolumne 8590 x<br />

CA-TUO-0120 L 8 Tuolumne 8550 x x x x<br />

CA-TUO-0121 I 5 Tuolumne 8580 x x x<br />

CA-TUO-0123 L 1 Tuolumne 8572 x x x<br />

CA-TUO-0124 I 5 Tuolumne 8600 x x x x x<br />

CA-TUO-0125/126/H I 5 Tuolumne 8560 x x x x x<br />

162


I-L Sub-<br />

Elev BRM<br />

Site<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-0127 L 1 Tuolumne 8550 x<br />

I 5 Tuolumne 8565 x x x<br />

CA-TUO-<br />

0128/129/130/504<br />

CA-TUO-0131 L 1 Tuolumne 8560 x x<br />

CA-TUO-0132 L 1 Tuolumne 8560 x<br />

CA-TUO-0133 I 6 Tuolumne 8585 x HB? x x<br />

CA-TUO-0134 I 3 Tuolumne 8560 x H, C x x x<br />

CA-TUO-0146 L 1 Tuolumne 8600 x<br />

BST, Core,<br />

Crystal<br />

CA-TUO-0166 I 7 Tuolumne 8600 x x H x x x x<br />

CA-TUO-0167/H I 7 Tuolumne 8610 x x x x<br />

CA-TUO-0490 L 1 Tuolumne 8620 x<br />

CA-TUO-0491 L 1 Tuolumne 8650 x<br />

CA-TUO-0492 L 1 Tuolumne 8655 x x<br />

CA-TUO-0493 L 1 Tuolumne 8580 x<br />

CA-TUO-0494 L 1 Tuolumne 8578 x x x<br />

x x<br />

hist<br />

RA,<br />

RS<br />

CA-TUO-0495/H L 2 Tuolumne 8645<br />

CA-TUO-0496 L 1 Tuolumne 8592 x<br />

CA-TUO-0497 L 1 Tuolumne 8580 x<br />

CA-TUO-0498 L 1 Tuolumne 8650 x<br />

CA-TUO-0499 I 5 Tuolumne 8560 x x<br />

x x x x Core<br />

H, C,<br />

RS<br />

CA-TUO-0500 I 2 Tuolumne 8650<br />

CA-TUO-0501 L 1 Tuolumne 8615 x x<br />

CA-TUO-0502 L 1 Tuolumne 8625 x x<br />

CA-TUO-0503 L 1 Tuolumne 8660 x x x<br />

CA-TUO-0505 L 1 Tuolumne 8640 x<br />

CA-TUO-0506 L 1 Tuolumne 8630 x<br />

CA-TUO-0507 I 5 Tuolumne 8558 x x<br />

163<br />

CA-TUO-0508 L 1 Tuolumne 8680 x


I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-0527/H L 1 Tuolumne 8620 x x<br />

CA-TUO-0528 L 1 Tuolumne 8630 x x<br />

CA-TUO-0529 L 1 Tuolumne 8640 x x<br />

CA-TUO-0530 L 1 Tuolumne 8720 x x<br />

Site<br />

CA-TUO-0531 L 1 Tuolumne 8620 x x x<br />

CA-TUO-0532 L 1 Tuolumne 8640 x x<br />

CA-TUO-0733 L 1 Tuolumne 8410 x x x<br />

CA-TUO-0734 L 1 Tuolumne 8400 x x<br />

CA-TUO-0735 L 1 Tuolumne 8360 x<br />

CA-TUO-2808 L 1 Tuolumne 8620 x x x<br />

CA-TUO-2809 L 1 Tuolumne 8620 x<br />

CA-TUO-2810 L 1 Tuolumne 8550 x x x x<br />

CA-TUO-2811 L 1 Tuolumne 8640 x x x x x<br />

CA-TUO-2812 L 1 Tuolumne 8650 x x<br />

CA-TUO-2813 L 2 Tuolumne 8800 HB x x<br />

CA-TUO-3561 L 1 Tuolumne 8625 x x x x BST<br />

CA-TUO-3824 L 1 Tuolumne 8680 x<br />

CA-TUO-3825 L 1 Tuolumne 8660 x<br />

CA-TUO-3826 L 1 Tuolumne 8690 x x<br />

CA-TUO-3827 L 1 Tuolumne 8710 x x<br />

CA-TUO-3936 L 1 Tuolumne 8620 x x<br />

CA-TUO-3937/H L 1 Tuolumne 8640 x x x Glass bead<br />

CA-TUO-3938/H I 5 Tuolumne 8600 x x x x<br />

CA-TUO-3939 L 2 Tuolumne 8640 HB x x<br />

CA-TUO-3940 L 1 Tuolumne 8579 x x<br />

CA-TUO-3941 L 1 Tuolumne 8560 x<br />

CA-TUO-3942 L 1 Tuolumne 8560 x x<br />

CA-TUO-3943 L 2 Tuolumne 8700 HB? x x<br />

164<br />

CA-TUO-3944 L 1 Tuolumne 8550 x<br />

CA-TUO-3945/H L 1 Tuolumne 8550 x x x


I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-3959 I? 5 Tuolumne 8680 x x<br />

CA-TUO-3960 I? 5 Tuolumne 8700 x x x<br />

Site<br />

CA-TUO-3961 L 1 Tuolumne 8575 x<br />

CA-TUO-4435 L 1 Tuolumne 8560 x x x<br />

CA-TUO-4436 L 2 Tuolumne 8400 C x<br />

CA-TUO-4437 L 1 Tuolumne 8540 x x<br />

CA-TUO-4438 L 1 Tuolumne 8550 x<br />

CA-TUO-4439 L 1 Tuolumne 8585 x x<br />

CA-TUO-4440 L 1 Tuolumne 8550 x<br />

CA-TUO-4902/H L 1 Tuolumne 8600 x x<br />

CA-TUO-4903 L 1 Tuolumne 8600 x<br />

CA-TUO-4907 L 1 Tuolumne 8600 x x<br />

P-22-001741 L 1 Townsley 10370 x x<br />

P-22-001743 L 1 Townsley 10400 x<br />

CA-TUO-0158 L 1 U. Evelyn 10440 x x<br />

CA-TUO-0159 L 1 U. Evelyn 10440 x x x<br />

CA-TUO-0160 L 1 U. Evelyn 10440 x x x x<br />

CA-TUO-0743 L 1 Virg<strong>in</strong>ia Canyon 8600 x<br />

CA-TUO-0744 L 1 Virg<strong>in</strong>ia Canyon 8700 x<br />

CA-TUO-0745 L 1 Virg<strong>in</strong>ia Canyon 8800 x x x x<br />

CA-TUO-0746 L 1 Virg<strong>in</strong>ia Canyon 8880 x x<br />

CA-TUO-0747 L 1 Virg<strong>in</strong>ia Canyon 9040 x x x<br />

CA-TUO-0748 L 1 Virg<strong>in</strong>ia Canyon 9150 x x<br />

CA-TUO-0749 I 11 Virg<strong>in</strong>ia Canyon 9240 x x x<br />

CA-TUO-0750 L 1 Virg<strong>in</strong>ia Canyon 9360 x x x x<br />

CA-TUO-0751 I 11 Virg<strong>in</strong>ia Canyon 10250 x x x x x x<br />

CA-TUO-3763 L 1 Virg<strong>in</strong>ia Canyon 9900 x x x x<br />

CA-TUO-3764 L 1 Virg<strong>in</strong>ia Canyon 9350 x x BST<br />

CA-TUO-3765 I 10 Virg<strong>in</strong>ia Canyon 8360 x x x Petro x x x x<br />

CA-TUO-3766 L 1 Virg<strong>in</strong>ia Canyon 8380 x x x x<br />

165<br />

CA-TUO-3767 L 1 Virg<strong>in</strong>ia Canyon 8400 x x


FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

MS FEA<br />

CA-TUO-3768 L 1 Virg<strong>in</strong>ia Canyon 8460 x Core<br />

CA-TUO-3769 L 2 Virg<strong>in</strong>ia Canyon 9280 RS x x x<br />

CA-TUO-3770 I 5 Virg<strong>in</strong>ia Canyon 9240 x x x x<br />

CA-TUO-3771 L 1 Virg<strong>in</strong>ia Canyon 9120 x x<br />

CA-TUO-3772 I 7 Virg<strong>in</strong>ia Canyon 9040 x x x x<br />

CA-TUO-3773 I 5 Virg<strong>in</strong>ia Canyon 8560 x x x x x<br />

Site<br />

CA-TUO-3774 L 1 Virg<strong>in</strong>ia Canyon 8560 x x<br />

CA-TUO-3775 L 1 Virg<strong>in</strong>ia Canyon 8600 x<br />

x x<br />

CA-TUO-3776/H I 6 Virg<strong>in</strong>ia Canyon 8700 x RS,<br />

RA<br />

CA-TUO-3777 L 1 Virg<strong>in</strong>ia Canyon 8620 x x<br />

CA-TUO-3778/H I 9 Virg<strong>in</strong>ia Canyon 8610 x x x x x<br />

CA-TUO-3779 L 1 Virg<strong>in</strong>ia Canyon 9100 x x<br />

CA-TUO-3780 L 1 Virg<strong>in</strong>ia Canyon 9050 x x<br />

CA-TUO-3781 L 1 Virg<strong>in</strong>ia Canyon 9050 x<br />

CA-TUO-3782 L 1 Virg<strong>in</strong>ia Canyon 9060 x x<br />

CA-TUO-3783 I 10 Virg<strong>in</strong>ia Canyon 8970 x x x x RA x x x x BST,<br />

Chopper<br />

CA-TUO-3784 L 1 Virg<strong>in</strong>ia Canyon 8890 x<br />

CA-TUO-3785 L 1 Virg<strong>in</strong>ia Canyon 8780 x x<br />

CA-TUO-3786 I 6 Virg<strong>in</strong>ia Canyon 8650 x x x x x<br />

CA-TUO-3787 L 1 Virg<strong>in</strong>ia Canyon 8620 x<br />

CA-TUO-3788 L 1 Virg<strong>in</strong>ia Canyon 8650 x x<br />

CA-TUO-3789 L 1 Virg<strong>in</strong>ia Canyon 8750 x x x<br />

CA-TUO-3790 L 2 Virg<strong>in</strong>ia Canyon 8800 HB x<br />

CA-TUO-3791 I 5 Virg<strong>in</strong>ia Canyon 8800 x x x<br />

CA-TUO-3792 I 7 Virg<strong>in</strong>ia Canyon 8520 x x x x x x BST<br />

CA-TUO-3793 L 1 Virg<strong>in</strong>ia Canyon 8820 x x<br />

CA-TUO-3794 L 1 Virg<strong>in</strong>ia Canyon 8800 x x<br />

CA-TUO-3795 L 1 Virg<strong>in</strong>ia Canyon 8800 x<br />

166<br />

CA-TUO-3796 L 1 Virg<strong>in</strong>ia Canyon 8800 x x<br />

CA-TUO-3797 L 1 Virg<strong>in</strong>ia Canyon 8960 x x


I-L Sub-<br />

Elev BRM<br />

Area<br />

AF MID<br />

Type type<br />

(ft) /PE<br />

HS/ O<strong>the</strong>r<br />

FAU DEB PP BF DR FT O<strong>the</strong>r Tool<br />

MS FEA<br />

CA-TUO-3798 L 1 Virg<strong>in</strong>ia Canyon 8970 x<br />

CA-TUO-3799 L 1 Virg<strong>in</strong>ia Canyon 9040 x x<br />

Site<br />

CA-TUO-3800 L 1 Virg<strong>in</strong>ia Canyon 9120 x<br />

CA-TUO-3801 L 1 Virg<strong>in</strong>ia Canyon 9040 x x<br />

CA-TUO-3802 L 1 Virg<strong>in</strong>ia Canyon 9250 x<br />

CA-TUO-3803 L 1 Virg<strong>in</strong>ia Canyon 8480 x<br />

CA-TUO-3804 L 1 Virg<strong>in</strong>ia Canyon 8680 x x<br />

CA-TUO-3805 L 1 Virg<strong>in</strong>ia Canyon 8400 x x x<br />

CA-TUO-3806 I 5 Virg<strong>in</strong>ia Canyon 8400 x x x<br />

CA-TUO-3807 I 5 Virg<strong>in</strong>ia Canyon 8400 x x x x<br />

CA-TUO-3808 L 1 Virg<strong>in</strong>ia Canyon 9430 x x x<br />

CA-TUO-3809 L 1 Virg<strong>in</strong>ia Canyon 9430 x x x<br />

CA-TUO-3810/H I 5 Virg<strong>in</strong>ia Canyon 9300 x x x x x<br />

CA-TUO-3811 I 9 Virg<strong>in</strong>ia Canyon 9280 x x x x x x x x<br />

CA-TUO-4226 I 4 Virg<strong>in</strong>ia Canyon 8400 x<br />

CA-TUO-4496 L 1 Virg<strong>in</strong>ia Canyon 8760 x<br />

CA-TUO-4972 L 1 Virg<strong>in</strong>ia Canyon 9760 x<br />

P-55-005164 L 4 Virg<strong>in</strong>ia Canyon 8350 HB?<br />

YOSE 1989 M-02 L 1 Virg<strong>in</strong>ia Canyon 9950 x x<br />

x x x x<br />

hist<br />

RA<br />

YOSE 1989 M-03/H L 1 Virg<strong>in</strong>ia Canyon 9900<br />

YOSE 1989 M-04 L 1 Virg<strong>in</strong>ia Canyon 9920 x x x<br />

CA-MRP-1438 L 1 Vogelsang Lake 10360 x x x x Glass bead<br />

CA-TUO-0753 L 1 Young Lake 9883 x x x x<br />

CA-TUO-4223 L 1 Young Lake 9860 x x<br />

Key: x=attribute is present; site designations <strong>in</strong> bold text=previously excavated; I-L: <strong>in</strong>tensive or limited use; BRM/PE=bedrock mortar/pestle; AF=architectural feature<br />

(domestic structure); MID=midden; HS/MS=handstone/mill<strong>in</strong>gstone; O<strong>the</strong>r FEA=o<strong>the</strong>r feature; FAU=faunal; DEB=debitage; PP=projectile po<strong>in</strong>t; BF=biface; DR=drill;<br />

FT=flake tool; RS=rockshelter; H=hearth; HB=hunt<strong>in</strong>g bl<strong>in</strong>d; RA=rock alignment; C=flaked-stone cache; SS=shaft straightener; BST=battered stone tool;<br />

Petro=petroglyph.<br />

167


Table A-3. Summary of Chronological Data by Site.<br />

Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-4638 L 1 Alkali Creek 8042<br />

CA-MRP-0156 L 1 Boo<strong>the</strong> Lake 9880 x<br />

CA-TUO-0741 L 2 Cold Canyon 8690 x<br />

CA-TUO-0742 L 1 Cold Canyon 8710<br />

CA-TUO-4641 L 1 Cold Canyon 8700 x<br />

CA-TUO-4642 L 1 Cold Canyon 8680<br />

CA-TUO-4643 L 1 Cold Canyon 8570<br />

CA-TUO-4644 I 5 Cold Canyon 8725 x<br />

CA-TUO-4645 L 1 Cold Canyon 8700<br />

CA-TUO-4646 I 5 Cold Canyon 8700<br />

P-55-006554 L 1 Dana slope 10800<br />

P-55-006555 L 1 Dana slope 10440<br />

CA-TUO-0171 L 1 Delaney Creek 9400<br />

CA-TUO-0172 L 1 Delaney Creek 9410 x x<br />

CA-TUO-0173 L 1 Delaney Creek 9400<br />

CA-TUO-0174 L 1 Delaney Creek 9560<br />

CA-TUO-0175 L 1 Delaney Creek 9600<br />

CA-TUO-0176 L 1 Delaney Creek 9640<br />

CA-TUO-0177 L 1 Delaney Creek 9680<br />

CA-TUO-0178 L 1 Delaney Creek 9760 x x<br />

CA-TUO-0047 L 1 Dana Fork 9900<br />

CA-TUO-0179/2829 I 5 Dana Fork 9400 x x x x x<br />

CA-TUO-0180/2837 I 8 Dana Fork 9450 x x x<br />

CA-TUO-0181 L 1 Dana Fork 9480<br />

CA-TUO-0182 L 1 Dana Fork 9520<br />

CA-TUO-0183 L 1 Dana Fork 9480<br />

168<br />

CA-TUO-0201 L 1 Dana Fork 9910


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-0202 L 1 Dana Fork 9840<br />

CA-TUO-0203 L 1 Dana Fork 9800<br />

CA-TUO-0754/H I 8 Dana Fork 9280 x x x x x<br />

CA-TUO-0758 L 1 Dana Fork 9600 x<br />

CA-TUO-0927 L 1 Dana Fork 9935 x x<br />

CA-TUO-0928/3933 L 1 Dana Fork 8800<br />

CA-TUO-2814/H L 1 Dana Fork 9085<br />

CA-TUO-2815/H I 5 Dana Fork 9040 x<br />

CA-TUO-2816 I 5 Dana Fork 9210<br />

CA-TUO-2817 L 1 Dana Fork 9250 x<br />

CA-TUO-2818 L 1 Dana Fork 9250<br />

CA-TUO-2819 L 1 Dana Fork 9270 x<br />

CA-TUO-2820 L 1 Dana Fork 9315<br />

CA-TUO-2821/H I 5 Dana Fork 9290 x x<br />

CA-TUO-2822 I 7 Dana Fork 9360<br />

CA-TUO-2823 I 5 Dana Fork 9330<br />

CA-TUO-2824 I 5 Dana Fork 9370 x x<br />

CA-TUO-2825 L 1 Dana Fork 9360 x x x<br />

CA-TUO-2826 I 5 Dana Fork 9380 x x<br />

CA-TUO-2827 L 1 Dana Fork 9380<br />

CA-TUO-2828 L 1 Dana Fork 9370 x x x x<br />

CA-TUO-2830 L 2 Dana Fork 9415 x<br />

CA-TUO-2831 L 1 Dana Fork 9440 x x<br />

CA-TUO-2832 L 1 Dana Fork 9480 x<br />

CA-TUO-2833 I 9 Dana Fork 9450 x x x x x<br />

CA-TUO-2834 I 11 Dana Fork 9450 x x x x x<br />

CA-TUO-2835 I 7 Dana Fork 9440 x<br />

169<br />

CA-TUO-2836 L 1 Dana Fork 9460


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

I-L Sub-<br />

Elev Desert/ OH, RS/<br />

Site<br />

Area<br />

type type<br />

(ft) CT LP3 EG<br />

CA-TUO-2838 I 7 Dana Fork 9470<br />

CA-TUO-2839 I 5 Dana Fork 9450 x<br />

CA-TUO-2840 L 1 Dana Fork 9540<br />

CA-TUO-2841 L 1 Dana Fork 9920 x x x<br />

CA-TUO-4905 L 1 Dana Fork 9840<br />

CA-TUO-4906 L 1 Dana Fork 9600<br />

P-55-006556 L 1 Dana Fork 9600<br />

YOSE 1992 E-01 L 8 Dana Fork 9938 x<br />

YOSE 1994 C-01 I 5 Dana Fork 9320<br />

YOSE 1994 C-02 I 4 Dana Fork 9300<br />

YOSE 1994 C-03 L 1 Dana Fork 9390<br />

YOSE 1994 C-05 L 1 Dana Fork 9630 x<br />

CA-TUO-0168 L 1 Dog Lake 9170<br />

CA-TUO-0169 L 1 Dog Lake 9170<br />

CA-TUO-0170 L 1 Dog Lake 9185<br />

CA-TUO-0163 L 1 Elizabeth Lake 9520 x x<br />

CA-TUO-0164 L 1 Elizabeth Lake 9520<br />

CA-TUO-0165 L 1 Elizabeth Lake 9508 x x<br />

CA-TUO-0099 L 1 Evelyn 10340<br />

CA-TUO-0156 L 1 Evelyn 10350 x<br />

CA-TUO-0157 L 1 Evelyn 10334 x x<br />

CA-TUO-4230 L 1 Evelyn 10334 x<br />

CA-MRP-0157 L 1 Fletcher 10160<br />

CA-TUO-0755 L 1 Gaylor 10050 x x<br />

CA-TUO-0756 L 1 Gaylor 10340<br />

CA-TUO-0757 L 1 Gaylor 10400<br />

P-55-006782 L 1 Gaylor 10000 x<br />

CA-TUO-0161 L 1 Ireland area 10500<br />

170<br />

CA-TUO-0241 L 1 Ireland area 10600 x x


Dart<br />

I-L Sub-<br />

Elev Desert/ OH, RS/<br />

OH, LP1<br />

Site<br />

Area<br />

OH, LP2 Arrow Elko CB<br />

type type<br />

(ft) CT LP3 EG<br />

and earlier<br />

CA-TUO-0245 L 1 Ireland area 10760 x x<br />

CA-TUO-0246 L 1 Ireland area 10550<br />

CA-TUO-4521 L 1 Ireland area 10480<br />

CA-TUO-4522 L 1 Ireland area 10660 x<br />

CA-TUO-0045/4311 L 1 Lyell Fork 10200<br />

CA-TUO-0046/H L 1 Lyell Fork 9680 x x<br />

CA-TUO-0135 L 1 Lyell Fork 8690<br />

CA-TUO-0136 L 1 Lyell Fork 8700<br />

CA-TUO-0145 L 1 Lyell Fork 8880 x<br />

CA-TUO-0147 L 1 Lyell Fork 8880<br />

CA-TUO-0149 L 1 Lyell Fork 8840 x<br />

CA-TUO-0150 L 1 Lyell Fork 8820 x<br />

CA-TUO-0151 L 1 Lyell Fork 8800<br />

CA-TUO-0162 L 1 Lyell Fork 9800<br />

CA-TUO-3823 L 2 Lyell Fork 8750 x<br />

CA-TUO-3828 L 1 Lyell Fork 8710<br />

CA-TUO-3829 L 1 Lyell Fork 8720<br />

CA-TUO-3830 L 1 Lyell Fork 8760<br />

CA-TUO-3831 L 1 Lyell Fork 8750 x<br />

CA-TUO-3832 L 1 Lyell Fork 8705<br />

CA-TUO-3833 L 1 Lyell Fork 8735<br />

CA-TUO-3834 L 1 Lyell Fork 8745<br />

CA-TUO-3835 L 1 Lyell Fork 8740<br />

CA-TUO-3836 L 1 Lyell Fork 8735 x<br />

CA-TUO-3837 L 1 Lyell Fork 8750<br />

CA-TUO-3838 I 7 Lyell Fork 8770 x x x x x<br />

CA-TUO-3839 L 1 Lyell Fork 8740 171


Dart<br />

I-L Sub-<br />

Elev Desert/ OH, RS/<br />

OH, LP1<br />

Site<br />

Area<br />

OH, LP2 Arrow Elko CB<br />

type type<br />

(ft) CT LP3 EG<br />

and earlier<br />

CA-TUO-3840 L 1 Lyell Fork 8760<br />

CA-TUO-3841 L 1 Lyell Fork 8780 x x<br />

CA-TUO-3842 L 1 Lyell Fork 8780<br />

CA-TUO-3843 L 1 Lyell Fork 8800<br />

CA-TUO-3844 L 1 Lyell Fork 8750<br />

CA-TUO-3845 I 3 Lyell Fork 8760 x x<br />

CA-TUO-3847 L 1 Lyell Fork 8780<br />

CA-TUO-3848 L 3 Lyell Fork 8800 x<br />

CA-TUO-3849 L 1 Lyell Fork 8790<br />

CA-TUO-3850 L 1 Lyell Fork 8790<br />

CA-TUO-4056 L 1 Lyell Fork 8888 x<br />

CA-TUO-4264 L 1 Lyell Fork 8995<br />

CA-TUO-4265 L 1 Lyell Fork 8919 x<br />

CA-TUO-4266 L 1 Lyell Fork 8904<br />

CA-TUO-4488 L 1 Lyell Fork 8900<br />

CA-TUO-4489 L 1 Lyell Fork 8950<br />

CA-TUO-4490 L 1 Lyell Fork 8840 x<br />

CA-TUO-4491 L 1 Lyell Fork 8920<br />

CA-TUO-4492 L 1 Lyell Fork 8920<br />

CA-TUO-4510 L 1 Lyell Fork 8800 x<br />

CA-TUO-4511 L 1 Lyell Fork 8884 x<br />

CA-TUO-4636 L 1 Lyell Fork 8728<br />

CA-TUO-4637 L 1 Lyell Fork 8775 x x<br />

CA-TUO-4639 I 7 Lyell Fork 8815 x x x x x<br />

CA-TUO-4640 L 1 Lyell Fork 8855<br />

CA-TUO-4662 L 1 Lyell Fork 8845<br />

CA-TUO-4663 L 1 Lyell Fork 8860 172


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-4664 L 1 Lyell Fork 8610<br />

CA-TUO-4665 I 12 Lyell Fork 9045 x x x x<br />

CA-TUO-4849 L 1 Lyell Fork 9520<br />

CA-TUO-4850 L 1 Lyell Fork 9570<br />

CA-TUO-4851 L 1 Lyell Fork 9540 x<br />

CA-TUO-4852 L 1 Lyell Fork 11056<br />

CA-TUO-4854 L 1 Lyell Fork 10850<br />

CA-TUO-4855 L 1 Lyell Fork 10820<br />

CA-TUO-4856 L 1 Lyell Fork 10700 x<br />

CA-TUO-4857 L 1 Lyell Fork 10620 x<br />

CA-TUO-4858 L 1 Lyell Fork 10560<br />

CA-TUO-4859 L 1 Lyell Fork 10400 x<br />

CA-TUO-4860 L 1 Lyell Fork 8960<br />

CA-TUO-4869 L 1 Lyell Fork 8977<br />

CA-TUO-4895 L 1 Lyell Fork 9680 x<br />

CA-TUO-4896 L 1 Lyell Fork 9620<br />

P-55-006568 L 1 Lyell Fork 8720<br />

CA-TUO-4227 L 1 Matterhorn<br />

8640<br />

Canyon<br />

CA-TUO-4228 L 1 Matterhorn<br />

8640<br />

Canyon<br />

CA-TUO-4731 L 1 Matterhorn<br />

9600<br />

Canyon<br />

CA-TUO-4732 L 1 Matterhorn<br />

9600 x<br />

Canyon<br />

CA-TUO-4497 L 1 McCabe Creek 9245<br />

CA-TUO-4224 L 1 McCabe Lake 9820<br />

CA-TUO-4225 L 1 McCabe Lake 10460 x<br />

P-55-005161 L 1 McCabe Lake 9800<br />

173<br />

CA-TUO-4721 L 1 Miller Lake 9515 x


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-0759/H I 5 Mono Pass 10604<br />

CA-TUO-0752 L 1 D<strong>in</strong>gley Creek 9880<br />

CA-TUO-0184 L 1 Parker Pass 9530<br />

CA-TUO-0185 L 1 Parker Pass 9520<br />

CA-TUO-0186 L 1 Parker Pass 9500<br />

CA-TUO-0187 I 5 Parker Pass 9500 x x x x<br />

CA-TUO-0188 L 1 Parker Pass 9700<br />

CA-TUO-0189 L 1 Parker Pass 9700<br />

CA-TUO-0190 L 1 Parker Pass 9700<br />

CA-TUO-0191 L 1 Parker Pass 9750<br />

CA-TUO-0192 L 1 Parker Pass 9900<br />

CA-TUO-0193 L 1 Parker Pass 9900<br />

CA-TUO-0194 L 1 Parker Pass 9900<br />

CA-TUO-0195 L 1 Parker Pass 9900<br />

CA-TUO-0196 L 1 Parker Pass 9900<br />

CA-TUO-0197 L 1 Parker Pass 10100<br />

CA-TUO-0198 L 1 Parker Pass 10400<br />

CA-TUO-0199 L 1 Parker Pass 10400<br />

CA-TUO-0200 L 1 Parker Pass 10500<br />

CA-TUO-0204 L 1 Parker Pass 10700<br />

CA-TUO-4509 L 4 Parker Pass 9990 x<br />

P-55-006557 L 1 Parker Pass 10100<br />

P-55-006558 L 1 Parker Pass 10000<br />

P-55-006559 L 1 Parker Pass 10240<br />

P-55-006560 L 1 Parker Pass 10320<br />

P-55-006561 L 1 Parker Pass 10450 x x<br />

P-55-006562 L 1 Parker Pass 10800<br />

P-55-006563 L 1 Parker Pass 10760<br />

174<br />

P-55-006564 L 1 Parker Pass 10600 x x


I-L Sub-<br />

Elev Desert/ OH, RS/<br />

OH, LP1<br />

Site<br />

Area<br />

OH, LP2 Arrow Elko CB<br />

Dart<br />

type type<br />

(ft) CT LP3 EG<br />

and earlier<br />

P-55-006565 L 1 Parker Pass 10520<br />

CA-TUO-0152 L 1 Rafferty Creek 9640 x<br />

CA-TUO-0153 L 1 Rafferty Creek 9640 x x<br />

CA-TUO-0155 L 1 Rafferty Creek 9992 x x x<br />

CA-TUO-0760 L 1 Rafferty Creek 9160<br />

CA-TUO-0761 L 1 Rafferty Creek 9220<br />

CA-TUO-0762 L 1 Rafferty Creek 9400<br />

CA-TUO-4055 L 1 Rafferty Creek 9870 x x<br />

CA-TUO-4659 L 1 Rafferty Creek 9320<br />

CA-TUO-4660 L 1 Rafferty Creek 9915 x<br />

CA-TUO-4661 L 1 Rafferty Creek 9160<br />

CA-TUO-4722 L 1 Rafferty Creek 9990<br />

CA-TUO-4756/H L 1 Rafferty Creek 9550 x<br />

CA-TUO-0154 L 1 Rafferty Creek 9640<br />

YOSE 1989 M-05 L 1 Return Lake 10250<br />

CA-TUO-4229 I 4 Spiller Canyon 8760<br />

CA-TUO-4635 I 6 Spiller canyon 8910 x x x<br />

P-55-006775 L 1 Spiller Canyon 9300 x x x<br />

P-55-006776 L 1 Spiller Canyon 9450 x x<br />

P-55-006777 L 1 Spiller Canyon 9500<br />

P-55-006778 L 1 Spiller Canyon 9200<br />

P-55-006779 L 1 Spiller Lake 10680 x<br />

CA-TUO-0108 L 1 Tuolumne 8565 x<br />

L 1 Tuolumne 8569 x x<br />

CA-TUO-<br />

0109/110/509/510/511/<br />

H<br />

CA-TUO-0111 I 5 Tuolumne 8565<br />

CA-TUO-0112 L 1 Tuolumne 8570<br />

CA-TUO-0113 L 1 Tuolumne 8565 x x 175


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-0114 L 1 Tuolumne 8569<br />

CA-TUO-0115 L 1 Tuolumne 8570<br />

CA-TUO-0116 L 1 Tuolumne 8575<br />

CA-TUO-0117 L 1 Tuolumne 8575<br />

CA-TUO-0118 I 5 Tuolumne 8575<br />

CA-TUO-0119 L 1 Tuolumne 8590<br />

CA-TUO-0120 L 8 Tuolumne 8550 x x<br />

CA-TUO-0121 I 5 Tuolumne 8580 x x<br />

CA-TUO-0123 L 1 Tuolumne 8572<br />

CA-TUO-0124 I 5 Tuolumne 8600 x x x<br />

CA-TUO-0125/126/H I 5 Tuolumne 8560 x<br />

CA-TUO-0127 L 1 Tuolumne 8550<br />

CA-TUO-<br />

I 5 Tuolumne 8565 x<br />

0128/129/130/504<br />

CA-TUO-0131 L 1 Tuolumne 8560 x x<br />

CA-TUO-0132 L 1 Tuolumne 8560<br />

CA-TUO-0133 I 6 Tuolumne 8585 x<br />

CA-TUO-0134 I 3 Tuolumne 8560 x x<br />

CA-TUO-0146 L 1 Tuolumne 8600<br />

CA-TUO-0166 I 7 Tuolumne 8600 x x x x x x x<br />

CA-TUO-0167/H I 7 Tuolumne 8610 x<br />

CA-TUO-0490 L 1 Tuolumne 8620<br />

CA-TUO-0491 L 1 Tuolumne 8650<br />

CA-TUO-0492 L 1 Tuolumne 8655<br />

CA-TUO-0493 L 1 Tuolumne 8580<br />

CA-TUO-0494 L 1 Tuolumne 8578 x<br />

CA-TUO-0495/H L 2 Tuolumne 8645<br />

CA-TUO-0496 L 1 Tuolumne 8592 176


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-0497 L 1 Tuolumne 8580<br />

CA-TUO-0498 L 1 Tuolumne 8650<br />

CA-TUO-0499 I 5 Tuolumne 8560<br />

CA-TUO-0500 I 2 Tuolumne 8650 x x x x x x<br />

CA-TUO-0501 L 1 Tuolumne 8615 x x<br />

CA-TUO-0502 L 1 Tuolumne 8625<br />

CA-TUO-0503 L 1 Tuolumne 8660<br />

CA-TUO-0505 L 1 Tuolumne 8640<br />

CA-TUO-0506 L 1 Tuolumne 8630<br />

CA-TUO-0507 I 5 Tuolumne 8558<br />

CA-TUO-0508 L 1 Tuolumne 8680<br />

CA-TUO-0527/H L 1 Tuolumne 8620<br />

CA-TUO-0528 L 1 Tuolumne 8630 x<br />

CA-TUO-0529 L 1 Tuolumne 8640 x<br />

CA-TUO-0530 L 1 Tuolumne 8720<br />

CA-TUO-0531 L 1 Tuolumne 8620 x<br />

CA-TUO-0532 L 1 Tuolumne 8640<br />

CA-TUO-0733 L 1 Tuolumne 8410 x<br />

CA-TUO-0734 L 1 Tuolumne 8400<br />

CA-TUO-0735 L 1 Tuolumne 8360<br />

CA-TUO-2808 L 1 Tuolumne 8620 x<br />

CA-TUO-2809 L 1 Tuolumne 8620<br />

CA-TUO-2810 L 1 Tuolumne 8550 x<br />

CA-TUO-2811 L 1 Tuolumne 8640 x x x x x<br />

CA-TUO-2812 L 1 Tuolumne 8650 x<br />

CA-TUO-2813 L 2 Tuolumne 8800 x<br />

CA-TUO-3561 L 1 Tuolumne 8625 x z x<br />

CA-TUO-3824 L 1 Tuolumne 8680<br />

177<br />

CA-TUO-3825 L 1 Tuolumne 8660


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-3826 L 1 Tuolumne 8690<br />

CA-TUO-3827 L 1 Tuolumne 8710<br />

CA-TUO-3936 L 1 Tuolumne 8620<br />

CA-TUO-3937/H L 1 Tuolumne 8640 x x x<br />

CA-TUO-3938/H I 5 Tuolumne 8600 x x<br />

CA-TUO-3939 L 2 Tuolumne 8640 x<br />

CA-TUO-3940 L 1 Tuolumne 8579 x x<br />

CA-TUO-3941 L 1 Tuolumne 8560<br />

CA-TUO-3942 L 1 Tuolumne 8560 x<br />

CA-TUO-3943 L 2 Tuolumne 8700 x x<br />

CA-TUO-3944 L 1 Tuolumne 8550<br />

CA-TUO-3945/H L 1 Tuolumne 8550 x x<br />

CA-TUO-3959 I? 5 Tuolumne 8680<br />

CA-TUO-3960 I? 5 Tuolumne 8700<br />

CA-TUO-3961 L 1 Tuolumne 8575<br />

CA-TUO-4435 L 1 Tuolumne 8560 x<br />

CA-TUO-4436 L 2 Tuolumne 8400 x<br />

CA-TUO-4437 L 1 Tuolumne 8540 x<br />

CA-TUO-4438 L 1 Tuolumne 8550<br />

CA-TUO-4439 L 1 Tuolumne 8585<br />

CA-TUO-4440 L 1 Tuolumne 8550<br />

CA-TUO-4902/H L 1 Tuolumne 8600 x<br />

CA-TUO-4903 L 1 Tuolumne 8600<br />

CA-TUO-4907 L 1 Tuolumne 8600 x x<br />

P-22-001741 L 1 Townsley 10370<br />

P-22-001743 L 1 Townsley 10400<br />

CA-TUO-0158 L 1 U. Evelyn 10440 x<br />

CA-TUO-0159 L 1 U. Evelyn 10440 x x x<br />

178<br />

CA-TUO-0160 L 1 U. Evelyn 10440 x x x


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-0743 L 1 Virg<strong>in</strong>ia Canyon 8600<br />

CA-TUO-0744 L 1 Virg<strong>in</strong>ia Canyon 8700<br />

CA-TUO-0745 L 1 Virg<strong>in</strong>ia Canyon 8800 x x x<br />

CA-TUO-0746 L 1 Virg<strong>in</strong>ia Canyon 8880<br />

CA-TUO-0747 L 1 Virg<strong>in</strong>ia Canyon 9040<br />

CA-TUO-0748 L 1 Virg<strong>in</strong>ia Canyon 9150<br />

CA-TUO-0749 I 11 Virg<strong>in</strong>ia Canyon 9240<br />

CA-TUO-0750 L 1 Virg<strong>in</strong>ia Canyon 9360 x x x x<br />

CA-TUO-0751 I 11 Virg<strong>in</strong>ia Canyon 10250 x x x x x x x<br />

CA-TUO-3763 L 1 Virg<strong>in</strong>ia Canyon 9900 x x x x x<br />

CA-TUO-3764 L 1 Virg<strong>in</strong>ia Canyon 9350 x<br />

CA-TUO-3765 I 10 Virg<strong>in</strong>ia Canyon 8360 x x x x x x<br />

CA-TUO-3766 L 1 Virg<strong>in</strong>ia Canyon 8380 x x x<br />

CA-TUO-3767 L 1 Virg<strong>in</strong>ia Canyon 8400 x<br />

CA-TUO-3768 L 1 Virg<strong>in</strong>ia Canyon 8460<br />

CA-TUO-3769 L 2 Virg<strong>in</strong>ia Canyon 9280 x<br />

CA-TUO-3770 I 5 Virg<strong>in</strong>ia Canyon 9240 x<br />

CA-TUO-3771 L 1 Virg<strong>in</strong>ia Canyon 9120<br />

CA-TUO-3772 I 7 Virg<strong>in</strong>ia Canyon 9040 x<br />

CA-TUO-3773 I 5 Virg<strong>in</strong>ia Canyon 8560 x<br />

CA-TUO-3774 L 1 Virg<strong>in</strong>ia Canyon 8560<br />

CA-TUO-3775 L 1 Virg<strong>in</strong>ia Canyon 8600 x<br />

CA-TUO-3776/H I 6 Virg<strong>in</strong>ia Canyon 8700<br />

CA-TUO-3777 L 1 Virg<strong>in</strong>ia Canyon 8620 x x<br />

CA-TUO-3778/H I 9 Virg<strong>in</strong>ia Canyon 8610 x<br />

CA-TUO-3779 L 1 Virg<strong>in</strong>ia Canyon 9100<br />

CA-TUO-3780 L 1 Virg<strong>in</strong>ia Canyon 9050<br />

CA-TUO-3781 L 1 Virg<strong>in</strong>ia Canyon 9050<br />

179<br />

CA-TUO-3782 L 1 Virg<strong>in</strong>ia Canyon 9060 x x


Dart<br />

I-L Sub-<br />

Elev Desert/ OH, RS/<br />

OH, LP1<br />

Site<br />

Area<br />

OH, LP2 Arrow Elko CB<br />

type type<br />

(ft) CT LP3 EG<br />

and earlier<br />

CA-TUO-3783 I 10 Virg<strong>in</strong>ia Canyon 8970 x x x x<br />

CA-TUO-3784 L 1 Virg<strong>in</strong>ia Canyon 8890<br />

CA-TUO-3785 L 1 Virg<strong>in</strong>ia Canyon 8780<br />

CA-TUO-3786 I 6 Virg<strong>in</strong>ia Canyon 8650 x<br />

CA-TUO-3787 L 1 Virg<strong>in</strong>ia Canyon 8620<br />

CA-TUO-3788 L 1 Virg<strong>in</strong>ia Canyon 8650 x<br />

CA-TUO-3789 L 1 Virg<strong>in</strong>ia Canyon 8750 x<br />

CA-TUO-3790 L 2 Virg<strong>in</strong>ia Canyon 8800<br />

CA-TUO-3791 I 5 Virg<strong>in</strong>ia Canyon 8800 x<br />

CA-TUO-3792 I 7 Virg<strong>in</strong>ia Canyon 8520 x x<br />

CA-TUO-3793 L 1 Virg<strong>in</strong>ia Canyon 8820<br />

CA-TUO-3794 L 1 Virg<strong>in</strong>ia Canyon 8800 x<br />

CA-TUO-3795 L 1 Virg<strong>in</strong>ia Canyon 8800<br />

CA-TUO-3796 L 1 Virg<strong>in</strong>ia Canyon 8800 x<br />

CA-TUO-3797 L 1 Virg<strong>in</strong>ia Canyon 8960<br />

CA-TUO-3798 L 1 Virg<strong>in</strong>ia Canyon 8970<br />

CA-TUO-3799 L 1 Virg<strong>in</strong>ia Canyon 9040 x<br />

CA-TUO-3800 L 1 Virg<strong>in</strong>ia Canyon 9120<br />

CA-TUO-3801 L 1 Virg<strong>in</strong>ia Canyon 9040 x<br />

CA-TUO-3802 L 1 Virg<strong>in</strong>ia Canyon 9250<br />

CA-TUO-3803 L 1 Virg<strong>in</strong>ia Canyon 8480 x<br />

CA-TUO-3804 L 1 Virg<strong>in</strong>ia Canyon 8680 x<br />

CA-TUO-3805 L 1 Virg<strong>in</strong>ia Canyon 8400 x x x x<br />

CA-TUO-3806 I 5 Virg<strong>in</strong>ia Canyon 8400<br />

CA-TUO-3807 I 5 Virg<strong>in</strong>ia Canyon 8400 x x<br />

CA-TUO-3808 L 1 Virg<strong>in</strong>ia Canyon 9430 x<br />

CA-TUO-3809 L 1 Virg<strong>in</strong>ia Canyon 9430 x<br />

CA-TUO-3810/H I 5 Virg<strong>in</strong>ia Canyon 9300 x x x<br />

180<br />

CA-TUO-3811 I 9 Virg<strong>in</strong>ia Canyon 9280 x x x x x x


Dart<br />

OH, LP1<br />

and earlier<br />

OH, LP2 Arrow Elko CB<br />

RS/<br />

EG<br />

OH,<br />

LP3<br />

Desert/<br />

CT<br />

I-L Sub-<br />

Elev<br />

Site<br />

Area<br />

type type<br />

(ft)<br />

CA-TUO-4226 I 4 Virg<strong>in</strong>ia Canyon 8400<br />

CA-TUO-4496 L 1 Virg<strong>in</strong>ia Canyon 8760<br />

CA-TUO-4972 L 1 Virg<strong>in</strong>ia Canyon 9760 x<br />

P-55-005164 L 4 Virg<strong>in</strong>ia Canyon 8350<br />

YOSE 1989 M-02 L 1 Virg<strong>in</strong>ia Canyon 9950<br />

YOSE 1989 M-03/H L 1 Virg<strong>in</strong>ia Canyon 9900 x x<br />

YOSE 1989 M-04 L 1 Virg<strong>in</strong>ia Canyon 9920 x x<br />

CA-MRP-1438 L 1 Vogelsang Lake 10360 x<br />

CA-TUO-0753 L 1 Young Lake 9883 x x x x<br />

CA-TUO-4223 L 1 Young Lake 9860<br />

Key: x=attribute is present; site designations <strong>in</strong> bold text=previously excavated; I-L: <strong>in</strong>tensive or limited use; Desert/CT=Desert or Cottonwood series; RS/EG=Rose<br />

Spr<strong>in</strong>g/Eastgate types; Elko=Elko series; CB=concave base series; OH=obsidian hydration data; LP1-3=Late <strong>Prehistoric</strong> 1, 2, or 3 period.<br />

181


Catalog<br />

No.<br />

Table A-4. Calibrated Dates for Obsidian Hydration Data.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218604a 46/H DEB SCU 1 2.6 10 1748 CD-LM(x)<br />

218604b 46/H DEB SCU 1 1.7 10 746 CD(v)<br />

218604c 46/H DEB SCU 1 0.0 10 0 CD(v)<br />

218605a 46/H DEB SCU 2 3.2 10 2610 CD(v)<br />

218605b 46/H DEB SCU 2 4.1 10 4311 CD(v)<br />

218605c 46/H DEB SCU 2 2.7 10 1830 CD(v)<br />

218606a 46/H DEB SCU 3 2.8 10 2018 CD(v)<br />

218606b 46/H DEB SCU 3 1.8 10 825 CD(v)<br />

218606c 46/H DEB SCU 3 2.1 10 1109 CD(v)<br />

218606d 46/H DEB SCU 3 3.3 10 2709 CD(v)<br />

218607a 113 DEB SCU 1 3.4 12 2328 CD(v)<br />

218607b 113 DEB SCU 1 3.4 12 2270 CD-LM(x)<br />

218607c 113 DEB SCU 1 3.0 12 1748 CD(v)<br />

218608b 113 DEB SCU 2 2.5 12 1224 CD(v)<br />

218609a 113 DEB SCU 3 2.2 12 932 CD(v)<br />

218609b 113 DEB SCU 3 2.5 12 1242 CD(v)<br />

218609c 113 DEB SCU 3 2.4 12 1100 CD(v)<br />

218609d 113 DEB SCU 3 2.7 12 1445 CD(v)<br />

218609e 113 DEB SCU 3 1.9 12 735 CD(v)<br />

218610a 128/129/130/504 DEB SCU 1 4.1 12 3410 CD(v)<br />

218610b 128/129/130/504 DEB SCU 1 5.3 12 5513 CD(v)<br />

218611a 128/129/130/504 DEB SCU 2 4.0 12 3214 CD(v)<br />

218611b 128/129/130/504 DEB SCU 2 5.8 12 6656 CD(v)<br />

218611c 128/129/130/504 DEB SCU 2 5.7 12 6363 CD(v)<br />

218612a 128/129/130/504 DEB SCU 3 4.7 12 4290 CD(v)<br />

218612b 128/129/130/504 DEB SCU 3 5.6 12 6229 CD-LM(x)<br />

218612c 128/129/130/504 DEB SCU 3 2.9 12 1661 CD(v)<br />

218612d 128/129/130/504 DEB SCU 3 4.9 12 4741 CD(v)<br />

218612e 128/129/130/504 DEB SCU 3 3.9 12 2959 CD(v)<br />

218613a 128/129/130/504 DEB SCU 4 5.7 12 6396 CD(v)<br />

218613b 128/129/130/504 DEB SCU 4 4.8 12 4606 CD(v)<br />

218614a 128/129/130/504 DEB SCU 5 6.2 12 7683 CD(v)<br />

218614b 128/129/130/504 DEB SCU 5 6.0 12 7038 CD-LM(x)<br />

218614c 128/129/130/504 DEB SCU 5 3.8 12 2810 CD(v)<br />

218615a 128/129/130/504 DEB SCU 6 2.9 12 1699 CD(v)<br />

218615b 128/129/130/504 DEB SCU 6 3.3 12 2118 CD(v)<br />

218615c 128/129/130/504 DEB SCU 6 3.5 12 2411 CD(v)<br />

218615d 128/129/130/504 DEB SCU 6 3.3 12 2161 CD(v)<br />

218617a 131 DEB SCU 1 4.3 12 3592 CD(v)<br />

218617b 131 DEB SCU 1 5.0 12 5041 CD(v)<br />

218617c 131 DEB SCU 1 5.8 12 6689 CD(v)<br />

218618a 131 DEB SCU 2 5.1 12 5065 CD(v)<br />

218618b 131 DEB SCU 2 4.5 12 4003 CD(v)<br />

218618c 131 DEB SCU 2 5.5 12 5923 CD(v)<br />

218619a 131 DEB SCU 3 5.0 12 4935 CD(v)<br />

218619b 131 DEB SCU 3 5.1 12 5114 CD-LM(x)<br />

182


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218619c 131 DEB SCU 3 5.0 12 5024 CD(v)<br />

218620a 159 DEB SCU 1 3.4 9 3309 CD(v)<br />

218620b 159 DEB SCU 1 2.8 9 2238 CD(v)<br />

218620c 159 DEB SCU 1 2.8 9 2320 CD(v)<br />

218621a 159 DEB SCU 2 2.8 9 2316 CD-LM(x)<br />

218621c 159 DEB SCU 2 2.9 9 2532 CD(v)<br />

218621d 159 DEB SCU 2 2.2 9 1405 CD(v)<br />

218622b 159 DEB SCU 3 3.9 9 4496 CD(v)<br />

218622c 159 DEB SCU 3 3.7 9 3939 CD(v)<br />

218623 159 DSN-G 2.8 M @ 110 2.2 9 1393 CD-LM(x)<br />

218626a 172 DEB SCU 1 4.1 11 3861 CD-LM(x)<br />

218626b 172 DEB SCU 1 6.4 11 9156 CD(v)<br />

218626c 172 DEB SCU 1 4.4 11 4418 CD(v)<br />

218627a 172 DEB SCU 2 3.5 11 2788 CD(v)<br />

218627b 172 DEB SCU 2 4.1 11 3874 CD(v)<br />

218627c 172 DEB SCU 2 3.9 11 3492 CD(v)<br />

218627d 172 DEB SCU 2 3.6 11 2972 CD(v)<br />

218628a 172 DEB SCU 3 6.0 11 8223 CD(v)<br />

218628b 172 DEB SCU 3 4.8 11 5286 CD(v)<br />

218628c 172 DEB SCU 3 4.4 11 4402 CD(v)<br />

218629a 187 DEB SCU 1 3.0 10 2295 CD-LM(x)<br />

218629b 187 DEB SCU 1 3.4 10 3029 CD(v)<br />

218629c 187 DEB SCU 1 2.3 10 1391 CD(v)<br />

218629d 187 DEB SCU 1 2.9 10 2093 CD(v)<br />

218630a 187 DEB SCU 2 3.0 10 2261 CD(v)<br />

218630b 187 DEB SCU 2 2.9 10 2145 CD(v)<br />

218630c 187 DEB SCU 2 2.7 10 1910 CD(v)<br />

218631a 187 DEB SCU 3 3.1 10 2519 CD(v)<br />

218631b 187 DEB SCU 3 3.0 10 2260 CD(v)<br />

218631c 187 DEB SCU 3 2.0 10 976 CD(v)<br />

218632 187 RS 33 M @ 54 2.3 10 1313 CD-LM(x)<br />

218633 187 RSCN 16.80 M @ 19 1.1 10 338 CD-LM(x)<br />

218634a 245 DEB SCU 1 4.5 9 5955 CD(v)<br />

218634b 245 DEB SCU 1 4.2 9 5236 CD(v)<br />

218634c 245 DEB SCU 1 4.0 9 4697 CD(v)<br />

218634d 245 DEB SCU 1 5.0 9 7224 CD(v)<br />

218635a 245 DEB SCU 2 5.0 9 7373 CD(v)<br />

218635b 245 DEB SCU 2 3.9 9 4440 CD(v)<br />

218635c 245 DEB SCU 2 3.7 9 4008 CD-LM(x)<br />

218635d 245 DEB SCU 2 4.5 9 5789 CD(v)<br />

218635f 245 DEB SCU 2 4.4 9 5724 CD(v)<br />

218636 245 HCB 16.8 M @ 205 5.1 9 7706 CD-LM(x)<br />

218637a 494 DEB SCU 1 4.9 12 4744 CD(v)<br />

218637b 494 DEB SCU 1 5.1 12 5213 CD(v)<br />

218637c 494 DEB SCU 1 4.9 12 4791 CD-LM(x)<br />

218637e 494 DEB SCU 1 5.3 12 5540 CD(v)<br />

218637f 494 DEB SCU 1 4.4 12 3774 CD(v)<br />

218638a 494 DEB SCU 2 4.8 12 4644 CD(v)<br />

183


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218638b 494 DEB SCU 2 5.0 12 5013 CD(v)<br />

218638c 494 DEB SCU 2 4.9 12 4789 CD(v)<br />

218639a 751 DEB F 1 2.8 9 2343 CD-LM(x)<br />

218639b 751 DEB F 1 2.9 9 2467 BH(x)<br />

218639c 751 DEB F 1 1.1 9 356 MC(x)<br />

218640a 751 DEB SCU 1 2.6 9 1995 BH(v)<br />

218640b 751 DEB SCU 1 2.9 9 2486 BH(v)<br />

218641a 751 DEB SCU 2 3.2 9 2933 MH(x)<br />

218641b 751 DEB SCU 2 3.4 9 3276 BH(v)<br />

218641c 751 DEB SCU 2 3.2 9 3043 BH(v)<br />

218641d 751 DEB SCU 2 3.4 9 3432 BH(v)<br />

218641e 751 DEB SCU 2 3.3 9 3196 BH(v)<br />

218641f 751 DEB SCU 2 3.3 9 3225 BH(v)<br />

218641g 751 DEB SCU 2 3.4 9 3352 BH(v)<br />

218642 751 DSN-S 43 M @ 176, D2 1.6 9 725 MC(x)<br />

218643 751 DSN-S F 1 1.5 9 692 BH(x)<br />

218644a 755 DEB SCU 1 4.1 10 4229 CD(v)<br />

218644b 755 DEB SCU 1 4.8 10 5836 CD-LM(x)<br />

218644c 755 DEB SCU 1 3.5 10 3226 CD(v)<br />

218644d 755 DEB SCU 1 4.5 10 5166 CD(v)<br />

218644e 755 DEB SCU 1 4.4 10 4957 CD(v)<br />

218645a 755 DEB SCU 2 3.5 10 3118 CD(v)<br />

218645b 755 DEB SCU 2 4.0 10 4153 CD(v)<br />

218645c 755 DEB SCU 2 5.1 10 6542 CD(v)<br />

218645d 755 DEB SCU 2 4.1 10 4406 CD(v)<br />

218645e 755 DEB SCU 2 4.2 10 4498 CD(v)<br />

218646 755 SCB 8.10 M @ 92 2.5 10 1541 Q(x)<br />

218647a 3765 DEB SCU 1 8.2 12 13452 BH(v)<br />

218647b 3765 DEB SCU 1 5.6 12 6151 BH(v)<br />

218647c 3765 DEB SCU 1 5.8 12 6685 BH(x)?<br />

218647d 3765 DEB SCU 1 5.9 12 6942 BH(v)<br />

218647e 3765 DEB SCU 1 5.8 12 6769 BH(v)<br />

218648a 3765 DEB RR 1 1.8 12 638 BH(x)<br />

218648b 3765 DEB RR 1 2.5 12 1242 BH(v)<br />

218648c 3765 DEB RR 1 5.4 12 5835 BH(v)<br />

218648d 3765 DEB RR 1 3.8 12 2931 BH(v)<br />

218648e 3765 DEB RR 1 4.0 12 3174 BH(v)<br />

218648f 3765 DEB RR 1 3.6 12 2517 BH(v)<br />

218649a 3765 DEB RR 2 3.3 12 2209 MC(x)<br />

218649b 3765 DEB RR 2 4.4 12 3827 MC(x)<br />

218649c 3765 DEB RR 2 3.8 12 2866 MC(x)<br />

218649e 3765 DEB RR 2 2.5 12 1252 BH(v)<br />

218650a 3769 DEB SCU 1 4.5 11 4546 BH(v)<br />

218650b 3769 DEB SCU 1 4.2 11 4060 BH(v)<br />

218650c 3769 DEB SCU 1 4.4 11 4425 BH(x)<br />

218650d 3769 DEB SCU 1 4.5 11 4471 BH(v)<br />

218650e 3769 DEB SCU 1 3.5 11 2760 BH(v)<br />

218650f 3769 DEB SCU 1 4.9 11 5417 BH(v)<br />

184


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218650g 3769 DEB SCU 1 4.9 11 5416 BH(v)<br />

218650h 3769 DEB SCU 1 4.7 11 4906 BH(v)<br />

218650i 3769 DEB SCU 1 3.3 11 2404 BH(v)<br />

218650j 3769 DEB SCU 1 4.3 11 4157 BH(v)<br />

218651a 3777 DEB SCU 1 3.2 12 1999 BH(v)<br />

218651b 3777 DEB SCU 1 1.7 12 595 BH(v)<br />

218651c 3777 DEB SCU 1 3.0 12 1748 BH(v)<br />

218651d 3777 DEB SCU 1 3.2 12 1977 BH(v)<br />

218652a 3777 DEB SCU 2 4.9 12 4679 BH(x)<br />

218652b 3777 DEB SCU 2 4.1 12 3351 BH(v)<br />

218653a 3777 DEB SCU 3 4.2 12 3533 BH(v)<br />

218653b 3777 DEB SCU 3 4.0 12 3174 BH(v)<br />

218653c 3777 DEB SCU 3 4.1 12 3386 BH(v)<br />

218653d 3777 DEB SCU 3 4.0 12 3234 BH(v)<br />

218654a 3783 DEB F 4 1.5 11 491 BH(v)<br />

218654b 3783 DEB F 4 2.2 11 1129 BH(v)<br />

218655a 3783 DEB F 3 5.1 11 5957 BH(x)<br />

218655b 3783 DEB F 3 0.0 11 0 BH(v)<br />

218655c 3783 DEB F 3 1.7 11 679 BH(v)<br />

218655d 3783 DEB F 3 2.4 11 1349 BH(v)<br />

218656a 3783 DEB F 6 2.7 11 1599 BH(x)<br />

218656b 3783 DEB F 6 2.1 11 971 BH(x)<br />

218656c 3783 DEB F 6 1.4 11 440 BH(x)<br />

218656d 3783 DEB F 6 1.4 11 461 BH(v)<br />

218656e 3783 DEB F 6 2.7 11 1596 BH(v)<br />

218657a 3783 DEB SCU 1 1.6 11 588 BH(v)<br />

218657b 3783 DEB SCU 1 2.0 11 895 BH(x)<br />

218657c 3783 DEB SCU 1 2.1 11 977 BH(v)<br />

218657d 3783 DEB SCU 1 1.7 11 664 BH(v)<br />

218657e 3783 DEB SCU 1 1.9 11 779 BH(v)<br />

218658 3783 DSN-G 19.3 M @ 44 1.5 11 479 BH(x)<br />

218661a 3789 DEB SCU 1 3.4 11 2538 BH(v)<br />

218661b 3789 DEB SCU 1 5.6 11 7141 BH(x)<br />

218661c 3789 DEB SCU 1 5.5 11 6894 BH(v)<br />

218661d 3789 DEB SCU 1 5.5 11 6697 BH(x)<br />

218662a 3789 DEB SCU 2 4.9 11 5442 BH(v)<br />

218662b 3789 DEB SCU 2 4.0 11 3584 BH(v)<br />

218662c 3789 DEB SCU 2 4.9 11 5453 BH(v)<br />

218663a 3789 DEB SCU 3 4.6 11 4775 BH(v)<br />

218663b 3789 DEB SCU 3 4.6 11 4823 BH(v)<br />

218666a 3803 DEB SCU 1 3.8 12 2813 MH(x)<br />

218666b 3803 DEB SCU 1 5.7 12 6396 BH(v)<br />

218666c 3803 DEB SCU 1 3.7 12 2675 BH(v)<br />

218667a 3803 DEB SCU 2 3.2 12 1975 BH(x)<br />

218667b 3803 DEB SCU 2 4.7 12 4375 BH(v)<br />

218667c 3803 DEB SCU 2 3.9 12 3018 BH(v)<br />

218668a 3803 DEB SCU 3 3.7 12 2675 BH(v)<br />

218668b 3803 DEB SCU 3 3.1 12 1907 BH(x)<br />

185


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218668c 3803 DEB SCU 3 4.9 12 4815 BH(v)<br />

218669a 3805 DEB SCU 1 4.1 12 3401 BH(v)<br />

218669b 3805 DEB SCU 1 3.2 12 2046 BH(x)<br />

218669c 3805 DEB SCU 1 4.3 12 3678 BH(v)<br />

218669d 3805 DEB SCU 1 1.6 12 519 BH(v)<br />

218669e 3805 DEB SCU 1 3.8 12 2901 BH(v)<br />

218669f 3805 DEB SCU 1 2.8 12 1554 BH(v)<br />

218669g 3805 DEB SCU 1 4.4 12 3888 BH(v)<br />

218670a 3805 DEB SCU 2 4.1 12 3312 BH(v)<br />

218670b 3805 DEB SCU 2 2.3 12 1052 BH(v)<br />

218670c 3805 DEB SCU 2 2.5 12 1282 BH(x)<br />

218671a 3811 DEB F 3 2.3 11 1216 MC(x)<br />

218671b 3811 DEB F 3 0.0 11 0 BH(x)<br />

218671c 3811 DEB F 3 2.8 11 1745 BH(x)<br />

218671d 3811 DEB F 3 0.0 11 0 BH(v)<br />

218672a 3811 DEB SCU 1 2.5 11 1434 BH(x)<br />

218672b 3811 DEB SCU 1 1.4 11 453 BH(v)<br />

218672c 3811 DEB SCU 1 2.9 11 1841 BH(v)<br />

218672d 3811 DEB SCU 1 1.8 11 756 BH(v)<br />

218673a 3811 DEB SCU 2 3.3 11 2496 BH(x)<br />

218673b 3811 DEB SCU 2 4.1 11 3830 BH(v)<br />

218673c 3811 DEB SCU 2 4.1 11 3852 BH(v)<br />

218673d 3811 DEB SCU 2 3.6 11 2980 BH(v)<br />

218674 3811 CT F 3 0.0 11 0 BH(x)<br />

218675 3811 DSN-G F 3 1.3 11 372 BH(x)<br />

218676 3811 DSN-G F 3 1.3 11 376 BH(x)<br />

218679a 3841 DEB SCU 1 3.5 11 2684 CD(v)<br />

218679b 3841 DEB SCU 1 4.0 11 3599 CD(v)<br />

218680 3841 DEB SCU 2 4.2 11 4063 CD(v)<br />

218681a 3841 DEB SCU 3 4.3 11 4254 CD(v)<br />

218681b 3841 DEB SCU 3 5.4 11 6683 CD(v)<br />

218682a 3841 DEB SCU 4 4.1 11 3762 CD(v)<br />

218682b 3841 DEB SCU 4 3.0 11 1986 CD(v)<br />

218682c 3841 DEB SCU 4 2.9 11 1903 CD(v)<br />

218682d 3841 DEB SCU 4 3.4 11 2625 CD(v)<br />

218691a 4230 DEB SCU 1 5.0 9 7378 CD(v)<br />

218691c 4230 DEB SCU 1 6.1 9 10819 CD-LM(x)<br />

218691d 4230 DEB SCU 1 5.6 9 9044 CD(v)<br />

218692b 4230 DEB SCU 2 3.6 9 3815 CD(v)<br />

218692c 4230 DEB SCU 2 3.8 9 4312 CD(v)<br />

218692d 4230 DEB SCU 2 4.8 9 6795 CD(v)<br />

218693a 4230 DEB SCU 3 4.4 9 5699 CD(v)<br />

218693b 4230 DEB SCU 3 4.4 9 5729 CD(v)<br />

218695a 4490 DEB SCU 1 6.6 11 9897 CD-LM(x)<br />

218695b 4490 DEB SCU 1 5.7 11 7382 CD(v)<br />

218695c 4490 DEB SCU 1 5.6 11 7145 CD(v)<br />

218696c 4490 DEB SCU 2 4.8 11 5122 CD(v)<br />

218696d 4490 DEB SCU 2 5.4 11 6472 CD(v)<br />

186


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218697a 4490 DEB SCU 3 4.7 11 4929 CD(v)<br />

218697b 4490 DEB SCU 3 4.4 11 4428 CD(v)<br />

218697c 4490 DEB SCU 3 4.6 11 4816 CD(v)<br />

218698a 4635 DEB SCU 1 5.2 11 6056 BH(v)<br />

218698b 4635 DEB SCU 1 5.4 11 6533 BH(v)<br />

218699a 4635 DEB SCU 2 5.2 11 6176 BH(x)<br />

218699c 4635 DEB SCU 2 3.7 11 3018 BH(v)<br />

218699d 4635 DEB SCU 2 5.8 11 7540 BH(v)<br />

218699e 4635 DEB SCU 2 5.6 11 7023 BH(v)<br />

218700a 4635 DEB SCU 3 3.7 11 3058 BH(v)<br />

218700b 4635 DEB SCU 3 4.8 11 5277 BH(v)<br />

218700c 4635 DEB SCU 3 1.5 11 514 BH(v)<br />

218702a 4637 DEB SCU 1 5.0 11 5711 CD(v)<br />

218702b 4637 DEB SCU 1 2.0 11 901 CD(v)<br />

218703a 4637 DEB SCU 2 4.0 11 3517 CD(v)<br />

218703b 4637 DEB SCU 2 4.9 11 5501 CD(v)<br />

218703c 4637 DEB SCU 2 6.5 11 9557 CD(v)<br />

218703d 4637 DEB SCU 2 4.5 11 4495 CD(v)<br />

218703e 4637 DEB SCU 2 3.5 11 2762 CD(v)<br />

218703f 4637 DEB SCU 2 4.8 11 5191 CD(v)<br />

218703g 4637 DEB SCU 2 4.5 11 4505 CD(v)<br />

218703h 4637 DEB SCU 2 4.7 11 4899 CD(v)<br />

218705b 4639 DEB SCU 1 5.3 11 6324 CD(v)<br />

218706a 4639 DEB SCU 2 4.0 11 3540 CD(v)<br />

218706b 4639 DEB SCU 2 4.1 11 3831 CD(v)<br />

218707a 4639 DEB SCU 3 3.9 11 3417 CD(v)<br />

218707b 4639 DEB SCU 3 3.4 11 2647 CD-LM(x)<br />

218708b 4639 DEB SCU 4 4.5 11 4596 CD(v)<br />

218709a 4639 DEB SCU 5 2.8 11 1745 CD(v)<br />

218709b 4639 DEB SCU 5 2.4 11 1308 CD(v)<br />

218712 4639 DSN-S 6.5 M @ 326 2.9 11 1871 CD-LM(x)<br />

218713 4639 ECN 16 M @ 320, SUB A 3.8 11 3305 CD-SR(x)<br />

218714 4639 ECN 44.4 M @ 360 SUB A 2.3 11 1158 BH(x)<br />

218715b 4641 DEB SCU 1 4.8 12 4534 CD(v)<br />

218715c 4641 DEB SCU 1 5.4 12 5707 CD(v)<br />

218715d 4641 DEB SCU 1 5.6 12 6229 CD(v)<br />

218716a 4641 DEB SCU 2 4.7 12 4421 BH(v)<br />

218716b 4641 DEB SCU 2 4.0 12 3136 BH(x)<br />

218716c 4641 DEB SCU 2 4.1 12 3332 BH(v)<br />

218716d 4641 DEB SCU 2 4.0 12 3175 BH(v)<br />

218716e 4641 DEB SCU 2 5.2 12 5361 BH(v)<br />

218716f 4641 DEB SCU 2 4.1 12 3252 BH(v)<br />

218717a 4660 DEB SCU 1 4.5 10 5089 CD-LM(x)<br />

218717b 4660 DEB SCU 1 2.9 10 2165 CD(v)<br />

218717d 4660 DEB SCU 1 3.4 10 2985 CD(v)<br />

218717e 4660 DEB SCU 1 3.5 10 3181 CD(v)<br />

218717f 4660 DEB SCU 1 4.0 10 4049 CD(v)<br />

218717g 4660 DEB SCU 1 3.9 10 3877 CD(v)<br />

187


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218717h 4660 DEB SCU 1 4.1 10 4256 CD(v)<br />

218717i 4660 DEB SCU 1 4.8 10 6021 CD(v)<br />

218717j 4660 DEB SCU 1 3.2 10 2683 CD(v)<br />

218718a 4665 DEB F 1 2.8 11 1820 non-CD(v)<br />

218718b 4665 DEB F 1 2.2 11 1056 non-CD(v)<br />

218718c 4665 DEB F 1 2.9 11 1905 non-CD(v)<br />

218720a 4665 DEB F 2 6.0 11 8006 CD-SR(x)<br />

218720c 4665 DEB F 2 3.1 11 2176 MC(x)<br />

218720d 4665 DEB F 2 2.4 11 1328 BH(x)<br />

218721a 4665 DEB SCU 1 2.5 11 1399 CD(v)<br />

218721b 4665 DEB SCU 1 2.9 11 1836 CD(v)<br />

218721c 4665 DEB SCU 1 2.5 11 1434 CD(v)<br />

218723 4665 PPF 11.3 M @ 172, D2 2.2 11 1128 CD-SR(x)<br />

218724 4665 CT F 2 2.3 11 1211 BH(x)<br />

218726a 4851 DEB SCU 1 5.5 10 7639 CD(v)<br />

218726b 4851 DEB SCU 1 3.3 10 2838 CD(v)<br />

218726c 4851 DEB SCU 1 5.2 10 7046 CD(v)<br />

218726d 4851 DEB SCU 1 4.3 10 4753 CD(v)<br />

218726e 4851 DEB SCU 1 4.7 10 5608 CD(v)<br />

218727a 4851 DEB SCU 2 4.3 10 4778 CD-SR(x)<br />

218727b 4851 DEB SCU 2 3.2 10 2550 CD(v)<br />

218727c 4851 DEB SCU 2 4.0 10 3999 CD(v)<br />

218727d 4851 DEB SCU 2 3.9 10 3897 CD(v)<br />

218727e 4851 DEB SCU 2 4.2 10 4463 CD(v)<br />

218728a 4857 DEB SCU 1 5.6 9 9099 CD(v)<br />

218728b 4857 DEB SCU 1 5.5 9 8816 CD(v)<br />

218728c 4857 DEB SCU 1 5.5 9 8816 CD(v)<br />

218728d 4857 DEB SCU 1 7.2 9 15203 CD(v)<br />

218729b 4857 DEB SCU 2 5.7 9 9470 CD-LM(x)<br />

218729c 4857 DEB SCU 2 5.5 9 8850 CD(v)<br />

218729d 4857 DEB SCU 2 4.5 9 5865 CD(v)<br />

218730a 4857 DEB SCU 3 4.5 9 5951 CD(v)<br />

218730b 4857 DEB SCU 3 4.4 9 5604 CD-SR(x)<br />

218731a 4859 DEB SCU 1 4.3 9 5285 CD(v)<br />

218731b 4859 DEB SCU 1 4.4 9 5729 CD(v)<br />

218731c 4859 DEB SCU 1 4.3 9 5381 CD(v)<br />

218731d 4859 DEB SCU 1 4.4 9 5692 CD(v)<br />

218732a 4859 DEB SCU 2 4.5 9 5980 CD(v)<br />

218732b 4859 DEB SCU 2 4.6 9 6128 CD(v)<br />

218732c 4859 DEB SCU 2 5.0 9 7227 CD(v)<br />

218732d 4859 DEB SCU 2 3.1 9 2774 CD(v)<br />

218733a 4859 DEB SCU 3 4.1 9 4931 CD(v)<br />

218733b 4859 DEB SCU 3 4.2 9 5228 CD-LM(x)<br />

218735a 4907 DEB SCU 1 4.5 12 4024 CD(v)<br />

218735b 4907 DEB SCU 1 4.9 12 4670 CD(v)<br />

218735c 4907 DEB SCU 1 3.2 12 2046 CD(v)<br />

218735d 4907 DEB SCU 1 4.9 12 4718 CD(v)<br />

218735f 4907 DEB SCU 1 4.3 12 3612 CD(v)<br />

188


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218736a 4907 DEB SCU 2 3.9 12 3051 CD-LM(x)<br />

218736b 4907 DEB SCU 2 5.3 12 5643 CD(v)<br />

218737a 4907 DEB SCU 3 2.5 12 1282 CD(v)<br />

218737b 4907 DEB SCU 3 5.1 12 5063 CD(v)<br />

218738a 4972 DEB SCU 1 3.6 10 3390 BH(v)<br />

218738b 4972 DEB SCU 1 4.6 10 5375 BH(v)<br />

218738c 4972 DEB SCU 1 3.9 10 3874 BH(v)<br />

218739a 4972 DEB SCU 2 4.2 10 4460 BH(v)<br />

218739b 4972 DEB SCU 2 4.0 10 4049 BH(v)<br />

218739c 4972 DEB SCU 2 4.5 10 5085 BH(v)<br />

218739d 4972 DEB SCU 2 4.5 10 5150 BH(x)<br />

218739e 4972 DEB SCU 2 3.5 10 3142 BH(v)<br />

218740a 4972 DEB SCU 3 2.9 10 2204 BH(v)<br />

218740b 4972 DEB SCU 3 4.4 10 4950 BH(v)<br />

218744a P-55-6561 DEB SCU 1 4.5 9 5798 CD(v)<br />

218744b P-55-6561 DEB SCU 1 4.5 9 6012 CD(v)<br />

218744c P-55-6561 DEB SCU 1 5.1 9 7596 CD(v)<br />

218745a P-55-6561 DEB SCU 2 5.8 9 9703 CD(v)<br />

218745b P-55-6561 DEB SCU 2 5.7 9 9572 CD(v)<br />

218745c P-55-6561 DEB SCU 2 5.6 9 9147 CD(v)<br />

218745d P-55-6561 DEB SCU 2 5.6 9 9240 CD(v)<br />

218745e P-55-6561 DEB SCU 2 5.4 9 8459 CD(v)<br />

218745f P-55-6561 DEB SCU 2 6.2 9 11213 CD-LM(x)<br />

218746 P-55-6561 DSN 61 M @ 5 1.6 9 748 CD-LM(x)<br />

218747a P-55-6564 DEB SCU 1 2.9 9 2438 CD(v)<br />

218747b P-55-6564 DEB SCU 1 2.9 9 2402 CD(v)<br />

218747c P-55-6564 DEB SCU 1 3.4 9 3329 CD(v)<br />

218747d P-55-6564 DEB SCU 1 3.5 9 3639 CD(v)<br />

218747e P-55-6564 DEB SCU 1 5.3 9 8302 CD-LM(x)<br />

218747f P-55-6564 DEB SCU 1 2.6 9 1964 CD(v)<br />

218747g P-55-6564 DEB SCU 1 2.6 9 2025 CD(v)<br />

218747h P-55-6564 DEB SCU 1 3.6 9 3780 CD(v)<br />

218747i P-55-6564 DEB SCU 1 3.1 9 2772 CD(v)<br />

218747j P-55-6564 DEB SCU 1 3.3 9 3142 CD(v)<br />

218748 P-55-6564 SCS 50.30 M @ 96 4.5 9 5794 BH(x)<br />

218749a P-55-6775 DEB SCU 1 3.6 11 2912 BH(v)<br />

218749b P-55-6775 DEB SCU 1 5.3 11 6400 BH(v)<br />

218750b P-55-6775 DEB SCU 2 5.5 11 6731 BH(x)<br />

218750c P-55-6775 DEB SCU 2 4.3 11 4086 BH(v)<br />

218750d P-55-6775 DEB SCU 2 1.6 11 584 BH(v)<br />

218751a P-55-6775 DEB SCU 3 4.5 11 4475 BH(v)<br />

218751b P-55-6775 DEB SCU 3 5.7 11 7202 BH(v)<br />

218751c P-55-6775 DEB SCU 3 4.5 11 4569 BH(x)<br />

218753a P-55-6776 DEB SCU 1 5.0 10 6350 BH(x)<br />

218753b P-55-6776 DEB SCU 1 3.4 10 2901 BH(v)<br />

218753c P-55-6776 DEB SCU 1 2.1 10 1152 BH(v)<br />

218753d P-55-6776 DEB SCU 1 4.3 10 4753 BH(v)<br />

218753e P-55-6776 DEB SCU 1 0.0 10 0 BH(v)<br />

189


Catalog<br />

No.<br />

Site (CA-TUO-) Object Location OH EHT Calibrated<br />

Date<br />

Source<br />

218753f P-55-6776 DEB SCU 1 3.3 10 2836 BH(v)<br />

218753g P-55-6776 DEB SCU 1 5.2 10 6920 BH(v)<br />

218755a P-55-6782 DEB SCU 2 5.1 10 6687 CD-LM(x)<br />

218755b P-55-6782 DEB SCU 2 5.4 10 7534 CD(v)<br />

218755c P-55-6782 DEB SCU 2 5.3 10 7157 CD(v)<br />

218756a P-55-6782 DEB SCU 3 4.1 10 4253 CD(v)<br />

218756b P-55-6782 DEB SCU 3 4.2 10 4509 CD(v)<br />

218756c P-55-6782 DEB SCU 3 4.4 10 4864 CD(v)<br />

218756d P-55-6782 DEB SCU 3 4.4 10 4868 CD(v)<br />

218756e P-55-6782 DEB SCU 3 4.4 10 4864 CD(v)<br />

218756f P-55-6782 DEB SCU 3 3.3 10 2819 CD(v)<br />

Key: DEB=debitage; CT=Cottonwood Triangular; DSN=Desert Side-notched (G, S: General or <strong>Sierra</strong> subtype); RS=Rose Spr<strong>in</strong>g;<br />

RSCN=Rose Spr<strong>in</strong>g Corner-notched; ECN=Elko Corner-notched; EE=Elko Eared; HCB=Humboldt Concave Base; SCB=<strong>Sierra</strong><br />

Concave Base; SCS=<strong>Sierra</strong> Contract<strong>in</strong>g Stem; CB=concave base; PPF=projectile po<strong>in</strong>t fragment; BH=Bodie Hills; LM, SR=Casa<br />

Diablo, Lookout Mounta<strong>in</strong> or Sawmill Ridge; MC=Mono Craters; MH=Mt. Hicks; x=sourced by XRF; v=visually sourced.<br />

190


Site<br />

Table A-5. Summary of Bedrock Mortar Data.<br />

Elev<br />

(ft)<br />

Area Features Mortars Slicks<br />

Total Mill<strong>in</strong>g<br />

Surfaces<br />

CA-TUO-0111 8600 Tuolumne 1 11 0 11 0<br />

CA-TUO-0118 8600 Tuolumne 2 2 0 2 0<br />

CA-TUO-0121 8600 Tuolumne 1 1 0 1 0<br />

CA-TUO-0124 8600 Tuolumne 1 2 0 2 1<br />

CA-TUO-0125/ 8600 Tuolumne 1 6 0 6 1<br />

CA-TUO-0128/ 8600 Tuolumne 1 2 0 2 4<br />

CA-TUO-0133 8600 Tuolumne 1 2 1 3 0<br />

CA-TUO-0166 8600 Tuolumne 2 25 0 25 0<br />

CA-TUO-0167/H 8600 Tuolumne 1 5 0 5 2<br />

CA-TUO-0499 8600 Tuolumne 1 6 0 6 0<br />

CA-TUO-0507 8600 Tuolumne 1 4 0 4 0<br />

CA-TUO-3938/H 8600 Tuolumne 1 2 0 2 0<br />

CA-TUO-3959 8600 Tuolumne 1 1 0 1 0<br />

CA-TUO-3960 8600 Tuolumne 1 1 0 1 0<br />

CA-TUO-0187 9500 Parker Pass 1 13 2 15 9<br />

CA-TUO-0759/H 10604 Mono Pass 1 3 0 3 1<br />

CA-TUO-3838 8770 Lyell Canyon 1 0 1 1 1<br />

CA-TUO-4639 8815 Lyell Canyon 1 2 0 2 2<br />

CA-TUO-4229 8760 Spiller Canyon 1 3 0 3 0<br />

CA-TUO-4635 8910 Spiller Canyon 1 1 0 1 1<br />

CA-TUO-0179/2829 9400 Dana Fork 2 4 2 6 0<br />

CA-TUO-2815/H 9040 Dana Fork 1 2 0 2 4<br />

CA-TUO-2816 9210 Dana Fork 1 1 0 1 0<br />

CA-TUO-2821/H 9290 Dana Fork 1 4 0 4 1<br />

CA-TUO-2822 9360 Dana Fork 1 1 1 2 2<br />

CA-TUO-2823 9330 Dana Fork 1 4 0 4 2<br />

CA-TUO-2824 9370 Dana Fork 2 12 3 15 13<br />

CA-TUO-2826 9380 Dana Fork 1 1 0 1 0<br />

CA-TUO-2833 9450 Dana Fork 1 3 0 3 0<br />

CA-TUO-2835 9440 Dana Fork 2 5 1 6 8<br />

CA-TUO-2838 9470 Dana Fork 1 4 0 4 5<br />

CA-TUO-2839 9450 Dana Fork 1 6 0 6 8<br />

YOSE 1994 C-01 9320 Dana Fork 1 1 0 1 0<br />

YOSE 1994 C-02 9300 Dana Fork 3 7 0 7 0<br />

CA-TUO-3765 8360 Virg<strong>in</strong>ia Canyon 1 6 0 6 3<br />

CA-TUO-3770 9240 Virg<strong>in</strong>ia Canyon 1 2 0 2 1<br />

CA-TUO-3772 9040 Virg<strong>in</strong>ia Canyon 1 1 0 1 0<br />

CA-TUO-3773 8560 Virg<strong>in</strong>ia Canyon 1 1 0 1 0<br />

CA-TUO-3776/H 8700 Virg<strong>in</strong>ia Canyon 1 5 1 6 5<br />

Pestles<br />

191


Site<br />

Elev<br />

(ft)<br />

Area Features Mortars Slicks<br />

Total Mill<strong>in</strong>g<br />

Surfaces<br />

CA-TUO-3778/H 8610 Virg<strong>in</strong>ia Canyon 1 3 0 3 1<br />

CA-TUO-3783 8970 Virg<strong>in</strong>ia Canyon 2 7 0 7 1<br />

CA-TUO-3786 8650 Virg<strong>in</strong>ia Canyon 1 8 0 8 3<br />

CA-TUO-3791 8800 Virg<strong>in</strong>ia Canyon 1 2 0 2 2<br />

CA-TUO-3792 8520 Virg<strong>in</strong>ia Canyon 0 0 0 0 1<br />

CA-TUO-3806 8400 Virg<strong>in</strong>ia Canyon 1 1 0 1 0<br />

CA-TUO-3807 8400 Virg<strong>in</strong>ia Canyon 1 4 0 4 0<br />

CA-TUO-3810/H 9300 Virg<strong>in</strong>ia Canyon 1 0 1 1 3<br />

CA-TUO-3811 9280 Virg<strong>in</strong>ia Canyon 3 7 5 12 4<br />

CA-TUO-4226 8400 Virg<strong>in</strong>ia Canyon 1 1 0 1 5<br />

CA-TUO-4644 8725 Cold Canyon 1 1 0 1 0<br />

CA-TUO-4646 8700 Cold Canyon 1 6 0 6 0<br />

Pestles<br />

192


APPENDIX B<br />

Obsidian Studies Report<br />

193


194


195


196


197


198


199


200


201


202


203


204


205


206


207


208


209


210


211


212


213


214


215


216


217


218


219


APPENDIX C<br />

Artifact Catalog<br />

220


Catalog<br />

L W T W<br />

Object Count Site (CA-TUO-) Unit/Feature Coord<strong>in</strong>ates<br />

No.<br />

(mm) (mm) (mm) (g)<br />

Material<br />

218604 DEB 5 46/H SCU 1 4 m @ 88° from datum 7.46 OB<br />

218605 DEB 5 46/H SCU 2 11 m @ 350° from datum 1.50 OB<br />

218606 DEB 5 46/H SCU 3 36 m @ 348° from datum 4.24 OB<br />

218607 DEB 3 113 SCU 1 22 m @ 262° from datum 6.66 OB<br />

218608 DEB 4 113 SCU 2 28 m @ 329° from datum 3.57 OB<br />

218609 DEB 8 113 SCU 3 43 m @ 220° from datum B 5.77 OB<br />

218610 DEB 5 0128/129/130/504 SCU 1 18 m @ 24° from ma<strong>in</strong> datum 4.25 OB<br />

218611 DEB 5 0128/129/130/504 SCU 2 65 m @ 353° from ma<strong>in</strong> datum 13.83 OB<br />

218612 DEB 5 0128/129/130/504 SCU 3 67 m @ 314° from ma<strong>in</strong> datum 9.87 OB<br />

218613 DEB 5 0128/129/130/504 SCU 4 29 m @ 143° from subdatum A 4.09 OB<br />

218614 DEB 5 0128/129/130/504 SCU 5 42 m @ 195° from subdatum A 2.37 OB<br />

218615 DEB 4 0128/129/130/504 SCU 6 59 m @ 217° from subdatum A 2.33 OB<br />

218616 EMP 1 0128/129/130/504 SCU 6 59 m @ 217° from subdatum A 28.8 32.9 5.7 4.79 OB<br />

218617 DEB 4 131 SCU 1 21 m @ 263° from subdatum A 2.85 OB<br />

218618 DEB 5 131 SCU 2 42 m @ 250° from subdatum A 1.78 OB<br />

218619 DEB 7 131 SCU 3 52 m @ 242° from subdatum A 5.77 OB<br />

218620 DEB 5 159 SCU 1 7 m @ 147° from datum 2.49 OB<br />

218621 DEB 5 159 SCU 2 13 m @ 188° from datum 3.07 OB<br />

218622 DEB 5 159 SCU 3 6 m @ 220° from datum 1.60 OB<br />

218623 PP 1 159 2.8 m @ 110° from datum 19.3 11.4 3.1 0.52 OB<br />

218624 DEB 9 164 SCU 1 19 m @ 160° from datum 4.99 OB<br />

218625 DEB 5 164 SCU 2 16 m @ 127° from datum 3.19 OB<br />

218626 DEB 4 172 SCU 1 2 m @ 322° from datum 2.62 OB<br />

218627 DEB 8 172 SCU 2 13 m @ 280° from datum 8.48 OB<br />

218628 DEB 3 172 SCU 3 93 m @ 258° from datum 1.87 OB<br />

218629 DEB 5 187 SCU 1 39 m @ 223° from datum 7.54 OB<br />

218630 DEB 5 187 SCU 2 12 m @ 94° from datum 1.96 OB<br />

218631 DEB 5 187 SCU 3 9 m @ 8° from datum 22.91 OB<br />

218632 PP 1 187 33 m @ 54° from datum 26.2 14.0 3.6 1.20 OB<br />

218633 PP 1 187 16.80 m @ 19° from datum 22.5 18.4 3.4 1.21 OB<br />

218634 DEB 7 245 SCU 1 22 m @ 205° from datum 2.64 OB<br />

218635 DEB 8 245 SCU 2 31 m @ 188° from datum 9.05 OB<br />

218636 PP 1 245 16.8 m @ 205° from datum 15.5 24.7 8.4 2.73 OB<br />

218637 DEB 8 494 SCU 1 8 m @ 302° from Area A datum 4.10 OB<br />

218638 DEB 6 494 SCU 2 11 m @ 45° from Area A datum 7.14 OB<br />

218639 DEB 5 751 F 1 60 m @ 190° from datum 3 8.15 OB<br />

221


Catalog<br />

L W T W<br />

Object Count Site (CA-TUO-) Unit/Feature Coord<strong>in</strong>ates<br />

No.<br />

(mm) (mm) (mm) (g)<br />

Material<br />

218640 DEB 6 751 SCU 1 5 m @ 168° from datum 3 1.83 OB<br />

218641 DEB 8 751 SCU 2 40 m @ 206° from datum 1 3.08 OB<br />

218642 PP 1 751 43 m @ 176° from datum 2 29.5 12.4 3.3 0.83 OB<br />

218643 PP 1 751 F 1 60 m @ 190° from datum 3 22.7 11.3 3.5 0.52 OB<br />

218828 PP 1 751 F 1 60 m @ 190° from datum 3 6.0 8.2 2.2 0.09 OB<br />

218917 EMP 1 751 SCU 2 40 m @206° from datum 1 16.9 20.5 5.5 2.35 OB<br />

218644 DEB 8 755 SCU 1 7 m @ 136° from datum 9.64 OB<br />

218645 DEB 7 755 SCU 2 19 m @ 155° from datum 4.52 OB<br />

218646 PP 1 755 8.10 m @ 92° from datum 17.4 21.7 5.1 1.96 OB<br />

218647 DEB 7 3765 SCU 1 24 m @ 195° from datum 5.95 OB<br />

218648 DEB 8 3765 RR 1 27 m @ 66° from datum to F center 2.70 OB<br />

218649 DEB 9 3765 RR 2 40 m @ 72° from datum to F center 3.22 OB<br />

218650 DEB 10 3769 SCU 1 8 m @ 152° from datum 3.29 OB<br />

218651 DEB 4 3777 SCU 1 17 m @ 209° from datum 5.86 OB<br />

218652 DEB 5 3777 SCU 2 15 m @ 187° from datum 4.42 OB<br />

218653 DEB 5 3777 SCU 3 9 m @ 162° from datum 3.61 OB<br />

218654 DEB 3 3783 F 4 11 m @ 14° from datum 0.50 OB<br />

218655 DEB 6 3783 F 3 13 m @ 28° from datum 2.00 OB<br />

218656 DEB 11 3783 F 6 22.7 m @ 42° from datum 6.24 OB<br />

218657 DEB 10 3783 SCU 1 17 m @ 44° from datum 4.91 OB<br />

218658 PP 1 3783 19.3 m @ 44° from datum 15.3 12.5 2.6 0.39 OB<br />

218659 PP 1 3783 13.3 m @ 22° from datum 14.1 12.9 3.3 0.70 OB<br />

218660 PP 1 3783 37.7 m @ 7° from datum 14.8 20.0 3.9 1.16 CH<br />

218661 DEB 5 3789 SCU 1 4 m @ 114° from datum 3.96 OB<br />

218662 DEB 5 3789 SCU 2 62 m @ 228° from datum 11.53 OB<br />

218663 DEB 5 3789 SCU 3 72 m @ 235° from datum 3.85 OB<br />

218664 DEB 3 3793 SCU 1 5 m @ 116° from datum 2.62 OB<br />

218665 DEB 5 3793 SCU 2 7.5 m @ 180° from datum 2.10 OB<br />

218666 DEB 4 3803 SCU 1 14 m @ 240° from datum 3.64 OB<br />

218667 DEB 4 3803 SCU 2 14.5 m @ 351° from datum 5.27 OB<br />

218668 DEB 7 3803 SCU 3 15 m @ 26° from datum 6.87 OB<br />

218669 DEB 9 3805 SCU 1 6 m @ 110° from datum 2.95 OB<br />

218670 DEB 4 3805 SCU 2 19 m @ 255° from datum 1.25 OB<br />

218671 DEB 9 3811 F 3 31 m @ 90° from datum 1 4.61 OB<br />

218672 DEB 6 3811 SCU 1 28 m @ 95° from datum 1 5.51 OB<br />

218673 DEB 5 3811 SCU 2 8 m @ 247° from datum 2 2.35 OB<br />

222


Catalog<br />

L W T W<br />

Object Count Site (CA-TUO-) Unit/Feature Coord<strong>in</strong>ates<br />

No.<br />

(mm) (mm) (mm) (g)<br />

Material<br />

218674 PP 1 3811 F 3 0.9 m @ 222° from F 3 subdatum 23.5 12.4 3.6 0.83 OB<br />

218675 PP 1 3811 F 3 0.6 m @ 120° from F 3 subdatum 18.2 11.9 2.1 0.40 OB<br />

218676 PP 1 3811 F 3 1.75 m @ 112° from F 3 subdatum 21.7 10.9 3.2 0.59 OB<br />

218677 PP 1 3811 12.9 m @ 112° from datum 1 35.0 24.4 5.6 4.60 OB<br />

218678 DEB 15 3834 SCU 1 18.5 m @ 140° from datum 9.95 OB<br />

218679 DEB 3 3841 SCU 1 N 95 E 100 2.68 OB<br />

218680 DEB 1 3841 SCU 2 N 90 E 100 34.78 OB<br />

218681 DEB 3 3841 SCU 3 N 75 E 90 1.45 OB<br />

218682 DEB 4 3841 SCU 4 N 75 E 105 12.47 OB<br />

218683 DEB 2 3841 SCU 5 N 85 E 120 5.78 OB<br />

218684 EMP 2 3841 SCU 5 N 85 E 120 48.0 25.1 4.2 5.41 OB<br />

218685 DEB 3 3850 SCU 1 N 160 E 75 1.44 OB<br />

218686 DEB 5 3850 SCU 2 N 70 E 115 3.12 OB<br />

218687 DEB 7 3850 SCU 3 N 95 E 120 13.10 OB<br />

218688 DEB 5 3943 SCU 1 10 m @ 23° from datum 1.87 OB<br />

218689 DEB 5 3943 SCU 2 23 m @ 301° from datum 2.08 OB<br />

218690 DEB 5 3943 SCU 3 45 m @ 246° from datum 1.65 OB<br />

218691 DEB 6 4230 SCU 1 4 m @ 215° from datum 2.33 OB<br />

218692 DEB 6 4230 SCU 2 14 m @ 192° from datum 2.96 OB<br />

218693 DEB 3 4230 SCU 3 18 m @ 306° from datum 5.27 OB<br />

218694 DEB 8 4440 SCU 1 11 m @ 307° from datum 3.74 OB<br />

218695 DEB 5 4490 SCU 1 32 m @ 211° from datum 6.52 OB<br />

218696 DEB 5 4490 SCU 2 39 m @ 199° from datum 4.30 OB<br />

218697 DEB 5 4490 SCU 3 43 m @ 214° from datum 4.65 OB<br />

218698 DEB 3 4635 SCU 1 11 m @ 44° from datum 2.05 OB<br />

218699 DEB 6 4635 SCU 2 38 m @ 60° from datum 1.77 OB<br />

218700 DEB 4 4635 SCU 3 15 m @ 246° from datum 0.81 OB<br />

218701 PP 1 4635 41 m @ 50° from datum 35.4 22.7 7.5 4.72 OB<br />

218702 DEB 4 4637 SCU 1 25 m @ 146° from datum 5.77 OB<br />

218703 DEB 10 4637 SCU 2 25 m @ 230° from datum 6.75 OB<br />

218704 EMP 1 4637 SCU 1 25 m @ 146° from datum 33.3 50.1 16.9 15.74 OB<br />

218705 DEB 3 4639 SCU 1 7 m @ 310° from ma<strong>in</strong> datum 2.97 OB<br />

218706 DEB 2 4639 SCU 2 15 m @ 310° from subdatum A 2.95 OB<br />

218707 DEB 2 4639 SCU 3 34 m @ 355° from subdatum A 3.74 OB<br />

218708 DEB 3 4639 SCU 4 25 m @ 226° from subdatum B 5.56 OB<br />

218709 DEB 3 4639 SCU 5 19 m @ 172° from subdatum B 1.07 OB<br />

223


Catalog<br />

L W T W<br />

Object Count Site (CA-TUO-) Unit/Feature Coord<strong>in</strong>ates<br />

No.<br />

(mm) (mm) (mm) (g)<br />

Material<br />

218710 EMP 1 4639 SCU 2 15 m @ 310° from subdatum A 17.6 18.4 4.4 1.41 OB<br />

218711 EMP 1 4639 SCU 3 34 m @ 355° from subdatum A 29.1 19.3 6.3 3.53 OB<br />

218712 PP 1 4639 6.5 m @ 326° from ma<strong>in</strong> datum 24.7 12.4 2.6 0.59 OB<br />

218713 PP 1 4639 16 m @ 320° from subdatum A 19.4 26.7 5.5 3.33 OB<br />

218714 PP 1 4639 44.4 m @ 360° from subdatum A 22.1 32.8 5.8 4.33 OB<br />

218715 DEB 7 4641 SCU 1 27 m @ 230° from datum 11.95 OB<br />

218716 DEB 8 4641 SCU 2 30 m @ 310° from datum 14.93 OB<br />

218717 DEB 10 4660 SCU 1 4 m @ 143° from datum 7.32 OB<br />

218718 DEB 3 4665 F 1 5 m @ 318° from Locus 2 datum 0.40 OB<br />

218719 DEB 2 4665 F1 8.7 m @ 326° from Locus 2 datum 5.36 OB<br />

218720 DEB 5 4665 F 2 12.4 m 2 196° from Locus 2 datum 8.46 OB<br />

218721 DEB 4 4665 SCU 1 13 m @ 180° from Locus 2 datum 7.21 OB<br />

218722 EMP 1 4665 SCU 1 13 m @ 180° from Locus 2 datum 15.6 24.3 8.4 2.84 OB<br />

218723 PP 1 4665 SCU 1 11.3 m @ 172° from Locus 2 datum 12.7 17.1 2.3 0.55 OB<br />

218724 PP 1 4665 F 2 12.7 m @ 193° from Locus 2 datum 23.8 13.7 4.1 0.97 OB<br />

12.25 m @ 165° from Locus 2<br />

218725 PP 1 4665<br />

datum 18.3 10.2 2.3 0.34 OB<br />

218726 DEB 7 4851 SCU 1 6 m @ 190° from datum 12.51 OB<br />

218727 DEB 7 4851 SCU 2 19 m @ 116° from datum 12.96 OB<br />

218728 DEB 5 4857 SCU 1 35 m @ 203° from datum 5.71 OB<br />

218729 DEB 7 4857 SCU 2 30 m @ 172° from datum 6.65 OB<br />

218730 DEB 3 4857 SCU 3 24 m @ 125° from datum 7.32 OB<br />

218731 DEB 5 4859 SCU 1 13 m @ 247° from datum 8.91 OB<br />

218732 DEB 6 4859 SCU 2 43 m @ 216° from datum 7.21 OB<br />

218733 DEB 4 4859 SCU 3 41 m @ 198° from datum 5.76 OB<br />

218734 EMP 1 4859 SCU 3 41 m @ 198° from datum 43.7 24.3 13.3 10.89 OB<br />

218735 DEB 9 4907 SCU 1 7 m @ 158° from datum 10.92 OB<br />

218736 DEB 3 4907 SCU 2 19 m @ 180° from datum 1.96 OB<br />

218737 DEB 3 4907 SCU 3 22 m @ 70° from datum 22.82 OB<br />

218738 DEB 6 4972 SCU 1 15 m @ 320° from datum 1.56 OB<br />

218739 DEB 6 4972 SCU 2 12 m @ 282° from datum 3.62 OB<br />

218740 DEB 3 4972 SCU 3 28 m @ 244° from datum 4.25 OB<br />

218741 DEB 5 P-55-6558 SCU 1 33 m @ 359° from datum 11.80 OB<br />

218742 DEB 4 P-55-6558 SCU 2 21 m @ 360° from datum 0.99 OB<br />

218743 DEB 6 P-55-6558 SCU 3 18 m @ 25° from datum 5.07 OB<br />

218744 DEB 7 P-55-6561 SCU 1 14 m @ 336° from datum 5.68 OB<br />

224


Catalog<br />

L W T W<br />

Object Count Site (CA-TUO-) Unit/Feature Coord<strong>in</strong>ates<br />

No.<br />

(mm) (mm) (mm) (g)<br />

Material<br />

218745 DEB 8 P-55-6561 SCU 2 24 m @ 52° from datum 5.38 OB<br />

218746 PP 1 P-55-6561 61 m @ 5° from datum 18.4 10.7 3.4 0.55 OB<br />

218747 DEB 15 P-55-6564 SCU 1 16 m @ 20° from datum 31.24 OB<br />

218748 PP 1 P-55-6564 50.30 m @ 96° from datum 29.3 25.3 7.0 4.39 OB<br />

218749 DEB 5 P-55-6775 SCU 1 15 m @ 187° from datum 10.05 OB<br />

218750 DEB 5 P-55-6775 SCU 2 13 m @ 232° from datum 2.53 OB<br />

218751 DEB 5 P-55-6775 SCU 3 14 m @ 264° from datum 8.04 OB<br />

218752 PP 1 P-55-6775 12.7 m @ 204° from datum 34.8 21.4 7.0 4.72 CH<br />

218753 DEB 7 P-55-6776 SCU 1 13 m @ 146° from datum 3.23 OB<br />

218754 DEB 1 P-55-6782 SCU 1 14 m @ 204° from datum 0.17 OB<br />

218755 DEB 6 P-55-6782 SCU 2 27 m @ 72° from datum 8.20 OB<br />

218756 DEB 7 P-55-6782 SCU 3 1 m @ 130° from subdatum 8.29 OB<br />

218918 EMP 1 P-55-6782 SCU 1 14 m @ 204° from datum 38.9 24.8 7.7 8.77 OB<br />

Key: DEB=debitage; PP=projectile po<strong>in</strong>t; EMP=edge=modified piece; OB=obsidian; CH=chert.<br />

225


REFERENCES CITED<br />

Anderson, M. K.<br />

1988 Sou<strong>the</strong>rn <strong>Sierra</strong> Miwok Plant Resource <strong>Use</strong> and Management of <strong>the</strong><br />

Yosemite Region: A Study of <strong>the</strong> Biological and Cultural Bases for Plant<br />

Ga<strong>the</strong>r<strong>in</strong>g, Field Horticulture, and Anthropogenic Impacts on <strong>Sierra</strong><br />

Vegetation. Master’s <strong>the</strong>sis, Department of Forestry and Resource<br />

Management, University of California, Berkeley.<br />

Barrett, S. A.<br />

1908 The Geography and Dialects of <strong>the</strong> Miwok Indians. University of<br />

California Publications <strong>in</strong> American Archaeology and Ethnology 6:333–<br />

368. Berkeley.<br />

Barrett, S. A., and E. W. Gifford<br />

1933 Miwok Material Culture. Bullet<strong>in</strong> of <strong>the</strong> Public Museum of <strong>the</strong> City of<br />

Milwaukee 2(4).<br />

Basgall, M. E.<br />

1987 Resource Intensification Among Hunter-Ga<strong>the</strong>rers: Acorn Economies <strong>in</strong><br />

<strong>Prehistoric</strong> California. Research <strong>in</strong> Economic Anthropology 9:21–52.<br />

1989 Obsidian Acquisition and <strong>Use</strong> <strong>in</strong> <strong>Prehistoric</strong> <strong>Central</strong> Eastern California:<br />

Prelim<strong>in</strong>ary Assessment. In Current Directions <strong>in</strong> California Obsidian<br />

Studies, edited by R. E. Hughes, pp. 111–126. Contributions of <strong>the</strong><br />

University of California Archaeological Research Facility 48. Berkeley.<br />

2008 An Archaeological Assessment of Late-Holocene Environmental Change<br />

<strong>in</strong> <strong>the</strong> Southwestern Great Bas<strong>in</strong>. In Avocados to Mill<strong>in</strong>gstones: Papers <strong>in</strong><br />

Honor of D. L. True, edited by G. Waugh and M. E. Basgall, pp. 251–267.<br />

Monographs <strong>in</strong> California and Great Bas<strong>in</strong> Anthropology, Number 5.<br />

Archaeological Research Center, California State University, Sacramento.<br />

Basgall, M. E., M. G. Delacorte, and D. W. Zeanah<br />

2003 Archaeological Evaluation of Five <strong>Prehistoric</strong> Sites near Bishop, Inyo<br />

County, California. Submitted to California Department of Transportation,<br />

Fresno. Archaeological Research Center, California State University,<br />

Sacramento.<br />

Basgall, M. E., and M. A. Giambastiani<br />

1995 <strong>Prehistoric</strong> <strong>Use</strong> of a Marg<strong>in</strong>al Environment: Cont<strong>in</strong>uity and Change <strong>in</strong><br />

Occupation of <strong>the</strong> Volcanic Tablelands, Mono and Inyo Counties,<br />

California. Center for Archaeological Research at Davis, Publication<br />

Number 12.<br />

226


Basgall, M. E., and M. C. Hall<br />

2000 Morphological and Temporal Variation <strong>in</strong> Bifurcate-Stemmed Dart Po<strong>in</strong>ts<br />

of <strong>the</strong> Western Great Bas<strong>in</strong>. Journal of California and Great Bas<strong>in</strong><br />

Anthropology 22(2):237–276.<br />

Basgall, M. E., and K. R. McGuire<br />

1988 The Archaeology of CA-INY-30: <strong>Prehistoric</strong> Culture Change <strong>in</strong> <strong>the</strong><br />

Sou<strong>the</strong>rn Owens Valley, California. Report on file, California Department<br />

of Transportation, District 9, Bishop.<br />

Bates, C. D.<br />

1993 Scholars and Collectors Among <strong>the</strong> <strong>Sierra</strong> Miwok, 1900–1920: What Did<br />

They Really F<strong>in</strong>d? Museum Anthropology 17(2).<br />

Bates, C. D., and M. J. Lee<br />

1990 Tradition and Innovation: A Basket History of <strong>the</strong> Indians of <strong>the</strong> Yosemite-<br />

Mono Lake Area. Yosemite Association, Yosemite National Park.<br />

1994 Appendix Five: Prelim<strong>in</strong>ary F<strong>in</strong>d<strong>in</strong>gs, <strong>High</strong> Country Ethnohistory Study. In<br />

Field Work Summary: 1993 White Wolf/Tuolumne Meadows Test<strong>in</strong>g<br />

Project (YOSE 1993B), by J. K. Vittands. USDI National Park Service,<br />

Yosemite Archeology Office, Yosemite National Park.<br />

1998 What This Bead Means: A Lone Glass Bead from <strong>the</strong> <strong>High</strong> Country and<br />

Paiute Families of Yosemite and Mono Lake. Draft, USDI National Park<br />

Service, Yosemite Museum Office, Yosemite National Park.<br />

Baumhoff, M. A., and J. S. Byrne<br />

1959 Desert Side-notched Po<strong>in</strong>ts as a Time Marker <strong>in</strong> California. University of<br />

California Archaeological Survey Reports 48:32–65. Berkeley.<br />

Bennyhoff, J. A.<br />

1956a An Appraisal of <strong>the</strong> Archaeological Resources of Yosemite National Park.<br />

University of California Archaeological Survey Reports 34, Berkeley.<br />

1956b Blade Cache, Tuo-134. Archaeological Research Facility No. 274. Phoebe<br />

Hearst Museum, University of California, Berkeley.<br />

Bett<strong>in</strong>ger, R. L.<br />

1976 The Development of P<strong>in</strong>yon Exploitation <strong>in</strong> <strong>Central</strong> Eastern California.<br />

The Journal of California Anthropology 3:81–95.<br />

1991 Aborig<strong>in</strong>al Occupation at <strong>High</strong> Altitude: Alp<strong>in</strong>e Villages <strong>in</strong> <strong>the</strong> White<br />

Mounta<strong>in</strong>s of California. American Anthropologist 93:656–679.<br />

227


1994 How, When, and Why Numic Spread. In Across <strong>the</strong> West: Human<br />

Population Movement and <strong>the</strong> Expansion of <strong>the</strong> Numa, edited by D. B.<br />

Madsen and D. Rhode, pp. 44–55. University of Utah Press, Salt Lake<br />

City.<br />

1999a What Happened <strong>in</strong> <strong>the</strong> Medi<strong>the</strong>rmal. In Models for <strong>the</strong> Millennium: Great<br />

Bas<strong>in</strong> Anthropology Today, edited by C. Beck, pp. 62–74. University of<br />

Utah Press, Salt Lake City.<br />

1999b From Traveler to Processor: Regional Trajectories of Hunter-Ga<strong>the</strong>rer<br />

Sedentism <strong>in</strong> <strong>the</strong> Inyo-Mono Region, California. In Settlement Pattern<br />

Studies <strong>in</strong> <strong>the</strong> Americas: Fifty Years S<strong>in</strong>ce Viru, edited by B. Billman and<br />

G. Fe<strong>in</strong>man, pp. 39–55. Smithsonian Institution, Wash<strong>in</strong>gton, D.C.<br />

2000 Afterword: Observations on Archaeological Inquiry <strong>in</strong> <strong>the</strong> Intermounta<strong>in</strong><br />

Region. In Intermounta<strong>in</strong> Archaeology, edited by D. B. Madsen and M. D.<br />

Metcalf, pp. 189–190. University of Utah Anthropological Papers No.<br />

122, University of Utah Press, Salt Lake City.<br />

Bett<strong>in</strong>ger, R. L., and M. A. Baumhoff<br />

1982 The Numic Spread: Great Bas<strong>in</strong> Cultures <strong>in</strong> Competition. American<br />

Antiquity 47:485–503.<br />

Bett<strong>in</strong>ger, R. L., M. G. Delacorte, and R. J. Jackson<br />

1984 Visual Sourc<strong>in</strong>g of <strong>Central</strong> Eastern California Obsidians. In Obsidian<br />

Studies <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong>, edited by R. E. Hughes, pp 63–78.<br />

Contributions to <strong>the</strong> University of California Archaeological Research<br />

Facility 45. Berkeley.<br />

Bett<strong>in</strong>ger, R. L., and J. Eerkens<br />

1999 Po<strong>in</strong>t Typologies, Cultural Transmission, and <strong>the</strong> Spread of Bow-and-<br />

Arrow Technology <strong>in</strong> <strong>the</strong> <strong>Prehistoric</strong> Great Bas<strong>in</strong>. American Antiquity<br />

64(2):231–242.<br />

Bett<strong>in</strong>ger, R. L, R. Malhi, and H. McCarthy<br />

1997 <strong>Central</strong> Place Models of Acorn and Mussel Process<strong>in</strong>g. Journal of<br />

Archaeological Science 24:887–899.<br />

Bett<strong>in</strong>ger, R. L., and R. E. Taylor<br />

1974 Suggested Revisions <strong>in</strong> Archaeological Sequences of <strong>the</strong> Great Bas<strong>in</strong> <strong>in</strong><br />

Interior Sou<strong>the</strong>rn California. <strong>Nevada</strong> Archeological Survey Research<br />

Papers 5:1–26. Reno.<br />

228


Bevill, R.<br />

2009 CA-TUO-4509, A <strong>High</strong> Altitude Lithic Cache from Parker Pass, Yosemite<br />

National Park, Tuolumne County, California. URS Group, Inc. Submitted<br />

to USDI National Park Service, Yosemite National Park Publications <strong>in</strong><br />

Anthropology No. 35, Yosemite National Park.<br />

Bevill, R., E. Nilsson, and K. Hull<br />

2005 Archeological Data Recovery Investigation at CA-MRP-240/303/H, CA-<br />

MRP-749, CA-MRP-1606/H, and CA-MRP-1607/H, Yosemite National<br />

Park, California. URS Corporation. Submitted to USDI National Park<br />

Service, Yosemite Research Center Publications <strong>in</strong> Anthropology No. 27,<br />

Yosemite National Park.<br />

Bibby, B.<br />

2002 Ethnogeography of Yosemite National Park and Cultural Traditions<br />

Associated with Death. Submitted to USDI National Park Service, Yosemite<br />

Museum Office, Yosemite National Park.<br />

B<strong>in</strong>ford, L. R.<br />

1980 Willow Smoke and Dogs’ Tails: Hunter-Ga<strong>the</strong>rer Settlement Systems and<br />

Archaeological Site Formation Processes. American Antiquity 45:4–20.<br />

Bird, D.W., and J. F. O’Connell<br />

2006 Behavioral Ecology and Archaeology. Journal of Archaeological<br />

Research 14(2):143–188.<br />

Botti, S. J., and W. Sydoriak<br />

2001 An Illustrated Flora of Yosemite National Park. Yosemite Association,<br />

Yosemite National Park.<br />

Bouey, P. D., and M. E. Basgall<br />

1984 Trans-<strong>Sierra</strong>n Exchange <strong>in</strong> <strong>Prehistoric</strong> California: The Concept of Economic<br />

Articulation. In Obsidian Studies <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong>, edited by R. E.<br />

Hughes, pp. 135–172. Contributions of <strong>the</strong> University of California<br />

Archaeological Research Facility No. 45.<br />

Bunnell, L. H.<br />

1990 Discovery of <strong>the</strong> Yosemite and <strong>the</strong> Indian War of 1851 Which Led to That<br />

Event. G. W. Gerlicher, Los Angeles. Orig<strong>in</strong>ally published 1880, facsimile<br />

of 4 th (1911) ed. Yosemite Association, Yosemite National Park.<br />

Canaday, T. W.<br />

1997 <strong>Prehistoric</strong> Alp<strong>in</strong>e Hunt<strong>in</strong>g <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong>. Ph.D. dissertation,<br />

Department of Anthropology, University of Wash<strong>in</strong>gton.<br />

229


Carpenter, S.<br />

2004 Archeological Predictive Model for Yosemite National Park.<br />

InteResources Plann<strong>in</strong>g. Manuscript submitted to USDI National Park<br />

Service, Yosemite Archeology Office, Yosemite National Park.<br />

Clark, G.<br />

1904 Indians of <strong>the</strong> Yosemite Valley and Vic<strong>in</strong>ity: Their History, Customs, and<br />

Traditions. Galen Clark, Yosemite Valley. H. S. Crocker Co., San<br />

Francisco.<br />

Colby, W. E.<br />

1949 Jean (John) Baptiste Lembert – Personal Memories. <strong>Sierra</strong> Club Bullet<strong>in</strong><br />

28(9):113–117.<br />

Cooper, D. J., J. D. Lundquist, J. K<strong>in</strong>g, A. Fl<strong>in</strong>t, L. Fl<strong>in</strong>t, E. Wolf, F. C. Lott, and J.<br />

Roche<br />

2006 Effects of <strong>the</strong> Tioga Road on Hydrologic Processes and Lodgepole<br />

Invasion <strong>in</strong>to Tuolumne Meadows, Yosemite National Park. Submitted to<br />

USDI National Park Service, Division of Resources Management and<br />

Science, Yosemite National Park.<br />

Curtis, D. L.<br />

2007 F<strong>in</strong>al Report of <strong>the</strong> Archeological Survey for <strong>the</strong> 2007 Wilderness<br />

Restoration Program. USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

Davis, E. L.<br />

1965 An Ethnography of <strong>the</strong> Kuzedika Paiute of Mono Lake, Mono County,<br />

California. University of Utah Anthropological Papers 8:1–55.<br />

Davis, J. T.<br />

1961 Trade Routes and Economic Exchange among <strong>the</strong> Indians of California.<br />

University of California Archaeological Survey Reports 54:1–71.<br />

Berkeley.<br />

Delacorte, M. G.<br />

1990 The Prehistory of Deep Spr<strong>in</strong>gs Valley, Eastern California: Adaptive<br />

Variation <strong>in</strong> <strong>the</strong> Western Great Bas<strong>in</strong>. Ph.D. dissertation, Department of<br />

Anthropology, University of California, Davis.<br />

230<br />

1999 Project Summary and Conclusions. In The Chang<strong>in</strong>g Role of River<strong>in</strong>e<br />

Environments <strong>in</strong> <strong>the</strong> Prehistory of <strong>the</strong> <strong>Central</strong>-Western Great Bas<strong>in</strong>: Data<br />

Recovery Excavations at Six <strong>Prehistoric</strong> Sites <strong>in</strong> Owens Valley, California.<br />

Report prepared for California Department of Transportation, District 9,<br />

Bishop.


2008 Desert Side-notched Po<strong>in</strong>ts as a Numic Population Marker <strong>in</strong> <strong>the</strong> Great<br />

Bas<strong>in</strong>. In Avocados to Mill<strong>in</strong>gstones: Papers <strong>in</strong> Honor of D. L. True,<br />

edited by G. Waugh and M. E. Basgall, pp. 111–136. Monographs <strong>in</strong><br />

California and Great Bas<strong>in</strong> Anthropology, Number 5. Archaeological<br />

Research Center, California State University, Sacramento.<br />

DePascale, P.<br />

2002 Archeological Assessment of <strong>the</strong> 2001 Backcountry Trails Project,<br />

Yosemite National Park, California. USDI National Park Service,<br />

Yosemite Archeology Office, Yosemite National Park.<br />

2004 Archeological Assessment of <strong>the</strong> 2003 Backcountry Trails Project,<br />

Yosemite National Park, California. USDI National Park Service,<br />

Yosemite Archeology Office, Yosemite National Park.<br />

DePascale, P., and D. L. Curtis<br />

2006 Fieldwork Summary of <strong>the</strong> 1994 Lower Lyell Canyon Archeology Survey<br />

(YOSE 1994 H). USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

Eerkens, J. W., A. M. Spurl<strong>in</strong>g, and M. A. Gras<br />

2008 Measur<strong>in</strong>g <strong>Prehistoric</strong> Mobility Strategies Based on Obsidian<br />

Geochemical and Technological Signatures <strong>in</strong> <strong>the</strong> Owens Valley,<br />

California. Journal of Archaeological Science 35:668–680.<br />

Fitzwater, R. J.<br />

1962 F<strong>in</strong>al Report on Two Seasons Excavations at El Portal, Mariposa County,<br />

California. University of California Archaeological Survey Annual Report,<br />

1961–1962:234–285. Los Angeles.<br />

1968 Excavations at Crane Flat, Yosemite National Park. University of<br />

California Archaeological Survey Annual Report 1967–1968:276–302.<br />

Los Angeles.<br />

Fowler, C. S., and S. Liljeblad<br />

1986 Nor<strong>the</strong>rn Paiute. In Great Bas<strong>in</strong>, edited by W. L. D’Azevedo, pp. 435–<br />

465. Handbook of North American Indians, vol. 11, W. C. Sturtevant,<br />

general editor. Smithsonian Institution, Wash<strong>in</strong>gton, D.C.<br />

Gavette, P.<br />

2000 Report on Archeological Survey for <strong>the</strong> 2000 Yosemite Wilderness<br />

Restoration Program. USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

231


2002 Report on Archeological Survey for <strong>the</strong> 1992 Yosemite Wilderness<br />

Restoration Program. USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

2003 Report on Archeological Survey for <strong>the</strong> 2001 & 2002 Yosemite<br />

Wilderness Restoration Program. USDI National Park Service, Yosemite<br />

Archeology Office, Yosemite National Park.<br />

2004 Report on Archeological Survey for <strong>the</strong> 2003 Yosemite Wilderness<br />

Restoration Program. USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

2005 Report on Archeological Survey for <strong>the</strong> 2004 Yosemite Wilderness<br />

Restoration Program. USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

2007 Report on Archeological Survey for <strong>the</strong> 1989 Donohue Pass Project. USDI<br />

National Park Service, Yosemite Archeology Office, Yosemite National<br />

Park.<br />

Gilreath, A. J., and W. R. Hildebrandt<br />

1997 <strong>Prehistoric</strong> <strong>Use</strong> of <strong>the</strong> Coso Volcanic Field. Contributions of <strong>the</strong><br />

University of California Archaeological Research Facility No. 56.<br />

University of California, Berkeley.<br />

Goldberg, S. K., E. J. Sk<strong>in</strong>ner, and Jeffery F. Burton<br />

1990 Archaeological Excavations at Sites CA-MNO-574, -577, -578, and -833:<br />

Stonework<strong>in</strong>g <strong>in</strong> Mono County, California. INFOTEC Research Inc.<br />

Submitted to California Department of Transportation, Bishop.<br />

Grayson, D. K.<br />

1991 Alp<strong>in</strong>e Faunas from <strong>the</strong> White Mounta<strong>in</strong>s, California: Adaptive Change <strong>in</strong><br />

<strong>the</strong> Late <strong>Prehistoric</strong> Great Bas<strong>in</strong>? Journal of Archaeological Science<br />

18:483–506.<br />

Gr<strong>in</strong>nell, J., and T. I. Storer<br />

1924 Animal Life <strong>in</strong> Yosemite. University of California Press, Berkeley.<br />

Hall, M. C.<br />

1983 Late Holocene Hunter-Ga<strong>the</strong>rers and Volcanism <strong>in</strong> <strong>the</strong> Long Valley-Mono<br />

Bas<strong>in</strong> Region: <strong>Prehistoric</strong> Culture Change <strong>in</strong> <strong>the</strong> Eastern <strong>Sierra</strong> <strong>Nevada</strong>.<br />

Ph.D. dissertation, Department of Anthropology, University of California,<br />

Riverside.<br />

232


Hall, M. C., and M. E. Basgall<br />

1994 Casa Diablo Obsidian <strong>in</strong> California and Great Bas<strong>in</strong> Prehistory. Paper<br />

presented at <strong>the</strong> 24 th Great Bas<strong>in</strong> Anthropological Conference, Elko,<br />

<strong>Nevada</strong>.<br />

Hanchett, P.<br />

2004 The 2003 Yosemite Archeology Predictive Model Survey Field Summary.<br />

USDI National Park Service, Yosemite Archeology Office, Yosemite<br />

National Park.<br />

Haney, J. W.<br />

1992 Acorn Exploitation <strong>in</strong> <strong>the</strong> Eastern <strong>Sierra</strong> <strong>Nevada</strong>. Journal of California<br />

and Great Bas<strong>in</strong> Anthropology 14(1):94–109.<br />

Heizer, R. F., and C. W. Clewlow, Jr.<br />

1968 Projectile Po<strong>in</strong>ts form Site Nv-Ch-15, Churchill County, <strong>Nevada</strong>.<br />

University of California Archaeological Survey Reports 71:59–88.<br />

Berkeley.<br />

Heizer, R. F., and T. R. Hester<br />

1978 Great Bas<strong>in</strong> Projectile Po<strong>in</strong>ts: Forms and Chronology. Ballena Press<br />

Publications <strong>in</strong> Archaeology, Ethnology and History 10. Socorro, New<br />

Mexico.<br />

Hildebrandt, W. R., and K. R. McGuire<br />

2002 The Ascendance of Hunt<strong>in</strong>g Dur<strong>in</strong>g <strong>the</strong> California Middle Archaic: An<br />

Evolutionary Perspective. American Antiquity 67(2):231–256.<br />

Huber, N. K.<br />

1987 The Geologic Story of Yosemite National Park. U.S. Geological Survey<br />

Bullet<strong>in</strong> 1595. Wash<strong>in</strong>gton, D.C.<br />

Hughes, R. E.<br />

1994 Intrasource Chemical Variability of Artifact-Quality Obsidians from <strong>the</strong><br />

Casa Diablo Area, California. Journal of Archaeological Science 21:263–<br />

271.<br />

Hull, K. L.<br />

1987 Field Work Summary, Tuolumne Meadows Archeological Project (YOSE<br />

1987P). USDI National Park Service, Yosemite Archeology Office,<br />

Yosemite National Park.<br />

1989a The 1985 and 1986 Wawona Archeological Excavations. USDI National<br />

Park Service, Yosemite Research Center Publications <strong>in</strong> Anthropology 7,<br />

Yosemite National Park.<br />

233


1989b Laboratory Manual for Classification of Projectile Po<strong>in</strong>ts from Yosemite<br />

National Park. Manuscript on file, USDI National Park Service, Yosemite<br />

Archeology Office, Yosemite National Park.<br />

1990 Flat Notes: Report of <strong>the</strong> 1986 and 1987 Archeological Excavations at<br />

Crane Flat and Tamarack Flat. USDI National Park Service, Yosemite<br />

Research Center Publications <strong>in</strong> Anthropology No. 12, Yosemite National<br />

Park.<br />

1991 Report of Archeological Data Recovery Excavations at CA-MRP-382,<br />

Mariposa County, California. USDI National Park Service, Yosemite<br />

Research Center Publications <strong>in</strong> Anthropology No. 13, Yosemite National<br />

Park.<br />

2001 Reassert<strong>in</strong>g <strong>the</strong> Utility of Obsidian Hydration Dat<strong>in</strong>g: A Temperature-<br />

Dependent Empirical Approach to Practical Temporal Resolution with<br />

Archaeological Obsidians. Journal of Archaeological Science 28:1025–<br />

1040.<br />

2002a Culture Contact <strong>in</strong> Context: A Multiscalar View of Catastrophic<br />

Depopulation and Culture Change <strong>in</strong> Yosemite Valley, California. Ph.D.<br />

dissertation, Department of Anthropology, University of California,<br />

Berkeley.<br />

2002b The Temporal Significance of Mono Craters Obsidian and Pumice<br />

Exploitation. Paper presented at <strong>the</strong> 28th Biennial Meet<strong>in</strong>g of <strong>the</strong> Great<br />

Bas<strong>in</strong> Anthropological Conference. Elko, <strong>Nevada</strong>.<br />

Hull, K. L., R. W. Bevill, W. G. Spauld<strong>in</strong>g, and M. R. Hale<br />

1995 Archeological Site Surbsurface Survey, Test Excavations, and Data-<br />

Recovery Excavations for <strong>the</strong> Tuolumne Meadows Sewer Replacement<br />

Project <strong>in</strong> Tuolumne Meadows, Yosemite National Park, California.<br />

Dames & Moore. Submitted to USDI, National Park Service, Yosemite<br />

Research Center Publications <strong>in</strong> Anthropology No. 16, Yosemite National<br />

Park.<br />

Hull, K. L., and M. S. Kelly<br />

1995 An Archeological Inventory of Yosemite Valley, Yosemite National Park,<br />

California. Dames & Moore, Inc., Chico, California. Submitted to USDI<br />

National Park Service, Yosemite Research Center Publications <strong>in</strong><br />

Anthropology No. 15, Yosemite National Park.<br />

234


Hull, K. L., and M. J. Moratto<br />

1999 Archeological Syn<strong>the</strong>sis and Research Design, Yosemite National Park,<br />

California. INFOTEC Research, Inc., and Dames & Moore. Submitted to<br />

USDI National Park Service, Yosemite Research Center Publications <strong>in</strong><br />

Anthropology No. 21, Yosemite National Park.<br />

Hull, K. L., and W. J. Mundy<br />

1985 The 1984 Yosemite Archeological Surveys: The South Entrance, Mariposa<br />

Grove, Tioga Road, Crane Flat, and Glacier Po<strong>in</strong>t Road Areas (2 vols.).<br />

USDI National Park Service, Yosemite Research Center Publications <strong>in</strong><br />

Anthropology No. 1, Yosemite National Park.<br />

Hulse, F. S.<br />

1935a Adventure of (Towa), by Bridgeport Tom. Manuscript on file, Bancroft<br />

Library, University of California, Berkeley.<br />

1935b The True Story of My Life – Jim Lundy. Manuscript on file, Bancroft<br />

Library, University of California, Berkeley.<br />

Humphreys, K. H.<br />

1994 Description and Analysis of <strong>the</strong> Glen Aul<strong>in</strong> and Pate Valley Obsidian<br />

Biface Caches. Master’s <strong>the</strong>sis, Department of Anthropology, California<br />

State University, Sacramento.<br />

Jackson, R. J.<br />

1985 An Archaeological Survey of <strong>the</strong> Wet, Antelope, Railroad, and Ford<br />

Timber Sale Compartments <strong>in</strong> <strong>the</strong> Inyo National Forest. Submitted to<br />

USDA Forest Service, Inyo National Forest, Bishop.<br />

1990 Stratigraphic Layer Cake or Midden Puree: Develop<strong>in</strong>g Recipes for<br />

Obsidian Hydration Analysis. Paper presented at <strong>the</strong> 24 th Annual Meet<strong>in</strong>g<br />

of <strong>the</strong> Society for California Archaeology, Foster City.<br />

Jackson, S. R.<br />

1992 YOSE 1992 E Project Summary. Manuscript on file, USDI National Park<br />

Service, Yosemite Archeology Office, Yosemite National Park.<br />

1996 YOSE 1996 I Project Field Notes. Notes on file, USDI National Park<br />

Service, Yosemite Archeology Office, Yosemite National Park.<br />

2002 Archeological Site Inventory for <strong>the</strong> Lyell-Kuna Fire, Yosemite National<br />

Park, California. USDI National Park Service, Yosemite Archeology<br />

Office, Yosemite National Park.<br />

235


Jackson, S. R., and B. Buettner<br />

2009 Prelim<strong>in</strong>ary Results for a Boulder Mill<strong>in</strong>g Feature (CA-MRP-305/H) <strong>in</strong><br />

Yosemite Valley. Paper presented at <strong>the</strong> 43rd Annual Meet<strong>in</strong>g of <strong>the</strong><br />

Society for California Archaeology, Modesto.<br />

Jackson, S. R., and D. Hagen<br />

2007 Archeological Assessment of <strong>the</strong> 2002 Backcountry Trails Project,<br />

Yosemite National Park, California. USDI National Park Service,<br />

Yosemite Research Center Technical Report No. 12, Yosemite National<br />

Park.<br />

Jackson, T. L.<br />

1991 Pound<strong>in</strong>g Acorn: Women’s Production as Social and Economic Focus. In<br />

Engender<strong>in</strong>g Archaeology, edited by J. M. Gero and M. W. Conkey, pp.<br />

301–328. Basil Blackwell, Inc., Cambridge.<br />

Jackson, T. L., and S. Dietz<br />

1984 Archaeological Data Recovery Excavations at CA-FRE-798 and CA-FRE-<br />

805 Siphon Substation 33Kv Distribution L<strong>in</strong>e and Balsam Meadow<br />

Hydroelectric Project. Submitted to Sou<strong>the</strong>rn California Edison Co.,<br />

Rosemead, California.<br />

Jackson, T. L., and C. Morgan<br />

1999 Archaeological Data Recovery Program Rush Meadow Archaeological<br />

District, Ansel Adams Wilderness, Inyo National Forest, California.<br />

Pacific Legacy, Inc. Submitted to Sou<strong>the</strong>rn California Edison Company,<br />

Rosemead, California.<br />

Jones, K. T., and D. B. Madsen<br />

1989 Calculat<strong>in</strong>g <strong>the</strong> Cost of Resource Transportation: A Great Bas<strong>in</strong> Example.<br />

Current Anthropology 30(4):529–534.<br />

Jones, T. L., G. M. Brown, L. M. Raab, J. L. McVickar, W. G. Spauld<strong>in</strong>g, D. J. Kennett,<br />

A. York, and P. L. Walker<br />

1999 Environmental Imperatives Reconsidered: Demographic Crises <strong>in</strong> Western<br />

North America dur<strong>in</strong>g <strong>the</strong> Medieval Climatic Anomaly. Current<br />

Anthropology 40(2):137–170.<br />

Kahl, B.<br />

1999 Subsurface Survey of Eight <strong>Prehistoric</strong> Archeological Sites <strong>in</strong> Tuolumne<br />

Meadows. USDI National Park Service, Yosemite Archeology Office,<br />

Yosemite National Park.<br />

2001a The 1998 Yosemite Backcountry Archeological Survey. USDI National<br />

Park Service, Yosemite Archeology Office, Yosemite National Park.<br />

236


2001b The 1999 Yosemite Wilderness Archeological Survey. USDI National<br />

Park Service, Yosemite Archeology Office, Yosemite National Park.<br />

Keefe, T. M., B. M. Kahl, and S. T. Montague<br />

1999 The Ackerson Post-Fire Archeological Project, Yosemite National Park,<br />

California. USDI National Park Service, Yosemite Research Center<br />

Technical Report No. 5, Yosemite National Park.<br />

Knieriemen, J.<br />

1997 Archaeology of <strong>the</strong> Upper Lyell Canyon, Yosemite National Park: with<br />

notes on Holocene Geology. Manuscript on file, USDI National Park<br />

Service, Yosemite Research Library, Yosemite National Park.<br />

Kroeber, A. L.<br />

1908 On <strong>the</strong> Evidences of <strong>the</strong> Occupation of Certa<strong>in</strong> Regions by <strong>the</strong> Miwok<br />

Indians. University of California Publications <strong>in</strong> American Archaeology<br />

and Ethnology 6:369–380. Berkeley.<br />

Laird, L.<br />

1925 Handbook of <strong>the</strong> Indians of California. Smithsonian Institution, Bureau of<br />

American Ethnology Bullet<strong>in</strong> 78. Wash<strong>in</strong>gton, D.C.<br />

1988 Project YOSE 1988 D: Virg<strong>in</strong>ia Canyon Survey. Notes on file, USDI<br />

National Park Service, Yosemite Archeology Office, Yosemite National<br />

Park.<br />

1989 Project YOSE 1989 M: Summit Pass, Virg<strong>in</strong>ia Pass, Upper Virg<strong>in</strong>ia<br />

Canyon Inventory. Notes on file, USDI National Park Service, Yosemite<br />

Archeology Office, Yosemite National Park.<br />

Lamb, S. M.<br />

1958 L<strong>in</strong>guistic Prehistory <strong>in</strong> <strong>the</strong> Great Bas<strong>in</strong>. International Journal of<br />

American L<strong>in</strong>guistics 29:95–100.<br />

Lanner, R. M.<br />

1981 The Pĩñon<br />

P<strong>in</strong>e: A Natural and Cultural History. University of <strong>Nevada</strong><br />

Press, Reno.<br />

Lann<strong>in</strong>g, E. P.<br />

1963 Archaeology of <strong>the</strong> Rose Spr<strong>in</strong>g Site, INY-372. University of California<br />

Publications <strong>in</strong> American Archaeology and Ethnology 49:237–336.<br />

Berkeley.<br />

237


Levy, R.<br />

1978 Eastern Miwok. In California, edited by R. F. Heizer, pp. 398–413.<br />

Handbook of North American Indians, vol. 8, W. C. Sturtevant, general<br />

editor. Smithsonian Institution, Wash<strong>in</strong>gton, D.C.<br />

Loyd, J. M., S. Schroder, and T. M. Origer<br />

1998 Identify<strong>in</strong>g <strong>the</strong> Relationships of Hydration Band Development Among<br />

Obsidian Sources Us<strong>in</strong>g Artificially Accelerated Hydration Research.<br />

Manuscript <strong>in</strong> possession of <strong>the</strong> authors.<br />

McCarthy, H., C. M. Blount, and R. A. Hicks<br />

1985 Appendix F: A Functional Analysis of Bedrock Mortars: Western Mono<br />

Food Process<strong>in</strong>g <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong>. In Cultural Resources of<br />

<strong>the</strong> Crane Valley Hydroelectric Project Area, Madera County, California,<br />

Vol 1: Ethnographic, Historic, and Archaeological Overviews and<br />

Archaeological Survey. Prepared by INFOTEC and Theodoratus Cultural<br />

Research, Inc. Submitted to Pacific Gas and Electric Company, San<br />

Francisco.<br />

McGuire, K. R., and W. R. Hildebrandt<br />

2005 Re-th<strong>in</strong>k<strong>in</strong>g Great Bas<strong>in</strong> Foragers: Prestige Hunt<strong>in</strong>g and Costly Signal<strong>in</strong>g<br />

Dur<strong>in</strong>g <strong>the</strong> Middle Archaic Period. American Antiquity 70(4):695–712.<br />

Merriam, C. H.<br />

1907 Distribution and Classification of <strong>the</strong> Mewan Stock of California.<br />

American Anthropologist 9:338–357.<br />

Montague, S.<br />

1996a The Dana Meadows Archeological Test<strong>in</strong>g Project, Yosemite National<br />

Park, Tuolumne County, California. USDI National Park Service,<br />

Yosemite Research Center Publications <strong>in</strong> Anthropology No. 19,<br />

Yosemite National Park.<br />

1996b Test Excavation at CA-TUO-120, Yosemite National Park, Tuolumne<br />

County, California. USDI National Park Service, Yosemite Research<br />

Center Technical Report No. 2, Yosemite National Park.<br />

2008 The Pothole Dome Cache and O<strong>the</strong>r Obsidian Flaked-Stone Tool Caches<br />

<strong>in</strong> Yosemite National Park. Manuscript on file, USDI National Park<br />

Service, Yosemite Archeology Office, Yosemite National Park.<br />

Moratto, M. J.<br />

1972 A Study of Prehistory <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong> Foothills, California.<br />

Ph.D. dissertation, Department of Anthropology, University of Oregon,<br />

Eugene.<br />

238


1981 An Archeological Research Design for Yosemite National Park,<br />

California. USDI National Park Service, Western Archeological and<br />

Conservation Center Publications <strong>in</strong> Anthropology 19, Tucson.<br />

1999 Cultural Chronology, 2: The Yosemite Data. In Archeological Syn<strong>the</strong>sis<br />

and Research Design, Yosemite National Park, California, edited by M. J.<br />

Moratto, pp. 121–204. INFOTEC Research, Inc., and Dames & Moore.<br />

Submitted to USDI National Park Service, Yosemite Research Center<br />

Publications <strong>in</strong> Anthropology No. 21, Yosemite National Park.<br />

2002 Culture History of <strong>the</strong> New Melones Reservoir Area, Calaveras and<br />

Tuolumne Counties, California. In Essays <strong>in</strong> California Archaeology: A<br />

Memorial to Frankl<strong>in</strong> Fenenga, edited by W. J. Wallace and F. A. Riddell,<br />

pp. 25–54.<br />

Moratto, M. J., J. D. Tordoff, and L. H. Shoup<br />

1988 Culture Change <strong>in</strong> <strong>the</strong> <strong>Central</strong> <strong>Sierra</strong> <strong>Nevada</strong>, 8000 B.C.–A.D. 1950. F<strong>in</strong>al<br />

Report of <strong>the</strong> New Melones Archeological Project 9, pp. 1–626. INFOTEC<br />

Research, Inc., Sonora, California. Submitted to <strong>the</strong> USDI National Park<br />

Service, Wash<strong>in</strong>gton, D.C.<br />

Morgan, C. T.<br />

2006 Late <strong>Prehistoric</strong> Territorial Expansion and Ma<strong>in</strong>tenance <strong>in</strong> <strong>the</strong> South-<br />

<strong>Central</strong> <strong>Sierra</strong> <strong>Nevada</strong>, California. Ph.D. dissertation, Department of<br />

Anthropology, University of California, Davis.<br />

2009 Climate Change, Uncerta<strong>in</strong>ty and <strong>Prehistoric</strong> Hunter-Ga<strong>the</strong>rer Mobility.<br />

Journal of Anthropological Archaeology 28:382–396.<br />

Muir, J.<br />

1879 Passes of <strong>the</strong> <strong>Sierra</strong>. Scribner’s Monthly 17(5):644–652. [Onl<strong>in</strong>e, Mak<strong>in</strong>g<br />

of America at<br />

http://cdl.library.cornell.edu/moa/browse.journals/scmo.html].<br />

1916 My First Summer <strong>in</strong> <strong>the</strong> <strong>Sierra</strong>. Houghton Miffl<strong>in</strong>, New York.<br />

1977 The Mounta<strong>in</strong>s of California. Ten Speed Press, Berkeley.<br />

Mundy, W. J.<br />

1988 Field Work Summary, 1988 Bullfrog Lake Archeological Project (SEKI<br />

88-L): Rerecord<strong>in</strong>g and limited subsurface survey of CA-FRE-266,<br />

rerecord<strong>in</strong>g of SEKI 87A-32. USDI National Park Service, Yosemite<br />

Archeology Office, Yosemite National Park.<br />

239


1992 The 1985 and 1986 Eastern Tioga Road Archeological Survey, Yosemite<br />

National Park, California. USDI National Park Service, Yosemite<br />

Research Center Publications <strong>in</strong> Anthropology No. 17, Yosemite National<br />

Park.<br />

1993 <strong>Elevation</strong>-Related Variables and Obsidian Hydration: A Diffusion Cell<br />

Study <strong>in</strong> Yosemite National Park, California. Paper presented at <strong>the</strong> 27th<br />

Annual Meet<strong>in</strong>g of <strong>the</strong> Society for California Archaeology, Pacific Grove.<br />

Napton, L. K., and E. A. Greathouse<br />

1976 Archeological Investigations <strong>in</strong> Yosemite National Park, California: Part<br />

1, Project Summary, CSC/IAR 1976. Submitted to USDI National Park<br />

Service, Western Archeological and Conservation Center, Tucson.<br />

Norum, C., J. Qu<strong>in</strong>n, and C. Sandy<br />

2002 The 2002 Yosemite Archeology Predictive Model Field Summary. USDI<br />

National Park Service, Yosemite Archeology Office, Yosemite National<br />

Park.<br />

Peak, A. S., and H. L. Crew<br />

1990 Cultural Resource Studies, North Fork Stanislaus River Hydroelectric<br />

Development Project, Volume II, Part 1: An Archaeological Data<br />

Recovery Project at CA-Cal-S342, Clarks Flat, Calaveras County,<br />

California. Peak & Associates, Sacramento. Submitted to <strong>the</strong> Nor<strong>the</strong>rn<br />

California Power Agency, Roseville.<br />

Powers, S.<br />

1976 Tribes of California. U.S. Department of <strong>the</strong> Interior, Geographical and<br />

Geological Survey of <strong>the</strong> Rocky Mounta<strong>in</strong> Region, Contributions to North<br />

American Ethnology III. Repr<strong>in</strong>ted 1976 as Tribes of California.<br />

University of California Press, Berkeley and Los Angeles.<br />

Ramos, B. A.<br />

2000 <strong>Prehistoric</strong> Obsidian Quarry <strong>Use</strong> and Technological Change <strong>in</strong> <strong>the</strong><br />

Western Great Bas<strong>in</strong>: Exam<strong>in</strong><strong>in</strong>g Lithic Procurement at <strong>the</strong><br />

Truman/Queen Obsidian Source, California and <strong>Nevada</strong>. Ph.D.<br />

dissertation, Department of Anthropology, University of California, Davis.<br />

Reynolds, L. A., and W. C. Kerw<strong>in</strong><br />

2006 <strong>Prehistoric</strong> <strong>Land</strong>-<strong>Use</strong> Patterns of <strong>the</strong> Alp<strong>in</strong>e & Sub-alp<strong>in</strong>e Zones of <strong>the</strong><br />

Eastern Slope of <strong>the</strong> <strong>High</strong> <strong>Sierra</strong> <strong>Nevada</strong>. Paper presented at <strong>the</strong> 30th<br />

Biennial Meet<strong>in</strong>g of <strong>the</strong> Great Bas<strong>in</strong> Anthropological Conference. Las<br />

Vegas, <strong>Nevada</strong>.<br />

240


Riddell, H. S.<br />

1951 The Archaeology of a Paiute Village Site <strong>in</strong> Owens Valley. University of<br />

California Archaeological Survey Reports 12:14–28. Berkeley.<br />

Rid<strong>in</strong>gs, R.<br />

1996 Where <strong>in</strong> <strong>the</strong> World Does Obsidian Hydration Dat<strong>in</strong>g Work? American<br />

Antiquity 61:136–148.<br />

Rogers, A. K.<br />

2007 Effective Hydration Temperature of Obsidian: A Diffusion Theory<br />

Analysis of Time-Dependent Hydration Rates. Journal of Archaeological<br />

Science 34:656–665.<br />

Roper Wickstrom, C. K.<br />

1992 A Study of <strong>High</strong> Altitude Obsidian Distribution <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn <strong>Sierra</strong><br />

<strong>Nevada</strong>, California. Master’s <strong>the</strong>sis, Department of Anthropology,<br />

Sonoma State University.<br />

1993 Spatial and Temporal Characteristics of <strong>High</strong> Altitude Site Pattern<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> Sou<strong>the</strong>rn <strong>Sierra</strong> <strong>Nevada</strong>. In There Grows a Green Tree: Papers <strong>in</strong><br />

Honor of David A. Fredrickson, edited by G. White, P. Mikkelsen, W. R.<br />

Hildebrandt, and M. E. Basgall, pp. 219–236. Center for Archaeological<br />

Research at Davis, Publication No. 11. University of California, Davis.<br />

Rosenthal, J. S.<br />

2008 Volume 1: Syn<strong>the</strong>sis, Prehistory of <strong>the</strong> Sonora Region: Archaeological<br />

and Geoarchaeological Investigations for Stage 1 of <strong>the</strong> East Sonora<br />

Bypass Project, State Route 108, Tuolumne County, California. Far<br />

Western Anthropological Research Group, Inc. Submitted to California<br />

Department of Transportation, District 10, Stockton.<br />

Sample, L. L.<br />

1950 Trade and Trails <strong>in</strong> Aborig<strong>in</strong>al California. University of California<br />

Archaeological Survey 8. Berkeley.<br />

Scott, D. J.<br />

2007 The Monument Ridge Bighorn Sheep Drive, Mono County, California.<br />

Paper Presented at <strong>the</strong> Society for California Archaeology, Nor<strong>the</strong>rn<br />

California Data Shar<strong>in</strong>g Meet<strong>in</strong>g. Sonora, California.<br />

Shive, K. L.<br />

2007 Archeology <strong>in</strong> Support of <strong>the</strong> Tuolumne Wild and Scenic River<br />

Comprehensive Management Plan and Tuolumne Meadows Plan. USDI<br />

National Park Service, Yosemite Archeology Office, Yosemite National<br />

Park.<br />

241


S<strong>in</strong>ger, C. A., and J. E. Ericson<br />

1977 Quarry Analysis at Bodie Hills, Mono County, California: A Case Study.<br />

In Exchange Systems <strong>in</strong> Prehistory, edited by T. K. Earle and J. E.<br />

Ericson, pp. 171–190. Academic Press, New York.<br />

Spauld<strong>in</strong>g, W. G.<br />

1999 Paleoenvironmental Studies. In Archeological Syn<strong>the</strong>sis and Research<br />

Design, Yosemite National Park, California, edited by M. J. Moratto, pp<br />

29–64. INFOTEC Research, Inc., and Dames & Moore. Submitted to<br />

USDI National Park Service, Yosemite Research Center Publications <strong>in</strong><br />

Anthropology No. 21, Yosemite National Park.<br />

Stevens, N. E.<br />

2002 <strong>Prehistoric</strong> <strong>Use</strong> of <strong>the</strong> Alp<strong>in</strong>e <strong>Sierra</strong> <strong>Nevada</strong>: Archaeological<br />

Investigations at Taboose Pass, K<strong>in</strong>gs Canyon National Park, California.<br />

Master’s <strong>the</strong>sis, Department of Anthropology, California State University,<br />

Sacramento.<br />

2003 Spatial and Temporal Pattern<strong>in</strong>g of Bedrock Mortar Sites <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn<br />

<strong>Sierra</strong> <strong>Nevada</strong>: A Regional Exploration. Proceed<strong>in</strong>gs of <strong>the</strong> Society for<br />

California Archaeology, 16: 175–182.<br />

2005 Changes <strong>in</strong> <strong>Prehistoric</strong> <strong>Land</strong> <strong>Use</strong> <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e <strong>Sierra</strong> <strong>Nevada</strong>: A Regional<br />

Exploration Us<strong>in</strong>g Temperature-Adjusted Obsidian Hydration Rates.<br />

Journal of California and Great Bas<strong>in</strong> Anthropology 25:187–205.<br />

Steward, J. H.<br />

1933 Ethnography of <strong>the</strong> Owens Valley Paiute. University of California<br />

Publications <strong>in</strong> American Archaeology and Ethnology 33(3):233–350.<br />

Berkeley.<br />

1938 Bas<strong>in</strong>-Plateau Aborig<strong>in</strong>al Sociopolitical Groups. Bureau of American<br />

Ethnology Bullet<strong>in</strong> 120. Smithsonian Institution, Wash<strong>in</strong>gton, D.C.<br />

St<strong>in</strong>e, S.<br />

1994 Extreme and Persistent Drought <strong>in</strong> California and Patagonia dur<strong>in</strong>g<br />

Medieval Time. Nature 369:546–549.<br />

2006 <strong>Sierra</strong> <strong>Nevada</strong> Climate, 1650–1850. <strong>Sierra</strong> Nature Notes Volume 6,<br />

January 2006.<br />

Thomas, D. H.<br />

1979 On Steward’s Models of Shoshonean Sociopolitical Organization: A Great<br />

Bias <strong>in</strong> <strong>the</strong> Bas<strong>in</strong>? Paper presented at <strong>the</strong> Annual Meet<strong>in</strong>g of <strong>the</strong> American<br />

Ethnological Society, Vancouver, B.C.<br />

242


1981 How to Classify <strong>the</strong> Projectile Po<strong>in</strong>ts from Monitor Valley, <strong>Nevada</strong>.<br />

Journal of California and Great Bas<strong>in</strong> Anthropology 3(1):7–43.<br />

1982 The 1981 Alta Toquima Village Project: A Prelim<strong>in</strong>ary Report. Desert<br />

Research Institute Social Sciences Center Technical Report Series, 27.<br />

1994 Chronology and <strong>the</strong> Numic Expansion. In Across <strong>the</strong> West: Human<br />

Population Movement and <strong>the</strong> Expansion of <strong>the</strong> Numa, edited by D. B.<br />

Madsen and D. Rhode, pp. 56–61. University of Utah Press, Salt Lake<br />

City.<br />

Todt, D. L., and N. Hannon<br />

1998 Plant Resource Rank<strong>in</strong>g on <strong>the</strong> Upper Klamath River of Oregon and<br />

California: A Methodology with Archaeological Applications. Journal of<br />

Ethnobiology 18(2):273–308.<br />

Trema<strong>in</strong>e, K.<br />

1991 A Relative Dat<strong>in</strong>g Approach for Casa Diablo and Bodie Hills Obsidians<br />

Derived from Accelerated Hydration Experiments. In Archaeological<br />

Evaluation of CA-MNO-2456, -2488, and -564 near Bridgeport, Mono<br />

County, California, by D. A. Fredrickson, pp. 285–289. Anthropological<br />

Studies Center, Sonoma State University Academic Foundation, Inc.<br />

Submitted to California Department of Transportation, District 9, Bishop.<br />

Van Bueren, T. M.<br />

1988 Archaeological Surveys <strong>in</strong> <strong>the</strong> Path, Mill, Kaiser, Deer, and Bull Survey<br />

Areas, <strong>Sierra</strong> National Forest, California. INFOTEC Research, Inc.<br />

Submitted to <strong>Sierra</strong> National Forest, Shaver Lake, California.<br />

Vittands, J. K.<br />

1994 Field Work Summary: 1993 White Wolf/Tuolumne Meadows Test<strong>in</strong>g<br />

Project (YOSE 1993B). USDI National Park Service, Yosemite<br />

Archeology Office, Yosemite National Park.<br />

1998 CA-TUO-500, Artifact Cache Discovery Notes (YOSE 1998 II). USDI<br />

National Park Service, Yosemite Archeology Office, Yosemite National<br />

Park.<br />

Whitney, J. D.<br />

1868 The Yosemite Book. The Bancroft Library, University of California,<br />

Berkeley.<br />

Whitney, S.<br />

1979 A <strong>Sierra</strong> Club Naturalist’s Guide to <strong>the</strong> <strong>Sierra</strong> <strong>Nevada</strong>. <strong>Sierra</strong> Club Books,<br />

San Francisco.<br />

243


W<strong>in</strong>terhalder, B., and E. A. Smith<br />

2000 Analyz<strong>in</strong>g Adaptive Strategies: Human Behavioral Ecology at Twenty-<br />

Five. Evolutionary Anthropology 9(2):51–72.<br />

Woolfenden, W. B.<br />

1988 Human Ecological Implications of Migratory Deer Behavior <strong>in</strong> <strong>Sierra</strong>n<br />

Prehistory. Proceed<strong>in</strong>gs of <strong>the</strong> Society for California Archaeology 1:225–<br />

246. San Diego.<br />

Yohe, R. M.<br />

1992 A Reevaluation of Western Great Bas<strong>in</strong> Cultural Chronology and<br />

Evidence for <strong>the</strong> Tim<strong>in</strong>g of <strong>the</strong> Introduction of <strong>the</strong> Bow and Arrow to<br />

Eastern California Based on New Excavations at <strong>the</strong> Rose Spr<strong>in</strong>g Site<br />

(CA-INY-372). Ph.D. Disseration, Department of Anthropology,<br />

University of California, Riverside.<br />

Zeanah, D. W.<br />

2000 Transport Costs, <strong>Central</strong> Place Forag<strong>in</strong>g, and Hunter-Ga<strong>the</strong>rer Alp<strong>in</strong>e<br />

<strong>Land</strong>-<strong>Use</strong> Strategies. In Intermounta<strong>in</strong> Archaeology, edited by D. B.<br />

Madsen and M. D. Metcalf, pp. 1–14. University of Utah Anthropological<br />

Papers No. 122, University of Utah Press, Salt Lake City.<br />

Zeanah, D. W., and S. R. Simms<br />

1999 Model<strong>in</strong>g <strong>the</strong> Gastric: Great Bas<strong>in</strong> Subsistence Studies S<strong>in</strong>ce 1982 and <strong>the</strong><br />

Evolution of General Theory. In Models for <strong>the</strong> Millennium: Great Bas<strong>in</strong><br />

Anthropology Today, pp. 118–140, edited by C. Beck. University of Utah<br />

Press, Salt Lake City.<br />

244

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!