13.07.2013 Views

On Erd˝os-Gallai and Havel-Hakimi algorithms

On Erd˝os-Gallai and Havel-Hakimi algorithms

On Erd˝os-Gallai and Havel-Hakimi algorithms

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>On</strong> Erdős-<strong>Gallai</strong> <strong>and</strong> <strong>Havel</strong>-<strong>Hakimi</strong> <strong>algorithms</strong> 25<br />

Proof. See [3, 78]. <br />

At the designing <strong>and</strong> analysis of the results of the simulation experiments<br />

is useful, if we know some features of the functions R(n) <strong>and</strong> E(n).<br />

Lemma 11 If n ≥ 1, then<br />

further<br />

R(n + 2)<br />

R(n + 1)<br />

R(n + 1)<br />

> , (28)<br />

R(n)<br />

R(n + 1)<br />

lim = 4, (29)<br />

n→∞ R(n)<br />

4n <br />

√ 1 −<br />

4πn<br />

1<br />

<br />

< R(n) <<br />

2n<br />

4n<br />

<br />

1<br />

√ 1 − . (30)<br />

4πn 8n + 8<br />

Proof. <strong>On</strong> the base of (25) we have<br />

R(n + 2)<br />

R(n + 1) =<br />

(2n + 3)!(n + 1)n! 4n + 6 2<br />

= = 4 − , (31)<br />

(n + 2)!(n + 1)!(2n + 1)! n + 2 n + 2<br />

from where we get directly (28) <strong>and</strong> (29). <br />

Using Lemma 12 we can give the precise asymptotic order of growth of E(n).<br />

Lemma 12 If n ≥ 1, then<br />

further<br />

E(n + 2)<br />

E(n + 1)<br />

E(n + 1)<br />

> , (32)<br />

E(n)<br />

E(n + 1)<br />

lim = 4, (33)<br />

n→∞ E(n)<br />

4 n<br />

√ πn (1 − D3(n)) < E(n) < 4n<br />

√ πn (1 − D4(n)), (34)<br />

where D3(n) <strong>and</strong> D4(n) are monotone decreasing functions tending to zero.<br />

Proof. The proof is similar to the proof of Lemma 11. <br />

Comparison of (25) <strong>and</strong> Lemma 12 shows, that the order of growth of numbers<br />

of even <strong>and</strong> odd sequences is the same, but there are more even sequences<br />

than odd. Figure 1 contains the values of R(n), E(n) <strong>and</strong> E(n)/R(n) for<br />

n = 1, . . . , 37.<br />

As the next assertion <strong>and</strong> Figure 1 show, the sequence of the ratios E(n)/R(n)<br />

is monotone decreasing <strong>and</strong> tends to 1<br />

2 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!