12.07.2013 Views

What do tree rings tell us about drought and climate ... - Colorado

What do tree rings tell us about drought and climate ... - Colorado

What do tree rings tell us about drought and climate ... - Colorado

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Prehistoric Context for<br />

Western Drought<br />

Histories of<br />

Climate<br />

Fire<br />

Insect<br />

outbreaks<br />

Tree<br />

demography<br />

Julio Betancourt, Steve Gray<br />

Greg McCabe, Hugo Hidalgo<br />

GreatDrought<br />

AD1266-1299<br />

AD1266 1299<br />

Cross-dating<br />

Last beam<br />

cut in<br />

AD 1286<br />

Betatakin


NE Utah Monthly Precipitation 1895-2002<br />

1895 2002


July-July Precipitation (cm)<br />

Tree-Ring Tree Ring width series capture both interannual<br />

<strong>and</strong> interdecadal variations in <strong>climate</strong><br />

Calibration for the NE Utah/SW Wyoming Precipitation Reconstruction<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Observed vs<br />

10<br />

Predicted<br />

1895 1905 1915 1925 1935 1945 1955 1965 1975 1985 1995


Corona<strong>do</strong>’s<br />

Entrada<br />

?<br />

Significant Cultural Events


Connie Woodho<strong>us</strong>e<br />

www.ncdc.noaa.gov/paleo/streamflow


Ni, Cavazos, Hughes, Comrie & Funkho<strong>us</strong>er (2002)<br />

http://www.ngdc.noaa.gov/paleo/<br />

November-April precipitation (mm)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1000 1200 1400 1600 1800 2000


http://www.ngdc.noaa.gov/paleo/


Some applications of <strong>tree</strong>-ring <strong>tree</strong> ring data<br />

towards underst<strong>and</strong>ing <strong>drought</strong><br />

- structure of <strong>drought</strong>s<br />

- how representative is instrumental record?<br />

- worst <strong>and</strong> best-case scenarios for management<br />

- geography of <strong>drought</strong><br />

- patterns <strong>and</strong> sources of synchroneity of<br />

decadal to centennial oscillations at<br />

regional to subcontinental scales<br />

- temperature reconstructions from upper <strong>tree</strong>line<br />

- ecological impacts of <strong>drought</strong>


Reconstructed July-July precipitation<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Use of the <strong>tree</strong>-ring<br />

record to underst<strong>and</strong><br />

structure of <strong>drought</strong>s<br />

NE Utah reconstruction<br />

1578-1579<br />

1550 1560 1570 1580 1590 1600<br />

We tend to celebrate<br />

too early, <strong>and</strong> let a little<br />

rain spoil our resolve


Bighorn Basin<br />

(Upper Missouri)<br />

Uinta Basin<br />

(Upper Colora<strong>do</strong>)<br />

Middle<br />

Rio Gr<strong>and</strong>e


Bighorn River Basin<br />

30% of Yellowstone R.<br />

contribution to<br />

Upper Missouri River<br />

Gray, Jackson,<br />

Fastie & Betancourt<br />

(2004) J. Climate<br />

Great<br />

Drought<br />

Late 16 th cent<br />

Mega<strong>drought</strong><br />

Variability<br />

dampened in<br />

20 th century<br />

Bighorn<br />

Lake


Lake Powell Delta June 02 March 03<br />

Uinta Basin<br />

Great<br />

Drought<br />

Late 16 th<br />

Century<br />

Mega<strong>drought</strong><br />

20 th<br />

Cent.<br />

Gray, Jackson &<br />

Betancourt (2004)<br />

JAWRA


Sept 1951 Elephant Butte, NM Jan 2003<br />

Reconstructed PDSI<br />

Middle Rio Gr<strong>and</strong>e Basin, NM AD<br />

Great<br />

Drought<br />

Late 16 th cent<br />

Mega<strong>drought</strong><br />

Late 16 th cent<br />

Mega<strong>drought</strong><br />

Grissino-Mayer, Baisan,<br />

Morino, & Swetnam, 2001<br />

Highly<br />

variable<br />

Large 20 Great<br />

Drought<br />

th cent. variability


Worst Case Scenarios for Water & L<strong>and</strong> Managers<br />

Uinta Basin<br />

(Upper Colora<strong>do</strong>)<br />

AD 1226-2001<br />

Gray, Jackson, &<br />

Betancourt (2004)<br />

Central Rio<br />

Gr<strong>and</strong>e Basin<br />

AD 622-1992<br />

Grissino-Mayer,Baisan<br />

& Swetnam (2001)<br />

(1) 1250-1288<br />

(2) 1437-1477<br />

(3) 1772-1786<br />

(4) 1566-1593<br />

(5) 1625-1640<br />

(1) 1571-1593<br />

(2) 1272-1297<br />

(3) 1945-1963<br />

(4) 701-712<br />

(5) 1131-1151


Best Case Scenarios for Water & L<strong>and</strong> Managers<br />

Uinta Basin<br />

(Upper Colora<strong>do</strong>)<br />

AD 1226-2001<br />

Gray, Jackson, Betancourt<br />

& Eddy (2004)<br />

Central Rio<br />

Gr<strong>and</strong>e Basin<br />

AD 622-1992<br />

Grissino-Mayer,Baisan<br />

& Swetnam (2001)<br />

(1) 1594-1624<br />

(2) 1837-1868<br />

(3) 1965-1987<br />

(4) 1478-1492<br />

(5) 1330-1346<br />

(1) 1553-1557<br />

(2) 1627-1653<br />

(3) 1978-1992<br />

(4) 724-733<br />

(5) 1377-1396


5,000,000<br />

4,500,000<br />

4,000,000<br />

3,500,000<br />

3,000,000<br />

2,500,000<br />

2,000,000<br />

1,500,000<br />

1,000,000<br />

500,000<br />

0<br />

1860<br />

Population Growth in Colora<strong>do</strong><br />

(Should this really be our reference period?)<br />

3 rd 1965-1995 1965 1995<br />

wettest period<br />

in last 1000 yrs<br />

Colora<strong>do</strong> population <strong>do</strong>ubled<br />

From 2 to 4 million<br />

1880<br />

1900<br />

1920<br />

1940<br />

1960<br />

1980<br />

2000


LATITUDE<br />

60<br />

50<br />

40<br />

30<br />

20<br />

OLD (425) AND NEW (835) TREE-RING CHRONOLOGY<br />

NETWORK FOR RECONSTRUCTING DROUGHT<br />

OLD NETWORK<br />

NEW NETWORK<br />

CHRONOLOGIES<br />

-140 -120 -100 -80 -60<br />

LONGITUDE<br />

Cook, Meko, Stahle, & Cleavel<strong>and</strong> (1999) J. Climate<br />

1700-2000, http://www.ngdc.noaa.gov/paleo/<br />

Kr<strong>us</strong>ik & Cook (2004) North American Drought Atlas;<br />

last 2005 years


Western<br />

U.S. grid<br />

Kr<strong>us</strong>ik & Cook (2004) North American Drought Atlas; last 2005 years


1941<br />

1941<br />

Instrumental<br />

Tree-Ring Tree Ring


1954<br />

1954<br />

Instrumental<br />

Tree-Ring Tree Ring


Severe Droughts = Widespread Droughts<br />

Cook, Meko, Stahle, & Cleavel<strong>and</strong> (1999)


1950’s 1950<br />

1930’s 1930<br />

In Cook et et al. al<br />

gridded PDSI<br />

reconstructions<br />

1950’s-type<br />

1950 type<br />

<strong>drought</strong>s<br />

6X more common<br />

than 1930’s-type<br />

1930 type<br />

<strong>drought</strong>s


RWI<br />

Period (Years)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2 4<br />

8<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

Strong evidence for multidecadal (30-70 yr) persistence <strong>and</strong><br />

cross-regional synchrony<br />

a. Climate Regions<br />

Yellowstone Bighorn<br />

Basin<br />

Colora<strong>do</strong><br />

Plateau<br />

d. Colora<strong>do</strong> Plateau<br />

SW<br />

Rockies<br />

SE<br />

Rockies<br />

1400 1600 1800<br />

0 0.003 0.04 0.15 0.49<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2 4<br />

8<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2 4<br />

8<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

b. Yellowstone<br />

1400 1600 1800<br />

0 0.016 0.06 0.24 0.98<br />

e. SE Rocky Mountains<br />

1400 1600 1800<br />

0 0.006 0.05 0.15 0.45<br />

Power (RWI) 2<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2 4<br />

8<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2 4<br />

8<br />

16<br />

32<br />

64<br />

128<br />

256<br />

512<br />

c. Bighorn Basin<br />

1400 1600 1800<br />

0 0.077 0.28 1.1 1.9<br />

f. SW Rocky Mountains<br />

1400 1600 1800<br />

0 0.057 0.18 0.39 0.80<br />

Gray, Betancourt, Fastie, & Jackson (2003) GRL


<strong>What</strong> ca<strong>us</strong>es multidecadal<br />

precip variability?<br />

<strong>What</strong> controls the synchrony<br />

across large basins?<br />

Yellowstone Bighorn<br />

Basin<br />

Colora<strong>do</strong><br />

Plateau<br />

SW<br />

Rockies<br />

SE<br />

Rockies<br />

Gray, Betancourt, Fastie,<br />

& Jackson (2003) GRL<br />

2.0<br />

2.0<br />

1.5<br />

1.0 0.5<br />

0.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

2.0<br />

1.5<br />

1.5<br />

1.0<br />

1.00.5<br />

0.5<br />

Yellowstone<br />

Bighorn Basin<br />

Colora<strong>do</strong> Plateau<br />

SE Rocky Mountains<br />

SW Rocky Mountains<br />

1300 1400 1500 1600 1700 1800 1900


PDO reconstruction from SW USA/N Mexico <strong>tree</strong> <strong>rings</strong><br />

Biondi, Gershunov & Cayan (2001)


Tree-Ring Tree Ring Sites for AMO Reconstruction<br />

SST anomaly<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

Instrumental<br />

AMO<br />

1850 1900 1950 2000<br />

Gray, Graumlich,<br />

Betancourt, & Pederson<br />

In press GRL


Weak AMO<br />

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000<br />

Gray, Graumlich, Betancourt & Pederson, in press GRL


PDO<br />

AMO<br />

Range 1-31 1 31 yrs<br />

Average 6 yrs<br />

Range 9-53 9 53 yrs<br />

Average 23 yrs


20-yr 20 yr moving average of PDSI reconstructions<br />

Vs. 20-yr 20 yr moving average of AMO 1567-1900 1567 1900


PCA of 20-yr 20 yr smoothed, reconstructed PDSI<br />

1536-1967 1536 1967<br />

=PDO =AMO =ENSO<br />

Hidalgo (2004) WRR<br />

WRR


Percentage of total power present at bidecadal <strong>and</strong><br />

multidecadal b<strong>and</strong>s in gridded PDSI <strong>tree</strong>-ring reconstructions<br />

Bidecadal b<strong>and</strong><br />

(8-32 yrs)<br />

Multidecadal<br />

(32-64 yrs)<br />

Hidalgo 2004<br />

WRR<br />

1525-1650 1525 to 1650 1700-1825 1700 to 1825 1700-1975<br />

1850 to 1975<br />

60%<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0


Tree-ring regions<br />

Gray, Graumlich, Betancourt<br />

& Pederson, in prep<br />

Wavelet analysis of AMO proxy


11-yr moving<br />

departures<br />

of annual PDO,<br />

AMO & Colora<strong>do</strong><br />

River streamflow<br />

at Lee’s Ferry<br />

1661-1961<br />

PDO departures<br />

departures<br />

McCabe, Hidalgo,<br />

Gray & Betancourt in prep.<br />

+PDO<br />

-AMO AMO<br />

-PDO PDO<br />

-AMO AMO<br />

AMO Departures<br />

+PDO<br />

+AMO<br />

-PDO PDO<br />

+AMO


Western<br />

U.S. grid<br />

Kr<strong>us</strong>ik & Cook (2004) North American Drought Atlas; last 2005 years


Percent Area of Drought<br />

Western US Drought Area Index (-1 PDSI)<br />

936 1034<br />

1150 1253<br />

Medieval Warm Period<br />

80 yr lowpass<br />

Little Ice Age<br />

1829<br />

1321 1613 1915<br />

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

Cook, Woodho<strong>us</strong>e, Eakin, Meko & Stahle (2004) Long-term<br />

aridity changes in the Western United States. Science


Million Acre Feet<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Combined Water Year totals for<br />

Salt, Verde, Tonto & Gila Rivers<br />

Medieval Warm<br />

Period<br />

2.5 maf<br />

600 800 1000 1200 1400 1600 1800 2000<br />

Graybill, Gregory, Funkho<strong>us</strong>er & NialsF. L. (in press)


Uniform heating<br />

Larger<br />

temperature<br />

response in<br />

the West<br />

0 m<br />

50<br />

100<br />

150<br />

~20ºC<br />

Warm, mixed<br />

Surface layer<br />

~20ºC<br />

Deep, cold<br />

ocean waters<br />

Coupled interactions<br />

(i.e. i.e. the the Bjerknes Bjerknes<br />

feedback) feedback)<br />

amplify the<br />

East/west temperature<br />

difference<br />

Cooling by upwelling<br />

opposes forcing in the<br />

East, reducing<br />

temperature response<br />

Ocean dynamical ‘thermostat<br />

thermostat’ (Clement et al. 1996)


Medieval Warm<br />

Period<br />

NH temperature<br />

Palmyra<br />

Coral<br />

Little Ice Age<br />

Wolfe Spörer Sp rer Maunder<br />

Solar Irradiance<br />

Volcanic activity<br />

Cobb et al. (2003) Nature<br />

Nature


Hypothesis: Atlantic & Pacific SST variations<br />

also govern centennial-scale centennial scale trends<br />

in western U.S. <strong>drought</strong><br />

Medieval Warm Period<br />

AD 900-1300 900 1300<br />

Cool<br />

D<br />

R<br />

Y<br />

Warm<br />

Warm<br />

Little Ice Age<br />

AD 1400-1850 1400 1850<br />

W<br />

E<br />

T<br />

Cool


St<strong>and</strong>ardized Units<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

Natural precip. variability will modulate warming impacts<br />

warm wet<br />

dry cool<br />

warm<br />

/wet<br />

cold<br />

/dry<br />

600 800 1000 1200<br />

Salzer & Kipfmueller, in press<br />

Temperature & Precipitation Reconstructions<br />

from S Colora<strong>do</strong> Plateau<br />

1400 1600 1800 2000


Ecological Role of Severe Drought<br />

Significant Ecological Resetting Events


Longer, hotter growing seasons accelerate disturbance/<br />

succession cycles <strong>and</strong> produce greater ecological synchrony<br />

Disturbances<br />

Broadscale<br />

Mortality<br />

Dry & Hot<br />

Hydrologic<br />

Effects??<br />

Lots of<br />

open niches<br />

Increased<br />

Synchrony<br />

Accelerated<br />

Regeneration<br />

of Incumbent<br />

Warm &<br />

Wet<br />

Invasion by<br />

Native &<br />

Non-native<br />

Non native<br />

Species


Demographic clocks are being reset by wildfires & dieoffs<br />

Can we predict the outcomes of succession?<br />

Courtesy of Neil Cobb


•El Niños impose short-lived breaks in even the most severe<br />

<strong>drought</strong>s, testing the resolve of <strong>drought</strong> planners<br />

•Climate variability is a spatially moving target; we should<br />

generalize only from regionally integrated <strong>tree</strong>-ring records<br />

•There appear to be inherent statistical relationships<br />

between <strong>drought</strong> location, extent, duration & severity<br />

•1950’s <strong>and</strong> 1999-2004 were 6X more common than 1930’stype<br />

<strong>drought</strong>s in last 500 years<br />

•1965-1995 one of wettest periods in last 1000 years<br />

•AMO influenced frequency, persistence, extent &<br />

multi-basin synchrony of <strong>drought</strong> & fire in last millennium<br />

•AMO/PDO induces D2M fluctuations in water availability &<br />

Ecosystems; complicated by warming trends<br />

•Risk increases with time that extraction leases authorized<br />

in periods of surpl<strong>us</strong> will carry over into deficit periods

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!