06.07.2013 Views

2011 - Cooperative Institute for Research in Environmental Sciences ...

2011 - Cooperative Institute for Research in Environmental Sciences ...

2011 - Cooperative Institute for Research in Environmental Sciences ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Milestone 1. Quantify the impact of sudden stratospheric<br />

warm<strong>in</strong>gs (SSW) on the upper atmosphere. Recent observations<br />

suggest that SSW impact the dynamics and<br />

electrodynamics of the lower thermosphere, and change<br />

the diurnal variation of total electron, which is an important<br />

component of space weather. The recently developed<br />

Whole Atmosphere Model (WAM) simulates SSW naturally,<br />

so will be used to quantify their impact on the thermosphere<br />

and ionosphere.<br />

A whole atmosphere<br />

model has<br />

been used to simulate<br />

the changes <strong>in</strong><br />

the global atmosphere<br />

dynamics<br />

and electrodynamics<br />

dur<strong>in</strong>g the<br />

January 2009 sudden<br />

stratospheric<br />

warm<strong>in</strong>g (SSW).<br />

In a companion<br />

paper, it has been<br />

demonstrated that<br />

the neutral atmosphere<br />

response to<br />

the 2009 warm<strong>in</strong>g<br />

can be simulated<br />

with high fidelity<br />

and can be <strong>for</strong>ecast<br />

several days<br />

ahead. The 2009<br />

warm<strong>in</strong>g was a<br />

large event with<br />

the polar stratospherictemperature<br />

<strong>in</strong>creas<strong>in</strong>g by<br />

70 K. The neutral<br />

dynamics from the<br />

whole atmosphere model (WAM) was used to simulate<br />

the response of the electrodynamics. The WAM simulation<br />

predicted a substantial <strong>in</strong>crease <strong>in</strong> the amplitude of<br />

the eight-hour ter-diurnal tide <strong>in</strong> the lower thermosphere<br />

dynamo region <strong>in</strong> response to the warm<strong>in</strong>g, at the expense<br />

of the more typical semi-diurnal tides. The <strong>in</strong>crease <strong>in</strong> the<br />

ter-diurnal mode had a significant impact on the diurnal<br />

variation of the electrodynamics at low latitude. The<br />

changes <strong>in</strong> the w<strong>in</strong>ds <strong>in</strong> the dayside ionospheric E region<br />

<strong>in</strong>creased the eastward electric field early <strong>in</strong> the morn<strong>in</strong>g,<br />

and drove a westward electric field <strong>in</strong> the afternoon. The<br />

<strong>in</strong>itial large <strong>in</strong>crease <strong>in</strong> upward drifts gradually moved<br />

to later local times, and decreased <strong>in</strong> magnitude. The<br />

change <strong>in</strong> the amplitude and phase of the electrodynamic<br />

response to the SSW is <strong>in</strong> good agreement with observations<br />

from the Jicamarca radar. The agreement of the<br />

electrodynamics with observations serves to validate the<br />

whole atmosphere dynamic response. S<strong>in</strong>ce WAM can<br />

<strong>for</strong>ecast the neutral dynamics several days ahead, the<br />

simulations <strong>in</strong>dicate that the electrodynamic response can<br />

also be predicted.<br />

Product: Fuller-Rowell, T, H Wang, R Akmaev, F Wu, T<br />

Fang, M Iredell, and A Richmond (<strong>2011</strong>), Forecast<strong>in</strong>g the<br />

dynamic and electrodynamic response to the January 2009<br />

sudden stratospheric warm<strong>in</strong>g, Geophys. Res. Lett., 38,<br />

L13102, doi:10.1029/<strong>2011</strong>GL047732.<br />

AMOS-04 Observ<strong>in</strong>g Facilities,<br />

Campaigns and Networks<br />

n GMD-02 Surface Radiation Network<br />

n PSD-10 Cloud and Aerosol Processes<br />

n PSD-11 Water Cycle<br />

n GSD-04 Unmanned Aircraft Systems<br />

GMD-02SurfaceRadiationNetwork<br />

FEDERAL LEAD: JOSEPH MICHALSKY<br />

CIRES LEAD: GARY HODGES<br />

NOAA Goal 2: Climate<br />

Project Goal: Collect long-term, researchquality,<br />

up-well<strong>in</strong>g and down-well<strong>in</strong>g<br />

broadband solar and <strong>in</strong>frared radiation<br />

data at seven U.S. sites. Collect long-term,<br />

broadband ultraviolet radiation data<br />

to evaluate variations <strong>in</strong> the erythemal<br />

doses. Collect long-term, spectral filter<br />

data to measure column aerosol optical<br />

depth and cloud optical depth. Collect<br />

cloud cover data to assess the effect of<br />

clouds on the surface radiation budget.<br />

Milestone 1. Us<strong>in</strong>g SURFRAD databases,<br />

complete and publish an analysis<br />

of spectral albedo at the Table Mounta<strong>in</strong>,<br />

Colorado, SURFRAD station and<br />

present the results <strong>in</strong> conferences.<br />

To determ<strong>in</strong>e surface spectral albedo<br />

requires measur<strong>in</strong>g the <strong>in</strong>com<strong>in</strong>g<br />

(downwell<strong>in</strong>g) and reflected (upwell<strong>in</strong>g)<br />

irradiance over a range of<br />

wavelengths. Reflected values are divided<br />

by the correspond<strong>in</strong>g <strong>in</strong>com<strong>in</strong>g<br />

values to give albedo. To measure the<br />

<strong>in</strong>com<strong>in</strong>g data, we cont<strong>in</strong>ue to operate<br />

a Multi-Filter Rotat<strong>in</strong>g Shadowband<br />

Radiometer (MFRSR) at our Table<br />

View of the albedo<br />

tower located at Table<br />

Mounta<strong>in</strong>, approximately<br />

10 miles north<br />

of Boulder, Colo.<br />

Mounted on the<br />

tower is the head of an<br />

MFRSR. Other <strong>in</strong>struments<br />

are radiometers<br />

measur<strong>in</strong>g reflected<br />

UV-B and reflected<br />

Photosynthetically Active<br />

Radiation (PAR).<br />

Mounta<strong>in</strong>, Boulder, Colo., Surface Radiation Budget Network<br />

(known as SURFRAD) site. For the reflected data,<br />

we have mounted an MFRSR sensor head <strong>in</strong> the <strong>in</strong>verted<br />

position on a 10-m tower located approximately 100 feet<br />

north of the MFRSR. For accurate albedo calculation, it is<br />

important that both <strong>in</strong>struments undergo rout<strong>in</strong>e calibrations<br />

l<strong>in</strong>ked to a common source. Instrument calibrations<br />

are per<strong>for</strong>med on a regular basis us<strong>in</strong>g a standard lamp.<br />

We have presented spectral albedo results at three<br />

meet<strong>in</strong>gs: 1) The annual Atmospheric System <strong>Research</strong><br />

Science Team Meet<strong>in</strong>g <strong>in</strong> Bethesda, Maryland; 2) The<br />

biennial Basel<strong>in</strong>e Surface Radiation Network meet<strong>in</strong>g <strong>in</strong><br />

Queenstown, New Zealand; and 3) the 13th Conference on<br />

Atmospheric Radiation <strong>in</strong> Portland, Ore.<br />

Collect<strong>in</strong>g the necessary data <strong>for</strong> determ<strong>in</strong><strong>in</strong>g spectral<br />

albedo at Table Mounta<strong>in</strong> is part of an ongo<strong>in</strong>g, long-term<br />

measurement program. These data have been attract<strong>in</strong>g<br />

the <strong>in</strong>terest of other researchers. Most recently, NASA has<br />

requested these data <strong>for</strong> use <strong>in</strong> validat<strong>in</strong>g the Moderate<br />

Resolution Imag<strong>in</strong>g Spectroradiometer (MODIS), a key<br />

<strong>in</strong>strument aboard the Terra and Aqua satellites.<br />

CIRES Annual Report <strong>2011</strong> 101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!