05.07.2013 Views

Dynamics of Quantum Entanglement & Separable Numerical ...

Dynamics of Quantum Entanglement & Separable Numerical ...

Dynamics of Quantum Entanglement & Separable Numerical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Dynamics</strong> <strong>of</strong> <strong>Quantum</strong> <strong>Entanglement</strong><br />

& <strong>Separable</strong> <strong>Numerical</strong> Shadow<br />

Karol ˙Zyczkowski<br />

in collaboration with<br />

P. Gawron, J. Miszczak, Z. Pucha̷la (Gliwice),<br />

C. Dunkl (Virginia) and J. Holbrook (Guelph)<br />

IF UJ, Cracow 2012<br />

Monday, January 23<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 1 / 32


Composed systems & entangled states<br />

bi-partite systems: H = HA ⊗ HB<br />

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉<br />

entangled pure states: all states not <strong>of</strong> the above product form.<br />

Two–qubit system: N = 2 × 2 = 4<br />

Maximally entangled Bell state |ϕ + 〉 := 1<br />

<br />

√ |00〉 + |11〉<br />

2<br />

<strong>Entanglement</strong> measures<br />

For any pure state |ψ〉 ∈ HA ⊗ HB define its partial trace σ = TrB|ψ〉〈ψ|.<br />

Definition: <strong>Entanglement</strong> entropy <strong>of</strong> |ψ〉 is equal to von Neuman entropy<br />

<strong>of</strong> the partial trace<br />

E(|ψ〉) := −Tr σ ln σ<br />

The more mixed partial trace, the more entangled initial pure state...<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 2 / 32


<strong>Entanglement</strong> <strong>of</strong> mixed quantm states<br />

Mixed states<br />

separable mixed states: ρsep = <br />

j pjρ A j ⊗ ρB j (∗∗)<br />

entangled mixed states: all states not <strong>of</strong> the above product form.<br />

How to find, whether a given density matrix ρ<br />

can be written in the form (**) and is separable ?<br />

The separability problem is solved only for the simplest cases<br />

for 2 × 2 and 2 × 3 problems...<br />

<strong>Entanglement</strong> <strong>of</strong> formation for a mixed state ρ<br />

<br />

E(ρ) := min qiE(|ψj〉<br />

E<br />

where the minimum is taken over all ensembles<br />

E = {qj, |ψj〉} : <br />

j qj|ψj〉〈ψj| = ρ.<br />

j<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 3 / 32


Two–qubit mixed states<br />

The maximal ball inscribed into M (4) <strong>of</strong> radius r4 = 1/ √ 12 centred at<br />

ρ∗ = /4 is separable !<br />

thetrahedron <strong>of</strong> eigenvalues<br />

K. ˙Z, P.Horodecki, M.Lewenstein, A.Sanpera, 1998<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 4 / 32


Two–qubit mixed states<br />

Degree <strong>of</strong> entanglement: a distance to the closest separable state<br />

K. ˙ Z, M. Ku´s, 2001<br />

(entanglement <strong>of</strong> formation)<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 5 / 32


Discrete Time Evolution & <strong>Quantum</strong> Maps<br />

<strong>Quantum</strong> operation: linear, completely positive trace preserving map<br />

Enviromental form<br />

ρ ′ = Φ(ρ) = TrE [U (ρ ⊗ ωE ) U † ] .<br />

where ωE is an initial state <strong>of</strong> the environment while UU † = .<br />

Kraus form<br />

ρ ′ = Φ(ρ) = <br />

i AiρA †<br />

i ,<br />

where the Kraus operators satisfy <br />

i A†<br />

i Ai = .<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 6 / 32


A model discrete quantum dynamics<br />

a) unitary dynamics (rotation), ρ ′ = UρU †<br />

b) decoherence (contraction), ρ ′′ = k<br />

i Aiρ ′ A †<br />

i<br />

Two qubit model : N = 2 × 2 = 4<br />

a) free evolution: U = exp(itH) where H = σx ⊗ σy<br />

(non-local unitary dynamics !)<br />

variant b1) bistochastic channel: Φ(/N) = /N,<br />

One–qubit Pauli channel: k = 4, A1 = √ 1 − ɛ ⊗ ,<br />

A2 = ɛ/3 ⊗ σx, A3 = ɛ/3 ⊗ σy , A4 = ɛ/3 ⊗ σz.<br />

variant b2) non bistochastic channel:<br />

One qubit amplitude damping channel, (decaying channel), k = 2,<br />

where A1 = ⊗ B1 and A2 = ⊗ B2<br />

with B1 =<br />

1 0<br />

0 √ p<br />

<br />

and B2 =<br />

0 √ 1 − p<br />

0 0<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 7 / 32


<strong>Dynamics</strong> <strong>of</strong> entanglement<br />

<strong>Entanglement</strong> <strong>of</strong> formation E as a function <strong>of</strong> time tn<br />

for some initially pure states <strong>of</strong> a two–qubit system.<br />

revivals <strong>of</strong> entanglement<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 8 / 32


<strong>Dynamics</strong> <strong>of</strong> entanglement<br />

<strong>Entanglement</strong> <strong>of</strong> formation E as a function <strong>of</strong> time tn<br />

for some initially pure states <strong>of</strong> a two–qubit system.<br />

sudden death <strong>of</strong> entanglement<br />

K. ˙Z, P.Horodecki, M.Horodecki, R.Horodecki, PRA 2001<br />

the name coined by Yau and Eberly,<br />

who independently reported this effect in 2003.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 9 / 32


<strong>Dynamics</strong> <strong>of</strong> entanglement<br />

A general, geometric picture<br />

The effects <strong>of</strong><br />

a) unitary evolution (rotation <strong>of</strong> the body <strong>of</strong> mixed states) induces<br />

oscillations <strong>of</strong> entanglement (revivals!)<br />

b) non–unitary evolution (decoherence): an increase <strong>of</strong> the degree <strong>of</strong><br />

mixing (von Neumann entropy) sends the trajectory into the separable<br />

central region <strong>of</strong> the set <strong>of</strong> mixed states.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 10 / 32


Operator theory: <strong>Numerical</strong> Range (Field <strong>of</strong> Values)<br />

Definition<br />

For any operator A acting on HN one defines its NUMERICAL RANGE<br />

(Wertevorrat) as a subset <strong>of</strong> the complex plane defined by:<br />

Hermitian case<br />

Λ(A) = {〈x|A|x〉 : |x〉 ∈ H N , 〈x|x〉 = 1}. (1)<br />

For any hermitian operator A = A † with spectrum λ1 ≤ λ2 ≤ · · · ≤ λN its<br />

numerical range forms an interval: the set <strong>of</strong> all possible expectation<br />

values <strong>of</strong> the observable A among arbitrary pure states, Λ(A) = [λ1, λN].<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 11 / 32


<strong>Numerical</strong> range and its properties<br />

Compactness<br />

Λ(A) is a compact subset <strong>of</strong> C.<br />

Convexity: Hausdorf-Toeplitz theorem<br />

- Λ(A) is a convex subset <strong>of</strong> C.<br />

Example<br />

<strong>Numerical</strong> range for random matrices <strong>of</strong> order N = 6<br />

a) normal, b) generic (non-normal)<br />

<br />

<br />

<br />

0.4<br />

0.2<br />

<br />

0.5 0.5 1.0 Re<br />

0.2<br />

0.4<br />

0.6<br />

Im<br />

<br />

<br />

<br />

<br />

<br />

2 1 1 2<br />

<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 12 / 32<br />

2<br />

1<br />

1<br />

2<br />

Im<br />

<br />

<br />

Re


<strong>Numerical</strong> range & quantum states:<br />

Set <strong>of</strong> pure states <strong>of</strong> a finite size N:<br />

Let ΩN = P N−1 denotes the set <strong>of</strong> all pure states in HN.<br />

Example: for N = 2 one obtains Bloch sphere, Ω2 = P 1 .<br />

Probability distributions on complex plane supported in Λ(A)<br />

- Fix an arbitrary operator A <strong>of</strong> size N,<br />

- Generate random pure states |ψ〉 <strong>of</strong> size N<br />

(with respect to unitary invariant, Fubini–Study measure) and analyze<br />

their contribution 〈ψ|A|ψ〉 to the numerical range on the complex plane....<br />

Probability distribution: (a ’numerical shadow’)<br />

PA(z) :=<br />

<br />

ΩN<br />

is supported on Λ(A). How it looks like?<br />

dψ δ z − 〈ψ|A|ψ〉 <br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 13 / 32


Normal case: a ’shadow’ <strong>of</strong> the classical simplex...<br />

Normal matrices <strong>of</strong> size N = 2 with spectrum {λ1, λ2}<br />

Distribution PA(z) covers uniformly the interval [λ1, λ2] on the complex<br />

plane,<br />

Examples for diagonal matrices A <strong>of</strong> size two and three<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator [1, 0; 0, i]<br />

−1.0<br />

−1.0 −0.5 0.0 0.5 1.0<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator diag(1, i, −i)<br />

−1.0<br />

−1.0 −0.5 0.0 0.5 1.0<br />

Normal matrices <strong>of</strong> order N = 3 with spectrum {λ1, λ2, λ3}<br />

Distribution PA(z) covers uniformly the triangle ∆(λ1, λ2, λ3) on the<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 14 / 32


Normal case: a ’shadow’ <strong>of</strong> the classical simplex...<br />

Normal matrices <strong>of</strong> size N = 4 with spectrum {λ1, λ2, λ3, λ4}<br />

Distribution PA(z) covers the quadrangle (λ1, λ2, λ3, λ4) with the density<br />

determined by projection <strong>of</strong> the regular tetrahedron (3–simplex) on the<br />

complex plane<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator diag(1, exp(iπ/3), exp(i2π/3), −1)<br />

−1.0<br />

−1.0 −0.5 0.0 0.5 1.0<br />

Examples for diagonal matrices A <strong>of</strong> size four. Observe shadow <strong>of</strong> the<br />

edges <strong>of</strong> the tetrahedron = the set <strong>of</strong> all classical mixed states for<br />

N = 4. K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 15 / 32


<strong>Numerical</strong> range for matrices <strong>of</strong> order N = 2.<br />

with spectrum {λ1, λ2}<br />

a) normal matrix A ⇒ Λ(A) = closed interval [λ1, λ2]<br />

b) not normal matrix A ⇒ Λ(A) = elliptical disk with λ1, λ2 as focal<br />

points and minor axis, d = TrAA † − |λ1| 2 − |λ2| 2 (Murnaghan, 1932;<br />

Li, 1996).<br />

example Jordan matrix J =<br />

<br />

0<br />

0<br />

1<br />

0<br />

a circular disk, Λ(J) = D(0, r = 1/2).<br />

The set <strong>of</strong> N = 2 pure quantum states<br />

<br />

. Then its numerical range forms<br />

A projection <strong>of</strong> the Bloch sphere S 2 = P 1 onto a plane forms an<br />

ellipse, (which could be degenerated to an interval).<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 16 / 32


<strong>Numerical</strong> shadow for N = 2<br />

Non–normal matrices <strong>of</strong> size N = 2<br />

Distribution PA(z) covers entire (eliptical) disk on the complex plane with<br />

non-uniform (!) density determined by projection <strong>of</strong> (empty!) Bloch<br />

sphere, S 2 = P 1 on the complex plane.<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator [0, 1; 0, 1/2]<br />

−1.0<br />

−1.0 −0.5 0.0 0.5 1.0<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

−1.0<br />

−1.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator [0, 1; 0, 1]<br />

−2.0<br />

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0<br />

Examples for non-normal matrices A <strong>of</strong> size two. Note the ’shadow’ <strong>of</strong> the<br />

projective space P 1 = S 2 = set <strong>of</strong> quantum pure states for N = 2.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 17 / 32


Shadows <strong>of</strong> three dimensional objects...<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 18 / 32


<strong>Quantum</strong> States and <strong>Numerical</strong> Range/Shadow<br />

Classical States & normal matrices<br />

Proposition 1.Let CN denote the set <strong>of</strong> classical states <strong>of</strong> size N, which<br />

forms the regular simplex ∆N−1 in N−1 . Then the set <strong>of</strong> similar images<br />

<strong>of</strong> orthogonal projections <strong>of</strong> CN on a 2–plane is equivalent to the set <strong>of</strong> all<br />

possible numerical ranges Λ(A) <strong>of</strong> all normal matrices A <strong>of</strong> order N<br />

(such that AA ∗ = A ∗ A).<br />

<strong>Quantum</strong> States & non–normal matrices<br />

Proposition 2.Let MN denotes the set <strong>of</strong> quantum states size N<br />

embedded in N2 −1 with respect to Euclidean geometry induced by<br />

Hilbert-Schmidt distance. Then the set <strong>of</strong> similar images <strong>of</strong> orthogonal<br />

projections MN on a 2-plane is equivalent to the set <strong>of</strong> all possible<br />

numerical ranges Λ(A) <strong>of</strong> all matrices A <strong>of</strong> order N.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 19 / 32


Normal case: a ’shadow’ <strong>of</strong> the 4-D simplex...<br />

Normal matrices <strong>of</strong> size N = 5 with spectrum (λ1, λ2, λ3, λ4, λ5)<br />

Distribution PA(z) covers the pentagon {exp(2πj/5)}, j = 0, . . . , 4 with<br />

the density determined by projection <strong>of</strong> the 4-D simplex on the complex<br />

plane<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 20 / 32


How complex / real projective space looks like?<br />

Not normal matrices <strong>of</strong> size N = 3<br />

Distribution PA(z) covers the numerical range Λ(A) on the complex<br />

plane with a non-uniform density<br />

im<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator O5 subject to complex states<br />

−1.0 −0.5 0.0 0.5<br />

re<br />

im<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

Density plot <strong>of</strong> numerical range <strong>of</strong> operator O5 subject to real states<br />

−1.0 −0.5 0.0 0.5<br />

re<br />

’shadow’ <strong>of</strong> the projective space Ω3 = P 2 (left) and P 2 (right) for a<br />

N = 3 non-normal matrix A = [0, 1, 1; 0, i, 1; 0, 0, −1]<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 21 / 32


<strong>Numerical</strong> range for matrices <strong>of</strong> order N = 3.<br />

Classification by Keeler, Rodman, Spitkovsky 1997<br />

<strong>Numerical</strong> range Λ <strong>of</strong> a 3 × 3 matrix A forms:<br />

a) Λ(A) is a compact set <strong>of</strong> an ’ovular’ shape<br />

(which contains three eigenvalues!) – the generic case,<br />

b) a compact set with one flat part (e.g. convex hull <strong>of</strong> a cardioid),<br />

c) a compact set with two flat parts<br />

(e.g. convex hull <strong>of</strong> an ellipse and a point outside it),<br />

d) triangle <strong>of</strong> eigenvalues, Λ(A) = ∆(λ1, λ2, λ3)<br />

for any normal matrix A.<br />

These four cases describe the shape <strong>of</strong> possible projections <strong>of</strong> the complex<br />

projective space P 2 (embedded into 8 ) onto a 2–plane.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 22 / 32


Shadows <strong>of</strong> typical matrices <strong>of</strong> size N = 3<br />

correspond to the four classes <strong>of</strong> N = 3 numerical ranges by Keeler et al.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 23 / 32


Unitary dynamics in the shadow (as a backgraound)<br />

Examplary unitary dynamics <strong>of</strong> N = 3 pure state in P 2<br />

|ψ(t)〉 = U|ψ(0)〉 = e iHt |ψ(0)〉<br />

(green line)<br />

z(t) := 〈ψ(t)|A|ψ(t)〉 = 〈ψ(0)|U ∗ AU|ψ(t)〉<br />

superimposed on the numerical shadow <strong>of</strong> three exemplary matrices<br />

A1, A2 and A3 <strong>of</strong> size N = 3.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 24 / 32


Mixed states shadow<br />

Let MN denotes the set <strong>of</strong> mixed states <strong>of</strong> size N endowed with the<br />

(flat) Hilbert–Schmidt measure µ.<br />

For any operator A we define its mixed states shadow<br />

<br />

dµ(ρ)δ z − TrρA . (2)<br />

P µ<br />

A (z) :=<br />

MN<br />

For N = 2 the mixed states shadow is located in an ellipse with a density<br />

obtained by a projection <strong>of</strong> a full 3–ball onto a plane.<br />

In general we show that for any A <strong>of</strong> size N its mixed states shadow is<br />

equal to the (standard) shadow <strong>of</strong> the extended operator A ⊗ N,<br />

P µ<br />

A (z) = PA⊗N (z) = PN⊗A(z). (3)<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 25 / 32


Shadows <strong>of</strong> N 2 − 1 dim dimensional objects (sketch)<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 26 / 32


<strong>Numerical</strong> range & quantum entanglement:<br />

Shadow with respect to a restricted set ΩR <strong>of</strong> quantum states<br />

Let ΩSep (ΩEnt) denotes the set <strong>of</strong> all separable (entangled) pure states<br />

in HN ⊗ HN.<br />

For an arbitrary operator A <strong>of</strong> size N 2 one defines its numerical shadow<br />

with respect to separable (entangled) states<br />

P S A(z) :=<br />

<br />

ΩSep<br />

dψ δ z − 〈ψ|A|ψ〉 <br />

The distribution P S A (z) is supported on Λ⊗(A). How does it look ?<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 27 / 32


Standard numerical shadow<br />

Shadows <strong>of</strong> (various) operators <strong>of</strong> size N = 4<br />

ℑ<br />

0.8<br />

0.4<br />

0.0<br />

−0.4<br />

−0.8<br />

−0.8 −0.4 0.0<br />

ℜ<br />

0.4 0.8<br />

ℑ<br />

0.8<br />

0.4<br />

0.0<br />

−0.4<br />

−0.8<br />

−0.8 −0.4 0.0<br />

ℜ<br />

0.4 0.8<br />

ℑ<br />

0.8<br />

0.4<br />

0.0<br />

−0.4<br />

−0.8<br />

−0.8 −0.4 0.0<br />

ℜ<br />

0.4 0.8<br />

characterize projections <strong>of</strong> 6-dim complex projective space<br />

P 3 onto a 2–plane<br />

The projection plane and direction is detemined by the particular matrix A<br />

<strong>of</strong> order N = 4.<br />

(three exemplary matrices selected here)<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 28 / 32


<strong>Numerical</strong> shadow restricted to<br />

(complex) separable states<br />

Shadows <strong>of</strong> (various) operators <strong>of</strong> size N = 4<br />

ℑ<br />

0.8<br />

0.4<br />

0.0<br />

−0.4<br />

−0.8<br />

−0.8 −0.4 0.0<br />

ℜ<br />

0.4 0.8<br />

ℑ<br />

0.8<br />

0.4<br />

0.0<br />

−0.4<br />

−0.8<br />

−0.20.0 0.2<br />

ℜ<br />

ℑ<br />

0.8<br />

0.4<br />

0.0<br />

−0.4<br />

−0.8<br />

−0.8 −0.4 0.0<br />

ℜ<br />

0.4 0.8<br />

characterize projections <strong>of</strong> 4-dim manifold<br />

P 1 × P 1 = S 2 × S 2 onto a 2–plane<br />

The projection plane and direction is detemined by the particular matrix A<br />

<strong>of</strong> order N = 4.<br />

(three exemplary matrices selected here)<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 29 / 32


<strong>Dynamics</strong> <strong>of</strong> <strong>Entanglement</strong> and separable shadow<br />

Trajectories <strong>of</strong> quantum dynamics on the complex plane<br />

ℑ<br />

0.2<br />

0.0<br />

−0.2<br />

z(t) = 〈ψ(t)|A|ψ(t)〉<br />

−0.4 0.0 0.4<br />

ℜ<br />

ℑ<br />

0.2<br />

0.0<br />

−0.2<br />

−0.8 −0.4 0.0<br />

ℜ<br />

0.4 0.8<br />

Figures obtained for former example <strong>of</strong> 2 × 2 system<br />

with initial separable pure state |ψ(0)〉<br />

and suitably chosen (non–Hermitian !) operator A<br />

visualize possible behaviour <strong>of</strong> quantum entanglement...<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 30 / 32


<strong>Dynamics</strong> <strong>of</strong> entanglement II<br />

A general, geometric picture<br />

The effects <strong>of</strong><br />

a) revivals <strong>of</strong> entanglement = oscillations induced by unitary evolution<br />

b) entanglement sudden death<br />

can be explained by<br />

a geometric approach based on numerical shadow<br />

hskip 2.0cm and separable numerical shadow.<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 31 / 32


Concluding Remarks<br />

Different scenarios <strong>of</strong> <strong>Dynamics</strong> <strong>of</strong> quantum entanglement<br />

(revivals, sudded death) can be understood by investigating the<br />

geometry <strong>of</strong> the set <strong>of</strong> separable states:<br />

A key role is played by a ball <strong>of</strong> separable states located at the center<br />

<strong>of</strong> the body <strong>of</strong> mixed states.<br />

We introduce a concept <strong>of</strong> numerical shadow <strong>of</strong> an operator.<br />

The set <strong>of</strong> all possible projections <strong>of</strong> the N 2 − 1 dimensional set <strong>of</strong><br />

quantum states <strong>of</strong> order N onto a 2–plane is equivalent (up to shift<br />

and rescaling) to the set <strong>of</strong> numerical ranges <strong>of</strong> matrices <strong>of</strong> order N.<br />

<strong>Numerical</strong> shadow restricted to separable/entangled states is<br />

useful for investigations <strong>of</strong> the geometry <strong>of</strong> quantum entanglement !<br />

One can trace quantum trajectories with the <strong>Numerical</strong> shadow<br />

restricted to separable states in the background...<br />

K ˙Z (ChInka) <strong>Quantum</strong> entanglement & <strong>Numerical</strong> shadow 23.01.2012 32 / 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!