05.07.2013 Views

Level Spacing Distribution Revisited - Theoretical Group Atomic ...

Level Spacing Distribution Revisited - Theoretical Group Atomic ...

Level Spacing Distribution Revisited - Theoretical Group Atomic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> <strong>Revisited</strong><br />

Karol ˙Zyczkowski<br />

in collaboration with<br />

Tomasz Tkocz and Marek Ku´s (Warsaw)<br />

Institute of Physics, Jagiellonian University, Cracow, Poland<br />

and<br />

Center for <strong>Theoretical</strong> Physics, Polish Academy of Sciences<br />

IF UJ, Kraków, March 14, 2011<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 1 / 20


Quantum Chaos & Unitary Dynamics<br />

’Quantum chaology’: analogues of classically chaotic systems<br />

Quantum analogues of classically chaotic dynamical systems can be<br />

described by random matrices<br />

a) autonomous systems – Hamiltonians:<br />

Gaussian ensembles of random Hermitian matrices, (GOE, GUE, GSE)<br />

b) periodic systems – evolution operators:<br />

Dyson circular ensembles of random unitary matrices, (COE, CUE, CSE)<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 2 / 20


Random Matrices & Universality<br />

Universality classes<br />

Depending on the symmetry properties of the system one uses ensembles<br />

form<br />

orthogonal (β = 1);<br />

unitary (β = 2) and<br />

symplectic (β = 4) ensembles.<br />

The exponent β determines the level repulsion, P(s) ∼ s β for s → 0 where<br />

s stands for the (normalised) level spacing, si = φi+1 − φi.<br />

see e.g. F. Haake, Quantum Signatures of Chaos<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 3 / 20


Gaussian Ensembles of Hermitian matrices H<br />

Hermitian random matrix H = H †<br />

consists of independent Gaussian entries<br />

a) orthogonal ensemble, β = 1 - real random numbers,<br />

b) unitary ensemble, β = 2 - complex numbers (real at the diagonal!)<br />

c) symplectic ensemble, β = 4 - quaternions (2 × 2 matrices)<br />

leading to 2N × 2N matrix with each eigenvalue occurring twice.<br />

Different normalization conditions, we use the one implied by<br />

the normal distribution 〈Hij〉 = 0 and σ2 = 〈H2 ij 〉 = 1<br />

GUE ⇒ Unitary invariance, P(H) = P(UHU † )<br />

leads to joint probability distribution (jpd) of eigenvalues xi<br />

β P<br />

−<br />

Pβ(x1, . . .,xN) = CNe 2 j x2 j<br />

<br />

|xj − xk| β<br />

j


Wigner Semicircle Law<br />

Spectral density P(x)<br />

can be obtained by integrating out all eigenvalues but one from jpd.<br />

For all three Gaussian ensembles of Hermitian random matrices one<br />

obtains (asymptotically, for N → ∞) the Wigner Semicircle Law (1955)<br />

P(x) = 1 <br />

2 − x2 2π<br />

where x denotes a normalized eigenvalue, xi = λi/ √ N<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 5 / 20


K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 6 / 20


Extremal eigenvalues & Tracy–Widom Law<br />

Statistics of extremal cases - the largest eigenvalue xmax<br />

The normalized largest eigenvalue<br />

s := (xmax − 2 √ N)N −1/6<br />

of a GUE random matrix is (asymptotically) distributed according to the<br />

Tracy-Widom law (1994)<br />

F2(s) = det(1 − K) ,<br />

where K is the integral operator with the Airy kernel<br />

K(x, y) = Ai(x)Ai′ (y) − Ai ′ (x)Ai(y)<br />

.<br />

x − y<br />

The scaling behaviour of the finite size effect (as 1/N 1/6 )<br />

is due to Bowick & Brezin (1991) and Forrester (1991).<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 7 / 20


Tracy–Widom distributions<br />

Tracy–Widom distributions Fβ(s)<br />

<strong>Distribution</strong>s Fβ(s) and the largest eigenvalue<br />

of random GUE matrices<br />

(image by A. Edelman)<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 8 / 20


Some applications of Tracy–Widom Law<br />

Combinatorics: length of the longest increasing permutation<br />

Baik, Deift, Johansson (1999)<br />

Statistics: largest eigenvalues of correlation matrices C = XX T<br />

Johnstone (2001)<br />

Growth processes: fluctuations around the limiting shape<br />

Johansson (2000)<br />

Superconductors: fluctuations of excitation gap in a quantum dot<br />

Vavilov, Brouer, Ambegaokar, Benakker (2001)<br />

Random Tilings & Aztec Diamond: fluctuations around<br />

the Arctic Circle Johansson (2002)<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 9 / 20


Aztec Diamond & domino lattice<br />

Aztec diamond of order n – a region of 2n(n + 1) unit squares tiled with<br />

n(n + 1) dominos (i.e. union of two squares)<br />

The Aztec diamond<br />

of order n = 3<br />

K(3) = 2 6 = 64<br />

There exists exactly K = 2 n(n+1)/2 different domino tilings<br />

Elkies, Kuperberg, Larsen, Propp (1992)<br />

How a random Aztec Diamond looks like??<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 10 / 20


Random Domino & Arctic Circle Theorem<br />

Arctic Circle theorem - randomness inside the circle<br />

& ’Frozen Phase’ in four corners Jockush, Propp, Shor (1995)<br />

n = 50, K = 2 1275 ≈ 10 383<br />

Fluctuations around the Arctic Circle are described by<br />

the Tracy–Widom distribution F2 Johansson (2002)<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 11 / 20


Random matrices & Finite N Effects<br />

Analogy<br />

Infinite matrices ↔ semiclassical → 0 limit ↔ geometric optics<br />

diffraction and Airy discs<br />

Finite N Random Matrices ↔ Quantum Theory > 0 ↔ Wave<br />

Optics<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 12 / 20


<strong>Level</strong> spacing distribution P(s)<br />

Nearest neighbour spacing s<br />

si = xi+1−xi<br />

∆ where ∆ is the mean spacing<br />

a) Gaussian ensembles for N = 2 ⇒ Wigner surmise<br />

β = 1 GOE (orthogonal) P1(s) = π<br />

2s exp(−π 4s2 )<br />

β = 2 GUE (unitary) P2(s) = 32<br />

π 2s 2 exp(− 4<br />

π s2 )<br />

β = 4 GSE (symplectic) P4(s) = 218<br />

3 6 π 3s 4 exp(− 64<br />

9π s2 )<br />

These distributions derived for N = 2 work well also for Gaussian<br />

ensembles in the asymptotic case, N → ∞.<br />

Random unitary matrices & Circular ensembles of Dyson<br />

Uniform density of phases along the unit circle, P(φ) = 1/2π.<br />

Phase spacing, si = N<br />

2π [φi+1 − φi] since ∆ = 2π/N.<br />

For large matrices the level spacing distributions for Gaussian ensembles<br />

(Hermitian matrices) and circular ensembles (unitary matrices) coincide.<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 13 / 20


Composite systems & tensor products<br />

Consider tensor product of random matrices V = U1 ⊗ U2<br />

of size N, where Uj are random matrices according to the Haar measure<br />

(CUE). Eig(V) = {ψkm} = (αk + βm)|mod2π,<br />

where {αk} N k=1 and {βm} N m=1 denote spectra of U1 and U2.<br />

What is the (asymptotic) spacing distribution PCUE⊗CUE(s) ?<br />

Two qubits & random local gates<br />

Analytical results P2⊗2(s) for CUE(2) ⊗ CUE(2),<br />

(case by case analysis & direct integration)<br />

P2⊗2(s) = Θ(2 − s) 1<br />

<br />

2π (s − 2)sin2 ( πs<br />

4 ) π(s − 2) − 2 sin( πs<br />

2 )<br />

+ 1<br />

128π2 <br />

2(36 + π2 (s − 4) 2 ) + 128 cos( πs<br />

4 )<br />

+ (56 + π 2 (s − 4) 2 )cos( πs<br />

2 )<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 14 / 20


<strong>Level</strong> spacing for unitary matrices of order N = 4<br />

Comparison of spacing distribution P(s) for<br />

a) Poisson CPE(4), b) CUE(2) ⊗ CUE(2), c) CUE(4),<br />

Poisson ensemble, β = 0, CPE(4), P (4)<br />

0 (s) = (1 − s/4)3 ,<br />

Large matrices, N → ∞ asymptotics P (∞)<br />

0 (s) = e −s ,<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 15 / 20


Extremal spacings distributions<br />

for random unitary matrices<br />

consider a) Minimal spacing smin = minj{sj} N j=1<br />

and b) Maximal spacing smax = maxj{sj} N j=1<br />

Minimal spacing distribution for N = 4 random unitary matrices<br />

Two qubits & random local gates<br />

Analytical results P2⊗2(t) for CUE(2) ⊗ CUE(2) case, where t = smin<br />

P2⊗2(t) = 1<br />

<br />

2π(1−t)<br />

4π<br />

4−cos( πt<br />

2 )−3 sin( πt<br />

2<br />

)+8 sin(πt)−3 sin(3πt<br />

2 )<br />

<br />

CUE, β = 2, CUE(4), P (2)<br />

4 (t) = ... explicit result to long to reproduce it<br />

here...<br />

Poisson ensemble, β = 0, CPE(4), P (0)<br />

4 (t) = 3(1 − t)2 .<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 16 / 20


Minimal spacing P(smin) for N = 4 unitary matrices<br />

Comparison of spacing distribution P(smin) for<br />

a) Poisson CPE(4), b) CUE(2) ⊗ CUE(2), c) CUE(4).<br />

mean values: 〈smin〉CPE4 = 1/4, 〈smin〉CUE2⊗CUE2 ≈ 0.4,<br />

〈smin〉CUE4 ≈ 0.54<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 17 / 20


Average minimal spacing 〈smin〉 for large unitary<br />

matrices<br />

Approximation of independent spacings<br />

Assume spacings sj described by the distribution Pβ(s) are independent.<br />

Minimal spacing<br />

Since for small spacings Pβ(s) ∼ s β so the integrated distribution<br />

I(s) = s<br />

0 P(s′ )ds ′ behaves as Iβ(s) ∼ s 1+β<br />

Matrix of order N yields N spacings sj. The minimal spacing smin occurs<br />

for such an argument that Iβ(smin) ≈ 1/N.<br />

Thus (smin) 1+β ≈ 1/N =⇒ smin ≈ N −β−1<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 18 / 20


Average maximal spacing 〈smax〉<br />

Approximation of independent spacings<br />

Assume spacings sj described by the distribution Pβ(s) are independent.<br />

Mean maximal spacing for COE<br />

Since for large spacings Pβ(s) ∼ s 1 exp(−s 2 ) so the integrated<br />

distribution<br />

I1(s) = s<br />

0 P(s′ )ds ′ behaves as I1(s) ∼ −exp(−s 2 )<br />

Matrix of order N yields N spacings sj. The maximal spacing smax occurs<br />

for such an argument that 1 − I1(smax) ≈ 1/N.<br />

Thus exp[−(smax) 2 ] ≈ 1/N =⇒ smax ≈ √ lnN<br />

However,<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 19 / 20


Average maximal spacing 〈smax〉<br />

Approximation of independent spacings<br />

Assume spacings sj described by the distribution Pβ(s) are independent.<br />

Mean maximal spacing for COE<br />

Since for large spacings Pβ(s) ∼ s 1 exp(−s 2 ) so the integrated<br />

distribution<br />

I1(s) = s<br />

0 P(s′ )ds ′ behaves as I1(s) ∼ −exp(−s 2 )<br />

Matrix of order N yields N spacings sj. The maximal spacing smax occurs<br />

for such an argument that 1 − I1(smax) ≈ 1/N.<br />

Thus exp[−(smax) 2 ] ≈ 1/N =⇒ smax ≈ √ lnN<br />

However, these results (and many more) appeared recently (October 2010)<br />

in a preprint arXiv:1010.1294 ”Extreme gaps between eigenvalues of<br />

random matrices” by Ben Arous and Bourgade.<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 19 / 20


Concluding Remarks<br />

Random Matrices:<br />

a) offer a useful tool applicable in several branches of science<br />

including physics !<br />

b) display (asymptotically) universal properties, which depend on<br />

the symmetry with respect to orthogonal / unitary / symplectic<br />

transformations<br />

Limit N → ∞ corresponds to the semiclassical limit of quantum<br />

theory or geometric optics as a limiting case of wave optics!<br />

Problem of extremal eigenvalues is described by Tracy–Widom<br />

distributions.<br />

The analogous problem of extremal spacings is studied only recently<br />

Preliminary results on spectral statistics of local unitary evolution<br />

operators (with tensor product structure).<br />

K ˙Z (IF UJ/CFT PAN ) <strong>Level</strong> <strong>Spacing</strong> <strong>Distribution</strong> March 14, 2011 20 / 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!